1
|
Schneller NM, Strugnell JM, Field MA, Johannesson K, Cooke I. Putting Structural Variants Into Practice: The Role of Chromosomal Inversions in the Management of Marine Environments. Mol Ecol 2025:e17776. [PMID: 40342214 DOI: 10.1111/mec.17776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 04/01/2025] [Accepted: 04/14/2025] [Indexed: 05/11/2025]
Abstract
Major threats to marine species and ecosystems include overfishing, invasive species, pollution and climate change. The changing climate not only imposes direct threats through the impacts of severe marine heatwaves, cyclones and ocean acidification but also complicates fisheries and invasive species management by driving species range shifts. The dynamic nature of these threats means that the future of our oceans will depend on the ability of species to adapt. This has led to calls for genetic interventions focussed on enhancing species' adaptive capacity, including translocations, restocking and selective breeding. Assessing the benefits and risks of such approaches requires an improved understanding of the genetic architecture of adaptive variation, not only in relation to climate-resilient phenotypes but also locally adapted populations and the fitness of hybrids. Large structural genetic variants such as chromosomal inversions play an important role in local adaptation by linking multiple adaptive loci. Consequently, inversions are likely to be particularly important when managing for adaptive capacity. However, under some circumstances, they also accumulate deleterious mutations, potentially increasing the risk of inbreeding depression. Genetic management that takes account of these dual roles on fitness is likely to be more effective at ensuring population persistence. We summarise evolutionary factors influencing adaptive and deleterious variation of inversions, review inversions found in marine taxa, and provide a framework to predict the consequences of ignoring inversions in key management scenarios. We conclude by describing practical methods to bridge the gap between evolutionary theory and practical application of inversions in conservation.
Collapse
Affiliation(s)
- Nadja M Schneller
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
| | - Jan M Strugnell
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, Queensland, Australia
- Securing Antarctica's Environmental Future, James Cook University, Townsville, Queensland, Australia
| | - Matt A Field
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
- Immunogenomics Lab, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Kerstin Johannesson
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| | - Ira Cooke
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
- Securing Antarctica's Environmental Future, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
2
|
Reich MS, Shipilina D, Talla V, Bahleman F, Kébé K, Berger JL, Backström N, Talavera G, Bataille CP. Isotope geolocation and population genomics in Vanessa cardui: Short- and long-distance migrants are genetically undifferentiated. PNAS NEXUS 2025; 4:pgae586. [PMID: 39906311 PMCID: PMC11792081 DOI: 10.1093/pnasnexus/pgae586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/16/2024] [Indexed: 02/06/2025]
Abstract
The painted lady butterfly Vanessa cardui is renowned for its virtually cosmopolitan distribution and the remarkable long-distance migrations as part of its annual, multigenerational migratory cycle. In winter, V. cardui individuals inhabit breeding grounds north and south of the Sahara, suggesting distinct migratory behaviors within the species as individuals migrate southward from Europe in the autumn. However, the evolutionary and ecological factors shaping these differences in migratory behavior remain largely unexplored. Here, we performed whole-genome resequencing and analyzed the hydrogen and strontium isotopes of 40 V. cardui individuals simultaneously collected in the autumn from regions both north and south of the Sahara. Our investigation revealed two main migratory groups: (i) short-distance migrants, journeying from temperate Europe to the circum-Mediterranean region and (ii) long-distance migrants, originating from Europe, crossing the Mediterranean Sea and Sahara, and reaching West Africa, covering up to over 4,000 km. Despite these stark differences in migration distance, a genome-wide analysis revealed that short- and long-distance migrants belong to a single intercontinental panmictic population extending from northern Europe to sub-Saharan Africa. Contrary to common biogeographic patterns, the Sahara is not a catalyst for population structuring in this species. No significant genetic differentiation or signs of adaptation and selection were observed between the two migratory phenotypes. Nonetheless, two individuals, who were early arrivals to West Africa covering longer migration distances, exhibited some genetic differentiation. The lack of genetic structure between short- and long-distance migrants suggests that migration distance in V. cardui is a plastic response to environmental conditions.
