1
|
Brooks ER, Moorman AR, Bhattacharya B, Prudhomme IS, Land M, Alcorn HL, Sharma R, Pe'er D, Zallen JA. A single-cell atlas of spatial and temporal gene expression in the mouse cranial neural plate. eLife 2025; 13:RP102819. [PMID: 40192104 PMCID: PMC11975377 DOI: 10.7554/elife.102819] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
The formation of the mammalian brain requires regionalization and morphogenesis of the cranial neural plate, which transforms from an epithelial sheet into a closed tube that provides the structural foundation for neural patterning and circuit formation. Sonic hedgehog (SHH) signaling is important for cranial neural plate patterning and closure, but the transcriptional changes that give rise to the spatially regulated cell fates and behaviors that build the cranial neural tube have not been systematically analyzed. Here, we used single-cell RNA sequencing to generate an atlas of gene expression at six consecutive stages of cranial neural tube closure in the mouse embryo. Ordering transcriptional profiles relative to the major axes of gene expression predicted spatially regulated expression of 870 genes along the anterior-posterior and mediolateral axes of the cranial neural plate and reproduced known expression patterns with over 85% accuracy. Single-cell RNA sequencing of embryos with activated SHH signaling revealed distinct SHH-regulated transcriptional programs in the developing forebrain, midbrain, and hindbrain, suggesting a complex interplay between anterior-posterior and mediolateral patterning systems. These results define a spatiotemporally resolved map of gene expression during cranial neural tube closure and provide a resource for investigating the transcriptional events that drive early mammalian brain development.
Collapse
Affiliation(s)
- Eric R Brooks
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State UniversityRaleighUnited States
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Andrew R Moorman
- Howard Hughes Medical Institute and Computational and Systems Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Bhaswati Bhattacharya
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Ian S Prudhomme
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Max Land
- Howard Hughes Medical Institute and Computational and Systems Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Heather L Alcorn
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Roshan Sharma
- Howard Hughes Medical Institute and Computational and Systems Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Dana Pe'er
- Howard Hughes Medical Institute and Computational and Systems Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| |
Collapse
|
2
|
Brooks ER, Moorman AR, Bhattacharya B, Prudhomme IS, Land M, Alcorn HL, Sharma R, Pe’er D, Zallen JA. A single-cell atlas of spatial and temporal gene expression in the mouse cranial neural plate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.25.609458. [PMID: 39229123 PMCID: PMC11370589 DOI: 10.1101/2024.08.25.609458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The formation of the mammalian brain requires regionalization and morphogenesis of the cranial neural plate, which transforms from an epithelial sheet into a closed tube that provides the structural foundation for neural patterning and circuit formation. Sonic hedgehog (SHH) signaling is important for cranial neural plate patterning and closure, but the transcriptional changes that give rise to the spatially regulated cell fates and behaviors that build the cranial neural tube have not been systematically analyzed. Here we used single-cell RNA sequencing to generate an atlas of gene expression at six consecutive stages of cranial neural tube closure in the mouse embryo. Ordering transcriptional profiles relative to the major axes of gene expression predicted spatially regulated expression of 870 genes along the anterior-posterior and mediolateral axes of the cranial neural plate and reproduced known expression patterns with over 85% accuracy. Single-cell RNA sequencing of embryos with activated SHH signaling revealed distinct SHH-regulated transcriptional programs in the developing forebrain, midbrain, and hindbrain, suggesting a complex interplay between anterior-posterior and mediolateral patterning systems. These results define a spatiotemporally resolved map of gene expression during cranial neural tube closure and provide a resource for investigating the transcriptional events that drive early mammalian brain development.
Collapse
Affiliation(s)
- Eric R. Brooks
- HHMI and Developmental Biology Program, Sloan Kettering Institute
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University
| | - Andrew R. Moorman
- HHMI and Computational and Systems Biology Program, Sloan Kettering Institute
| | | | - Ian S. Prudhomme
- HHMI and Developmental Biology Program, Sloan Kettering Institute
| | - Max Land
- HHMI and Computational and Systems Biology Program, Sloan Kettering Institute
| | | | - Roshan Sharma
- HHMI and Computational and Systems Biology Program, Sloan Kettering Institute
| | - Dana Pe’er
- HHMI and Computational and Systems Biology Program, Sloan Kettering Institute
| | | |
Collapse
|
3
|
Pérez-Verdugo F, Maniou E, Galea GL, Banerjee S. Self-organized cell patterning via mechanical feedback in hindbrain neuropore morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624679. [PMID: 39605583 PMCID: PMC11601649 DOI: 10.1101/2024.11.21.624679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Cell patterning is essential for organized tissue development, enabling precise geometric arrangement of cells, body axis establishment and developmental timing. Here we investigate the role of physical forces and mechanical cues in organizing and maintaining cell morphological patterns during hindbrain neuropore closure, a critical morphogenetic event in vertebrate development. Through live-imaging in mouse embryos and cell-based biophysical modeling, we demonstrate that active cell crawling and actomyosin purse-string contraction at the neuropore border are insufficient to account for the observed cellular arrangements in space and time. Instead, mechanosensitive feedback between cellular stress, shape, and nematic alignment is required to establish and maintain cell morphological patterns and their spatial order. This feedback-driven model generates persistent shape memory in cells, stalls cell rearrangements, and promotes local tissue solidification to preserve the spatial organization during the closure process. We validate this model experimentally, establishing the critical role of mechanical feedback in guiding tissue-level morphogenesis through active, force-driven patterning.
