1
|
Leitão F, Cánovas F. Predicting climate change impacts on marine fisheries, biodiversity and economy in the Canary/Iberia current upwelling system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125537. [PMID: 40311359 DOI: 10.1016/j.jenvman.2025.125537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/04/2025] [Accepted: 04/23/2025] [Indexed: 05/03/2025]
Abstract
The vulnerability of fisheries to climate change (CC) is driven by exposure factors that can affect species and fisheries differently at regional level. Ecological and socioeconomic consequences of climate change were assessed by evaluating a set of species (N = 53), caught by Portuguese fleet, that are likely to be affected by changes in oceanographical conditions (climatic scenarios RCP4.5 and RCP8.5) by the middle of this century (2041-2060). A novel approach was used which consist in estimate species habitat vulnerability index to CC by combining species habitat suitability with species sensitivity (life history ecological-biological traits), that was considered the weighting score for habitat suitability estimations by niche ecological models. Exploited species denote little specialization and have a large marginalization range with results showing that shifts in environmental variables, expected in the future, did not alter general distribution patterns of study species. Specialization was associated with sea surface temperature while marginality to depth, indicating that species can find refuges at higher depths without losing distribution range. Predicted changes in habitat suitability values across all species varied between a decrease of 11 % and an increase of 7 %, with species mean shifts around ±4 %. Catch composition by species (similarity >95 % regardless scenario/area), functional groups (similarity >97 % regardless scenario/area), trophic level structure (similarity >98 % regardless scenario/area) and marine biodiversity (marine trophic index ∼ 3.35 regardless scenario/area) projected for the middle of this century, showed similarities to the present scenario. Economic losses estimated for the middle of this century correspond to a maximum value of 3 % in catch and 2.3 % economically. Fisheries revenue could not be jeopardized due to CC until the middle of the century. Under results found maintaining sustainable fishing management strategies is the best way to mitigate CC effects.
Collapse
Affiliation(s)
- F Leitão
- Centre of Marine Science (CCMAR), University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal; Faculdade de Ciências e Tecnologias, Universidade do Algarve, Campus Gambelas, 8005-139, Faro, Portugal.
| | - F Cánovas
- Faculty of Health Sciences, Catholic University of Murcia, Campus de Los Jerónimos, Guadalupe, 30107, Murcia, Spain
| |
Collapse
|
2
|
Sailley SF, Catalan IA, Batsleer J, Bossier S, Damalas D, Hansen C, Huret M, Engelhard G, Hammon K, Kay S, Maynou F, Nielsen JR, Ospina‐Álvarez A, Pinnegar J, Poos JJ, Sgardeli V, Peck MA. Multiple Models of European Marine Fish Stocks: Regional Winners and Losers in a Future Climate. GLOBAL CHANGE BIOLOGY 2025; 31:e70149. [PMID: 40177781 PMCID: PMC11966357 DOI: 10.1111/gcb.70149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 12/06/2024] [Accepted: 12/22/2024] [Indexed: 04/05/2025]
Abstract
Climate change continues to alter the productivity of commercially and culturally important fisheries with major consequences for food security and coastal economies. We provide the first, multi-model projections of changes in the distribution and productivity of 18 key fish stocks across seven European regional seas spanning the Mediterranean to the Arctic, using 11 state-of-the-art bio-ecological models. Our projections indicate species- and region-specific changes in abundance and distributions of these stocks by the mid- to late 21st century. The varied responses are caused by differences in species' physiology, regional food web dynamics, and physical habitat characteristics. Important drivers include not only warming of Europe's seas (from 1°C to 3°C in RCP 4.5, and 2°C to 4°C in RCP 8.5 by 2100) and changes in primary productivity but also oxygen-limited fish growth, changes in pH, and benthic dissolved organic carbon. Warming and altered levels of secondary production are projected to lead to declines in some stocks (Norwegian and Barents Sea herring) and increases in others (Bay of Biscay anchovy). While some temperate and cold-water stocks are projected to decline markedly in some regions (e.g., North Sea, Western Mediterranean), the immigration of species from the south and/or increase in productivity of warm-water species may offer new opportunities for fisheries. Species-level changes will likely have ecosystem-level consequences that have yet to be fully assessed, and responses in some sub-areas may be more pronounced due to local processes not captured in projections. Projections are consistent despite differences in model structures, and the results of our multi-model analysis align with other modelling exercises while delving into details often overlooked at the species or spatial level. This represents a novel approach to projecting the impacts of climate change on fisheries, which should be considered in future efforts to support climate-ready management strategies for marine fish stocks.
Collapse
Affiliation(s)
| | - Ignacio A. Catalan
- Mediterranean Institute for Advanced Studies (IMEDEA, CSIC‐UIB)EsporlesSpain
| | - Jurgen Batsleer
- Wageningen Marine ResearchWageningen University and ResearchIJmuidenthe Netherlands
| | - Sieme Bossier
- Technical University of Denmark, National Institute for Aquatic ResourcesKongens LyngbyDenmark
- Nippon Foundation Ocean Nexus, School of Resource and Environmental Management (REM)Simon Fraser University (SFU)BurnabyBritish ColumbiaCanada
| | | | - Cecilie Hansen
- Institute of Marine Research (Havforskningsinstituttet) (IMR)BergenNorway
| | - Martin Huret
- DECOD (Ecosystem Dynamics and Sustainability)IFREMER, INRAE, Institut AgroBrestFrance
| | - Georg Engelhard
- Centre for Environment, Fisheries and Aquaculture Science (Cefas)LowestoftUK
| | - Katell Hammon
- Wageningen Economic ResearchWageningen University and ResearchWageningenthe Netherlands
| | - Susan Kay
- Plymouth Marine Laboratory (PML)PlymouthUK
| | - Francesc Maynou
- Department of Coastal SystemsRoyal Netherlands Institute for Sea Research (NIOZ)Den Burg (Texel)the Netherlands
| | - J. Rasmus Nielsen
- Technical University of Denmark, National Institute for Aquatic ResourcesKongens LyngbyDenmark
| | | | - John Pinnegar
- Centre for Environment, Fisheries and Aquaculture Science (Cefas)LowestoftUK
| | - Jan Jaap Poos
- Wageningen Marine ResearchWageningen University and ResearchIJmuidenthe Netherlands
| | | | - Myron A. Peck
- Department of Coastal SystemsRoyal Netherlands Institute for Sea Research (NIOZ)Den Burg (Texel)the Netherlands
| |
Collapse
|
3
|
Gordó-Vilaseca C, Costello MJ, Coll M, Jüterbock A, Reiss H, Stephenson F. Future trends of marine fish biomass distributions from the North Sea to the Barents Sea. Nat Commun 2024; 15:5637. [PMID: 38965212 PMCID: PMC11224334 DOI: 10.1038/s41467-024-49911-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
Climate warming is one of the facets of anthropogenic global change predicted to increase in the future, its magnitude depending on present-day decisions. The north Atlantic and Arctic Oceans are already undergoing community changes, with warmer-water species expanding northwards, and colder-water species retracting. However, the future extent and implications of these shifts remain unclear. Here, we fitted a joint species distribution model to occurrence data of 107, and biomass data of 61 marine fish species from 16,345 fishery independent trawls sampled between 2004 and 2022 in the northeast Atlantic Ocean, including the Barents Sea. We project overall increases in richness and declines in relative dominance in the community, and generalised increases in species' ranges and biomass across three different future scenarios in 2050 and 2100. The projected decline of capelin and the practical extirpation of polar cod from the system, the two most abundant species in the Barents Sea, drove an overall reduction in fish biomass at Arctic latitudes that is not replaced by expanding species. Furthermore, our projections suggest that Arctic demersal fish will be at high risk of extinction by the end of the century if no climate refugia is available at eastern latitudes.