Collapse
Affiliation(s)
- Megan S Reich
- Department of Biology, University of Ottawa, Ottawa, Canada K1N 7N9
| | - Daria Shipilina
- Evolutionary Biology Program, Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| | - Venkat Talla
- Evolutionary Biology Program, Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| | | | - Khadim Kébé
- LADB, Higher School of Industrial and Biological Engineering, 11000 Dakar, Senegal
| | - Johanna L Berger
- Ecological Networks, Technische Universität Darmstadt, 64287 Darmstadt, Germany
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, 08038 Barcelona, Catalonia, Spain
| | - Niclas Backström
- Evolutionary Biology Program, Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| | - Gerard Talavera
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, 08038 Barcelona, Catalonia, Spain
| | - Clément P Bataille
- Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, Canada K1N 7N9
| |
Collapse
|
3
|
Tengstedt ANB, Liu S, Jacobsen MW, Ulmo-Diaz G, Jónsson B, Pujolar JM, Hansen MM. Genomic Footprints of Hybridisation in North Atlantic Eels (Anguilla anguilla and A. rostrata). Mol Ecol 2025:e17664. [PMID: 39878237 DOI: 10.1111/mec.17664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Understanding interspecific introgressive hybridisation and the biological significance of introgressed variation remains an important goal in population genomics. European (Anguilla anguilla) and American eel (A. rostrata) represent a remarkable case of hybridisation. Both are panmictic and spawn in partial sympatry in the Sargasso Sea, occasionally producing viable, fertile hybrids, primarily found in Iceland. We studied introgressive hybridisation from American into European eel using whole-genome sequences of 78 individuals, including European, American and 21 putative hybrid eels. Previous studies using few genetic markers could not resolve whether hybridisation involved simple unidirectional backcrossing or a more complex hybrid swarm scenario. However, local ancestry inference along individual chromosomes revealed that Icelandic hybrids were primarily F1 or first-generation backcrosses towards European eel, with some showing more complex backcrossing. All European eels outside Iceland contained short chromosomal blocks from American eel, indicating a porous genome. We found no evidence for previously hypothesised geographical gradients of introgression in European eel outside Iceland. Several chromosomal regions showed high interspecific divergence, but haplotype blocks introgressed from American eel were identified both within and outside these regions. There was little correspondence between regions of high relative (FST) and absolute divergence (dXY), with the former reflecting selective sweeps within species or reduced recombination rather than barrier loci. A single genomic region showed evidence of repeated introgression from American into European eel under positive selection in both species. The study illustrates that species can maintain genetic integrity despite porous genomes and that standing variation in one species can potentially be available for future adaptive responses in the other species.
Collapse
Affiliation(s)
| | - Shenglin Liu
- Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Magnus W Jacobsen
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Gabriela Ulmo-Diaz
- IBIS (Institut de Biologie Intégrative et des Systèmes), Université Laval, Québec, Canada
| | | | - Jose Martin Pujolar
- Centre for Gelatinous Plankton Ecology and Evolution, National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
| | | |
Collapse
|
4
|
De Russi G, Lanzoni M, Bisazza A, Domenici P, Castaldelli G, Bertolucci C, Lucon-Xiccato T. Eels' individual migratory behavior stems from a complex syndrome involving cognition, behavior, physiology, and life history. Proc Natl Acad Sci U S A 2024; 121:e2407804121. [PMID: 39556736 PMCID: PMC11621850 DOI: 10.1073/pnas.2407804121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Variability within species is key for adaptability and biological evolution. To understand individualities in the context of animal movement, we focused on one of the most remarkable migrations-the journey of the endangered European eel from their birthplace in the Sargasso Sea to freshwater environments. Laboratory observations unveiled a continuum of diverse phenotypes of migrating eels: Some displayed a heightened tendency to swim against a constant water flow, while others a greater propensity to climb obstacles. Looking for the biological underpinnings of this migratory diversity, we characterized the eels' individual differences in traits of four key domains: life history, physiology, behavior, and cognition, among which we found significant variance and interconnectedness. Upon reducing this variance to its primary multivariate axes, we found that these predict the migratory types. Eels with 1) low exploration, high activity, low boldness, and high lateralization; 2) strong lateralization, enhanced quantitative abilities, short problem-solving time, high boldness, and low growth rates; or 3) enhanced problem-solving, reduced spatial learning, high cognitive flexibility, and shorter time to solve the cognitive tasks were more likely to display the climbing migratory type. Field sampling revealed how specific traits' combinations seemed to influence the distribution of eels once they begin to settle in the freshwater environment. Our study underscores the impressive diversity of individuals during this critical migration, emphasizing an intrinsic connection to multidomain trait variance. Preserving this diversity becomes paramount, as it likely contributes to the resilience and adaptability of endangered migratory species.
Collapse
Affiliation(s)
- Gaia De Russi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara44121, Italy
| | - Mattia Lanzoni
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara44121, Italy
| | - Angelo Bisazza
- Department of General Psychology, University of Padova, Padova35131, Italy
| | - Paolo Domenici
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Pisa56124, Italy
| | - Giuseppe Castaldelli
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara44121, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara44121, Italy
| | - Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara44121, Italy
| |
Collapse
|
5
|
Liu YF, Li YL, Xing TF, Xue DX, Liu JX. Genetic architecture of long-distance migration and population genomics of the endangered Japanese eel. iScience 2024; 27:110563. [PMID: 39165844 PMCID: PMC11334786 DOI: 10.1016/j.isci.2024.110563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/21/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024] Open
Abstract
The Japanese eel (Anguilla japonica), a flagship anguillid species for conservation, is known for its long-distance-oriented migration. However, our understanding of the genetic architecture underlying long-distance migration and population genomic characteristics of A. japonica is still limited. Here, we generated a high-quality chromosome-level genome assembly and conducted whole-genome resequencing of 218 individuals to explore these aspects. Strong signals of selection were found on genes involved in long-distance aerobic exercise and navigation, which might be associated with evolutionary adaptation to long-distance migrations. Low genetic diversity was detected, which might result from genetic drift associated with demographic declines. Both mitochondrial and nuclear genomic datasets supported the existence of a single panmictic population for Japanese eel, despite signals of single-generation selection. Candidate genes for local selection involved in functions like development and circadian rhythm. The findings can provide insights to adaptative evolution to long-distance migration and inform conservation efforts for A. japonica.
