1
|
Jiang X, Lai Y, Xia W, Yang W, Wang J, Pan J, Zhao Q, Zhou F, Li S, Zhang S, Gao J, Wang Y, Zan T, Xu ZP, Yu H, Xu Z. Self-Oxygenating PROTAC Microneedle for Spatiotemporally-Confined Protein Degradation and Enhanced Glioblastoma Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411869. [PMID: 40025927 DOI: 10.1002/adma.202411869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/31/2024] [Indexed: 03/04/2025]
Abstract
Glioblastoma (GBM) is the most aggressive subtype of primary brain tumors, which marginally respond to standard chemotherapy due to the blood-brain barrier (BBB) and the low tumor specificity of the therapeutics. Herein, a double-layered microneedle (MN) patch is rationally engineered by integrating acid and light dual-activatable PROteolysis TArgeting Chimera (PROTAC) nanoparticles and self-oxygenating BSA-MnO2 (BM) nanoparticles for GBM treatment. The MN is administrated at the tumor site to locally deliver the PROTAC prodrug and BM nanoparticles. The PROTAC nanoparticles are rapidly released from the outer layer of the MN and specifically activated in the acidic intracellular environment of tumor cells. Subsequently, near-infrared light activates the photosensitizer to produce singlet oxygen (1O2) through photodynamic therapy (PDT), thereby triggering spatiotemporally-tunable degradation of bromodomain and extraterminal protein 4 (BRD4). The BM nanoparticles, in the inner layer of the MN, serve as an oxygen supply station, and counteracts tumor hypoxia by converting hydrogen peroxide (H2O2) into oxygen (O2), thus promoting PDT and PROTAC activation. This PROTAC prodrug-integrated MN significantly inhibits tumor growth in both subcutaneous and orthotopic GBM tumor models. This study describes the first spatiotemporally-tunable protein degradation strategy for highly efficient GBM therapy, potentially advancing precise therapy of other kinds of refractory brain tumors.
Collapse
Affiliation(s)
- Xingyu Jiang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Yi Lai
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wenzheng Xia
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wenfang Yang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Junjue Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiaxing Pan
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Qian Zhao
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Feng Zhou
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shiqin Li
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shunan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Jing Gao
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yinyan Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zhi Ping Xu
- Institute of Biomedical Health Technology and Engineering and Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518067, China
| | - Haijun Yu
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
2
|
Barber AM, Kingsley NB, Peng S, Giulotto E, Bellone RR, Finno CJ, Kalbfleisch T, Petersen JL. Annotation of cis-regulatory-associated histone modifications in the genomes of two Thoroughbred stallions. Front Genet 2025; 16:1534461. [PMID: 40084169 PMCID: PMC11903428 DOI: 10.3389/fgene.2025.1534461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/31/2025] [Indexed: 03/16/2025] Open
Abstract
The Functional Annotation of Animal Genomes (FAANG) consortium aims to annotate animal genomes across species, and work in the horse has substantially contributed to that goal. As part of this initiative, chromatin immunoprecipitation with sequencing (ChIP-seq) was performed to identify histone modifications corresponding to enhancers (H3K4me1), promoters (H3K4me3), activators (H3K27ac), and repressors (H3K27me3) in eight tissues from two Thoroughbred stallions: adipose, parietal cortex, heart, lamina, liver, lung, skeletal muscle, and testis. The average genome coverage of peaks identified by MACS2 for H3K4me1, H3K4me3, and H3K27ac was 6.2%, 2.2%, and 4.1%, respectively. Peaks were called for H3K27me3, a broad mark, using both MACS2 and SICERpy, with MACS2 identifying a greater average number of peaks (158K; 10.4% genome coverage) than SICERpy (32K; 24.3% genome coverage). Tissue-unique peaks were identified with BEDTools, and 1%-47% of peaks were unique to a tissue for a given histone modification. However, correlations among usable reads, total peak number, and unique peak number ranged from 0.01 to 0.92, indicating additional data collection is necessary to parse technical from true biological differences. These publicly available data expand a growing resource available for identifying regulatory regions within the equine genome, and they serve as a reference for genome regulation across healthy tissues of the adult Thoroughbred stallion.
Collapse
Affiliation(s)
- Alexa M. Barber
- University of Nebraska Medical Center, Eppley Institute for Research in Cancer and Allied Diseases, Omaha, NE, United States
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Nicole B. Kingsley
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, United States
- Veterinary Genetics Laboratory, Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, United States
| | - Sichong Peng
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, United States
| | - Elena Giulotto
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Rebecca R. Bellone
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, United States
- Veterinary Genetics Laboratory, Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, United States
| | - Carrie J. Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, United States
| | - Ted Kalbfleisch
- Department of Veterinary Science, University of Kentucky, Lexington, KY, United States
| | - Jessica L. Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
3
|
Rasras S, Akade E, Mohammadianinejad SE, Barahman M, Bahadoram M. Early growth response 1 transcription factor and its context-dependent functions in glioblastoma. Contemp Oncol (Pozn) 2024; 28:91-97. [PMID: 39421709 PMCID: PMC11480913 DOI: 10.5114/wo.2024.142583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/14/2024] [Indexed: 10/19/2024] Open
Abstract
Glioblastoma is the most aggressive form of primary brain tumour in adults. This tumour employs numerous transcription factors to advance and sustain its progression. Current evidence suggest that early growth response 1 (EGR1) plays a dual role as both an oncogene and a tumour suppressor in glioblastoma. Early growth response 1 expression is prevalent in glioblastoma, affecting over 80% of cases. Early growth response 1 regulatory roles extend to angiogenesis, cell adhesion, and resistance to chemotherapy, notably influencing pathways like hypoxia-inducible factor 1α and vascular endothelial growth factor A. Early growth response 1 can also induce cell adhesion, migration, chemoresistance against temozolomide, stemness, and self-renewal in glioblastoma cells. Despite its oncogenic functions, EGR1 can also suppress tumours by upregulating non-steroidal anti-inflammatory drug-activated gene 1 and phosphatase and tensin homolog deleted on chromosome ten, and inhibiting invasion and metastasis. Additionally, EGR1 may have hypothetical implications in the viral hit-and-run theory, particularly regarding cytomegalovirus infection. The key findings of this review are the context- dependent nature of EGR1's actions and its potential as a prognostic marker in glioblastoma. Further research is needed to understand EGR1's role fully and exploit its potential in clinics.
Collapse
Affiliation(s)
- Saleh Rasras
- Department of Neurosurgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esma’il Akade
- Department of Medical Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Maedeh Barahman
- Advanced Diagnostic and Interventional Radiology Research Centre (ADIR), Imam Khomeini Hospital, Iran University of Medical Sciences, Iran
| | - Mohammad Bahadoram
- Department of Neurosurgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
4
|
Rubin JB, Abou-Antoun T, Ippolito JE, Llaci L, Marquez CT, Wong JP, Yang L. Epigenetic developmental mechanisms underlying sex differences in cancer. J Clin Invest 2024; 134:e180071. [PMID: 38949020 PMCID: PMC11213507 DOI: 10.1172/jci180071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Cancer risk is modulated by hereditary and somatic mutations, exposures, age, sex, and gender. The mechanisms by which sex and gender work alone and in combination with other cancer risk factors remain underexplored. In general, cancers that occur in both the male and female sexes occur more commonly in XY compared with XX individuals, regardless of genetic ancestry, geographic location, and age. Moreover, XY individuals are less frequently cured of their cancers, highlighting the need for a greater understanding of sex and gender effects in oncology. This will be necessary for optimal laboratory and clinical cancer investigations. To that end, we review the epigenetics of sexual differentiation and its effect on cancer hallmark pathways throughout life. Specifically, we will touch on how sex differences in metabolism, immunity, pluripotency, and tumor suppressor functions are patterned through the epigenetic effects of imprinting, sex chromosome complement, X inactivation, genes escaping X inactivation, sex hormones, and life history.
