1
|
Li Y, El Zowalaty AE, Hancock JM, Wang Z, Martin TE, Zhan T, Wang Y, Andersen CL, Viswanathan S, Bromfield J, Atluri VA, Kallish KR, Grismer HN, Xiao S, Ye X. Atp6v0d2 deficiency partially restores defects in Mcoln1-deficient mouse corpus luteum. REPRODUCTIVE AND DEVELOPMENTAL MEDICINE 2025; 9:11-21. [PMID: 40162300 PMCID: PMC11949234 DOI: 10.1097/rd9.0000000000000116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/05/2024] [Indexed: 04/02/2025] Open
Abstract
Objective ATP6V0d2 is a subunit of the vacuolar-type H+-ATPase (V-ATPase) that pumps H+ ions into lysosomes. TRPML1 (MCOLN1/Mcoln1) transports cations out of lysosomes. Mcoln1 -/- mice recapitulate the lysosomal storage disorder mucolipidosis type IV (MLIV) phenotype. We previously demonstrated that Mcoln1 -/- female mice quickly became infertile at 5 months old (5M) with degenerating corpora lutea (CL) and progesterone (P4) deficiency. We tested our hypothesis that Atp6v0d2 deficiency could partially compensate for Mcoln1 deficiency to restore CL functions in Atp6v0d2 -/- Mcoln1 -/- mice. Methods Control and Atp6v0d2 -/- Mcoln1 -/- female mice underwent fertility test from 2M to 7M. A subset of them was dissected at 5M on day 3.5 post-coitum (D3.5). The D3.5 ovaries from 5M control, Mcoln1 -/-, and Atp6v0d2 -/- Mcoln1 -/- mice were evaluated for CL morphology, lipid droplet staining, and markers of mitochondria and P4 steroidogenesis in the luteal cells. Results The fertility test of Atp6v0d2 -/- Mcoln1 -/- female mice (2M-7M) revealed normal mating activity but reduced fertility compared with the control; yet ~25% of them remained fertile at 5M to 7M but with dystocia. We analyzed a subset of 11 Atp6v0d2 -/- Mcoln1 -/- mice (5M) in the fertility test on D3.5: three (27.3%) had normal P4 levels and all examined CL parameters, indicating full restoration of CL function compared with Mcoln1 -/-, whereas eight had P4 deficiency, with two (18.2%) infertile and six (54.5%) once fertile. In contrast to Mcoln1 -/- CLs, which had extensive amorphous cellular debris, indicating cell degeneration, Atp6v0d2 -/- Mcoln1 -/- CLs had reduced amorphous cellular debris regardless of P4 levels. However, similar to Mcoln1 -/- CLs, P4-deficient Atp6v0d2 -/- Mcoln1 -/- CLs showed impaired differentiation, enlarged lipid droplets, disorganized expression of endothelial basal lamina marker collagen IV, and reduced expression of mitochondrial marker heat shock protein 60 (HSP60) and steroidogenesis rate-limiting protein StAR, indicating that additional Atp6v0d2 deficiency compensates for Mcoln1 deficiency-induced cell degeneration, but is insufficient to restore luteal cell differentiation and P4 steroidogenesis in P4-deficient Atp6v0d2 -/- Mcoln1 -/- CLs. Conclusion This study shows that Atp6v0d2 -/- Mcoln1 -/- CLs had varied improvements compared with Mcoln1 -/- CLs, and it provides in vivo genetic evidence of the coordination between different lysosomal channels in CL function.
Collapse
Affiliation(s)
- Yuehuan Li
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Ahmed E. El Zowalaty
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| | - Jonathan Matthew Hancock
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| | - Zidao Wang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| | - Taylor Elijah Martin
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| | - Tingjie Zhan
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ 08854, USA
| | - Yingzheng Wang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ 08854, USA
| | - Christian Lee Andersen
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| | - Suvitha Viswanathan
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Jaymie Bromfield
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Venkata Abhigna Atluri
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Karly Rae Kallish
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Hope Nicole Grismer
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ 08854, USA
| | - Xiaoqin Ye
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
2
|
Zhu Y, Chu Y, Lan Y, Wang S, Zhang Y, Liu Y, Wang X, Yu F, Ma X. Loss of Endothelial TRPC1 Induces Aortic Hypercontractility and Hypertension. Circ Res 2025; 136:508-523. [PMID: 39912234 DOI: 10.1161/circresaha.124.325574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/07/2025]
Abstract
BACKGROUND The increasing prevalence of obesity-related cardiovascular diseases demands a better understanding of the contribution of different cell types to vascular function for developing new treatment strategies. Previous studies have established a fundamental role of TRPC1 (transient receptor potential channel canonical family member 1) in blood vessels. However, little is known about its functional roles within different cell types. METHODS We generated endothelial-specific TRPC1-deficient and knockin mice and analyzed their changes in vascular function under physiological and pathologically obese state. Wire myography, Ca2+ image, blood pressure measurements, RNA-sequencing analysis, liquid chromatography-mass spectrometry, immunoblotting, ELISA, luciferase reporter assay, and morphometric assessments were performed to unravel phenotype and molecular changes in response to the absence or presence of endothelial TRPC1. RESULTS Loss of endothelial TRPC1 reduced endothelial-dependent relaxation and exaggerated endothelial-dependent contraction in mouse aorta. As expected, loss of endothelial TRPC1 amplified blood pressure and decreased acetylcholine-induced intracellular Ca2+ concentration rise in the aorta. In endothelial-specific TRPC1-deficient mouse arteries, the mRNA profile identified upregulation of c-Fos (Fos proto-oncogene, activator protein-1 transcription factor subunit). Blockade of c-Fos rescued the impaired vasomotor tone in the aorta of mice deficient in endothelial TRPC1. Endothelial TRPC1-regulated nitric oxide/endothelin-1 production is involved in vascular c-Fos expression. Moreover, knockin of endothelial TRPC1 ameliorated enhanced endothelial-dependent contraction and hypertension in obese mice which is related to alleviated endothelial endothelin-1/c-Fos production and smooth muscle contraction. CONCLUSIONS Our results identify endothelial TRPC1 as a previously unclear regulator of vascular changes and blood pressure in both physiological and pathologically obese state, and it is associated with nitric oxide/endothelin-1/c-Fos signaling.