Collapse
Affiliation(s)
| | | | - Marta Coll
- Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
- Ecopath International Initiative (EII), Barcelona, Spain
| | | | - Henning Reiss
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Fabrice Stephenson
- School of Natural and Environment Sciences, Newcastle University, Newcastle upon Tyne, UK
- School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
4
|
Kruse M, Letschert J, Cormier R, Rambo H, Gee K, Kannen A, Schaper J, Möllmann C, Stelzenmüller V. Operationalizing a fisheries social-ecological system through a Bayesian belief network reveals hotspots for its adaptive capacity in the southern North sea. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120685. [PMID: 38552519 DOI: 10.1016/j.jenvman.2024.120685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/20/2024] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
Fisheries social-ecological systems (SES) in the North Sea region confront multifaceted challenges stemming from environmental changes, offshore wind farm expansion, and marine protected area establishment. In this paper, we demonstrate the utility of a Bayesian Belief Network (BN) approach in comprehensively capturing and assessing the intricate spatial dynamics within the German plaice-related fisheries SES. The BN integrates ecological, economic, and socio-cultural factors to generate high-resolution maps of profitability and adaptive capacity potential (ACP) as prospective management targets. Our analysis of future scenarios, delineating changes in spatial constraints, economics, and socio-cultural aspects, identifies factors that will exert significant influence on this fisheries SES in the near future. These include the loss of fishing grounds due to the installation of offshore wind farms and marine protected areas, as well as reduced plaice landings due to climate change. The identified ACP hotspots hold the potential to guide the development of localized management strategies and sustainable planning efforts by highlighting the consequences of management decisions. Our findings emphasize the need to consider detailed spatial dynamics of fisheries SES within marine spatial planning (MSP) and illustrate how this information may assist decision-makers and practitioners in area prioritization. We, therefore, propose adopting the concept of fisheries SES within broader integrated management approaches to foster sustainable development of inherently dynamic SES in a rapidly evolving marine environment.
Collapse
Affiliation(s)
- M Kruse
- Thünen Institute of Sea Fisheries, Bremerhaven, Germany.
| | - J Letschert
- Thünen Institute of Sea Fisheries, Bremerhaven, Germany
| | - R Cormier
- Institute of Coastal Systems - Analysis and Modeling, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - H Rambo
- Federal Maritime and Hydrographic Agency, Hamburg, Germany
| | - K Gee
- Institute of Coastal Systems - Analysis and Modeling, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - A Kannen
- Institute of Coastal Systems - Analysis and Modeling, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - J Schaper
- Institute of Coastal Systems - Analysis and Modeling, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - C Möllmann
- Institute of Marine Ecosystem and Fishery Science, Center for Earth System Research and Sustainability (CEN), University Hamburg, Germany
| | | |
Collapse
|
5
|
Talbot E, Jontila JBS, Gonzales BJ, Dolorosa RG, Jose ED, Sajorne R, Sailley S, Kay S, Queirós AM. Incorporating climate-readiness into fisheries management strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170684. [PMID: 38320704 DOI: 10.1016/j.scitotenv.2024.170684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/15/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Tropical oceans are among the first places to exhibit climate change signals, affecting the habitat distribution and abundance of marine fish. These changes to stocks, and subsequent impacts on fisheries production, may have considerable implications for coastal communities dependent on fisheries for food security and livelihoods. Understanding the impacts of climate change on tropical marine fisheries is therefore an important step towards developing sustainable, climate-ready fisheries management measures. We apply an established method of spatial meta-analysis to assess species distribution modelling datasets for key species targeted by the Philippines capture fisheries. We analysed datasets under two global emissions scenarios (RCP4.5 and RCP8.5) and varying degrees of fishing pressure to quantify potential climate vulnerability of the target community. We found widespread responses to climate change in pelagic species in particular, with abundances projected to decline across much of the case study area, highlighting the challenges of maintaining food security in the face of a rapidly changing climate. We argue that sustainable fisheries management in the Philippines in the face of climate change can only be achieved through management strategies that allow for the mitigation of, and adaptation to, pressures already locked into the climate system for the near term. Our analysis may support this, providing fisheries managers with the means to identify potential climate change hotspots, bright spots and refugia, thereby supporting the development of climate-ready management plans.
Collapse
Affiliation(s)
- Elizabeth Talbot
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, United Kingdom.