Collapse
Affiliation(s)
| | | | - Joseph E. Ippolito
- Department of Radiology
- Department of Biochemistry and Molecular Biophysics
| | - Lorida Llaci
- Deartment of Genetics Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | |
Collapse
|
5
|
Ushiki A, Sheng RR, Zhang Y, Zhao J, Nobuhara M, Murray E, Ruan X, Rios JJ, Wise CA, Ahituv N. Deletion of Pax1 scoliosis-associated regulatory elements leads to a female-biased tail abnormality. Cell Rep 2024; 43:113907. [PMID: 38461417 PMCID: PMC11005513 DOI: 10.1016/j.celrep.2024.113907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 12/29/2023] [Accepted: 02/19/2024] [Indexed: 03/12/2024] Open
Abstract
Adolescent idiopathic scoliosis (AIS), a sideways curvature of the spine, is sexually dimorphic, with increased incidence in females. A genome-wide association study identified a female-specific AIS susceptibility locus near the PAX1 gene. Here, we use mouse enhancer assays, three mouse enhancer knockouts, and subsequent phenotypic analyses to characterize this region. Using mouse enhancer assays, we characterize a sequence, PEC7, which overlaps the AIS-associated variant, and find it to be active in the tail tip and intervertebral disc. Removal of PEC7 or Xe1, a known sclerotome enhancer nearby, or deletion of both sequences lead to a kinky tail phenotype only in the Xe1 and combined (Xe1+PEC7) knockouts, with only the latter showing a female sex dimorphic phenotype. Extensive phenotypic characterization of these mouse lines implicates several differentially expressed genes and estrogen signaling in the sex dimorphic bias. In summary, our work functionally characterizes an AIS-associated locus and dissects the mechanism for its sexual dimorphism.
Collapse
Affiliation(s)
- Aki Ushiki
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Rory R Sheng
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yichi Zhang
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Jingjing Zhao
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Mai Nobuhara
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Elizabeth Murray
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Xin Ruan
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jonathan J Rios
- Center for Translational Research, Scottish Rite for Children, Dallas, TX 75390, USA; Department of Orthopedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Carol A Wise
- Center for Translational Research, Scottish Rite for Children, Dallas, TX 75390, USA; Department of Orthopedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
6
|
Hong ES, Wang SZ, Ponti AK, Hajdari N, Lee J, Mulkearns-Hubert EE, Volovetz J, Kay KE, Lathia JD, Dhawan A. miR-644a is a tumor cell-intrinsic mediator of sex bias in glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584443. [PMID: 38559056 PMCID: PMC10979950 DOI: 10.1101/2024.03.11.584443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Biological sex is an important risk factor for glioblastoma (GBM), with males having a higher incidence and poorer prognosis. The mechanisms for this sex bias are thought to be both tumor intrinsic and tumor extrinsic. MicroRNAs (miRNAs), key post-transcriptional regulators of gene expression, have been previously linked to sex differences in various cell types and diseases, but their role in the sex bias of GBM remains unknown. Methods We leveraged previously published paired miRNA and mRNA sequencing of 39 GBM patients (22 male, 17 female) to identify sex-biased miRNAs. We further interrogated a separate single-cell RNA sequencing dataset of 110 GBM patients to examine whether differences in miRNA target gene expression were tumor cell intrinsic or tumor cell extrinsic. Results were validated in a panel of patient-derived cell models. Results We identified 10 sex-biased miRNAs (adjusted < 0.1), of which 3 were more highly expressed in males and 7 more highly expressed in females. Of these, miR-644a was higher in females, and increased expression of miR-644a target genes was significantly associated with decreased overall survival (HR 1.3, p = 0.02). Furthermore, analysis of an independent single-cell RNA sequencing dataset confirmed sex-specific expression of miR-644a target genes in tumor cells (p < 10-15). Among patient derived models, miR-644a was expressed a median of 4.8-fold higher in females compared to males. Conclusions Our findings implicate miR-644a as a candidate tumor cell-intrinsic regulator of sex-biased gene expression in GBM.
Collapse
Affiliation(s)
- Ellen S. Hong
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Medical Scientist Training Program (MSTP), School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sabrina Z. Wang
- Medical Scientist Training Program (MSTP), School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - András K. Ponti
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Nicole Hajdari
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Juyeun Lee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Erin E. Mulkearns-Hubert
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Josephine Volovetz
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Kristen E. Kay
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Justin D. Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Andrew Dhawan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- School of Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
7
|
Li N, Zhang E, Li Z, Lv S, Zhao X, Ke Q, Zou Q, Li W, Wang Y, Guo H, Song T, Sun L. The P53-P21-RB1 pathway promotes BRD4 degradation in liver cancer through USP1. J Biol Chem 2024; 300:105707. [PMID: 38309505 PMCID: PMC10907170 DOI: 10.1016/j.jbc.2024.105707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/05/2024] Open
Abstract
Liver cancer is notoriously refractory to conventional therapeutics. Tumor progression is governed by the interplay between tumor-promoting genes and tumor-suppressor genes. BRD4, an acetyl lysine-binding protein, is overexpressed in many cancer types, which promotes activation of a pro-tumor gene network. But the underlying mechanism for BRD4 overexpression remains incompletely understood. In addition, understanding the regulatory mechanism of BRD4 protein level will shed insight into BRD4-targeting therapeutics. In this study, we investigated the potential relation between BRD4 protein level and P53, the most frequently dysregulated tumor suppressor. By analyzing the TCGA datasets, we first identify a strong negative correlation between protein levels of P53 and BRD4 in liver cancer. Further investigation shows that P53 promotes BRD4 protein degradation. Mechanistically, P53 indirectly represses the transcription of USP1, a deubiquitinase, through the P21-RB1 axis. USP1 itself is also overexpressed in liver cancer and we show USP1 deubiquitinates BRD4 in vivo and in vitro, which increases BRD4 stability. With cell proliferation assays and xenograft model, we show the pro-tumor role of USP1 is partially mediated by BRD4. With functional transcriptomic analysis, we find the USP1-BRD4 axis upholds expression of a group of cancer-related genes. In summary, we identify a functional P53-P21-RB1-USP1-BRD4 axis in liver cancer.
