1
|
Wolf G, Leippe P, Onstein S, Goldmann U, Frommelt F, Teoh ST, Girardi E, Wiedmer T, Superti-Furga G. The genetic interaction map of the human solute carrier superfamily. Mol Syst Biol 2025:10.1038/s44320-025-00105-5. [PMID: 40355755 DOI: 10.1038/s44320-025-00105-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 05/15/2025] Open
Abstract
Solute carriers (SLCs), the largest superfamily of transporter proteins in humans with about 450 members, control the movement of molecules across membranes. A typical human cell expresses over 200 different SLCs, yet their collective influence on cell phenotypes is not well understood due to overlapping substrate specificities and expression patterns. To address this, we performed systematic pairwise gene double knockouts using CRISPR-Cas12a and -Cas9 in human colon carcinoma cells. A total of 1,088,605 guide combinations were used to interrogate 35,421 SLC-SLC and SLC-enzyme double knockout combinations across multiple growth conditions, uncovering 1236 genetic interactions with a growth phenotype. Further exploration of an interaction between the mitochondrial citrate/malate exchanger SLC25A1 and the zinc transporter SLC39A1 revealed an unexpected role for SLC39A1 in metabolic reprogramming and anti-apoptotic signaling. This full-scale genetic interaction map of human SLC transporters is the backbone for understanding the intricate functional network of SLCs in cellular systems and generates hypotheses for pharmacological target exploitation in cancer and other diseases. The results are available at https://re-solute.eu/resources/dashboards/genomics/ .
Collapse
Affiliation(s)
- Gernot Wolf
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Philipp Leippe
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Svenja Onstein
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Ulrich Goldmann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Fabian Frommelt
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Shao Thing Teoh
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Enrico Girardi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
- Solgate GmbH, IST Park Building, 3400, Klosterneuburg, Austria
| | - Tabea Wiedmer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria.
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria.
- Fondazione Ri.MED, Palermo, Italy.
| |
Collapse
|
2
|
Wang Y, Lee B, Yang Z, Ho T, Ci H, Jackson B, Pushon T, Wang B, Levy J, Ho S. Chewing-Activated TRPV4/PIEZO1- HIF-1α-Zn Axes in a Rat Periodontal Complex. J Dent Res 2025; 104:398-407. [PMID: 39876056 PMCID: PMC11909774 DOI: 10.1177/00220345241294001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
The upstream mechanobiological pathways that regulate the downstream mineralization rates in periodontal tissues are limitedly understood. Herein, we spatially colocalized and correlated compression and tension strain profiles with the expressions of mechanosensory ion channels (MS-ion) TRPV4 and PIEZO1, biometal zinc, mitochondrial function marker (MFN2), cell senescence indicator (p16), and oxygen status marker hypoxia-inducible factor-1α (HIF-1α) in rats fed hard and soft foods. The observed zinc and related cellular homeostasis in vivo were ascertained by TRPV4 and PIEZO1 agonists and antagonists on human periodontal ligament fibroblasts ex vivo. Four-week-old male Sprague-Dawley rats were fed hard (n = 3) or soft (n = 3) foods for 4 wk (in vivo). Significant changes in alveolar socket and root shapes with decreased periodontal ligament space and increased cementum volume fraction were observed in maxillae on reduced loads (soft food). Reduced loads impaired distally localized compression-stimulated PIEZO1 and mesially localized tension-stimulated TRPV4, decreased mitochondrial function (MFN2), and increased cell senescence in mesial and distal periodontal regions. The switch in HIF-1α from hard food-distal to soft food-mesial indicated a plausible effect of shear-regulated blood and oxygen flows in the periodontal complex. Blunting or activating TRPV4 or PIEZO1 MS-ion channels by channel-specific antagonists or agonists in human periodontal ligament fibroblast cultures (in vitro) indicated a positive correlation between zinc levels and zinc transporters but not with MS-ion channel expressions. The effects of reduced chewing loads in vivo were analogous to TRPV4 and PIEZO1 antagonists in vitro. Study results collectively illustrated that tension-induced TRPV4 and compression-induced PIEZO1 activations are necessary for cell metabolism. An increased hypoxic state with reduced functional loads can be a conducive environment for cementum growth. From a practical standpoint, dose rate-controlled loads can modulate tension and compression-specific MS-ion channel activation, cellular zinc, and HIF-1α transcription. These mechanobiochemical events indicate the plausible catalytic role of biometal zinc in mineralization, periodontal maintenance, and dentoalveolar joint function.