Collapse
Affiliation(s)
- Yifei Zhu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Disease, Wuxi School of Medicine, Jiangnan University, China (Y. Zhu, Y.C., Y. Lan, S.W., Y. Zhang, Y. Liu, X.W. F.Y., X.M.)
- Food Nutrition and Human Health Interdisciplinary Center, School of Food Science and Technology, Wuxi School of Medicine, Jiangnan University, Wuxi, China (Y. Zhu, X.M.)
| | - Yuan Chu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Disease, Wuxi School of Medicine, Jiangnan University, China (Y. Zhu, Y.C., Y. Lan, S.W., Y. Zhang, Y. Liu, X.W. F.Y., X.M.)
| | - Yihui Lan
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Disease, Wuxi School of Medicine, Jiangnan University, China (Y. Zhu, Y.C., Y. Lan, S.W., Y. Zhang, Y. Liu, X.W. F.Y., X.M.)
| | - Sheng Wang
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Disease, Wuxi School of Medicine, Jiangnan University, China (Y. Zhu, Y.C., Y. Lan, S.W., Y. Zhang, Y. Liu, X.W. F.Y., X.M.)
| | - Yizhi Zhang
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Disease, Wuxi School of Medicine, Jiangnan University, China (Y. Zhu, Y.C., Y. Lan, S.W., Y. Zhang, Y. Liu, X.W. F.Y., X.M.)
| | - Yuan Liu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Disease, Wuxi School of Medicine, Jiangnan University, China (Y. Zhu, Y.C., Y. Lan, S.W., Y. Zhang, Y. Liu, X.W. F.Y., X.M.)
| | - Xianfeng Wang
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Disease, Wuxi School of Medicine, Jiangnan University, China (Y. Zhu, Y.C., Y. Lan, S.W., Y. Zhang, Y. Liu, X.W. F.Y., X.M.)
| | - Fan Yu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Disease, Wuxi School of Medicine, Jiangnan University, China (Y. Zhu, Y.C., Y. Lan, S.W., Y. Zhang, Y. Liu, X.W. F.Y., X.M.)
| | - Xin Ma
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Disease, Wuxi School of Medicine, Jiangnan University, China (Y. Zhu, Y.C., Y. Lan, S.W., Y. Zhang, Y. Liu, X.W. F.Y., X.M.)
- Food Nutrition and Human Health Interdisciplinary Center, School of Food Science and Technology, Wuxi School of Medicine, Jiangnan University, Wuxi, China (Y. Zhu, X.M.)
- Affiliated Hospital of Jiangnan University, Wuxi, China (X.M.)
| |
Collapse
|
3
|
Solano AS, Lavanderos B, Metwally E, Earley S. Transient Receptor Potential Channels in Vascular Mechanotransduction. Am J Hypertens 2025; 38:151-160. [PMID: 39579078 DOI: 10.1093/ajh/hpae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 11/25/2024] Open
Abstract
Transmural pressure and shear stress are mechanical forces that profoundly affect the smooth muscle cells (SMCs) comprising the vascular wall and the endothelial cells (ECs) lining the lumen. Pressure and flow are detected by mechanosensors in these cells and translated into appropriate responses to regulate blood pressure and flow. This review focuses on the role of the transient receptor potential (TRP) superfamily of cation channels in this process. We discuss how specific members of the TRP superfamily (TRPC6, TRPM4, TRPV1, TRPV4, and TRPP1) regulate the resting membrane and intracellular Ca2+ levels in SMCs and ECs to promote changes in vascular tone in response to intraluminal pressure and shear stress. Although TRP channels participate in vascular mechanotransduction, little evidence supports their intrinsic mechanosensitivity. Therefore, we also examine the evidence exploring the force-sensitive signal transduction pathways acting upstream of vascular TRP channels. Understanding the interplay between mechanosensors, force-induced signaling cascades, and TRP channels holds promise for the development of targeted therapies for diseases caused by vascular dysfunction.