Collapse
Affiliation(s)
- Yan-Fang Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Long Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Teng-Fei Xing
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Dong-Xiu Xue
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jin-Xian Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
6
|
Pettersson ME, Quintela M, Besnier F, Deng Q, Berg F, Kvamme C, Bekkevold D, Mosbech MB, Bunikis I, Lille-Langøy R, Leonori I, Wallberg A, Glover KA, Andersson L. Limited Parallelism in Genetic Adaptation to Brackish Water Bodies in European Sprat and Atlantic Herring. Genome Biol Evol 2024; 16:evae133. [PMID: 38918882 PMCID: PMC11226789 DOI: 10.1093/gbe/evae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/21/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
The European sprat is a small plankton-feeding clupeid present in the northeastern Atlantic Ocean, in the Mediterranean Sea, and in the brackish Baltic Sea and Black Sea. This species is the target of a major fishery and, therefore, an accurate characterization of its genetic population structure is crucial to delineate proper stock assessments that aid ensuring the fishery's sustainability. Here, we present (i) a draft genome assembly, (ii) pooled whole genome sequencing of 19 population samples covering most of the species' distribution range, and (iii) the design and test of a single nucleotide polymorphism (SNP)-chip resource and use this to validate the population structure inferred from pooled sequencing. These approaches revealed, using the populations sampled here, three major groups of European sprat: Oceanic, Coastal, and Brackish with limited differentiation within groups even over wide geographical stretches. Genetic structure is largely driven by six large putative inversions that differentiate Oceanic and Brackish sprats, while Coastal populations display intermediate frequencies of haplotypes at each locus. Interestingly, populations from the Baltic and the Black Seas share similar frequencies of haplotypes at these putative inversions despite their distant geographic location. The closely related clupeids European sprat and Atlantic herring both show genetic adaptation to the brackish Baltic Sea, providing an opportunity to explore the extent of genetic parallelism. This analysis revealed limited parallelism because out of 125 independent loci detected in the Atlantic herring, three showed sharp signals of selection that overlapped between the two species and contained single genes such as PRLRA, which encodes the receptor for prolactin, a freshwater-adapting hormone in euryhaline species, and THRB, a receptor for thyroid hormones, important both for metabolic regulation and the development of red cone photoreceptors.
Collapse
Affiliation(s)
- Mats E Pettersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | | | - Qiaoling Deng
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Florian Berg
- Institute of Marine Research, 5817 Bergen, Norway
| | | | - Dorte Bekkevold
- DTU-Aqua National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | | | | | | | - Iole Leonori
- CNR IRBIM, Italian National Research Council, Institute for Marine Biological Resources and Biotechnology, 60125 Ancona, Italy
| | - Andreas Wallberg
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | - Leif Andersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
7
|
Andersson L, Bekkevold D, Berg F, Farrell ED, Felkel S, Ferreira MS, Fuentes-Pardo AP, Goodall J, Pettersson M. How Fish Population Genomics Can Promote Sustainable Fisheries: A Road Map. Annu Rev Anim Biosci 2024; 12:1-20. [PMID: 37906837 DOI: 10.1146/annurev-animal-021122-102933] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Maintenance of genetic diversity in marine fishes targeted by commercial fishing is a grand challenge for the future. Most of these species are abundant and therefore important for marine ecosystems and food security. Here, we present a road map of how population genomics can promote sustainable fisheries. In these species, the development of reference genomes and whole genome sequencing is key, because genetic differentiation at neutral loci is usually low due to large population sizes and gene flow. First, baseline allele frequencies representing genetically differentiated populations within species must be established. These can then be used to accurately determine the composition of mixed samples, forming the basis for population demographic analysis to inform sustainably set fish quotas. SNP-chip analysis is a cost-effective method for determining baseline allele frequencies and for population identification in mixed samples. Finally, we describe how genetic marker analysis can transform stock identification and management.
Collapse
Affiliation(s)
- Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Dorte Bekkevold
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | | | - Edward D Farrell
- Killybegs Fishermen's Organisation, Killybegs, County Donegal, Ireland
| | - Sabine Felkel
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
| | - Mafalda S Ferreira
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
| | - Angela P Fuentes-Pardo
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
| | - Jake Goodall
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
| | - Mats Pettersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
| |
Collapse
|
8
|
Ulmo‐Diaz G, Engman A, McLarney WO, Lasso Alcalá CA, Hendrickson D, Bezault E, Feunteun E, Prats‐Léon FL, Wiener J, Maxwell R, Mohammed RS, Kwak TJ, Benchetrit J, Bougas B, Babin C, Normandeau E, Djambazian HHV, Chen S, Reiling SJ, Ragoussis J, Bernatchez L. Panmixia in the American eel extends to its tropical range of distribution: Biological implications and policymaking challenges. Evol Appl 2023; 16:1872-1888. [PMID: 38143897 PMCID: PMC10739100 DOI: 10.1111/eva.13599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 12/26/2023] Open
Abstract
The American eel (Anguilla rostrata) has long been regarded as a panmictic fish and has been confirmed as such in the northern part of its range. In this paper, we tested for the first time whether panmixia extends to the tropical range of the species. To do so, we first assembled a reference genome (975 Mbp, 19 chromosomes) combining long (PacBio and Nanopore and short (Illumina paired-end) reads technologies to support both this study and future research. To test for population structure, we estimated genotype likelihoods from low-coverage whole-genome sequencing of 460 American eels, collected at 21 sampling sites (in seven geographic regions) ranging from Canada to Trinidad and Tobago. We estimated genetic distance between regions, performed ADMIXTURE-like clustering analysis and multivariate analysis, and found no evidence of population structure, thus confirming that panmixia extends to the tropical range of the species. In addition, two genomic regions with putative inversions were observed, both geographically widespread and present at similar frequencies in all regions. We discuss the implications of lack of genetic population structure for the species. Our results are key for the future genomic research in the American eel and the implementation of conservation measures throughout its geographic range. Additionally, our results can be applied to fisheries management and aquaculture of the species.
