1
|
Rivera DE, Poirier K, Moore S, Nicolle O, Morgan E, Longares JF, Singh A, Michaux G, Félix MA, Luallen RJ. Dynamics of gut colonization by commensal and pathogenic bacteria that attach to the intestinal epithelium. NPJ Biofilms Microbiomes 2025; 11:70. [PMID: 40319018 PMCID: PMC12049552 DOI: 10.1038/s41522-025-00696-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 04/04/2025] [Indexed: 05/07/2025] Open
Abstract
Bacterial adherence to the intestinal epithelium plays a role in niche establishment in the gut lumen. Through sampling natural populations of Caenorhabditis, we discovered several bacterial species that adhere to the intestinal epithelium via polar, intimate association, best described as attachment. These bacteria had varying effects on host fitness and physiology, with one species having negative effects, and the others exhibiting neutral effects. These bacteria can actively divide in the gut lumen, either replicating throughout the gut simultaneously or anteroposteriorly. In competition assays, animals pre-colonized with an attaching commensal bacteria reduced colonization by the pathogenic bacteria, but this effect was not seen when animals were colonized by both species simultaneously. Regardless of the colonization paradigm, populations exposed to both bacteria showed a near-identical mitigation of the pathogenic effects. Altogether, these strains illustrate the capacity of microbiome bacteria to attach, replicate, and establish a niche across the entire intestinal lumen.
Collapse
Affiliation(s)
- Dalaena E Rivera
- Department of Biology, San Diego State University, San Diego, USA
| | - Kayla Poirier
- Department of Biology, San Diego State University, San Diego, USA
| | - Samuel Moore
- Department of Biology, San Diego State University, San Diego, USA
| | - Ophélie Nicolle
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) -UMR 6290, F-35000, Rennes, France
| | - Emily Morgan
- Department of Biology, San Diego State University, San Diego, USA
| | | | - Anupama Singh
- Department of Biology, San Diego State University, San Diego, USA
| | - Grégoire Michaux
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) -UMR 6290, F-35000, Rennes, France
| | - Marie-Anne Félix
- Institut de Biologie de l'École Normale Supérieure, Centre National de la Recherche Scientifique, INSERM, École Normale Supérieure, Paris Sciences et Lettres, Paris, France.
| | - Robert J Luallen
- Department of Biology, San Diego State University, San Diego, USA.
| |
Collapse
|
2
|
Zhang C, Yu Y, Yue L, Chen Y, Chen Y, Liu Y, Guo C, Su Q, Xiang Z. Gut microbiota profiles of sympatric snub-nosed monkeys and macaques in Qinghai-Tibetan Plateau show influence of phylogeny over diet. Commun Biol 2025; 8:95. [PMID: 39833341 PMCID: PMC11747120 DOI: 10.1038/s42003-025-07538-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
The unique environment of the Qinghai-Tibetan Plateau provides a great opportunity to study how primate intestinal microorganisms adapt to ecosystems. The 16S rRNA gene amplicon and metagenome analysis were conducted to investigate the correlation between gut microbiota in primates and other sympatric animal species living between 3600 and 4500 m asl. Results showed that within the same geographical environment, Macaca mulatta and Rhinopithecus bieti exhibited a gut microbiome composition similar to that of Tibetan people, influenced by genetic evolution of host, while significantly differing from other distantly related animals. The gut microbiota of plateau species has developed similar strategies to facilitate their hosts' adaptation to specific environments, including broadening its dietary niche and enhancing energy absorption. These findings will enhance our comprehension of the significance of primate gut microbiota in adapting to specific habitats.