Collapse
Affiliation(s)
- Alfredo Sanchez Solano
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Boris Lavanderos
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Elsayed Metwally
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Scott Earley
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
4
|
Peng C, Lu W, An R, Li X, Sun C, Fang Y. Resistant Starch Nanoparticles Induce Colitis through Lysosomal Exocytosis in Mice. ACS NANO 2024; 18:30749-30760. [PMID: 39442088 DOI: 10.1021/acsnano.4c10481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Resistant starch (RS) is present in various natural and processed foods as well as medications. It has garnered significant attention from both scientists and consumers due to its notable health benefits. However, there is a limited understanding of how RS particles are absorbed at the cellular level and their metabolic behavior, resulting in a lack of clarity regarding the intestinal safety implications of prolonged RS exposure. Here, we demonstrate that rice-derived RS nanoparticles (RSNs) can lead to colitis in mice by triggering lysosomal exocytosis. The research shows that RSNs enter the cells through macropinocytosis and clathrin- and caveolin-mediated endocytosis and activate TRPML1 thereafter, causing the release of lysosomal calcium ions. This, in turn, triggered the TFEB signaling pathway and thus upregulated the lysosomal exocytosis level, leading to lysosomal enzymes to be released to the intestinal lumen. As a result, a decreased number of intestinal goblet cells, diminished tight junction protein expression, and imbalanced intestinal flora in mice were observed. These damages to the intestinal barrier ultimately led to the occurrence of colitis. Our study offers important insights into the cellular bioeffects and detrimental effects on intestinal health caused by RS particles and emphasizes the need to re-evaluate the safety of long-term RS consumption.
Collapse
Affiliation(s)
- Chenglu Peng
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Lu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ran An
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyang Li
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cuixia Sun
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yapeng Fang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Nixon RA, Rubinsztein DC. Mechanisms of autophagy-lysosome dysfunction in neurodegenerative diseases. Nat Rev Mol Cell Biol 2024; 25:926-946. [PMID: 39107446 DOI: 10.1038/s41580-024-00757-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 08/15/2024]
Abstract
Autophagy is a lysosome-based degradative process used to recycle obsolete cellular constituents and eliminate damaged organelles and aggregate-prone proteins. Their postmitotic nature and extremely polarized morphologies make neurons particularly vulnerable to disruptions caused by autophagy-lysosomal defects, especially as the brain ages. Consequently, mutations in genes regulating autophagy and lysosomal functions cause a wide range of neurodegenerative diseases. Here, we review the role of autophagy and lysosomes in neurodegenerative diseases such as Alzheimer disease, Parkinson disease and frontotemporal dementia. We also consider the strong impact of cellular ageing on lysosomes and autophagy as a tipping point for the late-age emergence of related neurodegenerative disorders. Many of these diseases have primary defects in autophagy, for example affecting autophagosome formation, and in lysosomal functions, especially pH regulation and calcium homeostasis. We have aimed to provide an integrative framework for understanding the central importance of autophagic-lysosomal function in neuronal health and disease.
Collapse
Affiliation(s)
- Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| |
Collapse
|
6
|
Drumm BT, Gupta N, Mircea A, Griffin CS. Cells and ionic conductances contributing to spontaneous activity in bladder and urethral smooth muscle. J Physiol 2024. [PMID: 39323077 DOI: 10.1113/jp284744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 09/02/2024] [Indexed: 09/27/2024] Open
Abstract
Smooth muscle organs of the lower urinary tract comprise the bladder detrusor and urethral wall, which have a reciprocal contractile relationship during urine storage and micturition. As the bladder fills with urine, detrusor smooth muscle cells (DSMCs) remain relaxed to accommodate increases in intravesical pressure while urethral smooth muscle cells (USMCs) sustain tone to occlude the urethral orifice, preventing leakage. While neither organ displays coordinated regular contractions as occurs in small intestine, lymphatics or renal pelvis, they do exhibit patterns of rhythmicity at cellular and tissue levels. In rabbit and guinea-pig urethra, electrical slow waves are recorded from USMCs. This activity is linked to cells expressing vimentin, c-kit and Ca2+-activated Cl- channels, like interstitial cells of Cajal in the gastrointestinal tract. In mouse, USMCs are rhythmically active (firing propagating Ca2+ waves linked to contraction), and this cellular rhythmicity is asynchronous across tissues and summates to form tone. Experiments in mice have failed to demonstrate a voltage-dependent mechanism for regulating this rhythmicity or contractions in vitro, suggesting that urethral tone results from an intrinsic ability of USMCs to 'pace' their own Ca2+ mobilization pathways required for contraction. DSMCs exhibit spontaneous transient contractions, increases in intracellular Ca2+ and action potentials. Consistent across numerous species, including humans, this activity relies on voltage-dependent Ca2+ influx in DSMCs. While interstitial cells are present in the bladder, they do not 'pace' the organ in an excitatory manner. Instead, specialized cells (PDGFRα+ interstitial cells) may 'negatively pace' DSMCs to prevent bladder overexcitability.