Collapse
Affiliation(s)
- Gabriela Ulmo‐Diaz
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
| | - Augustin Engman
- University of Tennessee Institute of Agriculture, School of Natural ResourcesKnoxvilleTennesseeUSA
| | | | | | - Dean Hendrickson
- Department of Integrative Biology and Biodiversity CollectionsUniversity of Texas at AustinAustinTexasUSA
| | - Etienne Bezault
- UMR 8067 BOREA, Biologie Organismes Écosystèmes Aquatiques (MNHN, CNRS, SU, IRD, UCN, UA)Université des AntillesPointe‐à‐PitreGuadeloupe
- Caribaea Initiative, Département de BiologieUniversité Des Antilles‐Campus de FouillolePointe‐à‐PitreGuadeloupeFrance
| | - Eric Feunteun
- UMR 7208 BOREABiologie Organismes Écosystèmes Aquatiques (MNHN, CNRS, SU,IRD, UCN, UA)Station Marine de DinardRennesFrance
- EPHE‐PSLCGEL (Centre de Géoécologie Littorale)DinardFrance
| | | | - Jean Wiener
- Fondation pour la Protection de la Biodiversité Marine (FoProBiM)CaracolHaiti
| | - Robert Maxwell
- Inland Fisheries SectionLouisiana Department of Wildlife and FisheriesLouisianaUSA
| | - Ryan S. Mohammed
- The University of the West Indies (UWI)St. AugustineTrinidad and Tobago
- Present address:
Department of Biological SciencesAuburn UniversityAuburnAlabamaUSA
| | - Thomas J. Kwak
- US Geological SurveyNorth Carolina Cooperative Fish and Wildlife Research UnitDepartment of Applied EcologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | | | - Bérénice Bougas
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
| | - Charles Babin
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
| | - Eric Normandeau
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
| | - Haig H. V. Djambazian
- McGIll Genome Centre, Department of Human GeneticsVictor Phillip Dahdaleh Institute of Genomic MedicineMcGill UniversityMontrealQuebecCanada
| | - Shu‐Huang Chen
- McGIll Genome Centre, Department of Human GeneticsVictor Phillip Dahdaleh Institute of Genomic MedicineMcGill UniversityMontrealQuebecCanada
| | - Sarah J. Reiling
- McGIll Genome Centre, Department of Human GeneticsVictor Phillip Dahdaleh Institute of Genomic MedicineMcGill UniversityMontrealQuebecCanada
| | - Jiannis Ragoussis
- McGIll Genome Centre, Department of Human GeneticsVictor Phillip Dahdaleh Institute of Genomic MedicineMcGill UniversityMontrealQuebecCanada
| | - Louis Bernatchez
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
| |
Collapse
|
9
|
Myrenås E, Näslund J, Persson J, Sundin J. Effects of the invasive swim bladder parasite Anguillicola crassus on health and condition indicators in the European eel. JOURNAL OF FISH DISEASES 2023; 46:1029-1047. [PMID: 37329520 DOI: 10.1111/jfd.13822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/19/2023]
Abstract
Parasites negatively affect biological processes within their hosts, which may alter for example health, growth, and reproductive ability. Non-native invasive parasites, in particular, may have large effects on the endemic hosts, given that the hosts lack evolved specific defences against such parasites. The swim bladder nematode Anguillicola crassus, an invasive parasite originating from Asia, is found in the European eel (Anguilla anguilla, L. 1758), since the 1980s. We investigated whether A. crassus affected several indicators related to health of the European eel (spleen- and liver size, body fat content and relative condition). Our results indicate that during the continental residency of the eels, infection by A. crassus had no major negative impacts on the investigated health indicators at the generally low infection intensities present in this study (median 2-3 visible parasites). Given that many of the adult eels were found to have swim bladder damage, concerns about their spawning migration through deeper oceanic environments can still be raised. To allow further investigations, we suggest that quantification of swim bladder damage should be implemented in eel-monitoring programs. Compared to other parasite pressure parameters, swim bladder damage provides additional information about past infections and future problems.