Collapse
Affiliation(s)
- Chen Zhang
- College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yang Yu
- College of Life Sciences and Technology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Ling Yue
- Panzhihua Animal Disease Prevention and Control Center, Panzhihua, Sichuan, China
| | - Yi Chen
- College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yixin Chen
- College of Life Sciences and Technology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yang Liu
- College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Cheng Guo
- College of Life Sciences and Technology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Qianqian Su
- College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China.
| | - Zuofu Xiang
- College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China.
| |
Collapse
|
3
|
Noh S, Peck RF, Larson ER, Covitz RM, Chen A, Roy P, Hamilton MC, Dettmann RA. Facultative symbiont virulence determines horizontal transmission rate without host specificity in Dictyostelium discoideum social amoebas. Evol Lett 2024; 8:437-447. [PMID: 38818420 PMCID: PMC11134466 DOI: 10.1093/evlett/qrae001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 06/01/2024] Open
Abstract
In facultative symbioses, only a fraction of hosts are associated with symbionts. Specific host and symbiont pairings may be the result of host-symbiont coevolution driven by reciprocal selection or priority effects pertaining to which potential symbiont is associated with a host first. Distinguishing between these possibilities is important for understanding the evolutionary forces that affect facultative symbioses. We used the social amoeba, Dictyostelium discoideum, and its symbiont, Paraburkholderia bonniea, to determine whether ongoing coevolution affects which host-symbiont strain pairs naturally cooccur within a facultative symbiosis. Relative to other Paraburkholderia, including another symbiont of D. discoideum, P. bonniea features a reduced genome size that indicates a significant history of coevolution with its host. We hypothesized that ongoing host-symbiont coevolution would lead to higher fitness for naturally cooccurring (native) host and symbiont pairings compared to novel pairings. We show for the first time that P. bonniea symbionts can horizontally transmit to new amoeba hosts when hosts aggregate together during the social stage of their life cycle. Here we find evidence for a virulence-transmission trade-off without host specificity. Although symbiont strains were significantly variable in virulence and horizontal transmission rate, hosts and symbionts responded similarly to associations in native and novel pairings. We go on to identify candidate virulence factors in the genomes of P. bonniea strains that may contribute to variation in virulence. We conclude that ongoing coevolution is unlikely for D. discoideum and P. bonniea. The system instead appears to represent a stable facultative symbiosis in which naturally cooccurring P. bonniea host and symbiont pairings are the result of priority effects.
Collapse
Affiliation(s)
- Suegene Noh
- Biology Department, Colby College, Waterville, ME, United States
| | - Ron F Peck
- Biology Department, Colby College, Waterville, ME, United States
| | - Emily R Larson
- Biology Department, Colby College, Waterville, ME, United States
| | - Rachel M Covitz
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
| | - Anna Chen
- Biology Department, Colby College, Waterville, ME, United States
| | - Prachee Roy
- Biology Department, Colby College, Waterville, ME, United States
| | - Marisa C Hamilton
- University Program in Genetics and Genomics, Duke University, Durham, NC, United States
| | - Robert A Dettmann
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
4
|
Ludington WB. The importance of host physical niches for the stability of gut microbiome composition. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230066. [PMID: 38497267 PMCID: PMC10945397 DOI: 10.1098/rstb.2023.0066] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/04/2023] [Indexed: 03/19/2024] Open
Abstract
Gut bacteria are prevalent throughout the Metazoa and form complex microbial communities associated with food breakdown, nutrient provision and disease prevention. How hosts acquire and maintain a consistent bacterial flora remains mysterious even in the best-studied animals, including humans, mice, fishes, squid, bugs, worms and flies. This essay visits the evidence that hosts have co-evolved relationships with specific bacteria and that some of these relationships are supported by specialized physical niches that select, sequester and maintain microbial symbionts. Genetics approaches could uncover the mechanisms for recruiting and maintaining the stable and consistent members of the microbiome. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- William B. Ludington
- Department of Biosphere Sciences and Engineering, Carnegie Institution for Science, Baltimore, MD 21218, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
5
|
Singh A, Luallen RJ. Understanding the factors regulating host-microbiome interactions using Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230059. [PMID: 38497260 PMCID: PMC10945399 DOI: 10.1098/rstb.2023.0059] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/01/2024] [Indexed: 03/19/2024] Open
Abstract