Collapse
Affiliation(s)
- Bernard T Drumm
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Ireland
| | - Neha Gupta
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Ireland
| | - Alexandru Mircea
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Ireland
| | - Caoimhin S Griffin
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Ireland
| |
Collapse
|
7
|
Mura E, Parazzini C, Tonduti D. Rare forms of hypomyelination and delayed myelination. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:225-252. [PMID: 39322381 DOI: 10.1016/b978-0-323-99209-1.00002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Hypomyelination is defined by the evidence of an unchanged pattern of deficient myelination on two MRIs performed at least 6 months apart in a child older than 1 year. When the temporal criteria are not fulfilled, and the follow-up MRI shows a progression of the myelination even if still not adequate for age, hypomyelination is excluded and the pattern is instead consistent with delayed myelination. This can be mild and nonspecific in some cases, while in other cases there is a severe delay that in the first disease stages could be difficult to differentiate from hypomyelination. In hypomyelinating leukodystrophies, hypomyelination is due to a primary impairment of myelin deposition, such as in Pelizaeus Merzabcher disease. Conversely, myelin lack is secondary, often to primary neuronal disorders, in delayed myelination and some condition with hypomyelination. Overall, the group of inherited white matter disorders with abnormal myelination has expanded significantly during the past 20 years. Many of these disorders have only recently been described, for many of them only a few patients have been reported and this contributes to make challenging the diagnostic process and the interpretation of Next Generation Sequencing results. In this chapter, we review the clinical and radiologic features of rare and lesser known forms of hypomyelination and delayed myelination not mentioned in other chapters of this handbook.
Collapse
Affiliation(s)
- Eleonora Mura
- Unit of Pediatric Neurology, Department of Biomedical and Clinical Sciences, V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy; C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy
| | - Cecilia Parazzini
- C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy; Pediatric Radiology and Neuroradiology Department, V. Buzzi Children's Hospital, Milan, Italy
| | - Davide Tonduti
- Unit of Pediatric Neurology, Department of Biomedical and Clinical Sciences, V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy; C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
8
|
Lu Q, Liu Q, Chen S, Wang J, Chen Y, Sun B, Yang Z, Feng H, Yi S, Chen W, Zhu J. The expression and distribution of TACAN in human and rat bladders. Low Urin Tract Symptoms 2023; 15:256-264. [PMID: 37649457 DOI: 10.1111/luts.12500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
OBJECTIVES A lot of ion channels participate in the regulation of bladder function. TACAN, a new mechanosensitive ion channel, was first discovered in 2020. TACAN has been found to be expressed in many tissues, such as the dorsal root ganglia (DRG) and adipose tissue. However, it is unclear whether or not TACAN is expressed in the bladder. In this work, we decided to study the expression and distribution of TACAN in human and rat bladders. Meanwhile, the expression of TACAN in the rat model of interstitial cystitis/bladder pain syndrome (IC/BPS) was studied. METHODS Human bladder tissues were obtained from female patients. Cyclophosphamide (CYP) was used to build the rat model of IC/BPS. Real-time polymerase chain reaction, agarose gel electrophoresis, and western blotting were used to assess the expression of TACAN in human and rat bladders. Immunohistochemistry and immunofluorescence were used to observe the distribution of TACAN in human and rat bladders. Hematoxylin-eosin stain, withdrawal threshold, and micturition interval were used to evaluate animal models. RESULTS The results of agarose gel electrophoresis and western blotting suggested that TACAN was expressed in human and rat bladders. Immunohistochemical results suggested that TACAN showed positive immunoreaction in the urothelial and detrusor layers. The immunofluorescence results indicated that TACAN was co-stained with UPKIII, α-SMA, and PGP9.5. The IC/BPS model was successfully established with CYP. The mRNA and protein expression of TACAN was upregulated in the CYP-induced rat model of IC/BPS. CONCLUSIONS TACAN was found in human and rat bladders. TACAN was mainly distributed in the urothelial and detrusor layers and bladder nerves. The expression of TACAN was upregulated in the CYP-induced rat model of IC/BPS. This new discovery will provide a theoretical basis for future research on the function of TACAN in the bladder and a potential therapeutic target for IC/BPS.