Collapse
Affiliation(s)
- Neng Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Erlei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Zhenyong Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suli Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuefeng Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Ke
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingli Zou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wensheng Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifei Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haocheng Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tanjing Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Lidong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Guo J, Zhang W, Chen X, Yen A, Chen L, Shively CA, Li D, Wang T, Dougherty JD, Mitra RD. Pycallingcards: an integrated environment for visualizing, analyzing, and interpreting Calling Cards data. Bioinformatics 2024; 40:btae070. [PMID: 38323623 PMCID: PMC10881108 DOI: 10.1093/bioinformatics/btae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/25/2023] [Accepted: 02/05/2024] [Indexed: 02/08/2024] Open
Abstract
MOTIVATION Unraveling the transcriptional programs that control how cells divide, differentiate, and respond to their environments requires a precise understanding of transcription factors' (TFs) DNA-binding activities. Calling cards (CC) technology uses transposons to capture transient TF binding events at one instant in time and then read them out at a later time. This methodology can also be used to simultaneously measure TF binding and mRNA expression from single-cell CC and to record and integrate TF binding events across time in any cell type of interest without the need for purification. Despite these advantages, there has been a lack of dedicated bioinformatics tools for the detailed analysis of CC data. RESULTS We introduce Pycallingcards, a comprehensive Python module specifically designed for the analysis of single-cell and bulk CC data across multiple species. Pycallingcards introduces two innovative peak callers, CCcaller and MACCs, enhancing the accuracy and speed of pinpointing TF binding sites from CC data. Pycallingcards offers a fully integrated environment for data visualization, motif finding, and comparative analysis with RNA-seq and ChIP-seq datasets. To illustrate its practical application, we have reanalyzed previously published mouse cortex and glioblastoma datasets. This analysis revealed novel cell-type-specific binding sites and potential sex-linked TF regulators, furthering our understanding of TF binding and gene expression relationships. Thus, Pycallingcards, with its user-friendly design and seamless interface with the Python data science ecosystem, stands as a critical tool for advancing the analysis of TF functions via CC data. AVAILABILITY AND IMPLEMENTATION Pycallingcards can be accessed on the GitHub repository: https://github.com/The-Mitra-Lab/pycallingcards.
Collapse
Affiliation(s)
- Juanru Guo
- Department of Genetics, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
- Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
| | - Wenjin Zhang
- Department of Genetics, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
- Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
| | - Xuhua Chen
- Department of Genetics, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
- Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
| | - Allen Yen
- Department of Genetics, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
- Department of Psychiatry, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
| | - Lucy Chen
- Department of Genetics, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
- Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
| | - Christian A Shively
- Department of Genetics, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
- Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
| | - Daofeng Li
- Department of Genetics, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
- Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
| | - Ting Wang
- Department of Genetics, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
- Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
- McDonnell Genome Institute, , Washington University in St. Louis School of Medicine, Saint Louis, MO, 63110, United States
| | - Joseph D Dougherty
- Department of Genetics, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
- Department of Psychiatry, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, Saint Louis, MO 63108, United States
| | - Robi D Mitra
- Department of Genetics, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
- Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
- McDonnell Genome Institute, , Washington University in St. Louis School of Medicine, Saint Louis, MO, 63110, United States
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, Saint Louis, MO 63108, United States
| |
Collapse
|
9
|
Rose AJ, Fleming MM, Francis JC, Ning J, Patrikeev A, Chauhan R, Harrington KJ, Swain A. Cell-type-specific tumour sensitivity identified with a bromodomain targeting PROTAC in adenoid cystic carcinoma. J Pathol 2024; 262:37-49. [PMID: 37792636 DOI: 10.1002/path.6209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 10/06/2023]
Abstract
Salivary gland adenoid cystic carcinoma (ACC) is a rare malignancy with limited treatment options. The development of novel therapies is hindered by a lack of preclinical models. We have generated ACC patient-derived xenograft (PDX) lines that retain the physical and genetic properties of the original tumours, including the presence of the common MYB::NFIB or MYBL1::NFIB translocations. We have developed the conditions for the generation of both 2D and 3D tumour organoid patient-derived ACC models that retain MYB expression and can be used for drug studies. Using these models, we show in vitro and in vivo sensitivity of ACC cells to the bromodomain degrader, dBET6. Molecular studies show a decrease in BRD4 and MYB protein levels and target gene expression with treatment. The most prominent effect of dBET6 on tumours in vivo was a change in the relative composition of ACC cell types expressing either myoepithelial or ductal markers. We show that dBET6 inhibits the progenitor function of ACC cells, particularly in the myoepithelial marker-expressing population, revealing a cell-type-specific sensitivity. These studies uncover a novel mechanistic effect of bromodomain inhibitors on tumours and highlight the need to impact both cell-type populations for more effective treatments in ACC patients. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Alexandra J Rose
- Division of Cancer Biology, Institute of Cancer Research, London, UK
| | | | - Jeffrey C Francis
- Division of Cancer Biology, Institute of Cancer Research, London, UK
| | - Jian Ning
- Tumour Modelling Facility, Institute of Cancer Research, London, UK
| | | | - Ritika Chauhan
- Genomics Facility, Institute of Cancer Research, London, UK
| | | | - Amanda Swain
- Division of Cancer Biology, Institute of Cancer Research, London, UK
| |
Collapse
|
10
|
Troike KM, Wang SZ, Silver DJ, Lee J, Mulkearns-Hubert EE, Hajdari N, Ghosh PK, Kay KE, Beilis JL, Mitchell SE, Bishop CW, Hong ES, Artomov M, Hubert CG, Rajappa P, Connor JR, Fox PL, Kristensen BW, Lathia JD. Homeostatic iron regulatory protein drives glioblastoma growth via tumor cell-intrinsic and sex-specific responses. Neurooncol Adv 2024; 6:vdad154. [PMID: 38239626 PMCID: PMC10794878 DOI: 10.1093/noajnl/vdad154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
Background Glioblastoma (GBM) displays alterations in iron that drive proliferation and tumor growth. Iron regulation is complex and involves many regulatory mechanisms, including the homeostatic iron regulator (HFE) gene, which encodes the homeostatic iron regulatory protein. While HFE is upregulated in GBM and correlates with poor survival outcomes, the function of HFE in GBM remains unclear. Methods We interrogated the impact of cell-intrinsic Hfe expression on proliferation and survival of intracranially implanted animals through genetic gain- and loss-of-function approaches in syngeneic mouse glioma models, along with in vivo immune assessments. We also determined the expression of iron-associated genes and their relationship to survival in GBM using public data sets and used transcriptional profiling to identify differentially expressed pathways in control compared to Hfe-knockdown cells. Results Overexpression of Hfe accelerated GBM proliferation and reduced animal survival, whereas suppression of Hfe induced apoptotic cell death and extended survival, which was more pronounced in females and associated with attenuation of natural killer cells and CD8+ T cell activity. Analysis of iron gene signatures in Hfe-knockdown cells revealed alterations in the expression of several iron-associated genes, suggesting global disruption of intracellular iron homeostasis. Further analysis of differentially expressed pathways revealed oxidative stress as the top pathway upregulated following Hfe loss. Hfe knockdown indeed resulted in enhanced 55Fe uptake and generation of reactive oxygen species. Conclusions These findings reveal an essential function for HFE in GBM cell growth and survival, as well as a sex-specific interaction with the immune response.