The Human Microbiome Project was a research programme that successfully identified associations between microbial species and healthy or diseased individuals. However, a major challenge identified was the absence of model systems for studying host-microbiome interactions, which would increase our capacity to uncover molecular interactions, understand organ-specificity and discover new microbiome-altering health interventions. Caenorhabditis elegans has been a pioneering model organism for over 70 years but was largely studied in the absence of a microbiome. Recently, ecological sampling of wild nematodes has uncovered a large amount of natural genetic diversity as well as a slew of associated microbiota. The field has now explored the interactions of C. elegans with its associated gut microbiome, a defined and non-random microbial community, highlighting its suitability for dissecting host-microbiome interactions. This core microbiome is being used to study the impact of host genetics, age and stressors on microbiome composition. Furthermore, single microbiome species are being used to dissect molecular interactions between microbes and the animal gut. Being amenable to health altering genetic and non-genetic interventions, C. elegans has emerged as a promising system to generate and test new hypotheses regarding host-microbiome interactions, with the potential to uncover novel paradigms relevant to other systems. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Anupama Singh
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Robert J. Luallen
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
6
|
Pearman WS, Duffy GA, Liu XP, Gemmell NJ, Morales SE, Fraser CI. Macroalgal microbiome biogeography is shaped by environmental drivers rather than geographical distance. ANNALS OF BOTANY 2024; 133:169-182. [PMID: 37804485 PMCID: PMC10921836 DOI: 10.1093/aob/mcad151] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/06/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND AND AIMS Contrasting patterns of host and microbiome biogeography can provide insight into the drivers of microbial community assembly. Distance-decay relationships are a classic biogeographical pattern shaped by interactions between selective and non-selective processes. Joint biogeography of microbiomes and their hosts is of increasing interest owing to the potential for microbiome-facilitated adaptation. METHODS In this study, we examine the coupled biogeography of the model macroalga Durvillaea and its microbiome using a combination of genotyping by sequencing (host) and 16S rRNA amplicon sequencing (microbiome). Alongside these approaches, we use environmental data to characterize the relationship between the microbiome, the host, and the environment. KEY RESULTS We show that although the host and microbiome exhibit shared biogeographical structure, these arise from different processes, with host biogeography showing classic signs of geographical distance decay, but with the microbiome showing environmental distance decay. Examination of microbial subcommunities, defined by abundance, revealed that the abundance of microbes is linked to environmental selection. As microbes become less common, the dominant ecological processes shift away from selective processes and towards neutral processes. Contrary to expectations, we found that ecological drift does not promote structuring of the microbiome. CONCLUSIONS Our results suggest that although host macroalgae exhibit a relatively 'typical' biogeographical pattern of declining similarity with increasing geographical distance, the microbiome is more variable and is shaped primarily by environmental conditions. Our findings suggest that the Baas Becking hypothesis of 'everything is everywhere, the environment selects' might be a useful hypothesis to understand the biogeography of macroalgal microbiomes. As environmental conditions change in response to anthropogenic influences, the processes structuring the microbiome of macroalgae might shift, whereas those governing the host biogeography are less likely to change. As a result, increasingly decoupled host-microbe biogeography might be observed in response to such human influences.
Collapse
Affiliation(s)
- William S Pearman
- Department of Marine Science, University of Otago, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, New Zealand
- Department of Microbiology & Immunology, School of Biomedical Sciences, University of Otago, New Zealand
| | - Grant A Duffy
- Department of Marine Science, University of Otago, New Zealand
| | - Xiaoyue P Liu
- Department of Marine Science, University of Otago, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, New Zealand
| | - Sergio E Morales
- Department of Microbiology & Immunology, School of Biomedical Sciences, University of Otago, New Zealand
| | | |
Collapse
|
7
|
Hammer TJ. Why do hosts malfunction without microbes? Missing benefits versus evolutionary addiction. Trends Microbiol 2024; 32:132-141. [PMID: 37652785 DOI: 10.1016/j.tim.2023.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 09/02/2023]
Abstract
Microbes are widely recognized to be vital to host health. This new consensus rests, in part, on experiments showing how hosts malfunction when microbes are removed. More and more microbial dependencies are being discovered, even in fundamental processes such as development, immunity, physiology, and behavior. But why do they exist? The default explanation is that microbes are beneficial; when hosts lose microbes, they also lose benefits. Here I call attention to evolutionary addiction, whereby a host trait evolves a need for microbes without having been improved by them. Evolutionary addiction should be considered when interpreting microbe-removal experiments, as it is a distinct and potentially common process. Further, it may have unique implications for the evolution and stability of host-microbe interactions.