Collapse
Affiliation(s)
- Qudong Lu
- Department of Urology, Army 73rd Group Military Hospital, Xiamen, China
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Qian Liu
- Clinical Medicine Postdoctoral Research Station, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shiwei Chen
- Department of Urology, Army 73rd Group Military Hospital, Xiamen, China
| | - Jiaolian Wang
- Department of Urology, Army 73rd Group Military Hospital, Xiamen, China
| | - Yongjie Chen
- Department of Urology, Army 73rd Group Military Hospital, Xiamen, China
| | - Bishao Sun
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zhenxing Yang
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Huan Feng
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Shanhong Yi
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Wei Chen
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jingzhen Zhu
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
9
|
Xie A, Kang GJ, Kim EJ, Feng F, Givens SE, Ogle BM, Dudley SC. Lysosomal Ca 2+ flux modulates automaticity in ventricular cardiomyocytes and correlates with arrhythmic risk. PNAS NEXUS 2023; 2:pgad174. [PMID: 37303713 PMCID: PMC10255768 DOI: 10.1093/pnasnexus/pgad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 05/16/2023] [Indexed: 06/13/2023]
Abstract
Automaticity involves Ca2+ handling at the cell membrane and sarcoplasmic reticulum (SR). Abnormal or acquired automaticity is thought to initiate ventricular arrhythmias associated with myocardial ischemia. Ca2+ flux from mitochondria can influence automaticity, and lysosomes also release Ca2+. Therefore, we tested whether lysosomal Ca2+ flux could influence automaticity. We studied ventricular human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), hiPSC 3D engineered heart tissues (EHTs), and ventricular cardiomyocytes isolated from infarcted mice. Preventing lysosomal Ca2+ cycling reduced automaticity in hiPSC-CMs. Consistent with a lysosomal role in automaticity, activating the transient receptor potential mucolipin channel (TRPML1) enhanced automaticity, and two channel antagonists reduced spontaneous activity. Activation or inhibition of lysosomal transcription factor EB (TFEB) increased or decreased total lysosomes and automaticity, respectively. In adult ischemic cardiomyocytes and hiPSC 3D EHTs, reducing lysosomal Ca2+ release also inhibited automaticity. Finally, TRPML1 was up-regulated in cardiomyopathic patients with ventricular tachycardia (VT) compared with those without VT. In summary, lysosomal Ca2+ handling modulates abnormal automaticity, and reducing lysosomal Ca2+ release may be a clinical strategy for preventing ventricular arrhythmias.
Collapse
Affiliation(s)
- An Xie
- Department of Medicine, University of Minnesota, 401 East River Parkway, VCRC 1st Floor, Suite 131, Minneapolis, MN 55455, USA
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Suite 4-156, Minneapolis, MN 55455, USA
| | - Gyeoung-Jin Kang
- Department of Medicine, University of Minnesota, 401 East River Parkway, VCRC 1st Floor, Suite 131, Minneapolis, MN 55455, USA
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Suite 4-156, Minneapolis, MN 55455, USA
| | - Eun Ji Kim
- Department of Medicine, University of Minnesota, 401 East River Parkway, VCRC 1st Floor, Suite 131, Minneapolis, MN 55455, USA
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Suite 4-156, Minneapolis, MN 55455, USA
| | - Feng Feng
- Department of Medicine, University of Minnesota, 401 East River Parkway, VCRC 1st Floor, Suite 131, Minneapolis, MN 55455, USA
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Suite 4-156, Minneapolis, MN 55455, USA
| | - Sophie E Givens
- Department of Biomedical Engineering, Stem Cell Institute, University of Minnesota, McGuire Translational Research Facility, 2001 6th Street SE, Mail Code 2873, Minneapolis, MN 55455, USA
| | - Brenda M Ogle
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Suite 4-156, Minneapolis, MN 55455, USA
- Department of Biomedical Engineering, Stem Cell Institute, University of Minnesota, McGuire Translational Research Facility, 2001 6th Street SE, Mail Code 2873, Minneapolis, MN 55455, USA
- Department of Pediatrics, Institute for Engineering in Medicine, University of Minnesota, 420 Delaware Street Southeast, 725 Mayo Memorial Building, MMC 94, Minneapolis, MN 55455, USA
| | - Samuel C Dudley
- Department of Medicine, University of Minnesota, 401 East River Parkway, VCRC 1st Floor, Suite 131, Minneapolis, MN 55455, USA
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Suite 4-156, Minneapolis, MN 55455, USA
| |
Collapse
|
10
|
Festa LK, Clyde AE, Long CC, Roth LM, Grinspan JB, Jordan-Sciutto KL. Antiretroviral treatment reveals a novel role for lysosomes in oligodendrocyte maturation. J Neurochem 2023; 165:722-740. [PMID: 36718947 PMCID: PMC10724866 DOI: 10.1111/jnc.15773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/24/2023] [Indexed: 02/01/2023]
Abstract
White matter deficits are a common neuropathologic finding in neurologic disorders, including HIV-associated neurocognitive disorders (HAND). In HAND, the persistence of white matter alterations despite suppressive antiretroviral (ARV) therapy suggests that ARVs may be directly contributing to these impairments. Here, we report that a frontline ARV, bictegravir (BIC), significantly attenuates remyelination following cuprizone-mediated demyelination, a model that recapitulates acute demyelination, but has no impact on already formed mature myelin. Mechanistic studies utilizing primary rat oligodendrocyte precursor cells (OPCs) revealed that treatment with BIC leads to significant decrease in mature oligodendrocytes accompanied by lysosomal deacidification and impairment of lysosomal degradative capacity with no alterations in lysosomal membrane permeability or total lysosome number. Activation of the endolysosomal cation channel TRPML1 prevents both lysosomal deacidification and impairment of oligodendrocyte differentiation by BIC. Lastly, we show that deacidification of lysosomes by compounds that raise lysosomal pH is sufficient to prevent maturation of oligodendrocytes. Overall, this study has uncovered a critical role for lysosomal acidification in modulating oligodendrocyte function and has implications for neurologic diseases characterized by lysosomal dysfunction and white matter abnormalities.