| | - Jean-Beth S Jontila
- College of Fisheries and Aquatic Sciences, Western Philippines University, Puerto Princesa City, Philippines
| | - Benjamin J Gonzales
- College of Fisheries and Aquatic Sciences, Western Philippines University, Puerto Princesa City, Philippines
| | - Roger G Dolorosa
- College of Fisheries and Aquatic Sciences, Western Philippines University, Puerto Princesa City, Philippines
| | - Edgar D Jose
- College of Arts and Sciences, North Eastern Mindanao State University, Lianga, Surigao Del Sur, Philippines
| | - Recca Sajorne
- College of Fisheries and Aquatic Sciences, Western Philippines University, Puerto Princesa City, Philippines
| | - Sevrine Sailley
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, United Kingdom
| | - Susan Kay
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, United Kingdom
| | - Ana M Queirós
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, United Kingdom
| |
Collapse
|
6
|
Gu YG, Jordan RW, Jiang SJ. Probabilistic risk assessment of microplastics on aquatic biota in coastal sediments. CHEMOSPHERE 2024; 352:141411. [PMID: 38350515 DOI: 10.1016/j.chemosphere.2024.141411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/20/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
As an emerging form of pollution, microplastic contamination of the coastal ecosystems is one of the world's most pressing environmental concerns. Coastal sediments have been polluted to varying degrees by microplastics, and their ubiquitous presence in sediments poses a threat to marine organisms. However, there is currently no ecological risk assessment of microplastics on aquatic biota in sediments. This study, for the first time, established a new procedure to evaluate the toxicity of microplastics on aquatic biota in sediments, based on the probabilistic risk assessment (PRA) concept. The choice of Zhelin Bay as the case study site was based on its severe pollution status. The average content of microplastics in the sediments of Zhelin Bay was 2054.17 items kg-1 dry weight, and these microplastics consisted of 46 different species. Microplastics in sediments exist in five different forms, with the film form being the main composition, and the majority of microplastics have particle sizes ranging from 100 to 500 μm. Correlation analysis (CA) reveals significant negative correlations between microplastic abundance, and Al2O3 and SiO2. The toxicity of microplastics, based on the PRA concept, suggests that Zhelin Bay surface sediments had a low probability (3.43%) of toxic effects on aquatic biota.
Collapse
Affiliation(s)
- Yang-Guang Gu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Faculty of Science, Yamagata University, Yamagata, 990-8560, Japan; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, 510300, 510300, China; Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture and Rural Affairs, Guangzhou, 510300, China; Sanya Tropical Fisheries Research Institute, Sanya, 572025, China.
| | - Richard W Jordan
- Faculty of Science, Yamagata University, Yamagata, 990-8560, Japan
| | - Shi-Jun Jiang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; College of Oceanography, Hohai University, Nanjing, 245700, China
| |
Collapse
|
7
|
Layton KKS, Brieuc MSO, Castilho R, Diaz-Arce N, Estévez-Barcia D, Fonseca VG, Fuentes-Pardo AP, Jeffery NW, Jiménez-Mena B, Junge C, Kaufmann J, Leinonen T, Maes SM, McGinnity P, Reed TE, Reisser CMO, Silva G, Vasemägi A, Bradbury IR. Predicting the future of our oceans-Evaluating genomic forecasting approaches in marine species. GLOBAL CHANGE BIOLOGY 2024; 30:e17236. [PMID: 38519845 DOI: 10.1111/gcb.17236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/25/2024]
Abstract
Climate change is restructuring biodiversity on multiple scales and there is a pressing need to understand the downstream ecological and genomic consequences of this change. Recent advancements in the field of eco-evolutionary genomics have sought to include evolutionary processes in forecasting species' responses to climate change (e.g., genomic offset), but to date, much of this work has focused on terrestrial species. Coastal and offshore species, and the fisheries they support, may be even more vulnerable to climate change than their terrestrial counterparts, warranting a critical appraisal of these approaches in marine systems. First, we synthesize knowledge about the genomic basis of adaptation in marine species, and then we discuss the few examples where genomic forecasting has been applied in marine systems. Next, we identify the key challenges in validating genomic offset estimates in marine species, and we advocate for the inclusion of historical sampling data and hindcasting in the validation phase. Lastly, we describe a workflow to guide marine managers in incorporating these predictions into the decision-making process.
Collapse
Affiliation(s)
- K K S Layton
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | | | - R Castilho
- University of the Algarve, Faro, Portugal
- Centre for Marine Sciences, University of the Algarve, Faro, Portugal
- Pattern Institute, Faro, Portugal
| | - N Diaz-Arce
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - D Estévez-Barcia
- Department of Fish and Shellfish, Greenland Institute of Natural Resources, Nuuk, Greenland
| | - V G Fonseca
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | - A P Fuentes-Pardo
- Department of Immunology, Genetics and Pathology, SciLifeLab Data Centre, Uppsala University, Uppsala, Sweden
| | - N W Jeffery
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova Scotia, Canada
| | - B Jiménez-Mena
- Section for Marine Living Resources, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - C Junge
- Institute of Marine Research, Tromso, Norway
| | | | - T Leinonen
- Natural Resources Institute Finland, Helsinki, Finland
| | - S M Maes
- Flanders Research Institute for Agriculture, Fisheries and Food, Ostend, Belgium
| | - P McGinnity
- School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland
| | - T E Reed
- School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland
| | - C M O Reisser
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - G Silva
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, ISPA-Instituto Universitário, Lisbon, Portugal
| | - A Vasemägi
- Swedish University of Agricultural Sciences, Drottningholm, Sweden
- Estonian University of Life Sciences, Tartu, Estonia
| | - I R Bradbury
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
8
|
Kristiansen T, Butenschön M, Peck MA. Statistically downscaled CMIP6 ocean variables for European waters. Sci Rep 2024; 14:1209. [PMID: 38216604 PMCID: PMC10786869 DOI: 10.1038/s41598-024-51160-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/01/2024] [Indexed: 01/14/2024] Open
Abstract
Climate change impact studies need climate projections for different scenarios and at scales relevant to planning and management, preferably for a variety of models and realizations to capture the uncertainty in these models. To address current gaps, we statistically downscaled (SD) 3-7 CMIP6 models for five key indicators of marine habitat conditions: temperature, salinity, pH, oxygen, and chlorophyll across European waters for three climate scenarios SSP1-2.6, SSP2-4.5, and SSP5-8.5. Results provide ensemble averages and uncertainty estimates that can serve as input data for projecting the potential success of a range of Nature-based Solutions, including the restoration of habitat-forming species such as seagrass in the Mediterranean and kelp in coastal areas of Portugal and Norway. Evaluation of the ensemble with observations from four European regions (North Sea, Baltic Sea, Bay of Biscay, and Mediterranean Sea) indicates that the SD projections realistically capture the climatological conditions of the historical period 1993-2020. Model skill (Liu-mean efficiency, Pearson correlation) clearly improves for both surface temperature and oxygen across all regions with respect to the original ESMs demonstrating a higher skill for temperature compared to oxygen. Warming is evident across all areas and large differences among scenarios fully emerge from the background uncertainties related to internal variability and model differences in the second half of the century. Scenario-specific differences in acidification significantly emerge from model uncertainty and internal variability leading to distinct trajectories in surface pH starting before mid-century (in some cases starting from present day). Deoxygenation is also present across all domains, but the climate signal was significantly weaker compared to the other two indicators when compared to model uncertainty and internal variability, and the impact of different greenhouse gas trajectories is less distinct. The substantial regional and local heterogeneity in these three abiotic indicators underscores the need for highly spatially resolved physical and biogeochemical projections to understand how climate change may impact marine ecosystems.