Collapse
Affiliation(s)
- Tobin J Hammer
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
8
|
Ganesan R, Wierz JC, Kaltenpoth M, Flórez LV. How It All Begins: Bacterial Factors Mediating the Colonization of Invertebrate Hosts by Beneficial Symbionts. Microbiol Mol Biol Rev 2022; 86:e0012621. [PMID: 36301103 PMCID: PMC9769632 DOI: 10.1128/mmbr.00126-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Beneficial associations with bacteria are widespread across animals, spanning a range of symbiont localizations, transmission routes, and functions. While some of these associations have evolved into obligate relationships with permanent symbiont localization within the host, the majority require colonization of every host generation from the environment or via maternal provisions. Across the broad diversity of host species and tissue types that beneficial bacteria can colonize, there are some highly specialized strategies for establishment yet also some common patterns in the molecular basis of colonization. This review focuses on the mechanisms underlying the early stage of beneficial bacterium-invertebrate associations, from initial contact to the establishment of the symbionts in a specific location of the host's body. We first reflect on general selective pressures that can drive the transition from a free-living to a host-associated lifestyle in bacteria. We then cover bacterial molecular factors for colonization in symbioses from both model and nonmodel invertebrate systems where these have been studied, including terrestrial and aquatic host taxa. Finally, we discuss how interactions between multiple colonizing bacteria and priority effects can influence colonization. Taking the bacterial perspective, we emphasize the importance of developing new experimentally tractable systems to derive general insights into the ecological factors and molecular adaptations underlying the origin and establishment of beneficial symbioses in animals.
Collapse
Affiliation(s)
- Ramya Ganesan
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jürgen C. Wierz
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Martin Kaltenpoth
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Laura V. Flórez
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Plant and Environmental Sciences, Section for Organismal Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Zapién-Campos R, Bansept F, Sieber M, Traulsen A. On the effect of inheritance of microbes in commensal microbiomes. BMC Ecol Evol 2022; 22:75. [PMID: 35710335 PMCID: PMC9204957 DOI: 10.1186/s12862-022-02029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 06/02/2022] [Indexed: 11/10/2022] Open
Abstract
Background Our current view of nature depicts a world where macroorganisms dwell in a landscape full of microbes. Some of these microbes not only transit but establish themselves in or on hosts. Although hosts might be occupied by microbes for most of their lives, a microbe-free stage during their prenatal development seems to be the rule for many hosts. The questions of who the first colonizers of a newborn host are and to what extent these are obtained from the parents follow naturally. Results We have developed a mathematical model to study the effect of the transfer of microbes from parents to offspring. Even without selection, we observe that microbial inheritance is particularly effective in modifying the microbiome of hosts with a short lifespan or limited colonization from the environment, for example by favouring the acquisition of rare microbes. Conclusion By modelling the inheritance of commensal microbes to newborns, our results suggest that, in an eco-evolutionary context, the impact of microbial inheritance is of particular importance for some specific life histories. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02029-2.
Collapse
|
10
|
Highland adaptation of birds on the Qinghai-Tibet Plateau via gut microbiota. Appl Microbiol Biotechnol 2022; 106:6701-6711. [PMID: 36097173 DOI: 10.1007/s00253-022-12171-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
Abstract
Highland birds evolve multiple adaptive abilities to cope with the harsh environments; however, how they adapt to the high-altitude habitats via the gut microbiota remains understudied. Here we integrated evidences from comparative analysis of gut microbiota to explore the adaptive mechanism of black-necked crane, a typical highland bird in the Qinghai-Tibet Plateau. Firstly, the gut microbiota diversity and function was compared among seven crane species (one high-altitude species and six low-altitude species), and then among three populations of contrasting altitudes for the black-necked crane. Microbiota community diversity in black-necked crane was significantly lower than its low-altitude relatives, but higher microbiota functional diversity was observed in black-necked crane, suggesting that unique bacteria are developed and acquired due to the selection pressure of high-altitude environments. The functional microbial genes differed significantly between the low- and high-altitude black-necked cranes, indicating that altitude significantly impacted microbial communities' composition and structure. Adaptive changes in microbiota diversity and function are observed in response to high-altitude environments. These findings provide us a new insight into the adaptation mechanism to the high-altitude environment for birds via the gut microbiota. KEY POINTS: • The diversity and function of gut microbiota differed significantly between the low- and high-altitude crane species. • Black-necked crane adapts to the high-altitude environment via specific gut microbiota. • Altitude significantly impacted microbial communities' composition and structure.