Collapse
Affiliation(s)
- Katie M Troike
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sabrina Z Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Daniel J Silver
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Juyeun Lee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Erin E Mulkearns-Hubert
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicole Hajdari
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Prabar K Ghosh
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kristen E Kay
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Julia L Beilis
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sofia E Mitchell
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Christopher W Bishop
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ellen S Hong
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Mykyta Artomov
- Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State Wexner Medical Center, Columbus, Ohio, USA
| | - Christopher G Hubert
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | - Prajwal Rajappa
- Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Neurological Surgery, The Ohio State Wexner Medical Center, Columbus, Ohio, USA
| | - James R Connor
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Paul L Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Bjarne W Kristensen
- Department of Clinical Medicine, Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
11
|
Hong ES, Wang SZ, Ponti AK, Hajdari N, Lee J, Mulkearns-Hubert EE, Volovetz J, Kay KE, Lathia JD, Dhawan A. miR-644a is a tumor cell-intrinsic mediator of sex bias in glioblastoma. Neurooncol Adv 2024; 6:vdae183. [PMID: 39582810 PMCID: PMC11582885 DOI: 10.1093/noajnl/vdae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
Background Biological sex is an important risk factor for glioblastoma (GBM), with males having a higher incidence and poorer prognosis. The mechanisms for this sex bias are thought to be both tumor intrinsic and tumor extrinsic. MicroRNAs (miRNAs), key posttranscriptional regulators of gene expression, have been previously linked to sex differences in various cell types and diseases, but their role in the sex bias of GBM remains unknown. Methods We leveraged previously published paired miRNA and mRNA sequencing of 39 GBM patients (22 male, 17 female) to identify sex-biased miRNAs. We further interrogated a separate single-cell RNA-sequencing dataset of 110 GBM patients to examine whether differences in miRNA target gene expression were tumor cell-intrinsic or tumor cell extrinsic. Results were validated in a panel of patient-derived cell models. Results We identified 10 sex-biased miRNAs (p adjusted < .1), of which 3 were more highly expressed in males and 7 more highly expressed in females. Of these, miR-644a was higher in females, and increased expression of miR-644a target genes was significantly associated with decreased overall survival (HR 1.3, P = .02). Furthermore, analysis of an independent single-cell RNA-sequencing dataset confirmed sex-specific expression of miR-644a target genes in tumor cells (P < 10-15). Among patient-derived models, miR-644a was expressed a median of 4.8-fold higher in females compared to males. Conclusions Our findings implicate miR-644a as a candidate tumor cell-intrinsic regulator of sex-biased gene expression in GBM.
Collapse
Affiliation(s)
- Ellen S Hong
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Medical Scientist Training Program (MSTP), School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sabrina Z Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Medical Scientist Training Program (MSTP), School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - András K Ponti
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nicole Hajdari
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Juyeun Lee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Erin E Mulkearns-Hubert
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Josephine Volovetz
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kristen E Kay
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Justin D Lathia
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Andrew Dhawan
- School of Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
12
|
Hammoudeh N, Soukkarieh C, Murphy DJ, Hanano A. Female-to-male differential transcription patterns of miRNA-mRNA networks in the livers of dioxin-exposed mice. ENVIRONMENTAL TOXICOLOGY 2023; 38:2310-2331. [PMID: 37318321 DOI: 10.1002/tox.23868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/14/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
Non-coding microRNAs (miRNAs) have important roles in regulating the expression of liver mRNAs in response to xenobiotic-exposure, but their roles concerning dioxins such as TCDD (2,3,7,8-Tetrachlorodibenzo-p-dioxin) are less clear. This report concerns the potential implication of liver (class I) and circulating (class II) miRNAs in hepatotoxicity of female and male mice after acute exposure to TCDD. The data show that, of a total of 38 types of miRNAs, the expression of eight miRNAs were upregulated in both female and male mice exposed to TCDD. Inversely, the expression of nine miRNAs were significantly downregulated in both animal genders. Moreover, certain miRNAs were preferentially induced in either females or males. The potential downstream regulatory effects of miRNAs on their target genes was evaluated by determining the expression of three group of genes that are potentially involved in cancer biogenesis, other diseases and in hepatotoxicity. It was found that certain cancer-related genes were more highly expressed females rather than males after exposure to TCDD. Furthermore, a paradoxical female-to-male transcriptional pattern was found for several disease-related and hepatotoxicity-related genes. These results suggest the possibility of developing of new miRNA-specific interfering molecules to address their dysfunctions as caused by TCDD.
Collapse
Affiliation(s)
- Nour Hammoudeh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Denis J Murphy
- School of Applied Sciences, University of South Wales, Pontypridd, UK
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| |
Collapse
|
13
|
Liu Y, Liu H, Ye M, Jiang M, Chen X, Song G, Ji H, Wang ZW, Zhu X. Methylation of BRD4 by PRMT1 regulates BRD4 phosphorylation and promotes ovarian cancer invasion. Cell Death Dis 2023; 14:624. [PMID: 37737256 PMCID: PMC10517134 DOI: 10.1038/s41419-023-06149-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
Bromodomain-containing protein 4 (BRD4), the major component of bromodomain and extra-terminal domain (BET) protein family, has important functions in early embryonic development and cancer development. However, the posttranslational modification of BRD4 is not well understood. Multiple approaches were used to explore the mechanism of PRMT1-mediated BRD4 methylation and to determine the biological functions of BRD4 and PRMT1 in ovarian cancer. Here we report that BRD4 is asymmetrically methylated at R179/181/183 by PRMT1, which is antagonized by the Jumonji-family demethylase, JMJD6. PRMT1 is overexpressed in ovarian cancer tissue and is a potential marker for poor prognosis in ovarian cancer patients. Silencing of PRMT1 inhibited ovarian cancer proliferation, migration, and invasion in vivo and in vitro. PRMT1-mediated BRD4 methylation was found to promote BRD4 phosphorylation. Compared to BRD4 wild-type (WT) cells, BRD4 R179/181/183K mutant-expressing cells showed reduced ovarian cancer metastasis. BRD4 arginine methylation is also associated with TGF-β signaling. Our results indicate that arginine methylation of BRD4 by PRMT1 is involved in ovarian cancer tumorigenesis. Targeting PRMT1-mediated arginine methylation may provide a novel diagnostic target and an effective therapeutic strategy for ovarian cancer treatment.
Collapse
Affiliation(s)
- Yi Liu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, 325027, Wenzhou, China
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hejing Liu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Miaomiao Ye
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Mengying Jiang
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Xin Chen
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Gendi Song
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Huihui Ji
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Zhi-Wei Wang
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, 325027, Wenzhou, China.
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Xueqiong Zhu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, 325027, Wenzhou, China.
| |
Collapse
|
14
|
Yen A, Mateusiak C, Sarafinovska S, Gachechiladze MA, Guo J, Chen X, Moudgil A, Cammack AJ, Hoisington-Lopez J, Crosby M, Brent MR, Mitra RD, Dougherty JD. Calling Cards: A Customizable Platform to Longitudinally Record Protein-DNA Interactions Over Time in Cells and Tissues. Curr Protoc 2023; 3:e883. [PMID: 37755132 PMCID: PMC10627244 DOI: 10.1002/cpz1.883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Calling Cards is a platform technology to record a cumulative history of transient protein-DNA interactions in the genome of genetically targeted cell types. The record of these interactions is recovered by next-generation sequencing. Compared with other genomic assays, readouts of which provide a snapshot at the time of harvest, Calling Cards enables correlation of historical molecular states to eventual outcomes or phenotypes. To achieve this, Calling Cards uses the piggyBac transposase to insert self-reporting transposon "Calling Cards" into the genome, leaving permanent marks at interaction sites. Calling Cards can be deployed in a variety of in vitro and in vivo biological systems to study gene regulatory networks involved in development, aging, and disease. Out of the box, it assesses enhancer usage but can be adapted to profile-specific transcription factor (TF) binding with custom TF-piggyBac fusion proteins. The Calling Cards workflow has five main stages: delivery of Calling Cards reagents, sample preparation, library preparation, sequencing, and data analysis. Here, we first present a comprehensive guide for experimental design, reagent selection, and optional customization of the platform to study additional TFs. Then, we provide an updated protocol for the five steps, using reagents that improve throughput and decrease costs, including an overview of a newly deployed computational pipeline. This protocol is designed for users with basic molecular biology experience to process samples into sequencing libraries in 2 days. Familiarity with bioinformatic analysis and command line tools is required to set up the pipeline in a high-performance computing environment and to conduct downstream analyses. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Preparation and delivery of Calling Cards reagents Support Protocol 1: Next-generation sequencing quantification of barcode distribution within self-reporting transposon plasmid pool and adeno-associated virus genome Basic Protocol 2: Sample collection and RNA purification Support Protocol 2: Library density quantitative PCR Basic Protocol 3: Sequencing library preparation Basic Protocol 4: Library pooling and sequencing Basic Protocol 5: Data analysis.