Collapse
Affiliation(s)
- Trond Kristiansen
- Farallon Institute, Petaluma, CA, USA.
- Actea Inc, San Francisco, CA, USA.
- Norwegian Institute for Water Research, Oslo, Norway.
| | - Momme Butenschön
- CMCC Foundation-Euro-Mediterranean Center on Climate Change, Bologna, Italy
| | - Myron A Peck
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, Texel, The Netherlands
| |
Collapse
|
9
|
Li Y, Sun M, Yang X, Yang M, Kleisner KM, Mills KE, Tang Y, Du F, Qiu Y, Ren Y, Chen Y. Social-ecological vulnerability and risk of China's marine capture fisheries to climate change. Proc Natl Acad Sci U S A 2024; 121:e2313773120. [PMID: 38147648 PMCID: PMC10769861 DOI: 10.1073/pnas.2313773120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/18/2023] [Indexed: 12/28/2023] Open
Abstract
Climate change is a new disrupter to global fisheries systems and their governance frameworks. It poses a pressing management challenge, particularly in China, which is renowned as the world's largest fishing country and seafood producer. As climate change continues to intensify in the region and climate awareness grows within the country's national policy, the need to understand China's fisheries' resilience to the escalating climate crisis becomes paramount. In this study, we conduct an interdisciplinary analysis to assess the vulnerability and risk of China's marine capture fisheries in response to climate change. This study employs a spatially explicit, indicator-based approach with a coupled social-ecological framework, focusing on 67 species and 11 coastal regions. By integrating diverse sets of climatic, ecological, economic, societal, and governance indicators and information, we elucidate the factors that could hinder climate adaptation, including a limited understanding of fish early life stages, uncertainty in seafood production, unequal allocation and accessibility of resources, and inadequate consideration of inclusive governance and adaptive management. Our results show that species, which have managed to survive the stress of overfishing, demonstrate a remarkable ability to adapt to climate change. However, collapsing stocks such as large yellow croaker face a high risk due to the synergistic effects of inherent biological traits and external management interventions. We emphasize the imperative to build institutional, scientific, and social capacity to support fisheries adaptation. The scientific insights provided by this study can inform fisheries management decisions and promote the operationalization of climate-resilient fisheries in China and other regions.
Collapse
Affiliation(s)
- Yunzhou Li
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY11794
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, NY11794
| | - Ming Sun
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY11794
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, NY11794
| | - Xiangyan Yang
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY11794
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, NY11794
| | - Molin Yang
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY11794
| | | | | | - Yi Tang
- College of Marine Culture and Law, Shanghai Ocean University, Shanghai201306, China
| | - Feiyan Du
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou510301, China
| | - Yongsong Qiu
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou510301, China
| | - Yiping Ren
- College of Fisheries, Ocean University of China, Qingdao266003, China
| | - Yong Chen
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY11794
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, NY11794
| |
Collapse
|
10
|
Trueman CN, Artetxe-Arrate I, Kerr LA, Meijers AJS, Rooker JR, Sivankutty R, Arrizabalaga H, Belmonte A, Deguara S, Goñi N, Rodriguez-Marin E, Dettman DL, Santos MN, Karakulak FS, Tinti F, Tsukahara Y, Fraile I. Thermal sensitivity of field metabolic rate predicts differential futures for bluefin tuna juveniles across the Atlantic Ocean. Nat Commun 2023; 14:7379. [PMID: 38012173 PMCID: PMC10682405 DOI: 10.1038/s41467-023-41930-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/25/2023] [Indexed: 11/29/2023] Open
Abstract
Changing environmental temperatures impact the physiological performance of fishes, and consequently their distributions. A mechanistic understanding of the linkages between experienced temperature and the physiological response expressed within complex natural environments is often lacking, hampering efforts to project impacts especially when future conditions exceed previous experience. In this study, we use natural chemical tracers to determine the individual experienced temperatures and expressed field metabolic rates of Atlantic bluefin tuna (Thunnus thynnus) during their first year of life. Our findings reveal that the tuna exhibit a preference for temperatures 2-4 °C lower than those that maximise field metabolic rates, thereby avoiding temperatures warm enough to limit metabolic performance. Based on current IPCC projections, our results indicate that historically-important spawning and nursery grounds for bluefin tuna will become thermally limiting due to warming within the next 50 years. However, limiting global warming to below 2 °C would preserve habitat conditions in the Mediterranean Sea for this species. Our approach, which is based on field observations, provides predictions of animal performance and behaviour that are not constrained by laboratory conditions, and can be extended to any marine teleost species for which otoliths are available.
Collapse
Affiliation(s)
- Clive N Trueman
- Ocean and Earth Science, University of Southampton, Southampton, SO143ZH, UK.