Collapse
Affiliation(s)
- Elin Myrenås
- Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, Drottningholm, Sweden
| | - Joacim Näslund
- Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, Drottningholm, Sweden
| | - John Persson
- Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, Drottningholm, Sweden
| | - Josefin Sundin
- Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, Drottningholm, Sweden
| |
Collapse
|
10
|
Fuentes‐Pardo AP, Farrell ED, Pettersson ME, Sprehn CG, Andersson L. The genomic basis and environmental correlates of local adaptation in the Atlantic horse mackerel ( Trachurus trachurus). Evol Appl 2023; 16:1201-1219. [PMID: 37360028 PMCID: PMC10286234 DOI: 10.1111/eva.13559] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 04/21/2023] [Accepted: 05/07/2023] [Indexed: 06/28/2023] Open
Abstract
Understanding how populations adapt to their environment is increasingly important to prevent biodiversity loss due to overexploitation and climate change. Here we studied the population structure and genetic basis of local adaptation of Atlantic horse mackerel, a commercially and ecologically important marine fish that has one of the widest distributions in the eastern Atlantic. We analyzed whole-genome sequencing and environmental data of samples collected from the North Sea to North Africa and the western Mediterranean Sea. Our genomic approach indicated low population structure with a major split between the Mediterranean Sea and the Atlantic Ocean and between locations north and south of mid-Portugal. Populations from the North Sea are the most genetically distinct in the Atlantic. We discovered that most population structure patterns are driven by a few highly differentiated putatively adaptive loci. Seven loci discriminate the North Sea, two the Mediterranean Sea, and a large putative inversion (9.9 Mb) on chromosome 21 underlines the north-south divide and distinguishes North Africa. A genome-environment association analysis indicates that mean seawater temperature and temperature range, or factors correlated to them, are likely the main environmental drivers of local adaptation. Our genomic data broadly support the current stock divisions, but highlight areas of potential mixing, which require further investigation. Moreover, we demonstrate that as few as 17 highly informative SNPs can genetically discriminate the North Sea and North African samples from neighboring populations. Our study highlights the importance of both, life history and climate-related selective pressures in shaping population structure patterns in marine fish. It also supports that chromosomal rearrangements play a key role in local adaptation with gene flow. This study provides the basis for more accurate delineation of the horse mackerel stocks and paves the way for improving stock assessments.
Collapse
Affiliation(s)
| | - Edward D. Farrell
- EDF Scientific LimitedCorkIreland
- Killybegs Fishermen's OrganisationDonegalIreland
| | - Mats E. Pettersson
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - C. Grace Sprehn
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - Leif Andersson
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
- Department of Veterinary Integrative BiosciencesTexas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
11
|
Eriksson M, Kinnby A, De Wit P, Rafajlović M. Adaptive, maladaptive, neutral, or absent plasticity: Hidden caveats of reaction norms. Evol Appl 2023; 16:486-503. [PMID: 36793703 PMCID: PMC9923493 DOI: 10.1111/eva.13482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/28/2022] Open
Abstract
Adaptive phenotypic plasticity may improve the response of individuals when faced with new environmental conditions. Typically, empirical evidence for plasticity is based on phenotypic reaction norms obtained in reciprocal transplant experiments. In such experiments, individuals from their native environment are transplanted into a different environment, and a number of trait values, potentially implicated in individuals' response to the new environment, are measured. However, the interpretations of reaction norms may differ depending on the nature of the assessed traits, which may not be known beforehand. For example, for traits that contribute to local adaptation, adaptive plasticity implies nonzero slopes of reaction norms. By contrast, for traits that are correlated to fitness, high tolerance to different environments (possibly due to adaptive plasticity in traits that contribute to adaptation) may, instead, result in flat reaction norms. Here we investigate reaction norms for adaptive versus fitness-correlated traits and how they may affect the conclusions regarding the contribution of plasticity. To this end, we first simulate range expansion along an environmental gradient where plasticity evolves to different values locally and then perform reciprocal transplant experiments in silico. We show that reaction norms alone cannot inform us whether the assessed trait exhibits locally adaptive, maladaptive, neutral, or no plasticity, without any additional knowledge of the traits assessed and species' biology. We use the insights from the model to analyse and interpret empirical data from reciprocal transplant experiments involving the marine isopod Idotea balthica sampled from two geographical locations with different salinities, concluding that the low-salinity population likely has reduced adaptive plasticity relative to the high-salinity population. Overall, we conclude that, when interpreting results from reciprocal transplant experiments, it is necessary to consider whether traits assessed are locally adaptive with respect to the environmental variable accounted for in the experiments or correlated to fitness.
