1
|
Incontro S, Musella ML, Sammari M, Di Scala C, Fantini J, Debanne D. Lipids shape brain function through ion channel and receptor modulations: physiological mechanisms and clinical perspectives. Physiol Rev 2025; 105:137-207. [PMID: 38990068 DOI: 10.1152/physrev.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Lipids represent the most abundant molecular type in the brain, with a fat content of ∼60% of the dry brain weight in humans. Despite this fact, little attention has been paid to circumscribe the dynamic role of lipids in brain function and disease. Membrane lipids such as cholesterol, phosphoinositide, sphingolipids, arachidonic acid, and endocannabinoids finely regulate both synaptic receptors and ion channels that ensure critical neural functions. After a brief introduction on brain lipids and their respective properties, we review here their role in regulating synaptic function and ion channel activity, action potential propagation, neuronal development, and functional plasticity and their contribution in the development of neurological and neuropsychiatric diseases. We also provide possible directions for future research on lipid function in brain plasticity and diseases.
Collapse
Affiliation(s)
| | | | - Malika Sammari
- UNIS, INSERM, Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
2
|
Loix M, Vanherle S, Turri M, Kemp S, Fernandes KJL, Hendriks JJA, Bogie JFJ. Stearoyl-CoA desaturase-1: a potential therapeutic target for neurological disorders. Mol Neurodegener 2024; 19:85. [PMID: 39563397 PMCID: PMC11575020 DOI: 10.1186/s13024-024-00778-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024] Open
Abstract
Disturbances in the fatty acid lipidome are increasingly recognized as key drivers in the progression of various brain disorders. In this review article, we delve into the impact of Δ9 fatty acid desaturases, with a particular focus on stearoyl-CoA desaturase-1 (SCD1), within the setting of neuroinflammation, neurodegeneration, and brain repair. Over the past years, it was established that inhibition or deficiency of SCD1 not only suppresses neuroinflammation but also protects against neurodegeneration in conditions such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. This protective effect is achieved through different mechanisms including enhanced remyelination, reversal of synaptic and cognitive impairments, and mitigation of α-synuclein toxicity. Intriguingly, metabolic rerouting of fatty acids via SCD1 improves the pathology associated with X-linked adrenoleukodystrophy, suggesting context-dependent benign and harmful effects of SCD1 inhibition in the brain. Here, we summarize and discuss the cellular and molecular mechanisms underlying both the beneficial and detrimental effects of SCD1 in these neurological disorders. We explore commonalities and distinctions, shedding light on potential therapeutic challenges. Additionally, we touch upon future research directions that promise to deepen our understanding of SCD1 biology in brain disorders and potentially enhance the clinical utility of SCD1 inhibitors.
Collapse
Affiliation(s)
- Melanie Loix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Sam Vanherle
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Marta Turri
- Research Center on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, Canada
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Stephan Kemp
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, NH, Netherlands
| | - Karl J L Fernandes
- Research Center on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, Canada
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Jerome J A Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Jeroen F J Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.
- University MS Center Hasselt, Pelt, Belgium.
| |
Collapse
|
3
|
Chow ST, Fan J, Zhang X, Wang Y, Li Y, Ng CF, Pei X, Zheng Q, Wang F, Wu D, Chan FL. Nuclear receptor TLX functions to promote cancer stemness and EMT in prostate cancer via its direct transactivation of CD44 and stem cell-regulatory transcription factors. Br J Cancer 2024; 131:1450-1462. [PMID: 39322688 PMCID: PMC11519473 DOI: 10.1038/s41416-024-02843-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Prostate cancer stem cells (PCSCs) play crucial roles in therapy-resistance and metastasis in castration-resistant prostate cancer (CRPC). Certain functional link between cancer stemness and epithelial-mesenchymal transition (EMT) is involved in CRPC. However, up-stream regulators controlling these two processes in PCSCs are still poorly understood. Recently, we have shown that orphan nuclear receptor TLX can promote tumour initiation and progression in CRPC by repressing androgen receptor and oncogene-induced senescence. METHODS PCSCs were isolated from various prostate cancer cell lines and clinical tumour tissues using multiple methods for various in vitro and in vivo oncogenic growth analyses. Direct targets of TLX involved in stemness and EMT regulation were determined by specific reporter gene assays and ligand-driven modulation of TLX activity. RESULTS PCSCs isolated from various sources exhibited increased expression of TLX. Functional and molecular characterisation showed that TLX could function to promote cancer stemness and EMT in prostate cancer cells via its direct transactivation of CD44, SOX2, POU5F1 and NANOG, which share certain functional crosstalk in these two cellular processes. CONCLUSIONS TLX could act as a key up-stream regulator in transcriptional control of stemness and EMT in PCSCs, which contribute to their tumorigenicity, castration-resistance and metastasis potentials in advanced prostate cancer.
Collapse
Affiliation(s)
- Sin Ting Chow
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong, China
| | - Jiaqi Fan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong, China
| | - Xingxing Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong, China
| | - Yuliang Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong, China
| | - Youjia Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong, China
| | - Chi-Fai Ng
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong, China
| | - Xiaojuan Pei
- Department of Pathology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guandong, China
| | - Qingyou Zheng
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong Province, China
| | - Fei Wang
- Department of Urology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
| | - Dinglan Wu
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong, China.
- Department of Urology and The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| | - Franky Leung Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong, China.
| |
Collapse
|
4
|
Li Z, Fu J, Jiang K, Gao J, Guo Y, Li C, Zhao L, Nam J, Gao H. Hyperbaric Oxygen Improves Cognitive Impairment Induced by Hypoxia via Upregulating the Expression of Oleic Acid and MBOAT2 of Mice. Antioxidants (Basel) 2024; 13:1320. [PMID: 39594462 PMCID: PMC11591255 DOI: 10.3390/antiox13111320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024] Open
Abstract
Cognitive impairment (CI) causes severe impairment of brain function and quality of life of patients, which brings a great burden to society. Cerebral hypoxia is an important factor in the pathogenesis of CI. Hyperbaric oxygen (HBO) therapy may mitigate hypoxia-induced CI, but its efficacy and mechanisms are not fully understood. In this study, a mice model of CI induced by hypoxia environment was established, then behavioral tests, pathological examination, metabolomic and lipidomic analyses, and molecular biology were used to assess the impact of HBO on hypoxia-induced CI. HBO was found to alleviate CI and pathological damage of hypoxia mice. Metabolomic, lipidomic, and molecular biology analyses showed that HBO increased the levels of oleic acid (OA) and membrane-bound O-acyltransferase 2 (MBOAT2), thereby altering the composition of membrane phospholipids (PLs) and reducing hypoxia-induced neuronal ferroptosis (FPT) to interfere with cognitive function in mice. In vitro experiments confirmed that OA and MBOAT2 led to membrane PL remodeling in a mutually dependent manner, affecting cell resistance to hypoxia-FPT. The results emphasized the combined effect value of OA and MBOAT2 in HBO for hypoxia-induced CI, and provided a novel perspective for the treatment of CI by HBO.
Collapse
Affiliation(s)
- Zhen Li
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Metabonomics & Medical NMR, Wenzhou Medical University, Wenzhou 325035, China (J.F.); (K.J.); (C.L.); (L.Z.)
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jun Fu
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Metabonomics & Medical NMR, Wenzhou Medical University, Wenzhou 325035, China (J.F.); (K.J.); (C.L.); (L.Z.)
- Innocation Academy of Testing Technology, Research and Experiment Center, Wenzhou Medical University, Wenzhou 325035, China
| | - Kaiyuan Jiang
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Metabonomics & Medical NMR, Wenzhou Medical University, Wenzhou 325035, China (J.F.); (K.J.); (C.L.); (L.Z.)
| | - Jie Gao
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Metabonomics & Medical NMR, Wenzhou Medical University, Wenzhou 325035, China (J.F.); (K.J.); (C.L.); (L.Z.)
| | - Yuejun Guo
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Metabonomics & Medical NMR, Wenzhou Medical University, Wenzhou 325035, China (J.F.); (K.J.); (C.L.); (L.Z.)
| | - Chen Li
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Metabonomics & Medical NMR, Wenzhou Medical University, Wenzhou 325035, China (J.F.); (K.J.); (C.L.); (L.Z.)
| | - Liangcai Zhao
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Metabonomics & Medical NMR, Wenzhou Medical University, Wenzhou 325035, China (J.F.); (K.J.); (C.L.); (L.Z.)
| | - Jutaek Nam
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Metabonomics & Medical NMR, Wenzhou Medical University, Wenzhou 325035, China (J.F.); (K.J.); (C.L.); (L.Z.)
- Innocation Academy of Testing Technology, Research and Experiment Center, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
5
|
Hank EC, Sai M, Kasch T, Meijer I, Marschner JA, Merk D. Development of Tailless Homologue Receptor (TLX) Agonist Chemical Tools. J Med Chem 2024; 67:16598-16611. [PMID: 39236094 DOI: 10.1021/acs.jmedchem.4c01443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The human tailless homologue receptor (TLX) is a ligand-activated transcription factor acting as a master regulator of neural stem cell homeostasis. Despite its promising potential in neurodegenerative disease treatment, TLX ligands are rare but required to explore phenotypic effects of TLX modulation and for target validation. We have systematically studied and optimized a TLX agonist scaffold obtained by fragment fusion. Structural modification enabled the development of two TLX agonists endowed with nanomolar potency and binding affinity. Both exhibited favorable chemical tool characteristics including high selectivity and low toxicity. Most notably, the TLX agonists comprise different scaffolds and display high chemical diversity, enabling their use as a set for target identification and validation studies.