Collapse
Affiliation(s)
| | - Eirini Maniou
- Developmental Biology and Cancer Department, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
- Department of Industrial Engineering, University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
| | - Gabriel L. Galea
- Developmental Biology and Cancer Department, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | | |
Collapse
|
4
|
Maniou E, Todros S, Urciuolo A, Moulding DA, Magnussen M, Ampartzidis I, Brandolino L, Bellet P, Giomo M, Pavan PG, Galea GL, Elvassore N. Quantifying mechanical forces during vertebrate morphogenesis. NATURE MATERIALS 2024; 23:1575-1581. [PMID: 38969783 PMCID: PMC11525178 DOI: 10.1038/s41563-024-01942-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/05/2024] [Indexed: 07/07/2024]
Abstract
Morphogenesis requires embryonic cells to generate forces and perform mechanical work to shape their tissues. Incorrect functioning of these force fields can lead to congenital malformations. Understanding these dynamic processes requires the quantification and profiling of three-dimensional mechanics during evolving vertebrate morphogenesis. Here we describe elastic spring-like force sensors with micrometre-level resolution, fabricated by intravital three-dimensional bioprinting directly in the closing neural tubes of growing chicken embryos. Integration of calibrated sensor read-outs with computational mechanical modelling allows direct quantification of the forces and work performed by the embryonic tissues. As they displace towards the embryonic midline, the two halves of the closing neural tube reach a compression of over a hundred nano-newtons during neural fold apposition. Pharmacological inhibition of Rho-associated kinase to decrease the pro-closure force shows the existence of active anti-closure forces, which progressively widen the neural tube and must be overcome to achieve neural tube closure. Overall, our approach and findings highlight the intricate interplay between mechanical forces and tissue morphogenesis.
Collapse
Affiliation(s)
- Eirini Maniou
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
- Department of Industrial Engineering, University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
| | - Silvia Todros
- Department of Industrial Engineering, University of Padua, Padua, Italy
| | - Anna Urciuolo
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
- Istituto di Ricerca Pediatrica, Fondazione Città della Speranza, Padua, Italy
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Dale A Moulding
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Michael Magnussen
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Ioakeim Ampartzidis
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Luca Brandolino
- Department of Industrial Engineering, University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
| | - Pietro Bellet
- Department of Industrial Engineering, University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
| | - Monica Giomo
- Department of Industrial Engineering, University of Padua, Padua, Italy
| | - Piero G Pavan
- Department of Industrial Engineering, University of Padua, Padua, Italy
- Istituto di Ricerca Pediatrica, Fondazione Città della Speranza, Padua, Italy
| | - Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK.
| | - Nicola Elvassore
- Department of Industrial Engineering, University of Padua, Padua, Italy.
- Veneto Institute of Molecular Medicine, Padua, Italy.
| |
Collapse
|
5
|
Alvarez YD, van der Spuy M, Wang JX, Noordstra I, Tan SZ, Carroll M, Yap AS, Serralbo O, White MD. A Lifeact-EGFP quail for studying actin dynamics in vivo. J Cell Biol 2024; 223:e202404066. [PMID: 38913324 PMCID: PMC11194674 DOI: 10.1083/jcb.202404066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 06/03/2024] [Indexed: 06/25/2024] Open
Abstract
Here, we report the generation of a transgenic Lifeact-EGFP quail line for the investigation of actin organization and dynamics during morphogenesis in vivo. This transgenic avian line allows for the high-resolution visualization of actin structures within the living embryo, from the subcellular filaments that guide cell shape to the supracellular assemblies that coordinate movements across tissues. The unique suitability of avian embryos to live imaging facilitates the investigation of previously intractable processes during embryogenesis. Using high-resolution live imaging approaches, we present the dynamic behaviors and morphologies of cellular protrusions in different tissue contexts. Furthermore, through the integration of live imaging with computational segmentation, we visualize cells undergoing apical constriction and large-scale actin structures such as multicellular rosettes within the neuroepithelium. These findings not only enhance our understanding of tissue morphogenesis but also demonstrate the utility of the Lifeact-EGFP transgenic quail as a new model system for live in vivo investigations of the actin cytoskeleton.