Collapse
Affiliation(s)
- Martin Eriksson
- Department of Marine SciencesUniversity of GothenburgGothenburgSweden
- Linnaeus Centre for Marine Evolutionary BiologyUniversity of GothenburgGothenburgSweden
- Gothenburg Global Biodiversity CentreUniversity of GothenburgGothenburgSweden
| | - Alexandra Kinnby
- Linnaeus Centre for Marine Evolutionary BiologyUniversity of GothenburgGothenburgSweden
- Department of Marine SciencesUniversity of GothenburgStrömstad‐TjärnöSweden
| | - Pierre De Wit
- Linnaeus Centre for Marine Evolutionary BiologyUniversity of GothenburgGothenburgSweden
- Department of Marine SciencesUniversity of GothenburgStrömstad‐TjärnöSweden
| | - Marina Rafajlović
- Department of Marine SciencesUniversity of GothenburgGothenburgSweden
- Linnaeus Centre for Marine Evolutionary BiologyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
12
|
Olazcuaga L, Foucaud J, Deschamps C, Loiseau A, Claret J, Vedovato R, Guilhot R, Sévely C, Gautier M, Hufbauer RA, Rode NO, Estoup A. Rapid and transient evolution of local adaptation to seasonal host fruits in an invasive pest fly. Evol Lett 2022; 6:490-505. [PMID: 36579160 PMCID: PMC9783429 DOI: 10.1002/evl3.304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/12/2022] [Accepted: 10/27/2022] [Indexed: 12/30/2022] Open
Abstract
Both local adaptation and adaptive phenotypic plasticity can influence the match between phenotypic traits and local environmental conditions. Theory predicts that environments stable for multiple generations promote local adaptation, whereas highly heterogeneous environments favor adaptive phenotypic plasticity. However, when environments have periods of stability mixed with heterogeneity, the relative importance of local adaptation and adaptive phenotypic plasticity is unclear. Here, we used Drosophila suzukii as a model system to evaluate the relative influence of genetic and plastic effects on the match of populations to environments with periods of stability from three to four generations. This invasive pest insect can develop within different fruits, and persists throughout the year in a given location on a succession of distinct host fruits, each one being available for only a few generations. Using reciprocal common environment experiments of natural D. suzukii populations collected from cherry, strawberry, and blackberry, we found that both oviposition preference and offspring performance were higher on medium made with the fruit from which the population originated than on media made with alternative fruits. This pattern, which remained after two generations in the laboratory, was analyzed using a statistical method we developed to quantify the contributions of local adaptation and adaptive plasticity in determining fitness. Altogether, we found that genetic effects (local adaptation) dominate over plastic effects (adaptive phenotypic plasticity). Our study demonstrates that spatially and temporally variable selection does not prevent the rapid evolution of local adaptation in natural populations. The speed and strength of adaptation may be facilitated by several mechanisms including a large effective population size and strong selective pressures imposed by host plants.
Collapse
Affiliation(s)
- Laure Olazcuaga
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France,Department of Agricultural BiologyColorado State UniversityFort CollinsColorado80523USA
| | - Julien Foucaud
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Candice Deschamps
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Anne Loiseau
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Jean‐Loup Claret
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Romain Vedovato
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Robin Guilhot
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Cyril Sévely
- Chambre d'agriculture de l'HéraultLattes34875France
| | - Mathieu Gautier
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Ruth A. Hufbauer
- Department of Agricultural BiologyColorado State UniversityFort CollinsColorado80523USA,Graduate Degree Program in EcologyColorado State UniversityFort CollinsColorado80523USA
| | - Nicolas O. Rode
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Arnaud Estoup
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| |
Collapse
|
13
|
Wu Y, Chen P, Gong W, Gul H, Zhu J, Yang F, Wang X, Yong T, Liu J, Pu T, Yan Y, Yang W. Morphological and physiological variation of soybean seedlings in response to shade. FRONTIERS IN PLANT SCIENCE 2022; 13:1015414. [PMID: 36275582 PMCID: PMC9583947 DOI: 10.3389/fpls.2022.1015414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Soybean (Glycine max) is a legume species that is widely used in intercropping. Quantitative analyses of plasticity and genetic differences in soybean would improve the selection and breeding of soybean in intercropping. Here, we used data of 20 varieties from one year artificial shading experiment and one year intercropping experiment to characterize the morphological and physiological traits of soybean seedlings grown under shade and full sun light conditions. Our results showed that shade significantly decreased biomass, leaf area, stem diameter, fraction of dry mass in petiole, leaf mass per unit area, chlorophyll a/b ratio, net photosynthetic rate per unit area at PAR of 500 μmol m-2 s-1 and 1,200 μmol m-2 s-1 of soybean seedling, but significantly increased plant height, fraction of dry mass in stem and chlorophyll content. Light × variety interaction was significant for all measured traits, light effect contributed more than variety effect. The biomass of soybean seedlings was positively correlated with leaf area and stem diameter under both shade and full sunlight conditions, but not correlated with plant height and net photosynthetic rate. The top five (62.75% variation explained) most important explanatory variables of plasticity of biomass were that the plasticity of leaf area, leaf area ratio, leaflet area, plant height and chlorophyll content, whose total weight were 1, 0.9, 0.3, 0.2, 0.19, respectively. The plasticity of biomass was positively correlated with plasticity of leaf area and leaflet area but significant negative correlated with plasticity of plant height. The principal component one account for 42.45% variation explain. A cluster analysis further indicated that soybean cultivars were classified into three groups and cultivars; Jiandebaimaodou, Gongdou 2, and Guixia 3 with the maximum plasticity of biomass. These results suggest that for soybean seedlings grown under shade increasing the capacity for light interception by larger leaf area is more vital than light searching (plant height) and light conversion (photosynthetic rate).