Collapse
Affiliation(s)
- Emily C Hank
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Minh Sai
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Till Kasch
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Isabelle Meijer
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Julian A Marschner
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Daniel Merk
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| |
Collapse
|
6
|
Li YB, Fu Q, Guo M, Du Y, Chen Y, Cheng Y. MicroRNAs: pioneering regulators in Alzheimer's disease pathogenesis, diagnosis, and therapy. Transl Psychiatry 2024; 14:367. [PMID: 39256358 PMCID: PMC11387755 DOI: 10.1038/s41398-024-03075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
This article delves into Alzheimer's disease (AD), a prevalent neurodegenerative condition primarily affecting the elderly. It is characterized by progressive memory and cognitive impairments, severely disrupting daily life. Recent research highlights the potential involvement of microRNAs in the pathogenesis of AD. MicroRNAs (MiRNAs), short non-coding RNAs comprising 20-24 nucleotides, significantly influence gene regulation by hindering translation or promoting degradation of target genes. This review explores the role of specific miRNAs in AD progression, focusing on their impact on β-amyloid (Aβ) peptide accumulation, intracellular aggregation of hyperphosphorylated tau proteins, mitochondrial dysfunction, neuroinflammation, oxidative stress, and the expression of the APOE4 gene. Our insights contribute to understanding AD's pathology, offering new avenues for identifying diagnostic markers and developing novel therapeutic targets.
Collapse
Affiliation(s)
- Yao-Bo Li
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Qiang Fu
- Institute of National Security, Minzu University of China, Beijing, China
| | - Mei Guo
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Yang Du
- Institute of National Security, Minzu University of China, Beijing, China
| | - Yuewen Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China.
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China.
- Institute of National Security, Minzu University of China, Beijing, China.
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China.
| |
Collapse
|
7
|
Sánchez-Ramírez E, Ung TPL, Stringari C, Aguilar-Arnal L. Emerging Functional Connections Between Metabolism and Epigenetic Remodeling in Neural Differentiation. Mol Neurobiol 2024; 61:6688-6707. [PMID: 38340204 PMCID: PMC11339152 DOI: 10.1007/s12035-024-04006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Stem cells possess extraordinary capacities for self-renewal and differentiation, making them highly valuable in regenerative medicine. Among these, neural stem cells (NSCs) play a fundamental role in neural development and repair processes. NSC characteristics and fate are intricately regulated by the microenvironment and intracellular signaling. Interestingly, metabolism plays a pivotal role in orchestrating the epigenome dynamics during neural differentiation, facilitating the transition from undifferentiated NSC to specialized neuronal and glial cell types. This intricate interplay between metabolism and the epigenome is essential for precisely regulating gene expression patterns and ensuring proper neural development. This review highlights the mechanisms behind metabolic regulation of NSC fate and their connections with epigenetic regulation to shape transcriptional programs of stemness and neural differentiation. A comprehensive understanding of these molecular gears appears fundamental for translational applications in regenerative medicine and personalized therapies for neurological conditions.
Collapse
Affiliation(s)
- Edgar Sánchez-Ramírez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Thi Phuong Lien Ung
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Chiara Stringari
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
8
|
Chen Y, Anderson MT, Payne N, Santori FR, Ivanova NB. Nuclear Receptors and the Hidden Language of the Metabolome. Cells 2024; 13:1284. [PMID: 39120315 PMCID: PMC11311682 DOI: 10.3390/cells13151284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Nuclear hormone receptors (NHRs) are a family of ligand-regulated transcription factors that control key aspects of development and physiology. The regulation of NHRs by ligands derived from metabolism or diet makes them excellent pharmacological targets, and the mechanistic understanding of how NHRs interact with their ligands to regulate downstream gene networks, along with the identification of ligands for orphan NHRs, could enable innovative approaches for cellular engineering, disease modeling and regenerative medicine. We review recent discoveries in the identification of physiologic ligands for NHRs. We propose new models of ligand-receptor co-evolution, the emergence of hormonal function and models of regulation of NHR specificity and activity via one-ligand and two-ligand models as well as feedback loops. Lastly, we discuss limitations on the processes for the identification of physiologic NHR ligands and emerging new methodologies that could be used to identify the natural ligands for the remaining 17 orphan NHRs in the human genome.
Collapse
Affiliation(s)
- Yujie Chen
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Matthew Tom Anderson
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
| | - Nathaniel Payne
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
| | - Fabio R. Santori
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
| | - Natalia B. Ivanova
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
9
|
Zeng Y, Cao S, Tang J, Lin G. Effects of saturated and monounsaturated fatty acids on cognitive impairment: evidence from Mendelian randomization study. Eur J Clin Nutr 2024; 78:585-590. [PMID: 38632331 DOI: 10.1038/s41430-024-01437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Prior observational studies have suggested correlations between saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs) with cognitive function. However, causal relationships remains unclear. METHODS We assessed the causal impact of two SFAs (palmitic acid [PA] and stearic acid [SA]) and two MUFAs (oleic acid [OA] and palmitoleic acid [POA]) on cognitive function-related traits, and dementia-related traits by univariable Mendelian randomization (UVMR) and multivariable Mendelian randomization (MVMR) analyses. RESULTS UVMR indicated β of 0.060 (P = 4.05E-06) for cognitive performance score and 0.066 (P = 4.21E-04) for fluid intelligence per standard deviation (SD) increase in OA level. MVMR indicated: (i) β of -0.608 (P = 8.37E-05) for fluid intelligence score per SD increase in POA; (ii) β of 0.074 (P = 0.018) for fluid intelligence score per SD increase in OA; (iii) β of 0.029 (P = 0.033) for number of incorrect matches in round per SD increase in PA; and (iv) β of 0.039 (P = 0.032) for number of incorrect matches in round per SD increase in SA. In addition, a secondary MVMR analysis after excluding the effect of polyunsaturated fatty acids suggested that: (i) β of -0.043 (P = 1.97E-02) for cognitive performance score per SD increase in PA and (ii) β of -0.079 (P = 1.79E-03) for cognitive performance score per SD increase in SA. CONCLUSIONS Overall, UVMR and MVMR suggest that OA may be beneficial for cognitive function, while POA, PA, and SA may have detrimental effects on cognitive function.
Collapse
Affiliation(s)
- Youjie Zeng
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Si Cao
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, 410205, Hunan, China
| | - Juan Tang
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, Changsha, 410013, China.
| | - Guoxin Lin
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
10
|
Bou-Rouphael J, Doulazmi M, Eschstruth A, Abdou A, Durand BC. Cerebellar granular neuron progenitors exit their germinative niche via BarH-like1 activity mediated partly by inhibition of T-cell factor. Development 2024; 151:dev202234. [PMID: 38860486 DOI: 10.1242/dev.202234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Cerebellar granule neuron progenitors (GNPs) originate from the upper rhombic lip (URL), a germinative niche in which developmental defects produce human diseases. T-cell factor (TCF) responsiveness and Notch dependence are hallmarks of self-renewal in neural stem cells. TCF activity, together with transcripts encoding proneural gene repressors hairy and enhancer of split (Hes/Hey), are detected in the URL; however, their functions and regulatory modes are undeciphered. Here, we established amphibian as a pertinent model for studying vertebrate URL development. The amphibian long-lived URL is TCF active, whereas the external granular layer (EGL) is non-proliferative and expresses hes4 and hes5 genes. Using functional and transcriptomic approaches, we show that TCF activity is necessary for URL emergence and maintenance. We establish that the transcription factor Barhl1 controls GNP exit from the URL, acting partly through direct TCF inhibition. Identification of Barhl1 target genes suggests that, besides TCF, Barhl1 inhibits transcription of hes5 genes independently of Notch signaling. Observations in amniotes suggest a conserved role for Barhl in maintenance of the URL and/or EGL via co-regulation of TCF, Hes and Hey genes.