Collapse
Affiliation(s)
- Yanina D. Alvarez
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Marise van der Spuy
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jian Xiong Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Ivar Noordstra
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Siew Zhuan Tan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Murron Carroll
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Alpha S. Yap
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Olivier Serralbo
- Commonwealth Scientific and Industrial Research (CSIRO) Health and Biosecurity, Geelong, Australia
| | - Melanie D. White
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
6
|
Pathway to Independence - an interview with Eirini Maniou. Development 2024; 151:dev204273. [PMID: 39140266 DOI: 10.1242/dev.204273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Eirini Maniou completed her undergraduate degree at the University of Patras, Greece, before moving to the UK to complete a Master's at the University of Bath and a PhD at the University of Dundee. For her postdoctoral work at University College London, Eirini turned her attention to neural tube morphogenesis, and she is now employing engineering principles to explore this developmental process at the University of Padua, Italy, where she is a Marie Skłodowska-Curie Actions postdoctoral fellow. Eirini was selected as one of our 2024 PI fellows, a group of researchers who will be supported by Development's Pathway to Independence Programme as they aim to secure independent positions. We spoke to Eirini to hear more about her career so far, why she decided to apply to the programme and what research questions she would like to address with her own group.
Collapse
|
7
|
Ambekar YS, Caiaffa CD, Wlodarczyk BJ, Singh M, Schill AW, Steele JW, Zhang J, Aglyamov SR, Scarcelli G, Finnell RH, Larin KV. Optical coherence tomography-guided Brillouin microscopy highlights regional tissue stiffness differences during anterior neural tube closure in the Mthfd1l murine mutant. Development 2024; 151:dev202475. [PMID: 38682273 PMCID: PMC11165724 DOI: 10.1242/dev.202475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
Neurulation is a highly synchronized biomechanical process leading to the formation of the brain and spinal cord, and its failure leads to neural tube defects (NTDs). Although we are rapidly learning the genetic mechanisms underlying NTDs, the biomechanical aspects are largely unknown. To understand the correlation between NTDs and tissue stiffness during neural tube closure (NTC), we imaged an NTD murine model using optical coherence tomography (OCT), Brillouin microscopy and confocal fluorescence microscopy. Here, we associate structural information from OCT with local stiffness from the Brillouin signal of embryos undergoing neurulation. The stiffness of neuroepithelial tissues in Mthfd1l null embryos was significantly lower than that of wild-type embryos. Additionally, exogenous formate supplementation improved tissue stiffness and gross embryonic morphology in nullizygous and heterozygous embryos. Our results demonstrate the significance of proper tissue stiffness in normal NTC and pave the way for future studies on the mechanobiology of normal and abnormal embryonic development.
Collapse
Affiliation(s)
| | - Carlo Donato Caiaffa
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School, University of Texas at Austin, Austin, TX 78723, USA
| | - Bogdan J. Wlodarczyk
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Alexander W. Schill
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - John W. Steele
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jitao Zhang
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA
| | - Salavat R. Aglyamov
- Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Richard H. Finnell
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
8
|
Copp AJ, Clark M, Greene NDE. Morphological phenotyping after mouse whole embryo culture. Front Cell Dev Biol 2023; 11:1223849. [PMID: 37601098 PMCID: PMC10435082 DOI: 10.3389/fcell.2023.1223849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Morphological phenotyping of the mouse embryo is described at neurulation stages, primarily as a guide to evaluating the outcome of whole embryo cultures between embryonic days 8.5 and 9.5. During this period, neural tube closure is initiated and progresses to completion in the cranial region. Spinal closure is still underway at the end of the culture period. The focus of this article is particularly on phenotyping that can be performed at the bench, using a stereomicroscope. This involves assessment of embryonic health, through observation and scoring of yolk sac blood circulation, measurement of developmental stage by somite counting, and determination of crown-rump length as a measure of growth. Axial rotation ("turning") can also be assessed using a simple scoring system. Neural tube closure assessment includes: 1) determining whether closure has been initiated at the Closure 1 site; 2) evaluating the complex steps of cranial neurulation including initiation at Closure sites 2 and 3, and completion of closure at the anterior and hindbrain neuropores; 3) assessment of spinal closure by measurement of posterior neuropore length. Interpretation of defects in neural tube closure requires an appreciation of, first, the stages that particular events are expected to be completed and, second, the correspondence between embryonic landmarks, for example, somite position, and the resulting adult axial levels. Detailed embryonic phenotyping, as described in this article, when combined with the versatile method of whole embryo culture, can form the basis for a wide range of experimental studies in early mouse neural development.