| | - Iraide Artetxe-Arrate
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110, Pasaia, Gipuzkoa, Spain
| | - Lisa A Kerr
- University of Maine, Gulf of Maine Research Institute, 350 Commercial Street, Portland, ME, 04101, USA
| | - Andrew J S Meijers
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Jay R Rooker
- Department of Marine Biology, Department of Ecology and Conservation Biology, Texas A&M University, 200 Seawolf Parkway, Galveston, TX, 77554, USA
| | - Rahul Sivankutty
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Haritz Arrizabalaga
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110, Pasaia, Gipuzkoa, Spain
| | - Antonio Belmonte
- TAXON Estudios Ambientales S.L. C/Uruguay s/n, 30820, Alcantarilla, Murcia, Spain
| | - Simeon Deguara
- AquaBio Tech Ltd., Central Complex, Mosta, MST1761, Malta
| | - Nicolas Goñi
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110, Pasaia, Gipuzkoa, Spain
- Natural Resources Institute Finland, Itäinen Pitkäkatu 4 A, 20520, Turku, Finland
| | - Enrique Rodriguez-Marin
- Centro Oceanográfico de Santander (COST-IEO). Instituto Español de Oceanografía. Consejo Superior de Investigaciones Científicas (IEO-CSIC), C/ Severiano Ballesteros 16, 39004, Santander, Cantabria, Spain
| | - David L Dettman
- Environmental Isotope Laboratory, Dept. of Geosciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Miguel Neves Santos
- Instituto Português do Mar e da Atmosfera, Olhão, Portugal. Currently at ICCAT Secretariat, Calle Corazón de Maria 8, Madrid, 28002, Spain
| | - F Saadet Karakulak
- Faculty of Aquatic Sciences, Istanbul University, Istanbul, 34134, Turkey
| | - Fausto Tinti
- Dept. Biological, Geological & Environmental Sciences, Alma Mater Studiorum - University of Bologna, via Sant'Alberto, 163 - 48123, Ravenna, Italy
| | - Yohei Tsukahara
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Kanagawa, 236-8648, Japan
| | - Igaratza Fraile
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110, Pasaia, Gipuzkoa, Spain
| |
Collapse
|
11
|
Smith JG, Free CM, Lopazanski C, Brun J, Anderson CR, Carr MH, Claudet J, Dugan JE, Eurich JG, Francis TB, Hamilton SL, Mouillot D, Raimondi PT, Starr RM, Ziegler SL, Nickols KJ, Caselle JE. A marine protected area network does not confer community structure resilience to a marine heatwave across coastal ecosystems. GLOBAL CHANGE BIOLOGY 2023; 29:5634-5651. [PMID: 37439293 DOI: 10.1111/gcb.16862] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/14/2023]
Abstract
Marine protected areas (MPAs) have gained attention as a conservation tool for enhancing ecosystem resilience to climate change. However, empirical evidence explicitly linking MPAs to enhanced ecological resilience is limited and mixed. To better understand whether MPAs can buffer climate impacts, we tested the resistance and recovery of marine communities to the 2014-2016 Northeast Pacific heatwave in the largest scientifically designed MPA network in the world off the coast of California, United States. The network consists of 124 MPAs (48 no-take state marine reserves, and 76 partial-take or special regulation conservation areas) implemented at different times, with full implementation completed in 2012. We compared fish, benthic invertebrate, and macroalgal community structure inside and outside of 13 no-take MPAs across rocky intertidal, kelp forest, shallow reef, and deep reef nearshore habitats in California's Central Coast region from 2007 to 2020. We also explored whether MPA features, including age, size, depth, proportion rock, historic fishing pressure, habitat diversity and richness, connectivity, and fish biomass response ratios (proxy for ecological performance), conferred climate resilience for kelp forest and rocky intertidal habitats spanning 28 MPAs across the full network. Ecological communities dramatically shifted due to the marine heatwave across all four nearshore habitats, and MPAs did not facilitate habitat-wide resistance or recovery. Only in protected rocky intertidal habitats did community structure significantly resist marine heatwave impacts. Community shifts were associated with a pronounced decline in the relative proportion of cold water species and an increase in warm water species. MPA features did not explain resistance or recovery to the marine heatwave. Collectively, our findings suggest that MPAs have limited ability to mitigate the impacts of marine heatwaves on community structure. Given that mechanisms of resilience to climate perturbations are complex, there is a clear need to expand assessments of ecosystem-wide consequences resulting from acute climate-driven perturbations, and the potential role of regulatory protection in mitigating community structure changes.
Collapse
Affiliation(s)
- Joshua G Smith
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, Santa Barbara, California, USA
- Conservation and Science Division, Monterey Bay Aquarium, Monterey, California, USA
| | - Christopher M Free
- Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, California, USA
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Cori Lopazanski
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, Santa Barbara, California, USA
- Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Julien Brun
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Clarissa R Anderson
- Scripps Institution of Oceanography/Southern California Coastal Ocean Observing System, University of California, San Diego, La Jolla, California, USA
| | - Mark H Carr
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Joachim Claudet
- National Center for Scientific Research, PSL Université Paris, CRIOBE, CNRS-EPHE-UPVD, Paris, France
| | - Jenifer E Dugan
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Jacob G Eurich
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, Santa Barbara, California, USA
- Environmental Defense Fund, Santa Barbara, California, USA
| | - Tessa B Francis
- Puget Sound Institute, University of Washington, Tacoma, Washington, USA
| | - Scott L Hamilton
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, California, USA
| | - David Mouillot
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| | - Peter T Raimondi
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Richard M Starr
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, California, USA
| | - Shelby L Ziegler
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| | - Kerry J Nickols
- Department of Biology, California State University Northridge, Northridge, California, USA
| | - Jennifer E Caselle
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
12
|
Braun CD, Lezama-Ochoa N, Farchadi N, Arostegui MC, Alexander M, Allyn A, Bograd SJ, Brodie S, Crear DP, Curtis TH, Hazen EL, Kerney A, Mills KE, Pugh D, Scott JD, Welch H, Young-Morse R, Lewison RL. Widespread habitat loss and redistribution of marine top predators in a changing ocean. SCIENCE ADVANCES 2023; 9:eadi2718. [PMID: 37556548 PMCID: PMC10411898 DOI: 10.1126/sciadv.adi2718] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023]
Abstract
The Northwest Atlantic Ocean and Gulf of Mexico are among the fastest warming ocean regions, a trend that is expected to continue through this century with far-reaching implications for marine ecosystems. We examine the distribution of 12 highly migratory top predator species using predictive models and project expected habitat changes using downscaled climate models. Our models predict widespread losses of suitable habitat for most species, concurrent with substantial northward displacement of core habitats >500 km. These changes include up to >70% loss of suitable habitat area for some commercially and ecologically important species. We also identify predicted hot spots of multi-species habitat loss focused offshore of the U.S. Southeast and Mid-Atlantic coasts. For several species, the predicted changes are already underway, which are likely to have substantial impacts on the efficacy of static regulatory frameworks used to manage highly migratory species. The ongoing and projected effects of climate change highlight the urgent need to adaptively and proactively manage dynamic marine ecosystems.