Collapse
Affiliation(s)
- Johnny Bou-Rouphael
- Sorbonne Université, CNRS UMR7622, Institut de Biologie Paris-Seine (IBPS) - Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Mohamed Doulazmi
- Sorbonne Université, CNRS UMR8256, Institut de Biologie Paris-Seine (IBPS) - Laboratoire Adaptation Biologique et Vieillissement, 75005 Paris, France
| | - Alexis Eschstruth
- Sorbonne Université, CNRS UMR7622, Institut de Biologie Paris-Seine (IBPS) - Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Asna Abdou
- Sorbonne Université, CNRS UMR7622, Institut de Biologie Paris-Seine (IBPS) - Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Béatrice C Durand
- Sorbonne Université, CNRS UMR7622, Institut de Biologie Paris-Seine (IBPS) - Laboratoire de Biologie du Développement, 75005 Paris, France
- Sorbonne Université, CNRS UMR8256, Institut de Biologie Paris-Seine (IBPS) - Laboratoire Adaptation Biologique et Vieillissement, 75005 Paris, France
| |
Collapse
|
11
|
Dakterzada F, Jové M, Cantero JL, Mota‐Martorell N, Pamplona R, Piñoll‐Ripoll G. The shift in the fatty acid composition of the circulating lipidome in Alzheimer's disease. Alzheimers Dement 2024; 20:3322-3333. [PMID: 38534027 PMCID: PMC11095469 DOI: 10.1002/alz.13792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/28/2024]
Abstract
INTRODUCTION Fatty acids (FAs) are the building blocks of complex lipids and signaling compounds; the role of the lipidome fatty acid profile (LFA) in AD progression remains unclear. METHODS The LFA of plasma and cerebrospinal fluid (CSF) samples from 289 participants (103 AD patients, 92 MCI patients, and 94 controls) was determined by GC-FID. The MCI subjects were followed up for 58 ± 12.5 months. RESULTS In controls, CSF has a more neuroprotective LFA than plasma. In CSF, a higher content of docosahexaenoic acid was associated with a reduced risk of MCI-to-AD progression. In plasma, higher oleic acid content was associated with lower risk of AD, MCI, and MCI-to-AD progression, whereas higher levels of vaccenic acid and docosahexaenoic acid were associated with greater risk of AD and MCI, and higher rate of MCI-to-AD progression, respectively. DISCUSSION The circulating LFA is involved in the pathogenesis and progression of AD. HIGHLIGHTS The lipidome fatty acid profile in CSF and plasma was markedly different. Higher levels of vaccenic acid and lower levels of oleic acid in plasma were associated with greater risk of Alzheimer's disease. In plasma, higher levels of oleic acid were associated with a reduced risk of MCI-to-AD progression. Higher levels of docosahexaenoic acid in CSF were associated with a lower risk of MCI-to-AD progression. Higher levels of docosahexaenoic acid in plasma were associated with a greater rate of MCI-to-AD progression.
Collapse
Affiliation(s)
- Farida Dakterzada
- Cognitive Disorders UnitCognition and Behavior Study Group, IRBLleidaHospital Universitari Santa MariaLleidaSpain
| | - Mariona Jové
- Department of Experimental MedicineUniversity of LleidaLleidaSpain
| | - José Luís Cantero
- Laboratory of Functional NeurosciencePablo de Olavide UniversitySevilleSpain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED)Instituto de Salud Carlos IIIMadridSpain
| | | | - Reinald Pamplona
- Department of Experimental MedicineUniversity of LleidaLleidaSpain
| | - Gerard Piñoll‐Ripoll
- Cognitive Disorders UnitCognition and Behavior Study Group, IRBLleidaHospital Universitari Santa MariaLleidaSpain
| |
Collapse
|
12
|
Safe S. Natural products and synthetic analogs as selective orphan nuclear receptor 4A (NR4A) modulators. Histol Histopathol 2024; 39:543-556. [PMID: 38116863 PMCID: PMC11267491 DOI: 10.14670/hh-18-689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Although endogenous ligands for the orphan nuclear receptor 4A1 (NR4A1, Nur77), NR4A2 (Nurr1), and NR4A3 (Nor-1) have not been identified, several natural products and synthetic analogs bind NR4A members. These studies are becoming increasingly important since members of the NR4A subfamily of 3 receptors are potential drug targets for treating cancer and non-cancer endpoints and particularly those conditions associated with inflammatory diseases. Ligands that bind NR4A1, NR4A2, and NR4A3 including Cytosporone B, celastrol, bis-indole derived (CDIM) compounds, tryptophan/indolic, metabolites, prostaglandins, resveratrol, piperlongumine, fatty acids, flavonoids, alkaloids, peptides, and drug families including statins and antimalarial drugs. The structural diversity of NR4A ligands and their overlapping and unique effects on NR4A1, NR4A2, and NR4A3 suggest that NR4A ligands are selective NR4A modulators (SNR4AMs) that exhibit tissue-, structure-, and response-specific activities. The SNR4AM activities of NR4A ligands are exemplified among the Cytosporone B analogs where n-pentyl-2-[3,5-dihydroxy-2-(nonanoyl)]phenyl acetate (PDNPA) binds NR4A1, NR4A2 and NR4A3 but activates only NR4A1 and exhibits significant functional differences with other Cytosporone B analogs. The number of potential clinical applications of agents targeting NR4A is increasing and this should spur future development of SNR4AMs as therapeutics that act through NR4A1, NR4A2 and NR4A3.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
13
|
Aljuraysi S, Platt M, Pulix M, Poptani H, Plagge A. Microcephaly with a disproportionate hippocampal reduction, stem cell loss and neuronal lipid droplet symptoms in Trappc9 KO mice. Neurobiol Dis 2024; 192:106431. [PMID: 38331351 DOI: 10.1016/j.nbd.2024.106431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024] Open
Abstract
Mutations of the human TRAFFICKING PROTEIN PARTICLE COMPLEX SUBUNIT 9 (TRAPPC9) cause a neurodevelopmental disorder characterised by microcephaly and intellectual disability. Trappc9 constitutes a subunit specific to the intracellular membrane-associated TrappII complex. The TrappII complex interacts with Rab11 and Rab18, the latter being specifically associated with lipid droplets (LDs). Here we used non-invasive imaging to characterise Trappc9 knock-out (KO) mice as a model of the human hereditary disorder. KOs developed postnatal microcephaly with many grey and white matter regions being affected. In vivo magnetic resonance imaging (MRI) identified a disproportionately stronger volume reduction in the hippocampus, which was associated with a significant loss of Sox2-positive neural stem and progenitor cells. Diffusion tensor imaging indicated a reduced organisation or integrity of white matter areas. Trappc9 KOs displayed behavioural abnormalities in several tests related to exploration, learning and memory. Trappc9-deficient primary hippocampal neurons accumulated a larger LD volume per cell following Oleic Acid stimulation, and the coating of LDs by Perilipin-2 was much reduced. Additionally, Trappc9 KOs developed obesity, which was significantly more severe in females than in males. Our findings indicate that, beyond previously reported Rab11-related vesicle transport defects, dysfunctions in LD homeostasis might contribute to the neurobiological symptoms of Trappc9 deficiency.
Collapse
Affiliation(s)
- Sultan Aljuraysi
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mark Platt
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Michela Pulix
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Harish Poptani
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK.
| | - Antonius Plagge
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK.
| |
Collapse
|
14
|
Markham L, Koelblen T, Chobanian HR, Follis AV, Burris TP, Micalizio GC. From Functional Fatty Acids to Potent and Selective Natural-Product-Inspired Mimetics via Conformational Profiling. ACS CENTRAL SCIENCE 2024; 10:477-486. [PMID: 38435518 PMCID: PMC10906247 DOI: 10.1021/acscentsci.3c01155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 03/05/2024]
Abstract
Fatty acids play important signaling roles in biology, albeit typically lacking potency or selectivity, due to their substantial conformational flexibility. While being recognized as having properties of potentially great value as therapeutics, it is often the case that the functionally relevant conformation of the natural fatty acid is not known, thereby complicating efforts to develop natural-product-inspired ligands that have similar functional properties along with enhanced potency and selectivity profiles. In other words, without structural information associated with a particular functional relationship and the hopelessly unbiased conformational preferences of the endogenous ligand, one is molecularly ill-informed regarding the precise ligand-receptor interactions that play a role in driving the biological activity of interest. To address this problem, a molecular strategy to query the relevance of distinct subpopulations of fatty acid conformers has been established through "conformational profiling", a process whereby a unique collection of chiral and conformationally constrained fatty acids is employed to deconvolute beneficial structural features that impart natural-product-inspired function. Using oleic acid as an example because it is known to engage a variety of receptors, including GPR40, GPR120, and TLX, a 24-membered collection of mimetics was designed and synthesized. It was then demonstrated that this collection contained members that have enhanced potency and selectivity profiles, with some being clearly biased for engagement of the GPCRs GPR40 and GPR120 while others were identified as potent and selective modulators of the nuclear receptor TLX. A chemical synthesis strategy that exploited the power of modern technology for stereoselective synthesis was critical to achieving success, establishing a common sequence of bond-forming reactions to access a disparate collection of chiral mimetics, whose conformational preferences are impacted by the nature of stereodefined moieties differentially positioned about the C18 skeleton of the parent fatty acid. Overall, this study establishes a foundation to fuel future programs aimed at developing natural-product-inspired fatty acid mimetics as valuable tools in chemical biology and potential therapeutic leads.