Collapse
|
11
|
Sudan S, Zhan X, Li J. A Novel Probiotic Bacillus subtilis Strain Confers Cytoprotection to Host Pig Intestinal Epithelial Cells during Enterotoxic Escherichia coli Infection. Microbiol Spectr 2022; 10:e0125721. [PMID: 35736372 PMCID: PMC9430607 DOI: 10.1128/spectrum.01257-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 05/26/2022] [Indexed: 01/13/2023] Open
Abstract
Enteric infections caused by enterotoxic Escherichia coli (ETEC) negatively impact the growth performance of piglets during weaning, resulting in significant economic losses for the producers. With the ban on antibiotic usage in livestock production, probiotics have gained a lot of attention as a potential alternative. However, strain specificity and limited knowledge on the host-specific targets limit their efficacy in preventing ETEC-related postweaning enteric infections. We recently isolated and characterized a novel probiotic Bacillus subtilis bacterium (CP9) that demonstrated antimicrobial activity. Here, we report anti-ETEC properties of CP9 and its impact on metabolic activity of swine intestinal epithelial (IPEC-J2) cells. Our results showed that pre- or coincubation with CP9 protected IPEC-J2 cells from ETEC-induced cytotoxicity. CP9 significantly attenuated ETEC-induced inflammatory response by reducing ETEC-induced nitric oxide production and relative mRNA expression of the Toll-like receptors (TLRs; TLR2, TLR4, and TLR9), proinflammatory tumor necrosis factor alpha, interleukins (ILs; IL-6 and IL-8), augmenting anti-inflammatory granulocyte-macrophage colony-stimulating factor and host defense peptide mucin 1 (MUC1) mRNA levels. We also show that CP9 significantly (P < 0.05) reduced caspase-3 activity, reinstated cell proliferation and increased relative expression of tight junction genes, claudin-1, occludin, and zona occludens-1 in ETEC-infected cells. Finally, metabolomic analysis revealed that CP9 exposure induced metabolic modulation in IPEC J2 cells with the greatest impact seen in alanine, aspartate, and glutamate metabolism; pyrimidine metabolism; nicotinate and nicotinamide metabolism; glutathione metabolism; the citrate cycle (TCA cycle); and arginine and proline metabolism. Our study shows that CP9 incubation attenuated ETEC-induced cytotoxicity in IPEC-J2 cells and offers insight into potential application of this probiotic for ETEC infection control. IMPORTANCE ETEC remains one of the leading causes of postweaning diarrhea and mortality in swine production. Due to the rising concerns with the antibiotic use in livestock, alternative interventions need to be developed. In this study, we analyzed the cytoprotective effect of a novel probiotic strain in combating ETEC infection in swine intestinal cells, along with assessing its mechanism of action. To our knowledge, this is also the first study to analyze the metabolic impact of a probiotic on intestinal cells. Results from this study should provide effective cues in developing a probiotic intervention for ameliorating ETEC infection and improving overall gut health in swine production.