Collapse
Affiliation(s)
- Camrin D. Braun
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Nerea Lezama-Ochoa
- Environmental Research Division, Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Monterey, CA 93940, USA
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Nima Farchadi
- Institute for Ecological Monitoring and Management, San Diego State University, San Diego, CA 92182, USA
| | - Martin C. Arostegui
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | | | - Andrew Allyn
- Gulf of Maine Research Institute, Portland, ME 04101, USA
| | - Steven J. Bograd
- Environmental Research Division, Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Monterey, CA 93940, USA
| | - Stephanie Brodie
- Environmental Research Division, Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Monterey, CA 93940, USA
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Daniel P. Crear
- ECS Federal, in Support of National Marine Fisheries Service, Atlantic Highly Migratory Species Management Division, Silver Spring, MD 20910, USA
| | - Tobey H. Curtis
- National Marine Fisheries Service, Atlantic Highly Migratory Species Management Division, Gloucester, MA 01930, USA
| | - Elliott L. Hazen
- Environmental Research Division, Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Monterey, CA 93940, USA
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Alex Kerney
- Gulf of Maine Research Institute, Portland, ME 04101, USA
| | | | - Dylan Pugh
- Gulf of Maine Research Institute, Portland, ME 04101, USA
| | - James D. Scott
- NOAA Earth System Research Laboratory, Boulder, CO 80305, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Heather Welch
- Environmental Research Division, Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Monterey, CA 93940, USA
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - Rebecca L. Lewison
- Institute for Ecological Monitoring and Management, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
13
|
Li Y, Sun M, Kleisner KM, Mills KE, Chen Y. A global synthesis of climate vulnerability assessments on marine fisheries: Methods, scales, and knowledge co-production. GLOBAL CHANGE BIOLOGY 2023; 29:3545-3561. [PMID: 37079435 DOI: 10.1111/gcb.16733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/10/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Undertaking climate vulnerability assessments (CVAs) on marine fisheries is instrumental to the identification of regions, species, and stakeholders at risk of impacts from climate change, and the development of effective and targeted responses for fisheries adaptation. In this global literature review, we addressed three important questions to characterize fisheries CVAs: (i) what are the available approaches to develop CVAs in various social-ecological contexts, (ii) are different geographic scales and regions adequately represented, and (iii) how do diverse knowledge systems contribute to current understanding of vulnerability? As part of these general research efforts, we identified and characterized an inventory of frameworks and indicators that encompass a wide range of foci on ecological and socioeconomic dimensions of climate vulnerability on fisheries. Our analysis highlighted a large gap between countries with top research inputs and the most urgent adaptation needs. More research and resources are needed in low-income tropical countries to ensure existing inequities are not exacerbated. We also identified an uneven research focus across spatial scales and cautioned a possible scale mismatch between assessment and management needs. Drawing on this information, we catalog (1) a suite of research directions that could improve the utility and applicability of CVAs, particularly the examination of barriers and enabling conditions that influence the uptake of CVA results into management responses at multiple levels, (2) the lessons that have been learned from applications in data-limited regions, particularly the use of proxy indicators and knowledge co-production to overcome the problem of data deficiency, and (3) opportunities for wider applications, for example diversifying the use of vulnerability indicators in broader monitoring and management schemes. This information is used to provide a set of recommendations that could advance meaningful CVA practices for fisheries management and promote effective translation of climate vulnerability into adaptation actions.
Collapse
Affiliation(s)
- Yunzhou Li
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York, USA
| | - Ming Sun
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York, USA
| | | | | | - Yong Chen
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
14
|
Rutterford LA, Simpson SD, Bogstad B, Devine JA, Genner MJ. Sea temperature is the primary driver of recent and predicted fish community structure across Northeast Atlantic shelf seas. GLOBAL CHANGE BIOLOGY 2023; 29:2510-2521. [PMID: 36896634 DOI: 10.1111/gcb.16633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/07/2022] [Indexed: 05/31/2023]
Abstract
Climate change has strongly influenced the distribution and abundance of marine fish species, leading to concern about effects of future climate on commercially harvested stocks. Understanding the key drivers of large-scale spatial variation across present-day marine assemblages enables predictions of future change. Here we present a unique analysis of standardised abundance data for 198 marine fish species from across the Northeast Atlantic collected by 23 surveys and 31,502 sampling events between 2005 and 2018. Our analyses of the spatially comprehensive standardised data identified temperature as the key driver of fish community structure across the region, followed by salinity and depth. We employed these key environmental variables to model how climate change will affect both the distributions of individual species and local community structure for the years 2050 and 2100 under multiple emissions scenarios. Our results consistently indicate that projected climate change will lead to shifts in species communities across the entire region. Overall, the greatest community-level changes are predicted at locations with greater warming, with the most pronounced effects at higher latitudes. Based on these results, we suggest that future climate-driven warming will lead to widespread changes in opportunities for commercial fisheries across the region.
Collapse
Affiliation(s)
- Louise A Rutterford
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Lowestoft Laboratory, Suffolk, UK
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Exeter, UK
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, UK
| | - Stephen D Simpson
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Exeter, UK
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, UK
| | | | - Jennifer A Devine
- Institute of Marine Research (IMR), Bergen, Norway
- National Institute of Water and Atmospheric Research (NIWA) Ltd, Nelson, New Zealand
| | - Martin J Genner
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, UK
| |
Collapse
|
15
|
Ma S, Kang B, Li J, Sun P, Liu Y, Ye Z, Tian Y. Climate risks to fishing species and fisheries in the China Seas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159325. [PMID: 36216044 DOI: 10.1016/j.scitotenv.2022.159325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/14/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Climate change is one of the most concerning topics in the Anthropocene. Increasing sea water temperature will trigger a series of ecological consequences, altering the various functions and services that marine ecosystems provide for humans. Fisheries, specifically, will likely face the most direct impact. China provides unparalleled catches with enormous and intensive fishing effort, and China Seas are suffering from significantly increasing water temperature. However, uncertainties in the impacts of climate change on fishing species and fisheries in the China Seas present challenges for the formulation of coping and adapting strategies. Here, we employed a climate risk assessment framework to evaluate the climate risks of fishing species and fisheries of various provinces in China in the past decade, aiming to benefit the development and prioritization of appropriate adaptation options to climate change. Results show that considering the water temperature in the 2010s, 20 % of fishing species in the China Seas have one-fourth of their habitats unsuitable, and the situation will become worse with future warming scenarios in the 2050s when nearly half of species will have at least one-fourth of their habitats no longer suitable. Integrating hazard, exposure and vulnerability, climate risks to fisheries feature heterogeneity among provinces. Climate risks to fisheries of northern provinces are characterized by low hazard and high exposure, while the southern counterparts are largely determined by high hazard and low exposure. Climate change is threatening fishing species and remarkably altering fishery patterns in China Seas. Shifting fishing targets, increasing fishing efficiency, raising catch diversity, and updating fishery-related industries would be effective steps to help fisheries adapt to climate change, and adaptation strategies need to be tailored considering local realities.