Collapse
Affiliation(s)
- Lauren
E. Markham
- Department
of Chemistry, Dartmouth College, 6128 Burke Laboratory, Hanover, New Hampshire 03755, United States
| | - Thomas Koelblen
- University
of Florida Genetics Institute, P.O. Box 103610, 2033 Mowry Road, Gainesville, Florida 32610, United States
| | - Harry R. Chobanian
- ROME
Therapeutics, 201 Brookline Avenue, Suite 1001, Boston, Massachusetts 02215, United States
| | - Ariele Viacava Follis
- ROME
Therapeutics, 201 Brookline Avenue, Suite 1001, Boston, Massachusetts 02215, United States
| | - Thomas P. Burris
- University
of Florida Genetics Institute, P.O. Box 103610, 2033 Mowry Road, Gainesville, Florida 32610, United States
| | - Glenn C. Micalizio
- Department
of Chemistry, Dartmouth College, 6128 Burke Laboratory, Hanover, New Hampshire 03755, United States
| |
Collapse
|
15
|
Fan C, Xu J, Tong H, Fang Y, Chen Y, Lin Y, Chen R, Chen F, Wu G. Gut-brain communication mediates the impact of dietary lipids on cognitive capacity. Food Funct 2024; 15:1803-1824. [PMID: 38314832 DOI: 10.1039/d3fo05288e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cognitive impairment, as a prevalent symptom of nervous system disorders, poses one of the most challenging aspects in the management of brain diseases. Lipids present in the cell membranes of all neurons within the brain and dietary lipids can regulate the cognition and memory function. In recent years, the advancements in gut microbiome research have enabled the exploration of dietary lipids targeting the gut-brain axis as a strategy for regulating cognition. This present review provides an in-depth overview of how lipids modulate cognition via the gut-brain axis depending on metabolic, immune, neural and endocrine pathways. It also comprehensively analyzes the effects of diverse lipids on the gut microbiota and intestinal barrier function, thereby affecting the central nervous system and cognitive capacity. Moreover, comparative analysis of the positive and negative effects is presented between beneficial and detrimental lipids. The former encompass monounsaturated fatty acids, short-chain fatty acids, omega-3 polyunsaturated fatty acids, phospholipids, phytosterols, fungal sterols and bioactive lipid-soluble vitamins, as well as lipid-derived gut metabolites, whereas the latter (detrimental lipids) include medium- or long-chain fatty acids, excessive proportions of n-6 polyunsaturated fatty acids, industrial trans fatty acids, and zoosterols. To sum up, the focus of this review is on how gut-brain communication mediates the impact of dietary lipids on cognitive capacity, providing a novel theoretical foundation for promoting brain cognitive health and scientific lipid consumption patterns.
Collapse
Affiliation(s)
- Chenhan Fan
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Jingxuan Xu
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Haoxiang Tong
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yucheng Fang
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yiming Chen
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yangzhuo Lin
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Rui Chen
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Fuhao Chen
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Guoqing Wu
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
16
|
Chen M, Wang F, Lei H, Yang Z, Li C. In Silico Insights into Micro-Mechanism Understanding of Extracts of Taxus Chinensis Fruits Against Alzheimer's Disease. J Alzheimers Dis 2024; 97:727-740. [PMID: 38217605 DOI: 10.3233/jad-231066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
BACKGROUND The taxus chinensis fruit (TCF) shows promises in treatment of aging-related diseases such as Alzheimer's disease (AD). However, its related constituents and targets against AD have not been deciphered. OBJECTIVE This study was to uncover constituents and targets of TCF extracts against AD. METHODS An integrated approach including ultrasound extractions and constituent identification of TCF by UPLC-QE-MS/MS, target identification of constituents and AD by R data-mining from Pubchem, Drugbank and GEO databases, network construction, molecular docking and the ROC curve analysis was carried out. RESULTS We identified 250 compounds in TCF extracts, and obtained 3,231 known constituent targets and 5,326 differential expression genes of AD, and 988 intersection genes. Through the network construction and KEGG pathway analysis, 19 chemicals, 31 targets, and 11 biological pathways were obtained as core compounds, targets and pathways of TCF extracts against AD. Among these constituents, luteolin, oleic acid, gallic acid, baicalein, naringenin, lovastatin and rutin had obvious anti-AD effect. Molecular docking results further confirmed above results. The ROC AUC values of about 87% of these core targets of TCF extracts was greater than 0.5 in the two GEO chips of AD, especially 10 targets with ROC AUC values greater than 0.7, such as BCL2, CASP7, NFKBIA, HMOX1, CDK2, LDLR, RELA, and CCL2, which mainly referred to neuron apoptosis, response to oxidative stress and inflammation, fibroblast proliferation, etc.Conclusions:The TCF extracts have diverse active compounds that can act on the diagnostic genes of AD, which deserve further in-depth study.
Collapse
Affiliation(s)
- Meimei Chen
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Fengzhen Wang
- Certification Center for Chinese Physicians, State Administration of Traditional Chinese Medicine, Beijing, Beijing, China
| | - Huangwei Lei
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Zhaoyang Yang
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Candong Li
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| |
Collapse
|
17
|
Zhou C, Chen Y, Xue S, Shi Q, Guo L, Yu H, Xue F, Cai M, Wang H, Peng Z. rTMS ameliorates depressive-like behaviors and regulates the gut microbiome and medium- and long-chain fatty acids in mice exposed to chronic unpredictable mild stress. CNS Neurosci Ther 2023; 29:3549-3566. [PMID: 37269082 PMCID: PMC10580350 DOI: 10.1111/cns.14287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/18/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023] Open
Abstract
INTRODUCTION Repetitive transcranial magnetic stimulation (rTMS) is a clinically useful therapy for depression. However, the effects of rTMS on the metabolism of fatty acids (FAs) and the composition of gut microbiota in depression are not well established. METHODS Mice received rTMS (15 Hz, 1.26 T) for seven consecutive days after exposure to chronic unpredictable mild stress (CUMS). The subsequent depressive-like behaviors, the composition of gut microbiota of stool samples, as well as medium- and long-chain fatty acids (MLCFAs) in the plasma, prefrontal cortex (PFC), and hippocampus (HPC) were evaluated. RESULTS CUMS induced remarkable changes in gut microbiotas and fatty acids, specifically in community diversity of gut microbiotas and PUFAs in the brain. 15 Hz rTMS treatment alleviates depressive-like behaviors and partially normalized CUMS induced alterations of microbiotas and MLCFAs, especially the abundance of Cyanobacteria, Actinobacteriota, and levels of polyunsaturated fatty acids (PUFAs) in the hippocampus and PFC. CONCLUSION These findings revealed that the modulation of gut microbiotas and PUFAs metabolism might partly contribute to the antidepressant effect of rTMS.
Collapse
Affiliation(s)
- Cui‐Hong Zhou
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Yi‐Huan Chen
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Shan‐Shan Xue
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Qing‐Qing Shi
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Lin Guo
- Department of PsychiatryChang'an HospitalXi'anChina
| | - Huan Yu
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Fen Xue
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Min Cai
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Hua‐Ning Wang
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Zheng‐Wu Peng
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| |
Collapse
|
18
|
Rashidi SK, Kalirad A, Rafie S, Behzad E, Dezfouli MA. The role of microRNAs in neurobiology and pathophysiology of the hippocampus. Front Mol Neurosci 2023; 16:1226413. [PMID: 37727513 PMCID: PMC10506409 DOI: 10.3389/fnmol.2023.1226413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/11/2023] [Indexed: 09/21/2023] Open
Abstract
MicroRNAs (miRNAs) are short non-coding and well-conserved RNAs that are linked to many aspects of development and disorders. MicroRNAs control the expression of genes related to different biological processes and play a prominent role in the harmonious expression of many genes. During neural development of the central nervous system, miRNAs are regulated in time and space. In the mature brain, the dynamic expression of miRNAs continues, highlighting their functional importance in neurons. The hippocampus, as one of the crucial brain structures, is a key component of major functional connections in brain. Gene expression abnormalities in the hippocampus lead to disturbance in neurogenesis, neural maturation and synaptic formation. These disturbances are at the root of several neurological disorders and behavioral deficits, including Alzheimer's disease, epilepsy and schizophrenia. There is strong evidence that abnormalities in miRNAs are contributed in neurodegenerative mechanisms in the hippocampus through imbalanced activity of ion channels, neuronal excitability, synaptic plasticity and neuronal apoptosis. Some miRNAs affect oxidative stress, inflammation, neural differentiation, migration and neurogenesis in the hippocampus. Furthermore, major signaling cascades in neurodegeneration, such as NF-Kβ signaling, PI3/Akt signaling and Notch pathway, are closely modulated by miRNAs. These observations, suggest that microRNAs are significant regulators in the complicated network of gene regulation in the hippocampus. In the current review, we focus on the miRNA functional role in the progression of normal development and neurogenesis of the hippocampus. We also consider how miRNAs in the hippocampus are crucial for gene expression mechanisms in pathophysiological pathways.