Collapse
Affiliation(s)
- Y. Wang
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - B.H. Lee
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - Z. Yang
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - T.J. Ho
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - H. Ci
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
- International Research Center for Computational Mechanics, Dalian University of Technology, Dalian, China
- Ningbo Institute of Dalian University of Technology, Ningbo, China
- DUT-BSU Joint Institute, Dalian University of Technology, Dalian, China
| | - B. Jackson
- Deparment of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - T. Pushon
- Deparment of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - B. Wang
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
- International Research Center for Computational Mechanics, Dalian University of Technology, Dalian, China
- Ningbo Institute of Dalian University of Technology, Ningbo, China
- DUT-BSU Joint Institute, Dalian University of Technology, Dalian, China
| | - J. Levy
- Department of Pathology and Computational Biomedicine, Cedars Sinai, Los Angeles, CA, USA
| | - S.P. Ho
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA, USA
- Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
3
|
Chang Z, Miao L, Wang P. Mitochondrial Ribosome Regulation Drives Spermatogenesis and Male Fertility. Biol Cell 2025; 117:e12007. [PMID: 40012210 DOI: 10.1111/boc.12007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/03/2025] [Indexed: 02/28/2025]
Abstract
Mitochondria, as the central hub of cellular energy metabolism and a critical regulator of signaling pathways, play indispensable roles in spermatogenesis and sperm function. In recent years, the mechanisms by which RNA-binding proteins regulate reproductive development and gametogenesis have emerged as a focal point in mitochondrial biology. Here, we review the latest progresses on the role of mitochondrial translation and its associated ribosomal regulation in sperm formation and activation. In Caenorhabditis elegans, the RNA-binding protein complex AMG-1/SLRP-1 modulates key processes of sperm development by maintaining mitochondrial homeostasis. Furthermore, we explore the distinct roles of mitochondrial translation and metabolic functions in sperm activation and motility. This review summarizes the mechanisms by which mitochondrial ribosomal regulation governs spermatogenesis and sperm function, offering a foundation for future investigations in reproductive biology.
Collapse
Affiliation(s)
- Zhanxin Chang
- MOE Key Laboratory of Cell Proliferation and Regulation Biology, College of Life Science, Beijing Normal University, Beijing, China
| | - Long Miao
- MOE Key Laboratory of Cell Proliferation and Regulation Biology, College of Life Science, Beijing Normal University, Beijing, China
| | - Peng Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Liang C, Chen M, Mu Z, Tian X, Zhao W, Hu Y, Su J. Zinc Transporter 9 (ZnT9) Improves Obesity-Induced Asthenospermia by Attenuating Endoplasmic Reticulum Stress (ERS). Biol Trace Elem Res 2025:10.1007/s12011-025-04512-5. [PMID: 39821185 DOI: 10.1007/s12011-025-04512-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/01/2025] [Indexed: 01/19/2025]
Abstract
The aim of this study was to explore the role of the ZnT9 protein in obesity-induced sperm maturation disorders in men. We generated a mouse model of obesity-induced weak spermatogenesis via a high-fat diet (HFD) for 10 weeks. In addition to the HFD, a 5-week intervention of salubrinal (SAL) (an inhibitor of endoplasmic reticulum stress) (1 mg/kg/day), ZnSO4 (15 mg/kg/day), and their combination was started at week 6, after which sperm viability and epididymal tissue damage were assessed. To investigate the role of the ZnT9 protein in spermatogenesis, the expression levels of the ZnT9 protein, endoplasmic reticulum stress (ERS)-related protein, Wnt pathway protein, and apoptosis-related protein in epididymal tissue were measured. Compared with those in the normal (N) group, the mice in the HFD group presented decreased sperm motility, damaged epididymal tissue, epididymal tissue showed decreased expression of ZnT9, β-catenin, LEF protein and mRNA, and increased expression of total cholesterol (TC) and triglycerides (TG), GRP78, Caspase-3, BAX protein and mRNA, as well as increased apoptosis as shown by TUNEL staining. Compared with the HFD group, HFD + ZnSO4 group, HFD + SAL group, and HFD + ZnSO4 + SAL groups resulted in reduced epididymal damage, improved decreased total cholesterol (TC) and triglycerides (TG), sperm viability, increased expression of ZnT9, β-catenin, LEF protein and mRNA, and decreased expression of GRP78, Caspase-3, and BAX protein and mRNA, as well as decreased apoptosis as shown by TUNEL staining in epididymal tissues. According to this study, obesity leads to elevated ERS and affects ZnT9 protein synthesis. Inhibition of the Wnt pathway ultimately leads to cell death and damage in epididymal tissue and decreased sperm viability.