Collapse
Affiliation(s)
- Shuyang Ma
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Bin Kang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jianchao Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Peng Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yang Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Zhenjiang Ye
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yongjun Tian
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
16
|
Ecological sensitivity and vulnerability of fishing fleet landings to climate change across regions. Sci Rep 2022; 12:17360. [PMID: 36253444 PMCID: PMC9576743 DOI: 10.1038/s41598-022-21284-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 09/26/2022] [Indexed: 01/10/2023] Open
Abstract
The degree of exposure of fishing communities to environmental changes can be partially determined by the vulnerability of the target species and the landings composition. Hence, identifying the species that ecologically most contribute to the vulnerability of the landings are key steps to evaluate the risk posed by climate change. We analyse the temporal variability in intrinsic sensitivity and the ecological vulnerability of the Portuguese fisheries landings, considering the species proportions derived both from the weights and revenues. To account for the diversification of species of each fleet, we explored the species dependence of the fishery in combination with the vulnerability of them. The analyses were carried out separately for three fleet typologies and three regions. Opposite to what has been observed at a global scale, the ecological sensitivity of the fisheries landings between 1989 and 2015 did not display a decline across areas or fishing fleets. Considering each fleet independently, for trawling, where average vulnerability was lower than in the other fleets, the sensitivity of the landings increased since the 2000s. On the other hand, the high vulnerability found in multi-gear fleets was compensated by diversification of the species caught, while purse-seine fleets targeted low vulnerability species but presented a high fishery dependence on few species. The results highlight the importance of combining information on ecological vulnerability and diversification of fishing resources at a regional scale while providing a measure of the ecological exposure to climate change.
Collapse
|
17
|
Cline TJ, Muhlfeld CC, Kovach R, Al-Chokhachy R, Schmetterling D, Whited D, Lynch AJ. Socioeconomic resilience to climatic extremes in a freshwater fishery. SCIENCE ADVANCES 2022; 8:eabn1396. [PMID: 36070376 PMCID: PMC9451147 DOI: 10.1126/sciadv.abn1396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Heterogeneity is a central feature of ecosystem resilience, but how this translates to socioeconomic resilience depends on people's ability to track shifting resources in space and time. Here, we quantify how climatic extremes have influenced how people (fishers) track economically valuable ecosystem services (fishing opportunities) across a range of spatial scales in rivers of the northern Rocky Mountains, USA, over the past three decades. Fishers opportunistically shifted from drought-sensitive to drought-resistant rivers during periods of low streamflows and warm temperatures. This adaptive behavior stabilized fishing pressure and expenditures by a factor of 2.6 at the scale of the regional fishery (i.e., portfolio effect). However, future warming is predicted to homogenize habitat options that enable adaptive behavior by fishers, putting ~30% of current spending at risk across the region. Maintaining a diverse portfolio of fishing opportunities that enable people to exploit shifting resources provides an important resilience mechanism for mitigating the socioeconomic impacts of climate change on fisheries.
Collapse
Affiliation(s)
- Timothy J. Cline
- Northern Rocky Mountain Science Center, U.S. Geological Survey, West Glacier, MT, USA
| | - Clint C. Muhlfeld
- Northern Rocky Mountain Science Center, U.S. Geological Survey, West Glacier, MT, USA
- Flathead Lake Biological Station, University of Montana, Polson, MT, USA
| | - Ryan Kovach
- Montana Fish, Wildlife & Parks, Missoula, MT, USA
| | - Robert Al-Chokhachy
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Bozeman, MT, USA
| | | | - Diane Whited
- Flathead Lake Biological Station, University of Montana, Polson, MT, USA
| | - Abigail J. Lynch
- National Climate Adaptation Science Center, U.S. Geological Survey, Reston, VA, USA
| |
Collapse
|
18
|
Koehn LE, Nelson LK, Samhouri JF, Norman KC, Jacox MG, Cullen AC, Fiechter J, Pozo Buil M, Levin PS. Social-ecological vulnerability of fishing communities to climate change: A U.S. West Coast case study. PLoS One 2022; 17:e0272120. [PMID: 35976855 PMCID: PMC9385011 DOI: 10.1371/journal.pone.0272120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 07/12/2022] [Indexed: 11/18/2022] Open
Abstract
Climate change is already impacting coastal communities, and ongoing and future shifts in fisheries species productivity from climate change have implications for the livelihoods and cultures of coastal communities. Harvested marine species in the California Current Large Marine Ecosystem support U.S. West Coast communities economically, socially, and culturally. Ecological vulnerability assessments exist for individual species in the California Current but ecological and human vulnerability are linked and vulnerability is expected to vary by community. Here, we present automatable, reproducible methods for assessing the vulnerability of U.S. West Coast fishing dependent communities to climate change within a social-ecological vulnerability framework. We first assessed the ecological risk of marine resources, on which fishing communities rely, to 50 years of climate change projections. We then combined this with the adaptive capacity of fishing communities, based on social indicators, to assess the potential ability of communities to cope with future changes. Specific communities (particularly in Washington state) were determined to be at risk to climate change mainly due to economic reliance on at risk marine fisheries species, like salmon, hake, or sea urchins. But, due to higher social adaptive capacity, these communities were often not found to be the most vulnerable overall. Conversely, certain communities that were not the most at risk, ecologically and economically, ranked in the category of highly vulnerable communities due to low adaptive capacity based on social indicators (particularly in Southern California). Certain communities were both ecologically at risk due to catch composition and socially vulnerable (low adaptive capacity) leading to the highest tier of vulnerability. The integration of climatic, ecological, economic, and societal data reveals that factors underlying vulnerability are variable across fishing communities on the U.S West Coast, and suggests the need to develop a variety of well-aligned strategies to adapt to the ecological impacts of climate change.
Collapse
Affiliation(s)
- Laura E. Koehn
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, United States of America
- * E-mail:
| | - Laura K. Nelson
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, United States of America
| | - Jameal F. Samhouri
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, United States of America
| | - Karma C. Norman
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, United States of America
| | - Michael G. Jacox
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Monterey, CA, United States of America
| | - Alison C. Cullen
- Evans School of Public Policy and Governance, University of Washington, Seattle, WA, United States of America
| | - Jerome Fiechter
- Ocean Sciences Department, University of California at Santa Cruz, Santa Cruz, CA, United States of America
| | - Mercedes Pozo Buil
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Monterey, CA, United States of America
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA, United States of America
| | - Phillip S. Levin
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, United States of America
- The Nature Conservancy in Washington, Seattle, WA, United States of America
| |
Collapse
|
19
|
Yu SE, Dong SL, Zhang ZX, Zhang YY, Sarà G, Wang J, Dong YW. Mapping the potential for offshore aquaculture of salmonids in the Yellow Sea. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:329-342. [PMID: 37073171 PMCID: PMC10077287 DOI: 10.1007/s42995-022-00141-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/17/2022] [Indexed: 05/03/2023]
Abstract
Mariculture has been one of the fastest-growing global food production sectors over the past three decades. With the congestion of space and deterioration of the environment in coastal regions, offshore aquaculture has gained increasing attention. Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) are two important aquaculture species and contribute to 6.1% of world aquaculture production of finfish. In the present study, we established species distribution models (SDMs) to identify the potential areas for offshore aquaculture of these two cold-water fish species considering the mesoscale spatio-temporal thermal heterogeneity of the Yellow Sea. The values of the area under the curve (AUC) and the true skill statistic (TSS) showed good model performance. The suitability index (SI), which was used in this study to quantitatively assess potential offshore aquaculture sites, was highly dynamic at the surface water layer. However, high SI values occurred throughout the year at deeper water layers. The potential aquaculture areas for S. salar and O. mykiss in the Yellow Sea were estimated as 52,270 ± 3275 (95% confidence interval, CI) and 146,831 ± 15,023 km2, respectively. Our results highlighted the use of SDMs in identifying potential aquaculture areas based on environmental variables. Considering the thermal heterogeneity of the environment, this study suggested that offshore aquaculture for Atlantic salmon and rainbow trout was feasible in the Yellow Sea by adopting new technologies (e.g., sinking cages into deep water) to avoid damage from high temperatures in summer. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00141-2.