Collapse
Affiliation(s)
- Seyed Khalil Rashidi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ata Kalirad
- Department of Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Shahram Rafie
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Neuroscience Lab, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ebrahim Behzad
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Neuroscience Lab, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mitra Ansari Dezfouli
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Neuroscience Lab, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
19
|
Wang Q, Tang B, Hao S, Wu Z, Yang T, Tang J. Forniceal deep brain stimulation in a mouse model of Rett syndrome increases neurogenesis and hippocampal memory beyond the treatment period. Brain Stimul 2023; 16:1401-1411. [PMID: 37704033 PMCID: PMC11152200 DOI: 10.1016/j.brs.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Rett syndrome (RTT), caused by mutations in the X-linked gene encoding methyl-CpG binding protein 2 (MeCP2), severely impairs learning and memory. We previously showed that forniceal deep brain stimulation (DBS) stimulates hippocampal neurogenesis with concomitant improvements in hippocampal-dependent learning and memory in a mouse model of RTT. OBJECTIVES To determine the duration of DBS benefits; characterize DBS effects on hippocampal neurogenesis; and determine whether DBS influences MECP2 genotype and survival of newborn dentate granular cells (DGCs) in RTT mice. METHODS Chronic DBS was delivered through an electrode implanted in the fimbria-fornix. We tested separate cohorts of mice in contextual and cued fear memory at different time points after DBS. We then examined neurogenesis, DGC apoptosis, and the expression of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) after DBS by immunohistochemistry. RESULTS After two weeks of forniceal DBS, memory improvements lasted between 6 and 9 weeks. Repeating DBS every 6 weeks was sufficient to maintain the improvement. Forniceal DBS stimulated the birth of more MeCP2-positive than MeCP2-negative DGCs and had no effect on DGC survival. It also increased the expression of BDNF but not VEGF in the RTT mouse dentate gyrus. CONCLUSION Improvements in learning and memory from forniceal DBS in RTT mice extends well beyond the treatment period and can be maintained by repeated DBS. Stimulation of BDNF expression correlates with improvements in hippocampal neurogenesis and memory benefits.
Collapse
Affiliation(s)
- Qi Wang
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Bin Tang
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shuang Hao
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhenyu Wu
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Tingting Yang
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jianrong Tang
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
20
|
Dias-Carvalho A, Margarida-Araújo A, Reis-Mendes A, Sequeira CO, Pereira SA, Guedes de Pinho P, Carvalho F, Sá SI, Fernandes E, Costa VM. A Clinically Relevant Dosage of Mitoxantrone Disrupts the Glutathione and Lipid Metabolic Pathways of the CD-1 Mice Brain: A Metabolomics Study. Int J Mol Sci 2023; 24:13126. [PMID: 37685929 PMCID: PMC10488007 DOI: 10.3390/ijms241713126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/26/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023] Open
Abstract
Long-term cognitive dysfunction, or "chemobrain", has been observed in cancer patients treated with chemotherapy. Mitoxantrone (MTX) is a topoisomerase II inhibitor that binds and intercalates with DNA, being used in the treatment of several cancers and multiple sclerosis. Although MTX can induce chemobrain, its neurotoxic mechanisms are poorly studied. This work aimed to identify the adverse outcome pathways (AOPs) activated in the brain upon the use of a clinically relevant cumulative dose of MTX. Three-month-old male CD-1 mice were given a biweekly intraperitoneal administration of MTX over the course of three weeks until reaching a total cumulative dose of 6 mg/kg. Controls were given sterile saline in the same schedule. Two weeks after the last administration, the mice were euthanized and their brains removed. The left brain hemisphere was used for targeted profiling of the metabolism of glutathione and the right hemisphere for an untargeted metabolomics approach. The obtained results revealed that MTX treatment reduced the availability of cysteine (Cys), cysteinylglycine (CysGly), and reduced glutathione (GSH) suggesting that MTX disrupts glutathione metabolism. The untargeted approach revealed metabolic circuits of phosphatidylethanolamine, catecholamines, unsaturated fatty acids biosynthesis, and glycerolipids as relevant players in AOPs of MTX in our in vivo model. As far as we know, our study was the first to perform such a broad profiling study on pathways that could put patients given MTX at risk of cognitive deficits.
Collapse
Affiliation(s)
- Ana Dias-Carvalho
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana Margarida-Araújo
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana Reis-Mendes
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Catarina Oliveira Sequeira
- iNOVA4Health, LS4Future, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - Sofia Azeredo Pereira
- iNOVA4Health, LS4Future, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Susana Isabel Sá
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Eduarda Fernandes
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
21
|
Jafari RS, Behrouz V. Nordic diet and its benefits in neurological function: a systematic review of observational and intervention studies. Front Nutr 2023; 10:1215358. [PMID: 37645628 PMCID: PMC10461010 DOI: 10.3389/fnut.2023.1215358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
Introduction Neurological disorders have been considered the major contributors to global long-term disability and lower quality of life. Lifestyle factors, such as dietary patterns, are increasingly recognized as important determinants of neurological function. Some dietary behaviors, such as Nordic diet (ND) were likely to have protective effects on brain function. However, an understanding of the effectiveness of the ND pattern to improve neurological function and brain health is not fully understood. We review the current evidence that supports the ND pattern in various aspects of neurological function and addresses both proven and less established mechanisms of action based on its food ingredients and biochemical compounds. Methods In this systematic review, PubMed, Web of Science, and Scopus databases were searched from inception to February 2023. Observational and intervention studies were included. Results Of the 627 screened studies, 5 observational studies (including three cohorts and two cross-sectional studies) and 3 intervention studies investigating the association between ND and neurological function. Observational studies investigated the association of ND with the following neurological functions: cognition, stroke, and neuropsychological function. Intervention studies investigated the effects of ND on cognition and depression. Discussion Despite the limited literature on ND and its association with neurological function, several aspects of ND may lead to some health benefits suggesting neuroprotective effects. The current state of knowledge attributes the possible effects of characteristic components of the ND to its antioxidant, anti-inflammatory, lipid-lowering, gut-brain-axis modulating, and ligand activities in cell signaling pathways. Based on existing evidence, the ND may be considered a recommended dietary approach for the improvement of neurological function and brain health. Systematic review registration [https://www.crd.york.ac.uk/prospero/], identifier [CRD2023451117].
Collapse
Affiliation(s)
| | - Vahideh Behrouz
- Department of Nutrition, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
22
|
Rieskamp JD, Rosado-Burgos I, Christofi JE, Ansar E, Einstein D, Walters AE, Valentini V, Bruno JP, Kirby ED. Excitatory amino acid transporter 1 supports adult hippocampal neural stem cell self-renewal. iScience 2023; 26:107068. [PMID: 37534178 PMCID: PMC10391730 DOI: 10.1016/j.isci.2023.107068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/01/2023] [Accepted: 06/05/2023] [Indexed: 08/04/2023] Open
Abstract
Within the adult mammalian dentate gyrus (DG) of the hippocampus, glutamate stimulates neural stem cell (NSC) self-renewing proliferation, providing a link between adult neurogenesis and local circuit activity. Here, we show that glutamate-induced self-renewal of adult DG NSCs requires glutamate transport via excitatory amino acid transporter 1 (EAAT1) to stimulate lipogenesis. Loss of EAAT1 prevented glutamate-induced self-renewing proliferation of NSCs in vitro and in vivo, with little role evident for canonical glutamate receptors. Transcriptomics and further pathway manipulation revealed that glutamate simulation of NSCs relied on EAAT1 transport-stimulated lipogenesis. Our findings demonstrate a critical, direct role for EAAT1 in stimulating NSCs to support neurogenesis in adulthood, thereby providing insights into a non-canonical mechanism by which NSCs sense and respond to their niche.
Collapse
Affiliation(s)
- Joshua D. Rieskamp
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
| | | | - Jacob E. Christofi
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
| | - Eliza Ansar
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
| | - Dalia Einstein
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
| | - Ashley E. Walters
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
| | - Valentina Valentini
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
- Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - John P. Bruno
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Elizabeth D. Kirby
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
23
|
Wright R. In conversation with Rusty Gage. Nat Neurosci 2023:10.1038/s41593-023-01393-6. [PMID: 37414983 DOI: 10.1038/s41593-023-01393-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
|
24
|
Izadpanah A, Mudd JC, Garcia JGN, Srivastav S, Abdel-Mohsen M, Palmer C, Goldman AR, Kolls JK, Qin X, Rappaport J. SARS-CoV-2 infection dysregulates NAD metabolism. Front Immunol 2023; 14:1158455. [PMID: 37457744 PMCID: PMC10344451 DOI: 10.3389/fimmu.2023.1158455] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/19/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Severe COVID-19 results initially in pulmonary infection and inflammation. Symptoms can persist beyond the period of acute infection, and patients with Post-Acute Sequelae of COVID (PASC) often exhibit a variety of symptoms weeks or months following acute phase resolution including continued pulmonary dysfunction, fatigue, and neurocognitive abnormalities. We hypothesized that dysregulated NAD metabolism contributes to these abnormalities. Methods RNAsequencing of lungs from transgenic mice expressing human ACE2 (K18-hACE2) challenged with SARS-CoV-2 revealed upregulation of NAD biosynthetic enzymes, including NAPRT1, NMNAT1, NAMPT, and IDO1 6 days post-infection. Results Our data also demonstrate increased gene expression of NAD consuming enzymes: PARP 9,10,14 and CD38. At the same time, SIRT1, a protein deacetylase (requiring NAD as a cofactor and involved in control of inflammation) is downregulated. We confirmed our findings by mining sequencing data from lungs of patients that died from SARS-CoV-2 infection. Our validated findings demonstrating increased NAD turnover in SARS-CoV-2 infection suggested that modulating NAD pathways may alter disease progression and may offer therapeutic benefits. Specifically, we hypothesized that treating K18-hACE2 mice with nicotinamide riboside (NR), a potent NAD precursor, may mitigate lethality and improve recovery from SARS-CoV-2 infection. We also tested the therapeutic potential of an anti- monomeric NAMPT antibody using the same infection model. Treatment with high dose anti-NAMPT antibody resulted in significantly decreased body weight compared to control, which was mitigated by combining HD anti-NAMPT antibody with NR. We observed a significant increase in lipid metabolites, including eicosadienoic acid, oleic acid, and palmitoyl carnitine in the low dose antibody + NR group. We also observed significantly increased nicotinamide related metabolites in NR treated animals. Discussion Our data suggest that infection perturbs NAD pathways, identify novel mechanisms that may explain some pathophysiology of CoVID-19 and suggest novel strategies for both treatment and prevention.