Collapse
Affiliation(s)
- Lindsay K. Festa
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Abigail E. Clyde
- School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA
| | - Caela C. Long
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | | | - Judith B. Grinspan
- Department of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Kelly L. Jordan-Sciutto
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
11
|
Jiang L, Li J, Reilly S, Xin H, Guo N, Zhang X. Role of organellar Ca2+-activated K+ channels in disease development. Life Sci 2023; 316:121433. [PMID: 36708987 DOI: 10.1016/j.lfs.2023.121433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023]
Abstract
The organellar Ca2+-activated K+ channels share a similar ability to transfer the alteration of Ca2+ concentration to membrane conductance of potassium. Multiple effects of Ca2+-activated K+ channels on cell metabolism and complex signaling pathways during organ development have been explored. The organellar Ca2+-activated K+ channels are able to control the ionic equilibrium and are always associated with oxidative stress in different organelles and the whole cells. Some drugs targeting Ca2+-activated K+ channels have been tested for various diseases in clinical trials. In this review, the known roles of organellar Ca2+-activated K+ channels were described, and their effects on different diseases, particularly on diabetes, cardiovascular diseases, and neurological diseases were discussed. It was attempted to summarize the currently known operational modes with the involvement of organellar Ca2+-activated K+ channels. This review may assist scholars to more comprehensively understand organellar Ca2+-activated K+ channels and related diseases.
Collapse
Affiliation(s)
- Lan Jiang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiawei Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Nan Guo
- Department of Pharmacy, Minhang hospital, Fudan University, Shanghai, China.
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Riederer E, Cang C, Ren D. Lysosomal Ion Channels: What Are They Good For and Are They Druggable Targets? Annu Rev Pharmacol Toxicol 2023; 63:19-41. [PMID: 36151054 DOI: 10.1146/annurev-pharmtox-051921-013755] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Lysosomes play fundamental roles in material digestion, cellular clearance, recycling, exocytosis, wound repair, Ca2+ signaling, nutrient signaling, and gene expression regulation. The organelle also serves as a hub for important signaling networks involving the mTOR and AKT kinases. Electrophysiological recording and molecular and structural studies in the past decade have uncovered several unique lysosomal ion channels and transporters, including TPCs, TMEM175, TRPMLs, CLN7, and CLC-7. They underlie the organelle's permeability to major ions, including K+, Na+, H+, Ca2+, and Cl-. The channels are regulated by numerous cellular factors, ranging from H+ in the lumen and voltage across the lysosomal membrane to ATP in the cytosol to growth factors outside the cell. Genetic variations in the channel/transporter genes are associated with diseases that include lysosomal storage diseases and neurodegenerative diseases. Recent studies with human genetics and channel activators suggest that lysosomal channels may be attractive targets for the development of therapeutics for the prevention of and intervention in human diseases.
Collapse
Affiliation(s)
- Erika Riederer
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ,
| | - Chunlei Cang
- CAS Key Laboratory of Innate Immunity and Chronic Disease, Neurodegenerative Disorder Research Center, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China;
| | - Dejian Ren
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ,
| |
Collapse
|
13
|
Bais S, Norwillo A, Ruthel G, Herbert DR, Freedman BD, Greenberg RM. Schistosome TRPML channels play a role in neuromuscular activity and tegumental integrity. Biochimie 2022; 194:108-117. [PMID: 34990770 PMCID: PMC8950431 DOI: 10.1016/j.biochi.2021.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/16/2021] [Accepted: 12/31/2021] [Indexed: 11/02/2022]
Abstract
Schistosomiasis is a neglected tropical disease caused by parasitic flatworms of the genus Schistosoma. Mono-therapeutic treatment of this disease with the drug praziquantel, presents challenges such as inactivity against immature worms and inability to prevent reinfection. Importantly, ion channels are important targets for many current anthelmintics. Transient receptor potential (TRP) channels are important mediators of sensory signals with marked effects on cellular functions and signaling pathways. TRPML channels are a class of Ca2+-permeable TRP channels expressed on endolysosomal membranes. They regulate lysosomal function and trafficking, among other functions. Schistosoma mansoni is predicted to have a single TRPML gene (SmTRPML) with two splice variants differing by 12 amino acids. This study focuses on exploring the physiological properties of SmTRPML channels to better understand their role in schistosomes. In mammalian cells expressing SmTRPML, TRPML activators elicit a rise in intracellular Ca2+. In these cells, SmTRPML localizes both to lysosomes and the plasma membrane. These same TRPML activators elicit an increase in adult worm motility that is dependent on SmTRPML expression, indicating a role for these channels in parasite neuromuscular activity. Suppression of SmTRPML in adult worms, or exposure of adult worms to TRPML inhibitors, results in tegumental vacuolations, balloon-like surface exudates, and membrane blebbing, similar to that found following TRPML loss in other organisms. Together, these findings indicate that SmTRPML may regulate the function of the schistosome endolysosomal system. Further, the role of SmTRPML in neuromuscular activity and in parasite tegumental integrity establishes this channel as a candidate anti-schistosome drug target.