Collapse
Affiliation(s)
- Allen Yen
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110
| | - Chase Mateusiak
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Simona Sarafinovska
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110
| | - Mariam A. Gachechiladze
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110
| | - Juanru Guo
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Xuhua Chen
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Arnav Moudgil
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Alexander J. Cammack
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Jessica Hoisington-Lopez
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110
| | - MariaLynn Crosby
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Michael R. Brent
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110
- Department of Computer Science and Engineering, Washington University, Saint Louis, MO 63130
| | - Robi D. Mitra
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Joseph D. Dougherty
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, Saint Louis, MO 63110
- Lead contact
| |
Collapse
|
15
|
Yen A, Mateusiak C, Sarafinovska S, Gachechiladze MA, Guo J, Chen X, Moudgil A, Cammack AJ, Hoisington-Lopez J, Crosby M, Brent MR, Mitra RD, Dougherty JD. Calling Cards: a customizable platform to longitudinally record protein-DNA interactions over time in cells and tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544098. [PMID: 37333130 PMCID: PMC10274760 DOI: 10.1101/2023.06.07.544098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Calling Cards is a platform technology to record a cumulative history of transient protein-DNA interactions in the genome of genetically targeted cell types. The record of these interactions is recovered by next generation sequencing. Compared to other genomic assays, whose readout provides a snapshot at the time of harvest, Calling Cards enables correlation of historical molecular states to eventual outcomes or phenotypes. To achieve this, Calling Cards uses the piggyBac transposase to insert self-reporting transposon (SRT) "Calling Cards" into the genome, leaving permanent marks at interaction sites. Calling Cards can be deployed in a variety of in vitro and in vivo biological systems to study gene regulatory networks involved in development, aging, and disease. Out of the box, it assesses enhancer usage but can be adapted to profile specific transcription factor binding with custom transcription factor (TF)-piggyBac fusion proteins. The Calling Cards workflow has five main stages: delivery of Calling Card reagents, sample preparation, library preparation, sequencing, and data analysis. Here, we first present a comprehensive guide for experimental design, reagent selection, and optional customization of the platform to study additional TFs. Then, we provide an updated protocol for the five steps, using reagents that improve throughput and decrease costs, including an overview of a newly deployed computational pipeline. This protocol is designed for users with basic molecular biology experience to process samples into sequencing libraries in 1-2 days. Familiarity with bioinformatic analysis and command line tools is required to set up the pipeline in a high-performance computing environment and to conduct downstream analyses. Basic Protocol 1: Preparation and delivery of Calling Cards reagentsBasic Protocol 2: Sample preparationBasic Protocol 3: Sequencing library preparationBasic Protocol 4: Library pooling and sequencingBasic Protocol 5: Data analysis.
Collapse
Affiliation(s)
- Allen Yen
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110
| | - Chase Mateusiak
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Simona Sarafinovska
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110
| | - Mariam A Gachechiladze
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110
| | - Juanru Guo
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Xuhua Chen
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Arnav Moudgil
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Alexander J Cammack
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Jessica Hoisington-Lopez
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110
| | - MariaLynn Crosby
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Michael R Brent
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110
- Department of Computer Science and Engineering, Washington University, Saint Louis, MO 63130
| | - Robi D Mitra
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, Saint Louis, MO 63110
- Lead contact
| |
Collapse
|
16
|
Berryer MH, Rizki G, Nathanson A, Klein JA, Trendafilova D, Susco SG, Lam D, Messana A, Holton KM, Karhohs KW, Cimini BA, Pfaff K, Carpenter AE, Rubin LL, Barrett LE. High-content synaptic phenotyping in human cellular models reveals a role for BET proteins in synapse assembly. eLife 2023; 12:80168. [PMID: 37083703 PMCID: PMC10121225 DOI: 10.7554/elife.80168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 04/10/2023] [Indexed: 04/22/2023] Open
Abstract
Resolving fundamental molecular and functional processes underlying human synaptic development is crucial for understanding normal brain function as well as dysfunction in disease. Based upon increasing evidence of species-divergent features of brain cell types, coupled with emerging studies of complex human disease genetics, we developed the first automated and quantitative high-content synaptic phenotyping platform using human neurons and astrocytes. To establish the robustness of our platform, we screened the effects of 376 small molecules on presynaptic density, neurite outgrowth, and cell viability, validating six small molecules that specifically enhanced human presynaptic density in vitro. Astrocytes were essential for mediating the effects of all six small molecules, underscoring the relevance of non-cell-autonomous factors in synapse assembly and their importance in synaptic screening applications. Bromodomain and extraterminal (BET) inhibitors emerged as the most prominent hit class and global transcriptional analyses using multiple BET inhibitors confirmed upregulation of synaptic gene expression. Through these analyses, we demonstrate the robustness of our automated screening platform for identifying potent synaptic modulators, which can be further leveraged for scaled analyses of human synaptic mechanisms and drug discovery efforts.
Collapse
Affiliation(s)
- Martin H Berryer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Gizem Rizki
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Anna Nathanson
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Jenny A Klein
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Darina Trendafilova
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Sara G Susco
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Daisy Lam
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Angelica Messana
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Kristina M Holton
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Kyle W Karhohs
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Beth A Cimini
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Kathleen Pfaff
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Anne E Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Lee L Rubin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Lindy E Barrett
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| |
Collapse
|
17
|
Duan W, Yu M, Chen J. BRD4: New Hope in the Battle Against Glioblastoma. Pharmacol Res 2023; 191:106767. [PMID: 37061146 DOI: 10.1016/j.phrs.2023.106767] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
The BET family proteins, comprising BRD2, BRD3 and BRD4, represent epigenetic readers of acetylated histone marks that play pleiotropic roles in the tumorigenesis and growth of multiple human malignancies, including glioblastoma (GBM). A growing body of investigation has proven BET proteins as valuable therapeutic targets for cancer treatment. Recently, several BRD4 inhibitors and degraders have been reported to successfully suppress GBM in preclinical and clinical studies. However, the precise role and mechanism of BRD4 in the pathogenesis of GBM have not been fully elucidated or summarized. This review focuses on summarizing the roles and mechanisms of BRD4 in the context of the initiation and development of GBM. In addition, several BRD4 inhibitors have been evaluated for therapeutic purposes as monotherapy or in combination with chemotherapy, radiotherapy, and immune therapies. Here, we provide a critical appraisal of studies evaluating various BRD4 inhibitors and degraders as novel treatment strategies against GBM.
Collapse
Affiliation(s)
- Weichen Duan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Miao Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jiajia Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
18
|
Ushiki A, Sheng RR, Zhang Y, Zhao J, Nobuhara M, Murray E, Ruan X, Rios JJ, Wise CA, Ahituv N. Deletion of Pax1 scoliosis-associated regulatory elements leads to a female-biased tail abnormality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536497. [PMID: 37090618 PMCID: PMC10120660 DOI: 10.1101/2023.04.12.536497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Adolescent idiopathic scoliosis (AIS), a sideways curvature of the spine, is sexually dimorphic, with increased incidence in females. A GWAS identified a female-specific AIS susceptibility locus near the PAX1 gene. Here, we used mouse enhancer assays, three mouse enhancer knockouts and subsequent phenotypic analyses to characterize this region. Using mouse enhancer assays, we characterized a sequence, PEC7, that overlaps the AIS-associated variant, and found it to be active in the tail tip and intervertebral disc. Removal of PEC7 or Xe1, a known sclerotome enhancer nearby, and deletion of both sequences led to a kinky phenotype only in the Xe1 and combined (Xe1+PEC7) knockouts, with only the latter showing a female sex dimorphic phenotype. Extensive phenotypic characterization of these mouse lines implicated several differentially expressed genes and estrogen signaling in the sex dimorphic bias. In summary, our work functionally characterizes an AIS-associated locus and dissects the mechanism for its sexual dimorphism.