Collapse
Affiliation(s)
- Amin Izadpanah
- Tulane National Primate Research Center, Covington, Louisiana, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, LA, United States
| | - Joseph C. Mudd
- Tulane National Primate Research Center, Covington, Louisiana, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, LA, United States
| | - Joe G. N. Garcia
- Department of Medicine, College of Medicine Tucson, University of Arizona, Tucson, AZ, United States
| | - Sudesh Srivastav
- Biostatistics and Data Science, Tulane University School of Public Health, New Orleans, LA, United States
| | | | - Clovis Palmer
- Tulane National Primate Research Center, Covington, Louisiana, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, LA, United States
| | - Aaron R. Goldman
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, United States
- Proteomics and Metabolomics Shared Resource, The Wistar Institute, Philadelphia, PA, United States
| | - Jay K. Kolls
- Center for Translational Research in Infection and Inflammation, Tulane School of Medicine, New Orleans, Louisiana, LA, United States
| | - Xuebin Qin
- Tulane National Primate Research Center, Covington, Louisiana, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, LA, United States
| | - Jay Rappaport
- Tulane National Primate Research Center, Covington, Louisiana, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, LA, United States
| |
Collapse
|
25
|
Kiriyama Y, Nochi H. Regulation of PD-L1 Expression by Nuclear Receptors. Int J Mol Sci 2023; 24:9891. [PMID: 37373038 DOI: 10.3390/ijms24129891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The suppression of excessive immune responses is necessary to prevent injury to the body, but it also allows cancer cells to escape immune responses and proliferate. Programmed cell death 1 (PD-1) is a co-inhibitory molecule that is present on T cells and is the receptor for programmed cell death ligand 1 (PD-L1). The binding of PD-1 to PD-L1 leads to the inhibition of the T cell receptor signaling cascade. PD-L1 has been found to be expressed in many types of cancers, such as lung, ovarian, and breast cancer, as well as glioblastoma. Furthermore, PD-L1 mRNA is widely expressed in normal peripheral tissues including the heart, skeletal muscle, placenta, lungs, thymus, spleen, kidney, and liver. The expression of PD-L1 is upregulated by proinflammatory cytokines and growth factors via a number of transcription factors. In addition, various nuclear receptors, such as androgen receptor, estrogen receptor, peroxisome-proliferator-activated receptor γ, and retinoic-acid-related orphan receptor γ, also regulate the expression of PD-L1. This review will focus on the current knowledge of the regulation of PD-L1 expression by nuclear receptors.
Collapse
Affiliation(s)
- Yoshimitsu Kiriyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 769-2193, Kagawa, Japan
- Institute of Neuroscience, Tokushima Bunri University, Tokushima 769-2193, Kagawa, Japan
| | - Hiromi Nochi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 769-2193, Kagawa, Japan
| |
Collapse
|
26
|
Cappuccio G, Khalil SM, Osenberg S, Li F, Maletic-Savatic M. Mass spectrometry imaging as an emerging tool for studying metabolism in human brain organoids. Front Mol Biosci 2023; 10:1181965. [PMID: 37304070 PMCID: PMC10251497 DOI: 10.3389/fmolb.2023.1181965] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Human brain organoids are emerging models to study human brain development and pathology as they recapitulate the development and characteristics of major neural cell types, and enable manipulation through an in vitro system. Over the past decade, with the advent of spatial technologies, mass spectrometry imaging (MSI) has become a prominent tool for metabolic microscopy, providing label-free, non-targeted molecular and spatial distribution information of the metabolites within tissue, including lipids. This technology has never been used for studies of brain organoids and here, we set out to develop a standardized protocol for preparation and mass spectrometry imaging of human brain organoids. We present an optimized and validated sample preparation protocol, including sample fixation, optimal embedding solution, homogenous deposition of matrices, data acquisition and processing to maximize the molecular information derived from mass spectrometry imaging. We focus on lipids in organoids, as they play critical roles during cellular and brain development. Using high spatial and mass resolution in positive- and negative-ion modes, we detected 260 lipids in the organoids. Seven of them were uniquely localized within the neurogenic niches or rosettes as confirmed by histology, suggesting their importance for neuroprogenitor proliferation. We observed a particularly striking distribution of ceramide-phosphoethanolamine CerPE 36:1; O2 which was restricted within rosettes and of phosphatidyl-ethanolamine PE 38:3, which was distributed throughout the organoid tissue but not in rosettes. This suggests that ceramide in this particular lipid species might be important for neuroprogenitor biology, while its removal may be important for terminal differentiation of their progeny. Overall, our study establishes the first optimized experimental pipeline and data processing strategy for mass spectrometry imaging of human brain organoids, allowing direct comparison of lipid signal intensities and distributions in these tissues. Further, our data shed new light on the complex processes that govern brain development by identifying specific lipid signatures that may play a role in cell fate trajectories. Mass spectrometry imaging thus has great potential in advancing our understanding of early brain development as well as disease modeling and drug discovery.
Collapse
Affiliation(s)
- Gerarda Cappuccio
- Department of Pediatrics–Neurology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Saleh M. Khalil
- Department of Pediatrics–Neurology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Sivan Osenberg
- Department of Pediatrics–Neurology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Feng Li
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, United States
| | - Mirjana Maletic-Savatic
- Department of Pediatrics–Neurology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
27
|
Terreros-Roncal J, Flor-García M, Moreno-Jiménez EP, Rodríguez-Moreno CB, Márquez-Valadez B, Gallardo-Caballero M, Rábano A, Llorens-Martín M. Methods to study adult hippocampal neurogenesis in humans and across the phylogeny. Hippocampus 2023; 33:271-306. [PMID: 36259116 PMCID: PMC7614361 DOI: 10.1002/hipo.23474] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 11/09/2022]
Abstract
The hippocampus hosts the continuous addition of new neurons throughout life-a phenomenon named adult hippocampal neurogenesis (AHN). Here we revisit the occurrence of AHN in more than 110 mammalian species, including humans, and discuss the further validation of these data by single-cell RNAseq and other alternative techniques. In this regard, our recent studies have addressed the long-standing controversy in the field, namely whether cells positive for AHN markers are present in the adult human dentate gyrus (DG). Here we review how we developed a tightly controlled methodology, based on the use of high-quality brain samples (characterized by short postmortem delays and ≤24 h of fixation in freshly prepared 4% paraformaldehyde), to address human AHN. We review that the detection of AHN markers in samples fixed for 24 h required mild antigen retrieval and chemical elimination of autofluorescence. However, these steps were not necessary for samples subjected to shorter fixation periods. Moreover, the detection of labile epitopes (such as Nestin) in the human hippocampus required the use of mild detergents. The application of this strictly controlled methodology allowed reconstruction of the entire AHN process, thus revealing the presence of neural stem cells, proliferative progenitors, neuroblasts, and immature neurons at distinct stages of differentiation in the human DG. The data reviewed here demonstrate that methodology is of utmost importance when studying AHN by means of distinct techniques across the phylogenetic scale. In this regard, we summarize the major findings made by our group that emphasize that overlooking fundamental technical principles might have consequences for any given research field.
Collapse
Affiliation(s)
- Julia Terreros-Roncal
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Miguel Flor-García
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Elena P Moreno-Jiménez
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Carla B Rodríguez-Moreno
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Berenice Márquez-Valadez
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Marta Gallardo-Caballero
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Alberto Rábano
- Neuropathology Department, CIEN Foundation, Madrid, Spain
| | - María Llorens-Martín
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
28
|
Unsaturated Fatty Acids and Their Immunomodulatory Properties. BIOLOGY 2023; 12:biology12020279. [PMID: 36829556 PMCID: PMC9953405 DOI: 10.3390/biology12020279] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Oils are an essential part of the human diet and are primarily derived from plant (or sometimes fish) sources. Several of them exhibit anti-inflammatory properties. Specific diets, such as Mediterranean diet, that are high in ω-3 polyunsaturated fatty acids (PUFAs) and ω-9 monounsaturated fatty acids (MUFAs) have even been shown to exert an overall positive impact on human health. One of the most widely used supplements in the developed world is fish oil, which contains high amounts of PUFAs docosahexaenoic and eicosapentaenoic acid. This review is focused on the natural sources of various polyunsaturated and monounsaturated fatty acids in the human diet, and their role as precursor molecules in immune signaling pathways. Consideration is also given to their role in CNS immunity. Recent findings from clinical trials utilizing various fatty acids or diets high in specific fatty acids are reviewed, along with the mechanisms through which fatty acids exert their anti-inflammatory properties. An overall understanding of diversity of polyunsaturated fatty acids and their role in several molecular signaling pathways is useful in formulating diets that reduce inflammation and increase longevity.