Collapse
Affiliation(s)
- Swarna Bais
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA.
| | - Abigail Norwillo
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Gordon Ruthel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - De'Broski R Herbert
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Bruce D Freedman
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Robert M Greenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
14
|
Krishnan V, Ali S, Gonzales AL, Thakore P, Griffin CS, Yamasaki E, Alvarado MG, Johnson MT, Trebak M, Earley S. STIM1-dependent peripheral coupling governs the contractility of vascular smooth muscle cells. eLife 2022; 11:70278. [PMID: 35147077 PMCID: PMC8947769 DOI: 10.7554/elife.70278] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 02/10/2022] [Indexed: 11/28/2022] Open
Abstract
Peripheral coupling between the sarcoplasmic reticulum (SR) and plasma membrane (PM) forms signaling complexes that regulate the membrane potential and contractility of vascular smooth muscle cells (VSMCs). The mechanisms responsible for these membrane interactions are poorly understood. In many cells, STIM1 (stromal interaction molecule 1), a single-transmembrane-domain protein that resides in the endoplasmic reticulum (ER), transiently moves to ER-PM junctions in response to depletion of ER Ca2+ stores and initiates store-operated Ca2+ entry (SOCE). Fully differentiated VSMCs express STIM1 but exhibit only marginal SOCE activity. We hypothesized that STIM1 is constitutively active in contractile VSMCs and maintains peripheral coupling. In support of this concept, we found that the number and size of SR-PM interacting sites were decreased, and SR-dependent Ca2+-signaling processes were disrupted in freshly isolated cerebral artery SMCs from tamoxifen-inducible, SMC-specific STIM1-knockout (Stim1-smKO) mice. VSMCs from Stim1-smKO mice also exhibited a reduction in nanoscale colocalization between Ca2+-release sites on the SR and Ca2+-activated ion channels on the PM, accompanied by diminished channel activity. Stim1-smKO mice were hypotensive, and resistance arteries isolated from them displayed blunted contractility. These data suggest that STIM1 – independent of SR Ca2+ store depletion – is critically important for stable peripheral coupling in contractile VSMCs.
Collapse
Affiliation(s)
- Vivek Krishnan
- Department of Pharmacology, University of Nevada Reno, Reno, United States
| | - Sher Ali
- Department of Pharmacology, University of Nevada Reno, Reno, United States
| | - Albert L Gonzales
- Department of Physiology and Cell Biology, University of Nevada Reno, Reno, United States
| | - Pratish Thakore
- Department of Pharmacology, University of Nevada, Reno, Reno, United States
| | - Caoimhin S Griffin
- Department of Pharmacology, University of Nevada Reno, Reno, United States
| | - Evan Yamasaki
- Department of Pharmacology, University of Nevada Reno, Reno, United States
| | - Michael G Alvarado
- Department of Pharmacology, University of Nevada Reno, Reno, United States
| | - Martin T Johnson
- Department of Cellular and Molecular Physiology, Penn State University, Hershey, United States
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, United States
| | - Scott Earley
- Department of Pharmacology, University of Nevada Reno, Reno, United States
| |
Collapse
|
15
|
Ali S, Solano AS, Gonzales AL, Thakore P, Krishnan V, Yamasaki E, Earley S. Nitric Oxide Signals Through IRAG to Inhibit TRPM4 Channels and Dilate Cerebral Arteries. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab051. [PMID: 34734188 PMCID: PMC8557268 DOI: 10.1093/function/zqab051] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 01/12/2023]
Abstract
Nitric oxide (NO) relaxes vascular smooth muscle cells (SMCs) and dilates blood vessels by increasing intracellular levels of cyclic guanosine monophosphate (cGMP), which stimulates the activity of cGMP-dependent protein kinase (PKG). However, the vasodilator mechanisms downstream of PKG remain incompletely understood. Here, we found that transient receptor potential melastatin 4 (TRPM4) cation channels, which are activated by Ca2+ released from the sarcoplasmic reticulum (SR) through inositol triphosphate receptors (IP3Rs) under native conditions, are essential for SMC membrane depolarization and vasoconstriction. We hypothesized that signaling via the NO/cGMP/PKG pathway causes vasodilation by inhibiting TRPM4. We found that TRPM4 currents activated by stretching the plasma membrane or directly activating IP3Rs were suppressed by exogenous NO or a membrane-permeable cGMP analog, the latter of which also impaired IP3R-mediated release of Ca2+ from the SR. The effects of NO on TRPM4 activity were blocked by inhibition of soluble guanylyl cyclase or PKG. Notably, upon phosphorylation by PKG, IRAG (IP3R-associated PKG substrate) inhibited IP3R-mediated