Collapse
Affiliation(s)
- Andrew J. Copp
- Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | | | | |
Collapse
|
9
|
Marshall AR, Galea GL, Copp AJ, Greene NDE. The surface ectoderm exhibits spatially heterogenous tension that correlates with YAP localisation during spinal neural tube closure in mouse embryos. Cells Dev 2023; 174:203840. [PMID: 37068590 PMCID: PMC10618430 DOI: 10.1016/j.cdev.2023.203840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/30/2023] [Accepted: 04/09/2023] [Indexed: 04/19/2023]
Abstract
The single cell layer of surface ectoderm (SE) which overlies the closing neural tube (NT) plays a crucial biomechanical role during mammalian NT closure (NTC), challenging previous assumptions that it is only passive to the force-generating neuroepithelium (NE). Failure of NTC leads to congenital malformations known as NT defects (NTDs), including spina bifida (SB) and anencephaly in the spine and brain respectively. In several mouse NTD models, SB is caused by misexpression of SE-specific genes and is associated with disrupted SE mechanics, including loss of rostrocaudal cell elongation believed to be important for successful closure. In this study, we asked how SE mechanics affect NT morphology, and whether the characteristic rostrocaudal cell elongation at the progressing closure site is a response to tension anisotropy in the SE. We show that blocking SE-specific E-cadherin in ex utero mouse embryo culture influences NT morphology, as well as the F-actin cable. Cell border ablation shows that cell shape is not due to tension anisotropy, but that there are regional differences in SE tension. We also find that YAP nuclear translocation reflects regional tension heterogeneity, and that its expression is sensitive to pharmacological reduction of tension. In conclusion, our results confirm that the SE is a biomechanically important tissue for spinal NT morphogenesis and suggest a possible role of spatial regulation of cellular tension which could regulate downstream gene expression via mechanically-sensitive YAP activity.
Collapse
Affiliation(s)
- Abigail R Marshall
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, UK.
| | - Gabriel L Galea
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, UK
| | - Andrew J Copp
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, UK
| | - Nicholas D E Greene
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, UK
| |
Collapse
|
10
|
Staddon MF, Hernandez A, Bowick MJ, Moshe M, Marchetti MC. The role of non-affine deformations in the elastic behavior of the cellular vertex model. SOFT MATTER 2023; 19:3080-3091. [PMID: 37039037 DOI: 10.1039/d2sm01580c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The vertex model of epithelia describes the apical surface of a tissue as a tiling of polygonal cells, with a mechanical energy governed by deviations in cell shape from preferred, or target, area, A0, and perimeter, P0. The model exhibits a rigidity transition driven by geometric incompatibility as tuned by the target shape index, . For with p*(6) the perimeter of a regular hexagon of unit area, a cell can simultaneously attain both the preferred area and preferred perimeter. As a result, the tissue is in a mechanically soft compatible state, with zero shear and Young's moduli. For p0 < p*(6), it is geometrically impossible for any cell to realize the preferred area and perimeter simultaneously, and the tissue is in an incompatible rigid solid state. Using a mean-field approach, we present a complete analytical calculation of the linear elastic moduli of an ordered vertex model. We analyze a relaxation step that includes non-affine deformations, leading to a softer response than previously reported. The origin of the vanishing shear and Young's moduli in the compatible state is the presence of zero-energy deformations of cell shape. The bulk modulus exhibits a jump discontinuity at the transition and can be lower in the rigid state than in the fluid-like state. The Poisson's ratio can become negative which lowers the bulk and Young's moduli. Our work provides a unified treatment of linear elasticity for the vertex model and demonstrates that this linear response is protocol-dependent.
Collapse
Affiliation(s)
- Michael F Staddon
- Center for Systems Biology Dresden, Dresden, Germany.