Collapse
|
29
|
McNerlin C, Guan F, Bronk L, Lei K, Grosshans D, Young DW, Gaber MW, Maletic-Savatic M. Targeting hippocampal neurogenesis to protect astronauts' cognition and mood from decline due to space radiation effects. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:170-179. [PMID: 36336363 DOI: 10.1016/j.lssr.2022.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/30/2022] [Accepted: 07/26/2022] [Indexed: 06/16/2023]
Abstract
Neurogenesis is an essential, lifelong process during which neural stem cells generate new neurons within the hippocampus, a center for learning, memory, and mood control. Neural stem cells are vulnerable to environmental insults spanning from chronic stress to radiation. These insults reduce their numbers and diminish neurogenesis, leading to memory decline, anxiety, and depression. Preserving neural stem cells could thus help prevent these neurogenesis-associated pathologies, an outcome particularly important for long-term space missions where environmental exposure to radiation is significantly higher than on Earth. Multiple developments, from mechanistic discoveries of radiation injury on hippocampal neurogenesis to new platforms for the development of selective, specific, effective, and safe small molecules as neurogenesis-protective agents hold great promise to minimize radiation damage on neurogenesis. In this review, we summarize the effects of space-like radiation on hippocampal neurogenesis. We then focus on current advances in drug discovery and development and discuss the nuclear receptor TLX/NR2E1 (oleic acid receptor) as an example of a neurogenic target that might rescue neurogenesis following radiation.
Collapse
Affiliation(s)
- Clare McNerlin
- Georgetown University School of Medicine, 3900 Reservoir Rd NW, Washington D.C. 20007, United States of America
| | - Fada Guan
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06510, United States of America
| | - Lawrence Bronk
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States of America
| | - Kevin Lei
- Graduate School for Biomedical Sciences, Baylor College of Medicine, Houston, Texas, 77030, United States of America; Jan and Dan Duncan Neurological Research Institute, 1250 Moursund St. Houston, TX 77030, United States of America
| | - David Grosshans
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States of America
| | - Damian W Young
- Jan and Dan Duncan Neurological Research Institute, 1250 Moursund St. Houston, TX 77030, United States of America; Center for Drug Discovery, Department of Pathology and Immunology Baylor College of Medicine, Houston, Texas, 77030, United States of America; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States of America
| | - M Waleed Gaber
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Mirjana Maletic-Savatic
- Jan and Dan Duncan Neurological Research Institute, 1250 Moursund St. Houston, TX 77030, United States of America; Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America; Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| |
Collapse
|
30
|
Nelczyk AT, Ma L, Gupta AD, Gamage HEV, McHenry MT, Henn MA, Kadiri M, Wang Y, Krawczynska N, Bendre S, He S, Shahoei SH, Madak-Erdogan Z, Hsiao SH, Saleh T, Carpenter V, Gewirtz DA, Spinella MJ, Nelson ER. The nuclear receptor TLX (NR2E1) inhibits growth and progression of triple- negative breast cancer. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166515. [PMID: 35932893 PMCID: PMC9983295 DOI: 10.1016/j.bbadis.2022.166515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/14/2022]
Abstract
Development of targeted therapies will be a critical step towards reducing the mortality associated with triple-negative breast cancer (TNBC). To achieve this, we searched for targets that met three criteria: (1) pharmacologically targetable, (2) expressed in TNBC, and (3) expression is prognostic in TNBC patients. Since nuclear receptors have a well-defined ligand-binding domain and are thus highly amenable to small-molecule intervention, we focused on this class of protein. Our analysis identified TLX (NR2E1) as a candidate. Specifically, elevated tumoral TLX expression was associated with prolonged recurrence-free survival and overall survival for breast cancer patients with either estrogen receptor alpha (ERα)-negative or basal-like tumors. Using two TNBC cell lines, we found that stable overexpression of TLX impairs in vitro proliferation. RNA-Seq analysis revealed that TLX reduced the expression of genes implicated in epithelial-mesenchymal transition (EMT), a cellular program known to drive metastatic progression. Indeed, TLX overexpression significantly decreased cell migration and invasion, and robustly decreased the metastatic capacity of TNBC cells in murine models. We identify SERPINB2 as a likely mediator of these effects. Taken together, our work indicates that TLX impedes the progression of TNBC. Several ligands have been shown to regulate the transcriptional activity of TLX, providing a framework for the future development of this receptor for therapeutic intervention.
Collapse
Affiliation(s)
- Adam T. Nelczyk
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Liqian Ma
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Anasuya Das Gupta
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Hashni Epa Vidana Gamage
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Michael T. McHenry
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Madeline A. Henn
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Mohammed Kadiri
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yu Wang
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Natalia Krawczynska
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Shruti Bendre
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Sisi He
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Sayyed Hamed Shahoei
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Zeynep Madak-Erdogan
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA,Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA.,Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Shih-Hsuan Hsiao
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Tareq Saleh
- Department of Basic Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Valerie Carpenter
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
| | - David A. Gewirtz
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
| | - Michael J. Spinella
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA,Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA.,Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Erik R. Nelson
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA.,Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA,Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA.,Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA.,University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| |
Collapse
|
31
|
Bokhari RS, Beheshti A, Blutt SE, Bowles DE, Brenner D, Britton R, Bronk L, Cao X, Chatterjee A, Clay DE, Courtney C, Fox DT, Gaber MW, Gerecht S, Grabham P, Grosshans D, Guan F, Jezuit EA, Kirsch DG, Liu Z, Maletic-Savatic M, Miller KM, Montague RA, Nagpal P, Osenberg S, Parkitny L, Pierce NA, Porada C, Rosenberg SM, Sargunas P, Sharma S, Spangler J, Tavakol DN, Thomas D, Vunjak-Novakovic G, Wang C, Whitcomb L, Young DW, Donoviel D. Looking on the horizon; potential and unique approaches to developing radiation countermeasures for deep space travel. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:105-112. [PMID: 36336356 DOI: 10.1016/j.lssr.2022.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
Future lunar missions and beyond will require new and innovative approaches to radiation countermeasures. The Translational Research Institute for Space Health (TRISH) is focused on identifying and supporting unique approaches to reduce risks to human health and performance on future missions beyond low Earth orbit. This paper will describe three funded and complementary avenues for reducing the risk to humans from radiation exposure experienced in deep space. The first focus is on identifying new therapeutic targets to reduce the damaging effects of radiation by focusing on high throughput genetic screens in accessible, sometimes called lower, organism models. The second focus is to design innovative approaches for countermeasure development with special attention to nucleotide-based methodologies that may constitute a more agile way to design therapeutics. The final focus is to develop new and innovative ways to test radiation countermeasures in a human model system. While animal studies continue to be beneficial in the study of space radiation, they can have imperfect translation to humans. The use of three-dimensional (3D) complex in vitro models is a promising approach to aid the development of new countermeasures and personalized assessments of radiation risks. These three distinct and unique approaches complement traditional space radiation efforts and should provide future space explorers with more options to safeguard their short and long-term health.
Collapse
Affiliation(s)
- Rihana S Bokhari
- Agile Decision Sciences, NRESS, Arlington, VA 22202, United States of America.
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, United States of America; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, United States of America
| | - Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, United States of America; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, United States of America
| | - Dawn E Bowles
- Division of Surgical Sciences, Department of Surgery, Duke University, Durham NC, United States of America
| | - David Brenner
- Columbia University, New York, NY, 10027, United States of America
| | - Robert Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, United States of America
| | - Lawrence Bronk
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States of America
| | - Xu Cao
- Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Anushree Chatterjee
- Sachi Bioworks, Louisville, CO 80027, United States of America; University of Colorado Boulder, Boulder, CO 80303, United States of America
| | - Delisa E Clay
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, United States of America
| | | | - Donald T Fox
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, United States of America
| | - M Waleed Gaber
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America
| | - Sharon Gerecht
- Chemical and Biomolecular Engineering and Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218 United States of America; Biomedical Engineering, Duke University, Durham, NC 27708, United States of America
| | - Peter Grabham
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, NY 10027 United States of America
| | - David Grosshans
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States of America
| | - Fada Guan
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States of America
| | - Erin A Jezuit
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, United States of America
| | - David G Kirsch
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, United States of America
| | - Zhandong Liu
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America; Jan and Dan Duncan Neurological Research Institute, 1250 Moursund St. Houston, TX 77030, United States of America
| | - Mirjana Maletic-Savatic
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America; Jan and Dan Duncan Neurological Research Institute, 1250 Moursund St. Houston, TX 77030, United States of America
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas, Austin, TX 78712, United States of America
| | - Ruth A Montague
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, United States of America
| | - Prashant Nagpal
- Sachi Bioworks, Louisville, CO 80027, United States of America
| | - Sivan Osenberg
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America; Jan and Dan Duncan Neurological Research Institute, 1250 Moursund St. Houston, TX 77030, United States of America
| | - Luke Parkitny
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America; Jan and Dan Duncan Neurological Research Institute, 1250 Moursund St. Houston, TX 77030, United States of America
| | - Niles A Pierce
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States of America; Division of Engineering & Applied Science, California Institute of Technology, Pasadena, CA 91125, United States of America; Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Christopher Porada
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77303, United States of America; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77303, United States of America; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77303, United States of America; Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77303, United States of America
| | - Paul Sargunas
- Chemical and Biomolecular Engineering and Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218 United States of America
| | - Sadhana Sharma
- Sachi Bioworks, Louisville, CO 80027, United States of America
| | - Jamie Spangler
- Chemical and Biomolecular Engineering and Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218 United States of America
| | | | - Dilip Thomas
- Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | | | - Chunbo Wang
- Division of Surgical Sciences, Department of Surgery, Duke University, Durham NC, United States of America
| | - Luke Whitcomb
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Damian W Young
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, United States of America
| | - Dorit Donoviel
- Translational Research Institute for Space Health, Houston, TX 77030, United States of America; Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, United States of America.