Ca2+ release, and knockdown of IRAG expression diminished NO-mediated inhibition of TRPM4 activity and vasodilation. Using superresolution microscopy, we found that IRAG, PKG, and IP3Rs form a nanoscale signaling complex on the SR of SMCs. We conclude that NO/cGMP/PKG signaling through IRAG inhibits IP3R-dependent activation of TRPM4 channels in SMCs to dilate arteries. SIGNIFICANCE STATEMENT Nitric oxide is a gaseous vasodilator produced by endothelial cells that is essential for cardiovascular function. Although NO-mediated signaling pathways have been intensively studied, the mechanisms by which they relax SMCs to dilate blood vessels remain incompletely understood. In this study, we show that NO causes vasodilation by inhibiting the activity of Ca2+-dependent TRPM4 cation channels. Probing further, we found that NO does not act directly on TRPM4 but instead initiates a signaling cascade that inhibits its activation by blocking the release of Ca2+ from the SR. Thus, our findings reveal the essential molecular pathways of NO-induced vasodilation-a fundamental unresolved concept in cardiovascular physiology.
Collapse
Affiliation(s)
| | | | - Albert L Gonzales
- Department of Physiology and Cell Biology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, University of Nevada, Reno, NV 89557-0318, USA
| | - Pratish Thakore
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, NV 89557-0318, USA
| | - Vivek Krishnan
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, NV 89557-0318, USA
| | - Evan Yamasaki
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, NV 89557-0318, USA
| | | |
Collapse
|
16
|
Guo L, Liu J, Yang Y, Zeng Y, Yuan F, Zhong F, Jin Y, Wan R, Liu W. Purple sweet potato anthocyanins elicit calcium overload-induced cell death by inhibiting the calcium-binding protein S100A4 in acute lymphoblastic leukemia. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Drumm BT, Thornbury KD, Hollywood MA, Sergeant GP. Role of Ano1 Ca 2+-activated Cl - channels in generating urethral tone. Am J Physiol Renal Physiol 2021; 320:F525-F536. [PMID: 33554780 DOI: 10.1152/ajprenal.00520.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Urinary continence is maintained in the lower urinary tract by the contracture of urethral sphincters, including smooth muscle of the internal urethral sphincter. These contractions occlude the urethral lumen, preventing urine leakage from the bladder to the exterior. Over the past 20 years, research on the ionic conductances that contribute to urethral smooth muscle contractility has greatly accelerated. A debate has emerged over the role of interstitial cell of Cajal (ICC)-like cells in the urethra and their expression of Ca2+-activated Cl- channels encoded by anoctamin-1 [Ano1; transmembrane member 16 A (Tmem16a) gene]. It has been proposed that Ano1 channels expressed in urethral ICC serve as a source of depolarization for smooth muscle cells, increasing their excitability and contributing to tone. Although a clear role for Ano1 channels expressed in ICC is evident in other smooth muscle organs, such as the gastrointestinal tract, the role of these channels in the urethra is unclear, owing to differences in the species (rabbit, rat, guinea pig, sheep, and mouse) examined and experimental approaches by different groups. The importance of clarifying this situation is evident as effective targeting of Ano1 channels may lead to new treatments for urinary incontinence. In this review, we summarize the key findings from different species on the role of ICC and Ano1 channels in urethral contractility. Finally, we outline proposals for clarifying this controversial and important topic by addressing how cell-specific optogenetic and inducible cell-specific genetic deletion strategies coupled with advances in Ano1 channel pharmacology may clarify this area in future studies.NEW & NOTEWORTHY Studies from the rabbit have shown that anoctamin-1 (Ano1) channels expressed in urethral interstitial cells of Cajal (ICC) serve as a source of depolarization for smooth muscle cells, increasing excitability and tone. However, the role of urethral Ano1 channels is unclear, owing to differences in the species examined and experimental approaches. We summarize findings from different species on the role of urethral ICC and Ano1 channels in urethral contractility and outline proposals for clarifying this topic using cell-specific optogenetic approaches.
Collapse
Affiliation(s)
- Bernard T Drumm
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Keith D Thornbury
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Gerard P Sergeant
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| |
Collapse
|
18
|
Igniting Ca 2+ sparks with TRPML1. Proc Natl Acad Sci U S A 2020; 117:32836-32838. [PMID: 33262276 DOI: 10.1073/pnas.2022896117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|