Collapse
Affiliation(s)
- Aki Ushiki
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Rory R. Sheng
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yichi Zhang
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Jingjing Zhao
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Mai Nobuhara
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Elizabeth Murray
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Xin Ruan
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jonathan J. Rios
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Carol A. Wise
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
19
|
Zhuang HH, Qu Q, Teng XQ, Dai YH, Qu J. Superenhancers as master gene regulators and novel therapeutic targets in brain tumors. Exp Mol Med 2023; 55:290-303. [PMID: 36720920 PMCID: PMC9981748 DOI: 10.1038/s12276-023-00934-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/27/2022] [Accepted: 12/04/2022] [Indexed: 02/02/2023] Open
Abstract
Transcriptional deregulation, a cancer cell hallmark, is driven by epigenetic abnormalities in the majority of brain tumors, including adult glioblastoma and pediatric brain tumors. Epigenetic abnormalities can activate epigenetic regulatory elements to regulate the expression of oncogenes. Superenhancers (SEs), identified as novel epigenetic regulatory elements, are clusters of enhancers with cell-type specificity that can drive the aberrant transcription of oncogenes and promote tumor initiation and progression. As gene regulators, SEs are involved in tumorigenesis in a variety of tumors, including brain tumors. SEs are susceptible to inhibition by their key components, such as bromodomain protein 4 and cyclin-dependent kinase 7, providing new opportunities for antitumor therapy. In this review, we summarized the characteristics and identification, unique organizational structures, and activation mechanisms of SEs in tumors, as well as the clinical applications related to SEs in tumor therapy and prognostication. Based on a review of the literature, we discussed the relationship between SEs and different brain tumors and potential therapeutic targets, focusing on glioblastoma.
Collapse
Affiliation(s)
- Hai-Hui Zhuang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, PR China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410007, PR China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410007, PR China
| | - Xin-Qi Teng
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, PR China
| | - Ying-Huan Dai
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, 410011, PR China
| | - Jian Qu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, PR China.
| |
Collapse
|
20
|
Ye Y, Zhong W, Qian J, Zhang J, Xu T, Han R, Han J, Wang C, Song L, Zeng X, Wang H. Comprehensive analysis of the prognosis and immune infiltrates for the BET protein family reveals the significance of BRD4 in glioblastoma multiforme. Front Cell Dev Biol 2023; 11:1042490. [PMID: 36711038 PMCID: PMC9878708 DOI: 10.3389/fcell.2023.1042490] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/02/2023] [Indexed: 01/13/2023] Open
Abstract
Background: Glioblastoma multiforme (GBM) is the most common and invasive primary central nervous system tumor. The prognosis after surgery, radiation and chemotherapy is very poor. Bromodomain (BRD) proteins have been identified in oncogenic rearrangements, and play a key role in the development of multiple cancers. However, the relationship between BET proteins and prognosis of GBM are still worth exploring, and the distinct functions of BET proteins and tumor immunology in GBM have not been fully elucidated. Therefore, it is particularly important to develop effective biomarkers to predict the prognosis of GBM patients. Methods: Metascape, David, Kaplan-Meier Plotter, Oncomine, GEPIA, TCGA, TIMER, and LinkedOmics databases were used to assess the expression and prognosis for BET proteins in GBM. ROC analysis of risk model was established to identify the correlation between BET genes and overall survival in GBM patients. TIMER and GEPIA databases were used to comprehensively investigate the correlation between BET genes and tumor immune infiltration cells. Moreover, the image of immunohistochemistry staining of BET proteins in normal tissue and tumor tissue were retrived from the HPA database. In addition, differential analysis and pathway enrichment analysis of BRD4 gene expression profile were also carried out. Finally, immune-fluorescence and Western blot were used to clarify the expression of BRD4 in GBM cells. Results: Bioinformatics analysis showed that the expression levels of BET genes in GBM may play an important role in oncogenesis. Specifically, bioinformatic and immunohistochemistry analysis showed that BRD4 protein was more highly expressed in tumor tissues than that in normal tissues. The high expression of BRD4 was associated with poor prognosis in GBM. The expression of BET genes were closely related to the immune checkpoint in GBM. The correlation effect of BRD4 was significantly higher than other BET genes, which represented negative correlation with immune checkpoint. The expression of BRD4 was positively associated with tumor purity, and negatively associated with immune infiltration abundance of macrophage, neutrophil and CD8+ T-cell, respectively. Cox analysis showed that the model had good survival prediction and prognosis discrimination ability. In addition, the expression levels of BRD4 protein was significantly higher in U-251 MG cells than that in normal cells, which was consistent with the results of bioinformatics data. Conclusion: This study implied that BRD4 could be hopeful prognostic biomarker in GBM. The increased expression of BRD4 may act as a molecular marker to identify GBM patients with high-risk subgroups. BRD4 may be a valuable prognostic biomarker, and a potential target of precision therapy against GBM.
Collapse
Affiliation(s)
- Yintao Ye
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjins Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Wei Zhong
- Department of quality, Tianjin Plastics Research Institute Co., Ltd, Tianjin, China
| | - Junqiang Qian
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjins Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Jie Zhang
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjins Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Tingting Xu
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjins Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Ruyi Han
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjins Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Jiangeng Han
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjins Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Chunwei Wang
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjins Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Lichao Song
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjins Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xianwei Zeng
- Geriatric Health Engineering Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China,Rehabilitation hospital affiliated to National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Hong Wang
- Geriatric Health Engineering Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China,*Correspondence: Hong Wang,
| |
Collapse
|
21
|
Wang L, Jung J, Babikir H, Shamardani K, Jain S, Feng X, Gupta N, Rosi S, Chang S, Raleigh D, Solomon D, Phillips JJ, Diaz AA. A single-cell atlas of glioblastoma evolution under therapy reveals cell-intrinsic and cell-extrinsic therapeutic targets. NATURE CANCER 2022; 3:1534-1552. [PMID: 36539501 PMCID: PMC9767870 DOI: 10.1038/s43018-022-00475-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/02/2022] [Indexed: 12/24/2022]
Abstract
Recent longitudinal studies of glioblastoma (GBM) have demonstrated a lack of apparent selection pressure for specific DNA mutations in recurrent disease. Single-cell lineage tracing has shown that GBM cells possess a high degree of plasticity. Together this suggests that phenotype switching, as opposed to genetic evolution, may be the escape mechanism that explains the failure of precision therapies to date. We profiled 86 primary-recurrent patient-matched paired GBM specimens with single-nucleus RNA, single-cell open-chromatin, DNA and spatial transcriptomic/proteomic assays. We found that recurrent GBMs are characterized by a shift to a mesenchymal phenotype. We show that the mesenchymal state is mediated by activator protein 1. Increased T-cell abundance at recurrence was prognostic and correlated with hypermutation status. We identified tumor-supportive networks of paracrine and autocrine signals between GBM cells, nonmalignant neuroglia and immune cells. We present cell-intrinsic and cell-extrinsic targets and a single-cell multiomics atlas of GBM under therapy.