Collapse
Affiliation(s)
- Yushan Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System, Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
| | - Ping Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System, Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
| | - Wanzhuo Gong
- Crop Research Institute, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
| | - Hina Gul
- National Center of Industrial Biotechnology (NCIB), PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Junqi Zhu
- Plant and Food Research, Blenheim, New Zealand
| | - Feng Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System, Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
| | - Xiaochun Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System, Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
| | - Taiwen Yong
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System, Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
| | - Jiang Liu
- Key Laboratory of Crop Eco-Physiology and Farming System, Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
- College of Life Science, Sichuan Agricultural University, Chengdu, China
| | - Tian Pu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System, Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
| | - Yanhong Yan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wenyu Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System, Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
| |
Collapse
|
14
|
Demographic history of two endangered Atlantic eel species, Anguilla anguilla and Anguilla rostrata. CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01469-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Liu S, Tengstedt ANB, Jacobsen MW, Pujolar JM, Jónsson B, Lobón-Cervià J, Bernatchez L, Hansen MM. Genome-wide methylation in the panmictic European eel (Anguilla anguilla). Mol Ecol 2022; 31:4286-4306. [PMID: 35767387 DOI: 10.1111/mec.16586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022]
Abstract
The role of methylation in adaptive, developmental and speciation processes has attracted considerable interest, but interpretation of results is complicated by diffuse boundaries between genetic and non-genetic variation. We studied whole genome genetic and methylation variation in the European eel, distributed from subarctic to subtropical environments, but with panmixia precluding genetically based local adaptation beyond single-generation responses. Overall methylation was 70.9%, with hypomethylation predominantly found in promoters and first exons. Redundancy analyses involving juvenile glass eels showed 0.06% and 0.03% of the variance at SNPs to be explained by localities and environmental variables, respectively, with GO terms of genes associated with outliers primarily involving neural system functioning. For CpGs 2.98% and 1.36% of variance was explained by localities and environmental variables. Differentially methylated regions particularly included genes involved in developmental processes, with hox clusters featuring prominently. Life stage (adult versus glass eels) was the most important source of inter-individual variation in methylation, likely reflecting both ageing and developmental processes. Demethylation of transposable elements relative to pure European eel was observed in European X American eel hybrids, possibly representing postzygotic barriers in this system characterized by prolonged speciation and ongoing gene flow. Whereas the genetic data are consistent with a role of single-generation selective responses, the methylation results underpin the importance of epigenetics in the life cycle of eels and suggests interactions between local environments, development and phenotypic variation mediated by methylation variation. Eels are remarkable by having retained eight hox clusters, and the results suggest important roles of methylation at hox genes for adaptive processes.
Collapse
Affiliation(s)
- Shenglin Liu
- Department of Biology, Aarhus University, Aarhus, Denmark
| | | | - Magnus W Jacobsen
- Section for Marine Living Resources, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Jose Martin Pujolar
- Centre for Gelatinous Plankton Ecology and Evolution, National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Bjarni Jónsson
- North West Iceland Nature Center, Iceland.,The Icelandic Parliament, Reykjavík, Iceland
| | | | - Louis Bernatchez
- IBIS (Institut de Biologie Intégrative et des Systèmes), Université Laval, Québec, Canada
| | | |
Collapse
|
16
|
Chen N, Zhang H, Zang E, Liu ZX, Lan YF, Hao WL, He S, Fan X, Sun GL, Wang YL. Adaptation insights from comparative transcriptome analysis of two Opisthopappus species in the Taihang mountains. BMC Genomics 2022; 23:466. [PMID: 35751010 PMCID: PMC9233376 DOI: 10.1186/s12864-022-08703-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Opisthopappus is a major wild source of Asteraceae with resistance to cold and drought. Two species of this genus (Opisthopappus taihangensis and O. longilobus) have been employed as model systems to address the evolutionary history of perennial herb biomes in the Taihang Mountains of China. However, further studies on the adaptive divergence processes of these two species are currently impeded by the lack of genomic resources. To elucidate the molecular mechanisms involved, a comparative analysis of these two species was conducted. Among the identified transcription factors, the bHLH members were most prevalent, which exhibited significantly different expression levels in the terpenoid metabolic pathway. O. longilobus showed higher level of expression than did O. taihangensis in terms of terpenes biosynthesis and metabolism, particularly monoterpenoids and diterpenoids. Analyses of the positive selection genes (PSGs) identified from O. taihangensis and O. longilobus revealed that 1203 genes were related to adaptative divergence, which were under rapid evolution and/or have signs of positive selection. Differential expressions of PSG occurred primarily in the mitochondrial electron transport, starch degradation, secondary metabolism, as well as nucleotide synthesis and S-metabolism pathway processes. Several PSGs were obviously differentially expressed in terpenes biosynthesis that might result in the fragrances divergence between O. longilobus and O. taihangensis, which would provide insights into adaptation of the two species to different environments that characterized by sub-humid warm temperate and temperate continental monsoon climates. The comparative analysis for these two species in Opisthopappus not only revealed how the divergence occurred from molecular perspective, but also provided novel insights into how differential adaptations occurred in Taihang Mountains.