Collapse
Affiliation(s)
- Chen Liang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Dali University, Dali, 671003, China
| | - Mingyang Chen
- Department of Physiology and Pathophysiology, School of Basic Medicine, Dali University, Dali, 671003, China
| | - Zhidan Mu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Dali University, Dali, 671003, China
| | - Xinyan Tian
- Department of Physiology and Pathophysiology, School of Basic Medicine, Dali University, Dali, 671003, China
| | - Wenzhen Zhao
- Department of Histology and Embryology, School of Basic Medicine, Dali University, Dali, 671003, China
| | - Yarong Hu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Dali University, Dali, 671003, China.
| | - Juan Su
- Department of Physiology and Pathophysiology, School of Basic Medicine, Dali University, Dali, 671003, China.
| |
Collapse
|
5
|
Zhou DL, Yang SK, Wang ZJ, Zhang YJ, Wang YJ, Wang Y, Liu TY, Yao YY, Huang H. Exposure to nanoplastics induces the elevation of Zn 2+ levels in cells as visualized by a Golgi apparatus-targetable ratiometric fluorescent nanosensor. Talanta 2025; 282:127030. [PMID: 39406095 DOI: 10.1016/j.talanta.2024.127030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 11/20/2024]
Abstract
Nanoplastics are prevalent in the environment and emerging evidence suggests they can induce organ injury by activating oxidative stress. Given that both nanoplastics and Zn2+ levels are intertwined with oxidative stress, it is crucial to investigate the influence of nanoplastics on the level of labile Zn2+ and get a better understanding of their cytotoxicity mechanisms. At the organelle level, the Golgi apparatus plays an active role in stress responses. In this study, we synthesized Golgi-Zn, the first ratiometric fluorescence nanosensor with Golgi apparatus targeting ability for monitoring of Zn2+. This nanosensor demonstrated high sensitivity and selectivity as well as robust pH stability for Zn2+ sensing. The ratio of the two fluorescence signals of Golgi-Zn showed a good linearity with Zn2+ concentration in the range of 0.5-10 μM, achieving a limit of detection of ∼72.4 nM. Furthermore, the nanosensor exhibited low cytotoxicity and effectively targeted the Golgi apparatus. Leveraging these fascinating features, we successfully applied Golgi-Zn for visualizing exogenous and endogenous Zn2+ levels in the Golgi apparatus. Moreover, with the help of Golgi-Zn, we found that nanoplastics stimulation could increase the level of Zn2+ in the Golgi apparatus.
Collapse
Affiliation(s)
- Dan-Ling Zhou
- School of Health & Social Care, Shanghai Urban Construction Vocational College, Shanghai, 201415, China
| | - Shi-Ke Yang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Zheng-Jun Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China; College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Yan-Jun Zhang
- School of Health & Social Care, Shanghai Urban Construction Vocational College, Shanghai, 201415, China.
| | - Yan-Juan Wang
- School of Health & Social Care, Shanghai Urban Construction Vocational College, Shanghai, 201415, China
| | - Yan Wang
- College of Material Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Tian-Ye Liu
- School of Chemical Engineering, Dalian University of Technology, Panjin, 124221, China
| | - Yuan-Yuan Yao
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Hong Huang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China.
| |
Collapse
|
6
|
Obeng E, Shen B, Wang W, Xie Z, Zhang W, Li Z, Yao Q, Wu W. Engineered bio-functional material-based nerve guide conduits for optic nerve regeneration: a view from the cellular perspective, challenges and the future outlook. Regen Biomater 2024; 12:rbae133. [PMID: 39776856 PMCID: PMC11703557 DOI: 10.1093/rb/rbae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/16/2024] [Accepted: 11/03/2024] [Indexed: 01/11/2025] Open
Abstract
Nerve injuries can be tantamount to severe impairment, standard treatment such as the use of autograft or surgery comes with complications and confers a shortened relief. The mechanism relevant to the regeneration of the optic nerve seems yet to be fully uncovered. The prevailing rate of vision loss as a result of direct or indirect insult on the optic nerve is alarming. Currently, the use of nerve guide conduits (NGC) to some extent has proven reliable especially in rodents and among the peripheral nervous system, a promising ground for regeneration and functional recovery, however in the optic nerve, this NGC function seems quite unfamous. The insufficient NGC application and the unabridged regeneration of the optic nerve could be a result of the limited information on cellular and molecular activities. This review seeks to tackle two major factors (i) the cellular and molecular activity involved in traumatic optic neuropathy and (ii) the NGC application for the optic nerve regeneration. The understanding of cellular and molecular concepts encompassed, ocular inflammation, extrinsic signaling and intrinsic signaling for axon growth, mobile zinc role, Ca2+ factor associated with the optic nerve, alternative therapies from nanotechnology based on the molecular information and finally the nanotechnological outlook encompassing applicable biomaterials and the use of NGC for regeneration. The challenges and future outlook regarding optic nerve regenerations are also discussed. Upon the many approaches used, the comprehensive role of the cellular and molecular mechanism may set grounds for the efficient application of the NGC for optic nerve regeneration.