Collapse
Affiliation(s)
- Lin Wang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jangham Jung
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Husam Babikir
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Karin Shamardani
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Saket Jain
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Xi Feng
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Nalin Gupta
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Susanna Rosi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Susan Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - David Raleigh
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - David Solomon
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Aaron A Diaz
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
22
|
Sponagel J, Jones JK, Frankfater C, Zhang S, Tung O, Cho K, Tinkum KL, Gass H, Nunez E, Spitz DR, Chinnaiyan P, Schaefer J, Patti GJ, Graham MS, Mauguen A, Grkovski M, Dunphy MP, Krebs S, Luo J, Rubin JB, Ippolito JE. Sex differences in brain tumor glutamine metabolism reveal sex-specific vulnerabilities to treatment. MED 2022; 3:792-811.e12. [PMID: 36108629 PMCID: PMC9669217 DOI: 10.1016/j.medj.2022.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 07/08/2022] [Accepted: 08/22/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Brain cancer incidence and mortality rates are greater in males. Understanding the molecular mechanisms that underlie those sex differences could improve treatment strategies. Although sex differences in normal metabolism are well described, it is currently unknown whether they persist in cancerous tissue. METHODS Using positron emission tomography (PET) imaging and mass spectrometry, we assessed sex differences in glioma metabolism in samples from affected individuals. We assessed the role of glutamine metabolism in male and female murine transformed astrocytes using isotope labeling, metabolic rescue experiments, and pharmacological and genetic perturbations to modulate pathway activity. FINDINGS We found that male glioblastoma surgical specimens are enriched for amino acid metabolites, including glutamine. Fluoroglutamine PET imaging analyses showed that gliomas in affected male individuals exhibit significantly higher glutamine uptake. These sex differences were well modeled in murine transformed astrocytes, in which male cells imported and metabolized more glutamine and were more sensitive to glutaminase 1 (GLS1) inhibition. The sensitivity to GLS1 inhibition in males was driven by their dependence on glutamine-derived glutamate for α-ketoglutarate synthesis and tricarboxylic acid (TCA) cycle replenishment. Females were resistant to GLS1 inhibition through greater pyruvate carboxylase (PC)-mediated TCA cycle replenishment, and knockdown of PC sensitized females to GLS1 inhibition. CONCLUSION Our results show that clinically important sex differences exist in targetable elements of metabolism. Recognition of sex-biased metabolism may improve treatments through further laboratory and clinical research. FUNDING This work was supported by NIH grants, Joshua's Great Things, the Siteman Investment Program, and the Barnard Research Fund.
Collapse
Affiliation(s)
- Jasmin Sponagel
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jill K Jones
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cheryl Frankfater
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Biomedical Mass Spectrometry Resource, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shanshan Zhang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Olivia Tung
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kevin Cho
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kelsey L Tinkum
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hannah Gass
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Elena Nunez
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52246, USA; Holden Comprehensive Cancer Center, Department of Pathology, University of Iowa, Iowa City, IA 52246, USA
| | - Prakash Chinnaiyan
- Department of Radiation Oncology, Beaumont Health, Royal Oak, MI 48073, USA; Oakland University William Beaumont School of Medicine, Rochester, MI 48073, USA
| | - Jacob Schaefer
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Gary J Patti
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Maya S Graham
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Audrey Mauguen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Milan Grkovski
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mark P Dunphy
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Radiology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Simone Krebs
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Radiology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jingqin Luo
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Joseph E Ippolito
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
23
|
Lalli M, Yen A, Thopte U, Dong F, Moudgil A, Chen X, Milbrandt J, Dougherty JD, Mitra RD. Measuring transcription factor binding and gene expression using barcoded self-reporting transposon calling cards and transcriptomes. NAR Genom Bioinform 2022; 4:lqac061. [PMID: 36062164 PMCID: PMC9428926 DOI: 10.1093/nargab/lqac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/04/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Calling cards technology using self-reporting transposons enables the identification of DNA-protein interactions through RNA sequencing. Although immensely powerful, current implementations of calling cards in bulk experiments on populations of cells are technically cumbersome and require many replicates to identify independent insertions into the same genomic locus. Here, we have drastically reduced the cost and labor requirements of calling card experiments in bulk populations of cells by introducing a DNA barcode into the calling card itself. An additional barcode incorporated during reverse transcription enables simultaneous transcriptome measurement in a facile and affordable protocol. We demonstrate that barcoded self-reporting transposons recover in vitro binding sites for four basic helix-loop-helix transcription factors with important roles in cell fate specification: ASCL1, MYOD1, NEUROD2 and NGN1. Further, simultaneous calling cards and transcriptional profiling during transcription factor overexpression identified both binding sites and gene expression changes for two of these factors. Lastly, we demonstrated barcoded calling cards can record binding in vivo in the mouse brain. In sum, RNA-based identification of transcription factor binding sites and gene expression through barcoded self-reporting transposon calling cards and transcriptomes is an efficient and powerful method to infer gene regulatory networks in a population of cells.
Collapse
Affiliation(s)
- Matthew Lalli
- Department of Genetics, School of Medicine, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA.,Edison Family Center for Genome Sciences and Systems Biology Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Allen Yen
- Department of Genetics, School of Medicine, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Urvashi Thopte
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Fengping Dong
- Department of Genetics, School of Medicine, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA.,Edison Family Center for Genome Sciences and Systems Biology Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA
| | - Arnav Moudgil
- Department of Genetics, School of Medicine, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA.,Edison Family Center for Genome Sciences and Systems Biology Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA
| | - Xuhua Chen
- Department of Genetics, School of Medicine, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA.,Edison Family Center for Genome Sciences and Systems Biology Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA
| | - Jeffrey Milbrandt
- Department of Genetics, School of Medicine, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA
| | - Joseph D Dougherty
- Department of Genetics, School of Medicine, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robi D Mitra
- Department of Genetics, School of Medicine, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA.,Edison Family Center for Genome Sciences and Systems Biology Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
24
|
Xu W, Huang L, Xie B, Yang B. Serum microRNA-4297 is a sex-specific predictive biomarker of glioma grade and prognosis. Front Neurol 2022; 13:888221. [PMID: 35968285 PMCID: PMC9363699 DOI: 10.3389/fneur.2022.888221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
Background Gliomas account for nearly 80% of brain cancers, tending to occur more frequently in men with adverse outcomes. Emerging microRNAs have been positioned as promising predictors for glioma's histological grade and prognosis. However, there have been few studies concerning the sex-biased impacts on the clinical approach for the potential microRNA-4297 (miR-4297). Methods We utilized GSE139031micro-RNAs profiling to analyze serum miR-4297 expression in glioma. A total of 114 newly diagnosed glioma patients at the First Affiliated Hospital of Fujian Medical University from January 2017 to February 2021 were recruited and prospectively followed up. The association of miR-4297 levels with glioma grade and prognosis was investigated. Luciferase reporter gene assays and genotype analyses were carried out to explore the potential mechanism of sexually dimorphic miR-4297 in glioma. Results Serum miR-4297 levels were notably down-regulated in glioma. Besides, serum miR-4297 levels were positively associated with the high grades, which were exclusively present for females. The positive correlations of miR-4297 with O6-methylguanine-DNA methyltransferase (MGMT) protein and mean platelet volume were also observed in females. IDH-mutant females had decreased miR-4297. Median PFS time for females with miR-4297 ≥ 1.392 was distinctly shorter than those with miR-4297 <1.392 (12.3 months vs. 42.89 months, p = 0.0289). Based on multivariate logistic regression, miR-4297-based equation model was established as FHGRS. AU-ROC analysis revealed FHGRS exhibited a robust performance in predicting high-grade glioma in females (p < 0.001), whereas there was no such relationship in males. Furthermore, the MGMT-3'UTR variant rs7896488 in the specific binding region of miR-4297 was correlated with prognosis. Conclusion Our study uncovers sex-dependent characterization of serum miR-4297 in predicting glioma grade and the relapse risk for female patients, which underscores the clinical benefits of sex-specific analysis in non-coding RNA research.