Collapse
Affiliation(s)
- Sudhanshu Sudan
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Xiaoshu Zhan
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Julang Li
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
12
|
The possible modes of microbial reproduction are fundamentally restricted by distribution of mass between parent and offspring. Proc Natl Acad Sci U S A 2022; 119:e2122197119. [PMID: 35294281 PMCID: PMC8944278 DOI: 10.1073/pnas.2122197119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cells and simple cell colonies reproduce by fragmenting their bodies into pieces. Produced newborns need to grow before they can reproduce again. How big a cell or a cell colony should grow? How many offspring should be produced? Should they be of equal size or diverse? We show that the simple fact that the immediate mass of offspring cannot exceed the mass of parents restricts possible answers to these questions. For example, our theory states that, when mass is conserved in the course of fragmentation, the evolutionarily optimal reproduction mode is fragmentation into exactly two, typically equal, parts. Our theory also shows conditions which promote evolution of asymmetric division or fragmentation into multiple pieces. Multiple modes of asexual reproduction are observed among microbial organisms in natural populations. These modes are not only subject to evolution, but may drive evolutionary competition directly through their impact on population growth rates. The most prominent transition between two such modes is the one from unicellularity to multicellularity. We present a model of the evolution of reproduction modes, where a parent organism fragments into smaller parts. While the size of an organism at fragmentation, the number of offspring, and their sizes may vary a lot, the combined mass of fragments is limited by the mass of the parent organism. We found that mass conservation can fundamentally limit the number of possible reproduction modes. This has important direct implications for microbial life: For unicellular species, the interplay between cell shape and kinetics of the cell growth implies that the largest and the smallest possible cells should be rod shaped rather than spherical. For primitive multicellular species, these considerations can explain why rosette cell colonies evolved a mechanistically complex binary split reproduction. Finally, we show that the loss of organism mass during sporulation can explain the macroscopic sizes of the formally unicellular microorganism Myxomycetes plasmodium. Our findings demonstrate that a number of seemingly unconnected phenomena observed in unrelated species may be different manifestations of the same underlying process.
Collapse
|
13
|
Weinhold A. Bowel Movement: Integrating Host Mobility and Microbial Transmission Across Host Taxa. Front Microbiol 2022; 13:826364. [PMID: 35242121 PMCID: PMC8886138 DOI: 10.3389/fmicb.2022.826364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022] Open
Abstract
The gut microbiota of animals displays a high degree of plasticity with respect to environmental or dietary adaptations and is shaped by factors like social interactions, diet diversity or the local environment. But the contribution of these drivers varies across host taxa and our ability to explain microbiome variability within wild populations remains limited. Terrestrial animals have divergent mobility ranges and can either crawl, walk or fly, from a couple of centimeters toward thousands of kilometers. Animal movement has been little regarded in host microbiota frameworks, though it can directly influence major drivers of the host microbiota: (1) Aggregation movement can enhance social transmissions, (2) foraging movement can extend range of diet diversity, and (3) dispersal movement determines the local environment of a host. Here, I would like to outline how movement behaviors of different host taxa matter for microbial acquisition across mammals, birds as well as insects. Host movement can have contrasting effects and either reduce or enlarge spatial scale. Increased dispersal movement could dissolve local effects of sampling location, while aggregation could enhance inter-host transmissions and uniformity among social groups. Host movement can also extend the boundaries of microbial dispersal limitations and connect habitat patches across plant-pollinator networks, while the microbiota of wild populations could converge toward a uniform pattern when mobility is interrupted in captivity or laboratory settings. Hence, the implementation of host movement would be a valuable addition to the metacommunity concept, to comprehend microbial dispersal within and across trophic levels.
Collapse
Affiliation(s)
- Arne Weinhold
- Faculty of Biology, Cellular and Organismic Networks, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
14
|
Timmis K, Hallsworth JE. The darkest microbiome-a post-human biosphere. Microb Biotechnol 2022; 15:176-185. [PMID: 34843168 PMCID: PMC8719803 DOI: 10.1111/1751-7915.13976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 01/05/2023] Open
Abstract
Microbial technology is exceptional among human activities and endeavours in its range of applications that benefit humanity, even exceeding those of chemistry. What is more, microbial technologists are among the most creative scientists, and the scope of the field continuously expands as new ideas and applications emerge. Notwithstanding this diversity of applications, given the dire predictions for the fate of the surface biosphere as a result of current trajectories of global warming, the future of microbial biotechnology research must have a single purpose, namely to help secure the future of life on Earth. Everything else will, by comparison, be irrelevant. Crucially, microbes themselves play pivotal roles in climate (Cavicchioli et al., Nature Revs Microbiol 17: 569-586, 2019). To enable realization of their full potential in humanity's effort to survive, development of new and transformative global warming-relevant technologies must become the lynchpin of microbial biotechnology research and development. As a consequence, microbial biotechnologists must consider constraining their usual degree of freedom, and re-orienting their focus towards planetary-biosphere exigences. And they must actively seek alliances and synergies with others to get the job done as fast as humanly possible; they need to enthusiastically embrace and join the global effort, subordinating where necessary individual aspirations to the common good (the amazing speed with which new COVID-19 diagnostics and vaccines were developed and implemented demonstrates what is possible given creativity, singleness of purpose and funding). In terms of priorities, some will be obvious, others less so, with some only becoming revealed after dedicated effort yields new insights/opens new vistas. We therefore refrain from developing a priority list here. Rather, we consider what is likely to happen to the Earth's biosphere if we (and the rest of humanity) fail to rescue it. We do so with the aim of galvanizing the formulation and implementation of strategic and financial science policy decisions that will maximally stimulate the development of relevant new microbial technologies, and maximally exploit available technologies, to repair existing environmental damage and mitigate against future deterioration.