Collapse
Affiliation(s)
- Ning Chen
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Hao Zhang
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - En Zang
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Zhi-Xia Liu
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Ya-Fei Lan
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Wei-Li Hao
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Shan He
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gen-Lou Sun
- Department of Biology, Saint Mary's University, Halifax, B3H3C3, Canada.
| | - Yi-Ling Wang
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China.
| |
Collapse
|
17
|
Eriksson M, Rafajlović M. The role of phenotypic plasticity in the establishment of range margins. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210012. [PMID: 35067091 PMCID: PMC8784930 DOI: 10.1098/rstb.2021.0012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
It has been argued that adaptive phenotypic plasticity may facilitate range expansions over spatially and temporally variable environments. However, plasticity may induce fitness costs. This may hinder the evolution of plasticity. Earlier modelling studies examined the role of plasticity during range expansions of populations with fixed genetic variance. However, genetic variance evolves in natural populations. This may critically alter model outcomes. We ask: how does the capacity for plasticity in populations with evolving genetic variance alter range margins that populations without the capacity for plasticity are expected to attain? We answered this question using computer simulations and analytical approximations. We found a critical plasticity cost above which the capacity for plasticity has no impact on the expected range of the population. Below the critical cost, by contrast, plasticity facilitates range expansion, extending the range in comparison to that expected for populations without plasticity. We further found that populations may evolve plasticity to buffer temporal environmental fluctuations, but only when the plasticity cost is below the critical cost. Thus, the cost of plasticity is a key factor involved in range expansions of populations with the potential to express plastic response in the adaptive trait. This article is part of the theme issue 'Species' ranges in the face of changing environments (part I)'.
Collapse
Affiliation(s)
- Martin Eriksson
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
- The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
| | - Marina Rafajlović
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
- The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
18
|
Pujolar JM, Jacobsen MW, Bertolini F. Comparative genomics and signatures of selection in North Atlantic eels. Mar Genomics 2022; 62:100933. [PMID: 35182837 DOI: 10.1016/j.margen.2022.100933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 11/17/2022]
Abstract
Comparative genomic approaches can identify putative private and shared signatures of selection. We performed a comparative genomic study of North Atlantic eels, European eel (Anguilla Anguilla) and American eel (A. rostrata). The two sister species are nearly undistinguishable at the phenotypic level and despite a wide non-overlapping continental distribution, they spawn in partial sympatry in the Sargasso Sea. Taking advantage of the newly assembled and annotated genome, we used genome wide RAD sequencing data of 359 individuals retrieved from Sequence Nucleotide Archive and state-of-the-art statistic tests to identify putative genomic signatures of selection in North Atlantic eels. First, using the FST and XP-EHH methods, we detected apparent islands of divergence on a total of 7 chromosomes, particularly on chromosomes 6 and 10. Gene ontology analyses suggested candidate genes mainly related to energy production, development and regulation, which could reflect strong selection on traits related to eel migration and larval duration time. Gene effect prediction using SNPeff showed a high number of SNPs in noncoding regions, pointing to a possible regulatory role. Second, using the iHS method we detected shared regions under selection on a total of 11 chromosomes. Several hypotheses might account for the detection of shared islands of selection in North Atlantic eels, including parallel evolution due to adaptation to similar environments and introgression. Future comparative genomic studies will be needed to further clarify the causes and consequences of introgression, including the directionality of these introgression events.
Collapse
Affiliation(s)
- Jose Martin Pujolar
- Centre for Gelatinous Plankton Ecology and Evolution, National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Magnus Wulff Jacobsen
- Section for Marine Living Resources, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Francesca Bertolini
- Section for Marine Living Resources, National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
19
|
Aprahamian MW, Evans DW, Briand C, Walker AM, McElarney Y, Allen M. The changing times of Europe's largest remaining commercially harvested population of eel Anguilla anguilla L. JOURNAL OF FISH BIOLOGY 2021; 99:1201-1221. [PMID: 34085709 PMCID: PMC9543196 DOI: 10.1111/jfb.14820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/22/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
This study quantifies the processes involved in regulating the European eel population of Lough Neagh, a lake in Northern Ireland. The relationship between glass eel input and silver eel output for the 1923-1997 cohorts was best described by a Beverton-Holt stock recruitment model. Glass eel input time series was not complete and was thus derived from the relationship between catches elsewhere in Europe and Lough Neagh, together with the addition of stocked glass eel. Silver eel output was the sum of silver eel escapement, catch and yellow eel catch converted to silver eel equivalents. Natural mortality increased with glass eel density, ranging from 0.017 to 0.142 year-1 . The mean carrying capacity increased from ≈3.25 M silver eels (≈26 kg ha-1 ) for the 1923-1943 cohorts to ≈5.0 M (≈40 kg ha-1 ) for the 1948-1971 cohorts before regressing back to ≈3.25 M. The total silver eel output was highest during the late 1970s/early 1980s at 35-45 kg ha-1 year-1 and lowest during the early years of the 20th century and is currently at 10-15 kg ha-1 year-1 . The findings are discussed in relation to (a) the ecological changes that have occurred within the lough, associated with eutrophication and the introduction of roach (Rutilus rutilus L.), and (b) the decline of the wider European eel stock across its distribution range. The findings from this study have relevance for the wider management of the European eel stock.
Collapse
Affiliation(s)
| | | | - Cedric Briand
- Institution Aménagement de la VilaineLa Roche‐BernardFrance
| | - Alan M. Walker
- Centre for EnvironmentFisheries and Aquaculture ScienceUK
| | | | | |
Collapse
|
20
|
Affiliation(s)
- Christian Sonne
- Aarhus University, Roskilde, Denmark. .,Henan Agricultural University, Zhengzhou, China
| | - Wan-Xi Peng
- Henan Agricultural University, Zhengzhou, China
| | | | - Su Shiung Lam
- Universiti Malaysia Terengganu, Terengganu, Malaysia.,Henan Agricultural University, Zhengzhou, China
| |
Collapse
|