Collapse
Affiliation(s)
- Shuang-En Yu
- Key Laboratory of Mariculture of Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, 266003 China
| | - Shuang-Lin Dong
- Key Laboratory of Mariculture of Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, 266003 China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266235 China
| | - Zhi-Xin Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301 China
| | - Yu-Yang Zhang
- Key Laboratory of Mariculture of Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, 266003 China
| | - Gianluca Sarà
- Laboratory of Ecology, Department of Earth and Marine Sciences, University of Palermo, 90128 Palermo, Italy
| | - Jie Wang
- Key Laboratory of Mariculture of Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, 266003 China
| | - Yun-Wei Dong
- Key Laboratory of Mariculture of Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, 266003 China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266235 China
| |
Collapse
|
20
|
Payne MR, Danabasoglu G, Keenlyside N, Matei D, Miesner AK, Yang S, Yeager SG. Skilful decadal-scale prediction of fish habitat and distribution shifts. Nat Commun 2022; 13:2660. [PMID: 35551195 PMCID: PMC9098506 DOI: 10.1038/s41467-022-30280-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/25/2022] [Indexed: 11/11/2022] Open
Abstract
Many fish and marine organisms are responding to our planet's changing climate by shifting their distribution. Such shifts can drive international conflicts and are highly problematic for the communities and businesses that depend on these living marine resources. Advances in climate prediction mean that in some regions the drivers of these shifts can be forecast up to a decade ahead, although forecasts of distribution shifts on this critical time-scale, while highly sought after by stakeholders, have yet to materialise. Here, we demonstrate the application of decadal-scale climate predictions to the habitat and distribution of marine fish species. We show statistically significant forecast skill of individual years that outperform baseline forecasts 3-10 years ahead; forecasts of multi-year averages perform even better, yielding correlation coefficients in excess of 0.90 in some cases. We also demonstrate that the habitat shifts underlying conflicts over Atlantic mackerel fishing rights could have been foreseen. Our results show that climate predictions can provide information of direct relevance to stakeholders on the decadal-scale. This tool will be critical in foreseeing, adapting to and coping with the challenges of a changing future climate, particularly in the most ocean-dependent nations and communities.
Collapse
Affiliation(s)
- Mark R Payne
- Danish Meteorological Institute, Copenhagen, Denmark.
- National Institute of Aquatic Resources (DTU-Aqua), Technical University of Denmark, Kgs, Lyngby, Denmark.
| | | | - Noel Keenlyside
- Geophysical Institute, University of Bergen and Bjerknes Centre for Climate Research, Bergen, Norway
- Nansen Environmental and Remote Sensing Center, Bergen, Norway
| | - Daniela Matei
- Max Planck Institute for Meteorology, Hamburg, Germany
| | - Anna K Miesner
- Helmholtz-Zentrum Hereon, Institute of Coastal Systems - Analysis and Modeling, Geesthacht, Germany
| | - Shuting Yang
- Danish Meteorological Institute, Copenhagen, Denmark
| | | |
Collapse
|
21
|
Ojea E, Fontán E, Fuentes-Santos I, Bueno-Pardo J. Assessing countries' social-ecological resilience to shifting marine commercial species. Sci Rep 2021; 11:22926. [PMID: 34824324 PMCID: PMC8617226 DOI: 10.1038/s41598-021-02328-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 11/08/2021] [Indexed: 11/14/2022] Open
Abstract
Climate change is already impacting fisheries with species moving across fishing areas, crossing institutional borders, and thus creating conflicts over fisheries management. In this scenario, scholars agree that adaptation to climate change requires that fisheries increase their social, institutional, and ecological resilience. The resilience or capacity of a fishery to be maintained without shifting to a different state (e.g., collapse) is at stake under climate change impacts and overexploitation. Despite this urgent need, applying the resilience concept in a spatially explicit and quantitative manner to inform policy remains unexplored. We take a resilience approach and operationalize the concept in industrial fisheries for two species that have been observed to significantly shift distribution in European waters: hake (Merluccius merluccius) and cod (Gadus morhua), in the context of the European Union institutional settings. With a set of resilience factors from the literature and by means of contemporary and historic data, we select indicators that are combined into an index that measures resilience on the ecologic, socioeconomic, and institutional dimensions of the fishery. We find that the resilience index varies among species and countries, with lower resilience levels in the socioeconomic dimension of the fisheries. We also see that resilience largely depends on the overexploitation status of the fishery. The results highlight the need to address social and institutional settings to enhance fisheries adaptation to climate change and allow to inform on climate resilient adaptation pathways for the fisheries.
Collapse
Affiliation(s)
- Elena Ojea
- Centro de Investigación Mariña (CIM), Universidade de Vigo, Future Oceans Lab, Campus Lagoas Marcosende, 36310, Vigo, Spain.
| | - Elena Fontán
- Centro de Investigación Mariña (CIM), Universidade de Vigo, Future Oceans Lab, Campus Lagoas Marcosende, 36310, Vigo, Spain.,Mareira Bizi Sociedade Cooperativa Galega, O Cruceiro, Briallos 23-B, 36658, Portas, Spain
| | - Isabel Fuentes-Santos
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Investigaciones Marinas (IIM), C/Eduardo Cabello, 6, 36208, Vigo, Spain
| | - Juan Bueno-Pardo
- Centro de Investigación Mariña (CIM), Universidade de Vigo, Future Oceans Lab, Campus Lagoas Marcosende, 36310, Vigo, Spain
| |
Collapse
|
22
|
Mapping the climate risk for European fisheries. Proc Natl Acad Sci U S A 2021; 118:2115997118. [PMID: 34645694 DOI: 10.1073/pnas.2115997118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 11/18/2022] Open
|