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Arthur Hernandez
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Mark J Bowick
- Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Michael Moshe
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - M Cristina Marchetti
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
11
|
The cellular dynamics of neural tube formation. Biochem Soc Trans 2023; 51:343-352. [PMID: 36794768 PMCID: PMC9987952 DOI: 10.1042/bst20220871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/17/2023]
Abstract
The vertebrate brain and spinal cord arise from a common precursor, the neural tube, which forms very early during embryonic development. To shape the forming neural tube, changes in cellular architecture must be tightly co-ordinated in space and time. Live imaging of different animal models has provided valuable insights into the cellular dynamics driving neural tube formation. The most well-characterised morphogenetic processes underlying this transformation are convergent extension and apical constriction, which elongate and bend the neural plate. Recent work has focused on understanding how these two processes are spatiotemporally integrated from the tissue- to the subcellular scale. Various mechanisms of neural tube closure have also been visualised, yielding a growing understanding of how cellular movements, junctional remodelling and interactions with the extracellular matrix promote fusion and zippering of the neural tube. Additionally, live imaging has also now revealed a mechanical role for apoptosis in neural plate bending, and how cell intercalation forms the lumen of the secondary neural tube. Here, we highlight the latest research on the cellular dynamics underlying neural tube formation and provide some perspectives for the future.
Collapse
|
12
|
Ampartzidis I, Efstathiou C, Paonessa F, Thompson EM, Wilson T, McCann CJ, Greene NDE, Copp AJ, Livesey FJ, Elvassore N, Giobbe GG, De Coppi P, Maniou E, Galea GL. Synchronisation of apical constriction and cell cycle progression is a conserved behaviour of pseudostratified neuroepithelia informed by their tissue geometry. Dev Biol 2023; 494:60-70. [PMID: 36509125 PMCID: PMC10570144 DOI: 10.1016/j.ydbio.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022]
Abstract
Neuroepithelial cells balance tissue growth requirement with the morphogenetic imperative of closing the neural tube. They apically constrict to generate mechanical forces which elevate the neural folds, but are thought to apically dilate during mitosis. However, we previously reported that mitotic neuroepithelial cells in the mouse posterior neuropore have smaller apical surfaces than non-mitotic cells. Here, we document progressive apical enrichment of non-muscle myosin-II in mitotic, but not non-mitotic, neuroepithelial cells with smaller apical areas. Live-imaging of the chick posterior neuropore confirms apical constriction synchronised with mitosis, reaching maximal constriction by anaphase, before division and re-dilation. Mitotic apical constriction amplitude is significantly greater than interphase constrictions. To investigate conservation in humans, we characterised early stages of iPSC differentiation through dual SMAD-inhibition to robustly produce pseudostratified neuroepithelia with apically enriched actomyosin. These cultured neuroepithelial cells achieve an equivalent apical area to those in mouse embryos. iPSC-derived neuroepithelial cells have large apical areas in G2 which constrict in M phase and retain this constriction in G1/S. Given that this differentiation method produces anterior neural identities, we studied the anterior neuroepithelium of the elevating mouse mid-brain neural tube. Instead of constricting, mid-brain mitotic neuroepithelial cells have larger apical areas than interphase cells. Tissue geometry differs between the apically convex early midbrain and flat posterior neuropore. Culturing human neuroepithelia on equivalently convex surfaces prevents mitotic apical constriction. Thus, neuroepithelial cells undergo high-amplitude apical constriction synchronised with cell cycle progression but the timing of their constriction if influenced by tissue geometry.