Collapse
Affiliation(s)
- Kenneth Timmis
- Institute of MicrobiologyTechnical University of BraunschweigBraunschweigGermany
| | | |
Collapse
|
15
|
Bansept F, Obeng N, Schulenburg H, Traulsen A. Modeling host-associating microbes under selection. THE ISME JOURNAL 2021; 15:3648-3656. [PMID: 34158630 PMCID: PMC8630024 DOI: 10.1038/s41396-021-01039-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/28/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
The concept of fitness is often reduced to a single component, such as the replication rate in a given habitat. For species with multi-step life cycles, this can be an unjustified oversimplification, as every step of the life cycle can contribute to the overall reproductive success in a specific way. In particular, this applies to microbes that spend part of their life cycles associated to a host. In this case, there is a selection pressure not only on the replication rates, but also on the phenotypic traits associated to migrating from the external environment to the host and vice-versa (i.e., the migration rates). Here, we investigate a simple model of a microbial lineage living, replicating, migrating and competing in and between two compartments: a host and an environment. We perform a sensitivity analysis on the overall growth rate to determine the selection gradient experienced by the microbial lineage. We focus on the direction of selection at each point of the phenotypic space, defining an optimal way for the microbial lineage to increase its fitness. We show that microbes can adapt to the two-compartment life cycle through either changes in replication or migration rates, depending on the initial values of the traits, the initial distribution across the two compartments, the intensity of competition, and the time scales involved in the life cycle versus the time scale of adaptation (which determines the adequate probing time to measure fitness). Overall, our model provides a conceptual framework to study the selection on microbes experiencing a host-associated life cycle.
Collapse
Affiliation(s)
- Florence Bansept
- grid.419520.b0000 0001 2222 4708Max-Planck-Institute for Evolutionary Biology, Ploen, Germany
| | - Nancy Obeng
- grid.9764.c0000 0001 2153 9986Department of Evolutionary Ecology and Genetics, University of Kiel, Kiel, Germany
| | - Hinrich Schulenburg
- grid.419520.b0000 0001 2222 4708Max-Planck-Institute for Evolutionary Biology, Ploen, Germany ,grid.9764.c0000 0001 2153 9986Department of Evolutionary Ecology and Genetics, University of Kiel, Kiel, Germany
| | - Arne Traulsen
- grid.419520.b0000 0001 2222 4708Max-Planck-Institute for Evolutionary Biology, Ploen, Germany
| |
Collapse
|
16
|
Traulsen A, Sieber M. Evolutionary ecology theory - microbial population structure. Curr Opin Microbiol 2021; 63:216-220. [PMID: 34428627 DOI: 10.1016/j.mib.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Microbial populations typically show a large degree of intra-population diversity. This diversity is intertwined with the structure of the population. Here, we discuss endogenous and exogenous drivers of population structure in microbes and how the population structure can affect evolutionary dynamics and vice versa. Endogenous structure, which can be genetic or demographic, is driven by the ecology and evolutionary dynamics within the population. Exogenous structure is typically driven by the spatial and temporal properties of the environment. A particular interesting case arises when also this exogenous structure experiences feedbacks from the microbial population.
Collapse
Affiliation(s)
- Arne Traulsen
- Max Planck Institute for Evolutionary Biology, D-24306 Plön, Germany.
| | - Michael Sieber
- Max Planck Institute for Evolutionary Biology, D-24306 Plön, Germany
| |
Collapse
|