Collapse
Affiliation(s)
- Wenshen Xu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Liming Huang
- Department of Oncology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Molecular Oncology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Bingsen Xie
- Department of Neurosurgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Bin Yang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- *Correspondence: Bin Yang
| |
Collapse
|
25
|
Pressler MP, Horvath A, Entcheva E. Sex-dependent transcription of cardiac electrophysiology and links to acetylation modifiers based on the GTEx database. Front Cardiovasc Med 2022; 9:941890. [PMID: 35935618 PMCID: PMC9354462 DOI: 10.3389/fcvm.2022.941890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022] Open
Abstract
Development of safer drugs based on epigenetic modifiers, e.g., histone deacetylase inhibitors (HDACi), requires better understanding of their effects on cardiac electrophysiology. Using RNAseq data from the genotype-tissue-expression database (GTEx), we created models that link the abundance of acetylation enzymes (HDAC/SIRT/HATs), and the gene expression of ion channels (IC) via select cardiac transcription factors (TFs) in male and female adult human hearts (left ventricle, LV). Gene expression data (transcripts per million, TPM) from GTEx donors (21–70 y.o.) were filtered, normalized and transformed to Euclidian space to allow quantitative comparisons in 84 female and 158 male LVs. Sex-specific partial least-square (PLS) regression models, linking gene expression data for HDAC/SIRT/HATs to TFs and to ICs gene expression, revealed tight co-regulation of cardiac ion channels by HDAC/SIRT/HATs, with stronger clustering in the male LV. Co-regulation of genes encoding excitatory and inhibitory processes in cardiac tissue by the acetylation modifiers may help explain their predominantly net-neutral effects on cardiac electrophysiology. ATP1A1, encoding for the Na/K pump, represented an outlier—with orthogonal regulation by the acetylation modifiers to most of the ICs. The HDAC/SIRT/HAT effects were mediated by strong (+) TF regulators of ICs, e.g., MEF2A and TBX5, in both sexes. Furthermore, for male hearts, PLS models revealed a stronger (+/-) mediatory role on ICs for NKX25 and TGF1B/KLF4, respectively, while RUNX1 exhibited larger (-) TF effects on ICs in females. Male-trained PLS models of HDAC/SIRT/HAT effects on ICs underestimated the effects on some ICs in females. Insights from the GTEx dataset about the co-expression and transcriptional co-regulation of acetylation-modifying enzymes, transcription factors and key cardiac ion channels in a sex-specific manner can help inform safer drug design.
Collapse
Affiliation(s)
- Michael P. Pressler
- Department of Biomedical Engineering, George Washington University, Washington, DC, United States
| | - Anelia Horvath
- Department of Biochemistry and Molecular Medicine, McCormick Genomics and Proteomics Center, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Washington, DC, United States
- *Correspondence: Emilia Entcheva,
| |
Collapse
|
26
|
Fisher JL, Jones EF, Flanary VL, Williams AS, Ramsey EJ, Lasseigne BN. Considerations and challenges for sex-aware drug repurposing. Biol Sex Differ 2022; 13:13. [PMID: 35337371 PMCID: PMC8949654 DOI: 10.1186/s13293-022-00420-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/06/2022] [Indexed: 01/09/2023] Open
Abstract
Sex differences are essential factors in disease etiology and manifestation in many diseases such as cardiovascular disease, cancer, and neurodegeneration [33]. The biological influence of sex differences (including genomic, epigenetic, hormonal, immunological, and metabolic differences between males and females) and the lack of biomedical studies considering sex differences in their study design has led to several policies. For example, the National Institute of Health's (NIH) sex as a biological variable (SABV) and Sex and Gender Equity in Research (SAGER) policies to motivate researchers to consider sex differences [204]. However, drug repurposing, a promising alternative to traditional drug discovery by identifying novel uses for FDA-approved drugs, lacks sex-aware methods that can improve the identification of drugs that have sex-specific responses [7, 11, 14, 33]. Sex-aware drug repurposing methods either select drug candidates that are more efficacious in one sex or deprioritize drug candidates based on if they are predicted to cause a sex-bias adverse event (SBAE), unintended therapeutic effects that are more likely to occur in one sex. Computational drug repurposing methods are encouraging approaches to develop for sex-aware drug repurposing because they can prioritize sex-specific drug candidates or SBAEs at lower cost and time than traditional drug discovery. Sex-aware methods currently exist for clinical, genomic, and transcriptomic information [1, 7, 155]. They have not expanded to other data types, such as DNA variation, which has been beneficial in other drug repurposing methods that do not consider sex [114]. Additionally, some sex-aware methods suffer from poorer performance because a disproportionate number of male and female samples are available to train computational methods [7]. However, there is development potential for several different categories (i.e., data mining, ligand binding predictions, molecular associations, and networks). Low-dimensional representations of molecular association and network approaches are also especially promising candidates for future sex-aware drug repurposing methodologies because they reduce the multiple hypothesis testing burden and capture sex-specific variation better than the other methods [151, 159]. Here we review how sex influences drug response, the current state of drug repurposing including with respect to sex-bias drug response, and how model organism study design choices influence drug repurposing validation.
Collapse
Affiliation(s)
- Jennifer L. Fisher
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Emma F. Jones
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Victoria L. Flanary
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Avery S. Williams
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Elizabeth J. Ramsey
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Brittany N. Lasseigne
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| |
Collapse
|
27
|
Carrano A, Juarez JJ, Incontri D, Ibarra A, Cazares HG. Sex-Specific Differences in Glioblastoma. Cells 2021; 10:cells10071783. [PMID: 34359952 PMCID: PMC8303471 DOI: 10.3390/cells10071783] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022] Open
Abstract
Sex differences have been well identified in many brain tumors. Even though glioblastoma (GBM) is the most common primary malignant brain tumor in adults and has the worst outcome, well-established differences between men and women are limited to incidence and outcome. Little is known about sex differences in GBM at the disease phenotype and genetical/molecular level. This review focuses on a deep understanding of the pathophysiology of GBM, including hormones, metabolic pathways, the immune system, and molecular changes, along with differences between men and women and how these dimorphisms affect disease outcome. The information analyzed in this review shows a greater incidence and worse outcome in male patients with GBM compared with female patients. We highlight the protective role of estrogen and the upregulation of androgen receptors and testosterone having detrimental effects on GBM. Moreover, hormones and the immune system work in synergy to directly affect the GBM microenvironment. Genetic and molecular differences have also recently been identified. Specific genes and molecular pathways, either upregulated or downregulated depending on sex, could potentially directly dictate GBM outcome differences. It appears that sexual dimorphism in GBM affects patient outcome and requires an individualized approach to management considering the sex of the patient, especially in relation to differences at the molecular level.
Collapse
Affiliation(s)
- Anna Carrano
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Juan Jose Juarez
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Edo. de México, Mexico; (J.J.J.); (D.I.); (A.I.)
| | - Diego Incontri
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Edo. de México, Mexico; (J.J.J.); (D.I.); (A.I.)
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Edo. de México, Mexico; (J.J.J.); (D.I.); (A.I.)
| | - Hugo Guerrero Cazares
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA;
- Correspondence:
| |
Collapse
|