Collapse
Affiliation(s)
- Ioakeim Ampartzidis
- Developmental Biology and Cancer Department, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Christoforos Efstathiou
- Developmental Biology and Cancer Department, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Francesco Paonessa
- Developmental Biology and Cancer Department, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK; UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research Into Rare Disease in Children, London, UK
| | - Elliott M Thompson
- Developmental Biology and Cancer Department, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Tyler Wilson
- Developmental Biology and Cancer Department, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Conor J McCann
- Developmental Biology and Cancer Department, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Nicholas DE Greene
- Developmental Biology and Cancer Department, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Andrew J Copp
- Developmental Biology and Cancer Department, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Frederick J Livesey
- Developmental Biology and Cancer Department, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK; UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research Into Rare Disease in Children, London, UK
| | - Nicola Elvassore
- Developmental Biology and Cancer Department, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK; Veneto Institute of Molecular Medicine, Padova, Italy; UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research Into Rare Disease in Children, London, UK
| | - Giovanni G Giobbe
- Developmental Biology and Cancer Department, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK; UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research Into Rare Disease in Children, London, UK
| | - Paolo De Coppi
- Developmental Biology and Cancer Department, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK; UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research Into Rare Disease in Children, London, UK; Specialist Neonatal and Paediatric Unit, Great Ormond Street Hospital, London, WC1N 1EH, UK
| | - Eirini Maniou
- Developmental Biology and Cancer Department, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK; Veneto Institute of Molecular Medicine, Padova, Italy
| | - Gabriel L Galea
- Developmental Biology and Cancer Department, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|
13
|
Gheasuddin Y, Galea GL. Cannabidiol impairs neural tube closure in mouse whole embryo culture. Birth Defects Res 2022; 114:1186-1193. [PMID: 35416425 PMCID: PMC9790336 DOI: 10.1002/bdr2.2013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/24/2022] [Accepted: 03/30/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Cannabidiol (CBD) is a nonpsychoactive constituent of cannabis widely available as a dietary supplement. Previous reports that it impairs the retinoid, sonic hedgehog, and folate metabolism pathways raise concern that it may impair closure of the embryonic neural tube (NT), producing NT defects including spina bifida and exencephaly. METHODS We undertook teratogenicity testing of CBD in mouse whole embryo culture. RESULTS At concentrations that do not diminish embryo viability, growth, or axial rotation, CBD dose-dependently impairs cranial NT closure, increasing the proportion of embryos that develop exencephaly. It concomitantly diminishes closure of the spinal NT, the posterior neuropore (PNP), producing longer neuropores at the end of culture which is a hallmark of spina bifida risk. Exposure to CBD does not disrupt the formation of long F-actin cables in surface ectoderm cells flanking the PNP or folding of the neuroepithelium at predictable hinge points. At the cellular level, CBD exposure does not alter proliferation or apoptosis of the spinal neuroepithelium. DISCUSSION Thus, CBD acts selectively as a neuroteratogen predisposing to spina bifida and exencephaly in mouse whole embryo culture at exposure levels not associated with overt toxicity. Large-scale testing of CBD's effects on NT closure, particularly in at-risk groups, is warranted to inform its marketing to women of childbearing age.
Collapse
Affiliation(s)
- Yosuf Gheasuddin
- Developmental Biology and CancerUCL GOS Institute of Child HealthLondonUK
| | - Gabriel L. Galea
- Developmental Biology and CancerUCL GOS Institute of Child HealthLondonUK
| |
Collapse
|
14
|
Staddon MF, Murrell MP, Banerjee S. Interplay between substrate rigidity and tissue fluidity regulates cell monolayer spreading. SOFT MATTER 2022; 18:7877-7886. [PMID: 36205535 PMCID: PMC9700261 DOI: 10.1039/d2sm00757f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Coordinated and cooperative motion of cells is essential for embryonic development, tissue morphogenesis, wound healing and cancer invasion. A predictive understanding of the emergent mechanical behaviors in collective cell motion is challenging due to the complex interplay between cell-cell interactions, cell-matrix adhesions and active cell behaviors. To overcome this challenge, we develop a predictive cellular vertex model that can delineate the relative roles of substrate rigidity, tissue mechanics and active cell properties on the movement of cell collectives. We apply the model to the specific case of collective motion in cell aggregates as they spread into a two-dimensional cell monolayer adherent to a soft elastic matrix. Consistent with recent experiments, we find that substrate stiffness regulates the driving forces for the spreading of cellular monolayer, which can be pressure-driven or crawling-based depending on substrate rigidity. On soft substrates, cell monolayer spreading is driven by an active pressure due to the influx of cells coming from the aggregate, whereas on stiff substrates, cell spreading is driven primarily by active crawling forces. Our model predicts that cooperation of cell crawling and tissue pressure drives faster spreading, while the spreading rate is sensitive to the mechanical properties of the tissue. We find that solid tissues spread faster on stiff substrates, with spreading rate increasing with tissue tension. By contrast, the spreading of fluid tissues is independent of substrate stiffness and is slower than solid tissues. We compare our theoretical results with experimental results on traction force generation and spreading kinetics of cell monolayers, and provide new predictions on the role of tissue fluidity and substrate rigidity on collective cell motion.