| |
Collapse
|
32
|
Shang Q, Chen G, Zhang P, Zhao W, Chen H, Yu D, Yu F, Liu H, Zhang X, He J, Yu X, Zhang Z, Tan R, Wu Z, Tang J, Liang D, Shen G, Jiang X, Ren H. Myristic acid alleviates hippocampal aging correlated with GABAergic signaling. Front Nutr 2022; 9:907526. [PMID: 36159502 PMCID: PMC9493098 DOI: 10.3389/fnut.2022.907526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Previous studies have shown that myristic acid (MA), a saturated fatty acid, could promote the proliferation and differentiation of neural stem cells in vitro. However, the effect of MA on hippocampal neurons aging has not been reported in vivo. Here we employed 22-month-old naturally aged C57BL/6 mice to evaluate the effect and mechanism of MA on hippocampal aging. First, we examined a decreased exploration and spatial memory ability in aging mice using the open field test and Morris water maze. Consistently, aging mice showed degenerative hippocampal histomorphology by H&E and Nissl staining. In terms of mechanism, imbalance of GABRB2 and GABRA2 expression in aging mice might be involved in hippocampus aging by mRNA high throughput sequencing (mRNA-seq) and immunohistochemistry (IHC) validation. Then, we revealed that MA alleviated the damage of exploration and spatial memory ability and ameliorated degeneration and aging of hippocampal neurons. Meanwhile, MA downregulated GABRB2 and upregulated GABRA2 expression, indicating MA might alleviate hippocampal aging correlated with GABAergic signaling. In conclusion, our findings revealed MA alleviated hippocampal aging correlated with GABAergic signaling, which might provide insight into the treatment of aging-associated diseases.
Collapse
Affiliation(s)
- Qi Shang
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guifeng Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhua Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honglin Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Die Yu
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fuyong Yu
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiwen Liu
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuelai Zhang
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiahui He
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiang Yu
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhida Zhang
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Riwei Tan
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zixian Wu
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Tang
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - De Liang
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gengyang Shen
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Nanshan Hospital, The First Affiliated Hospital of Guangzhou University of Chinese Medicine (Shenzhen Nanshan Hospital of Chinese Medicine), Guangzhou, China
- Gengyang Shen
| | - Xiaobing Jiang
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Xiaobing Jiang
| | - Hui Ren
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Hui Ren
| |
Collapse
|
33
|
Jeong H, Baran NM, Sun D, Chatterjee P, Layman TS, Balakrishnan CN, Maney DL, Yi SV. Dynamic molecular evolution of a supergene with suppressed recombination in white-throated sparrows. eLife 2022; 11:e79387. [PMID: 36040313 PMCID: PMC9427109 DOI: 10.7554/elife.79387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/17/2022] [Indexed: 12/11/2022] Open
Abstract
In white-throated sparrows, two alternative morphs differing in plumage and behavior segregate with a large chromosomal rearrangement. As with sex chromosomes such as the mammalian Y, the rearranged version of chromosome two (ZAL2m) is in a near-constant state of heterozygosity, offering opportunities to investigate both degenerative and selective processes during the early evolutionary stages of 'supergenes.' Here, we generated, synthesized, and analyzed extensive genome-scale data to better understand the forces shaping the evolution of the ZAL2 and ZAL2m chromosomes in this species. We found that features of ZAL2m are consistent with substantially reduced recombination and low levels of degeneration. We also found evidence that selective sweeps took place both on ZAL2m and its standard counterpart, ZAL2, after the rearrangement event. Signatures of positive selection were associated with allelic bias in gene expression, suggesting that antagonistic selection has operated on gene regulation. Finally, we discovered a region exhibiting long-range haplotypes inside the rearrangement on ZAL2m. These haplotypes appear to have been maintained by balancing selection, retaining genetic diversity within the supergene. Together, our analyses illuminate mechanisms contributing to the evolution of a young chromosomal polymorphism, revealing complex selective processes acting concurrently with genetic degeneration to drive the evolution of supergenes.
Collapse
Affiliation(s)
- Hyeonsoo Jeong
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Nicole M Baran
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
- Department of Psychology, Emory UniversityAtlantaUnited States
- Department of Ecology, Evolution, Marine Biology, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Dan Sun
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
- Department of Medicine Huddinge, Karolinska InstitutetStockholmSweden
| | - Paramita Chatterjee
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Thomas S Layman
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | | | - Donna L Maney
- Department of Psychology, Emory UniversityAtlantaUnited States
| | - Soojin V Yi
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
- Department of Ecology, Evolution, Marine Biology, University of California, Santa BarbaraSanta BarbaraUnited States
| |
Collapse
|
34
|
Fatty Acids: A Safe Tool for Improving Neurodevelopmental Alterations in Down Syndrome? Nutrients 2022; 14:nu14142880. [PMID: 35889838 PMCID: PMC9323400 DOI: 10.3390/nu14142880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
The triplication of chromosome 21 causes Down syndrome (DS), a genetic disorder that is characterized by intellectual disability (ID). The causes of ID start in utero, leading to impairments in neurogenesis, and continue into infancy, leading to impairments in dendritogenesis, spinogenesis, and connectivity. These defects are associated with alterations in mitochondrial and metabolic functions and precocious aging, leading to the early development of Alzheimer’s disease. Intense efforts are currently underway, taking advantage of DS mouse models to discover pharmacotherapies for the neurodevelopmental and cognitive deficits of DS. Many treatments that proved effective in mouse models may raise safety concerns over human use, especially at early life stages. Accumulating evidence shows that fatty acids, which are nutrients present in normal diets, exert numerous positive effects on the brain. Here, we review (i) the knowledge obtained from animal models regarding the effects of fatty acids on the brain, by focusing on alterations that are particularly prominent in DS, and (ii) the progress recently made in a DS mouse model, suggesting that fatty acids may indeed represent a useful treatment for DS. This scenario should prompt the scientific community to further explore the potential benefit of fatty acids for people with DS.
Collapse
|
35
|
Spruill ML, Maletic-Savatic M, Martin H, Li F, Liu X. Spatial analysis of drug absorption, distribution, metabolism, and toxicology using mass spectrometry imaging. Biochem Pharmacol 2022; 201:115080. [PMID: 35561842 PMCID: PMC9744413 DOI: 10.1016/j.bcp.2022.115080] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022]
Abstract
Mass spectrometry imaging (MSI) is emerging as a powerful analytical tool for detection, quantification, and simultaneous spatial molecular imaging of endogenous and exogenous molecules via in situ mass spectrometry analysis of thin tissue sections without the requirement of chemical labeling. The MSI generates chemically specific and spatially resolved ion distribution information for administered drugs and metabolites, which allows numerous applications for studies involving various stages of drug absorption, distribution, metabolism, excretion, and toxicity (ADMET). MSI-based pharmacokinetic imaging analysis provides a histological context and cellular environment regarding dynamic drug distribution and metabolism processes, and facilitates the understanding of the spatial pharmacokinetics and pharmacodynamic properties of drugs. Herein, we discuss the MSI's current technological developments that offer qualitative, quantitative, and spatial location information of small molecule drugs, antibody, and oligonucleotides macromolecule drugs, and their metabolites in preclinical and clinical tissue specimens. We highlight the macro and micro drug-distribution in the whole-body, brain, lung, liver, kidney, stomach, intestine tissue sections, organoids, and the latest applications of MSI in pharmaceutical ADMET studies.
Collapse
Affiliation(s)
- Michelle L Spruill
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Mirjana Maletic-Savatic
- Department of Pediatrics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | | | - Feng Li
- Center for Drug Discovery and Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA; NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Xinli Liu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
36
|
Oleic acid regulates hippocampal neurogenesis as a TLX ligand. Proc Natl Acad Sci U S A 2022; 119:e2203038119. [PMID: 35344400 PMCID: PMC9169763 DOI: 10.1073/pnas.2203038119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|