Collapse
Affiliation(s)
- Michael F Staddon
- Center for Systems Biology Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Michael P Murrell
- Department of Biomedical Engineering and Department of Physics, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | | |
Collapse
|
15
|
Okimura C, Iwanaga M, Sakurai T, Ueno T, Urano Y, Iwadate Y. Leading-edge elongation by follower cell interruption in advancing epithelial cell sheets. Proc Natl Acad Sci U S A 2022; 119:e2119903119. [PMID: 35476514 PMCID: PMC9170137 DOI: 10.1073/pnas.2119903119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/21/2022] [Indexed: 11/18/2022] Open
Abstract
Collective cell migration is seen in many developmental and pathological processes, such as morphogenesis, wound closure, and cancer metastasis. When a fish scale is detached and adhered to a substrate, epithelial keratocyte sheets crawl out from it, building a semicircular pattern. All the keratocytes at the leading edge of the sheet have a single lamellipodium, and are interconnected with each other via actomyosin cables. The leading edge of the sheet becomes gradually longer as it crawls out from the scale, regardless of the cell-to-cell connections. In this study, we found leading-edge elongation to be realized by the interruption of follower cells into the leading edge. The follower cell and the two adjacent leader cells are first connected by newly emerging actomyosin cables. Then, the contractile forces along the cables bring the follower cell forward to make it a leader cell. Finally, the original cables between the two leader cells are stretched to tear by the interruption and the lamellipodium extension from the new leader cell. This unique actomyosin-cable reconnection between a follower cell and adjacent leaders offers insights into the mechanisms of collective cell migration.
Collapse
Affiliation(s)
- Chika Okimura
- Department of Biology, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Misaki Iwanaga
- Department of Biology, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Tatsunari Sakurai
- Department of Mathematical Engineering, Musashino University, Tokyo 135-8181, Japan
| | - Tasuku Ueno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yoshiaki Iwadate
- Department of Biology, Yamaguchi University, Yamaguchi 753-8512, Japan
| |
Collapse
|
16
|
Fritzsch B, Martin PR. Vision and retina evolution: how to develop a retina. IBRO Neurosci Rep 2022; 12:240-248. [PMID: 35449767 PMCID: PMC9018162 DOI: 10.1016/j.ibneur.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/30/2022] [Indexed: 12/29/2022] Open
Abstract
Early in vertebrate evolution, a single homeobox (Hox) cluster in basal chordates was quadrupled to generate the Hox gene clusters present in extant vertebrates. Here we ask how this expanded gene pool may have influenced the evolution of the visual system. We suggest that a single neurosensory cell type split into ciliated sensory cells (photoreceptors, which transduce light) and retinal ganglion cells (RGC, which project to the brain). In vertebrates, development of photoreceptors is regulated by the basic helix-loop-helix (bHLH) transcription factor Neurod1 whereas RGC development depends on Atoh7 and related bHLH genes. Lancelet (a basal chordate) does not express Neurod or Atoh7 and possesses a few neurosensory cells with cilia that reach out of the opening of the neural tube. Sea-squirts (Ascidians) do not express Neurod and express a different bHLH gene, Atoh8, that is likely expressed in the anterior vesicle. Recent data indicate the neurosensory cells in lancelets may correspond to three distinct eye fields in ascidians, which in turn may be the basis of the vertebrate retina, pineal and parapineal. In this review we contrast the genetic control of visual structure development in these chordates with that of basal vertebrates such as lampreys and hagfish, and jawed vertebrates. We propose an evolutionary sequence linking whole-genome duplications, initially to a split between photoreceptor and projection neurons (RGC) and subsequently between pineal and lateral eye structures.
Collapse
|
17
|
Staddon MF, Munro EM, Banerjee S. Pulsatile contractions and pattern formation in excitable actomyosin cortex. PLoS Comput Biol 2022; 18:e1009981. [PMID: 35353813 PMCID: PMC9000090 DOI: 10.1371/journal.pcbi.1009981] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/11/2022] [Accepted: 03/01/2022] [Indexed: 11/23/2022] Open
Abstract
The actin cortex is an active adaptive material, embedded with complex regulatory networks that can sense, generate, and transmit mechanical forces. The cortex exhibits a wide range of dynamic behaviours, from generating pulsatory contractions and travelling waves to forming organised structures. Despite the progress in characterising the biochemical and mechanical components of the actin cortex, the emergent dynamics of this mechanochemical system is poorly understood. Here we develop a reaction-diffusion model for the RhoA signalling network, the upstream regulator for actomyosin assembly and contractility, coupled to an active actomyosin gel, to investigate how the interplay between chemical signalling and mechanical forces regulates stresses and patterns in the cortex. We demonstrate that mechanochemical feedback in the cortex acts to destabilise homogeneous states and robustly generate pulsatile contractions. By tuning active stress in the system, we show that the cortex can generate propagating contraction pulses, form network structures, or exhibit topological turbulence. The cellular actin cortex is a dynamic sub-membranous network of filamentous actin, myosin motors, and other accessory proteins that regulates the ability of cells to maintain or change shapes. While the key molecular components and mechanical properties of the actin cortex have been characterized, the ways in which biochemical signalling and mechanical forces interact to regulate cortex behaviours remain poorly understood. In this article, we develop a mathematical model for the actomyosin cortex that combines the reaction-diffusion dynamics of signalling proteins with active force generation by actomyosin networks. Using this model, we investigate how the feedback between mechanics and biochemical signalling regulates the propagation of actomyosin flows, mechanical stresses, and pattern formation in the cortex. Our work reveals a variety of ways in which the cortex can tune the dynamic coupling between biochemical activity, force production, and advective transport to control mechanical behaviours.
Collapse
Affiliation(s)
- Michael F. Staddon
- Center for Systems Biology Dresden, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Edwin M. Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, United States of America
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, United States of America
| | - Shiladitya Banerjee
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
18
|
Mechanics of neural tube morphogenesis. Semin Cell Dev Biol 2021; 130:56-69. [PMID: 34561169 DOI: 10.1016/j.semcdb.2021.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 01/07/2023]
Abstract
The neural tube is an important model system of morphogenesis representing the developmental module of out-of-plane epithelial deformation. As the embryonic precursor of the central nervous system, the neural tube also holds keys to many defects and diseases. Recent advances begin to reveal how genetic, cellular and environmental mechanisms work in concert to ensure correct neural tube shape. A physical model is emerging where these factors converge at the regulation of the mechanical forces and properties within and around the tissue that drive tube formation towards completion. Here we review the dynamics and mechanics of neural tube morphogenesis and discuss the underlying cellular behaviours from the viewpoint of tissue mechanics. We will also highlight some of the conceptual and technical next steps.
Collapse
|
19
|
Maniou E, Staddon MF, Marshall AR, Greene NDE, Copp AJ, Banerjee S, Galea GL. Hindbrain neuropore tissue geometry determines asymmetric cell-mediated closure dynamics in mouse embryos. Proc Natl Acad Sci U S A 2021; 118:e2023163118. [PMID: 33941697 PMCID: PMC8126771 DOI: 10.1073/pnas.2023163118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gap closure is a common morphogenetic process. In mammals, failure to close the embryonic hindbrain neuropore (HNP) gap causes fatal anencephaly. We observed that surface ectoderm cells surrounding the mouse HNP assemble high-tension actomyosin purse strings at their leading edge and establish the initial contacts across the embryonic midline. Fibronectin and laminin are present, and tensin 1 accumulates in focal adhesion-like puncta at this leading edge. The HNP gap closes asymmetrically, faster from its rostral than caudal end, while maintaining an elongated aspect ratio. Cell-based physical modeling identifies two closure mechanisms sufficient to account for tissue-level HNP closure dynamics: purse-string contraction and directional cell motion implemented through active crawling. Combining both closure mechanisms hastens gap closure and produces a constant rate of gap shortening. Purse-string contraction reduces, whereas crawling increases gap aspect ratio, and their combination maintains it. Closure rate asymmetry can be explained by asymmetric embryo tissue geometry, namely a narrower rostral gap apex, whereas biomechanical tension inferred from laser ablation is equivalent at the gaps' rostral and caudal closure points. At the cellular level, the physical model predicts rearrangements of cells at the HNP rostral and caudal extremes as the gap shortens. These behaviors are reproducibly live imaged in mouse embryos. Thus, mammalian embryos coordinate cellular- and tissue-level mechanics to achieve this critical gap closure event.
Collapse
Affiliation(s)
- Eirini Maniou
- Department of Developmental Biology and Cancer Researching and Teaching, University College London Great Ormond Street Institute of Child Health, WC1N 1EH London, United Kingdom
| | - Michael F Staddon
- Department of Physics and Astronomy, University College London, WC1E 6BT London, United Kingdom
| | - Abigail R Marshall
- Department of Developmental Biology and Cancer Researching and Teaching, University College London Great Ormond Street Institute of Child Health, WC1N 1EH London, United Kingdom
| | - Nicholas D E Greene
- Department of Developmental Biology and Cancer Researching and Teaching, University College London Great Ormond Street Institute of Child Health, WC1N 1EH London, United Kingdom
| | - Andrew J Copp
- Department of Developmental Biology and Cancer Researching and Teaching, University College London Great Ormond Street Institute of Child Health, WC1N 1EH London, United Kingdom
| | | | - Gabriel L Galea
- Department of Developmental Biology and Cancer Researching and Teaching, University College London Great Ormond Street Institute of Child Health, WC1N 1EH London, United Kingdom;
- Department of Comparative Bioveterinary Sciences, Royal Veterinary College, NW1 0TU London, United Kingdom
| |
Collapse
|