Collapse
Affiliation(s)
- Enoch Obeng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Baoguo Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhenyuan Xie
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wenyi Zhang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhixing Li
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Qinqin Yao
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wencan Wu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang 325000, China
| |
Collapse
|
7
|
Song CC, Liu T, Hogstrand C, Zhong CC, Zheng H, Sun LH, Luo Z. SENP1 mediates zinc-induced ZnT6 deSUMOylation at Lys-409 involved in the regulation of zinc metabolism in Golgi apparatus. Cell Mol Life Sci 2024; 81:422. [PMID: 39367979 PMCID: PMC11455790 DOI: 10.1007/s00018-024-05452-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 10/07/2024]
Abstract
Zinc (Zn) transporters contribute to the maintenance of intracellular Zn homeostasis in vertebrate, whose activity and function are modulated by post-translational modification. However, the function of small ubiquitin-like modifier (SUMOylation) in Zn metabolism remains elusive. Here, compared with low Zn group, a high-Zn diet significantly increases hepatic Zn content and upregulates the expression of metal-response element-binding transcription factor-1 (MTF-1), Zn transporter 6 (ZnT6) and deSUMOylation enzymes (SENP1, SENP2, and SENP6), but inhibits the expression of SUMO proteins and the E1, E2, and E3 enzymes. Mechanistically, Zn triggers the activation of the MTF-1/SENP1 pathway, resulting in the reduction of ZnT6 SUMOylation at Lys 409 by small ubiquitin-like modifier 1 (SUMO1), and promoting the deSUMOylation process mediated by SENP1. SUMOylation modification of ZnT6 has no influence on its localization but reduces its protein stability. Importantly, deSUMOylation of ZnT6 is crucial for controlling Zn export from the cytosols into the Golgi apparatus. In conclusion, for the first time, we elucidate a novel mechanism by which SUMO1-catalyzed SUMOylation and SENP1-mediated deSUMOylation of ZnT6 orchestrate the regulation of Zn metabolism within the Golgi apparatus.
Collapse
Affiliation(s)
- Chang-Chun Song
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan, 430070, China
| | - Tao Liu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan, 430070, China
| | - Christer Hogstrand
- Diabetes and Nutritional Sciences Division, School of Medicine, King's College London, London, UK
| | - Chong-Chao Zhong
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan, 430070, China
| | - Hua Zheng
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan, 430070, China
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi Luo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan, 430070, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
8
|
Ge J, Li H, Liang X, Zhou B. SLC30A9: an evolutionarily conserved mitochondrial zinc transporter essential for mammalian early embryonic development. Cell Mol Life Sci 2024; 81:357. [PMID: 39158587 PMCID: PMC11335279 DOI: 10.1007/s00018-024-05377-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/23/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024]
Abstract
SLC30A9 (ZnT9) is a mitochondria-resident zinc transporter. Mutations in SLC30A9 have been reported in human patients with a novel cerebro-renal syndrome. Here, we show that ZnT9 is an evolutionarily highly conserved protein, with many regions extremely preserved among evolutionarily distant organisms. In Drosophila melanogaster (the fly), ZnT9 (ZnT49B) knockdown results in acutely impaired movement and drastic mitochondrial deformation. Severe Drosophila ZnT9 (dZnT9) reduction and ZnT9-null mutant flies are pupal lethal. The phenotype of dZnT9 knockdown can be partially rescued by mouse ZnT9 expression or zinc chelator TPEN, indicating the defect of dZnT9 loss is indeed a result of zinc dyshomeostasis. Interestingly, in the mouse, germline loss of Znt9 produces even more extreme phenotypes: the mutant embryos exhibit midgestational lethality with severe development abnormalities. Targeted mutagenesis of Znt9 in the mouse brain leads to serious dwarfism and physical incapacitation, followed by death shortly. Strikingly, the GH/IGF-1 signals are almost non-existent in these tissue-specific knockout mice, consistent with the medical finding in some human patients with severe mitochondrial deficiecny. ZnT9 mutations cause mitochondrial zinc dyshomeostasis, and we demonstrate mechanistically that mitochondrial zinc elevation quickly and potently inhibits the activities of respiration complexes. These results reveal the critical role of ZnT9 and mitochondrial zinc homeostasis in mammalian development. Based on our functional analyses, we finally discussed the possible nature of the so far identified human SLC30A9 mutations.
Collapse
Affiliation(s)
- Jing Ge
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Huihui Li
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xin Liang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bing Zhou
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen, 518055, China.
| |
Collapse
|
9
|
Ding M, Yu Z, Lu T, Hu S, Zhou X, Wang X. N-acetyltransferase 10 facilitates tumorigenesis of diffuse large B-cell lymphoma by regulating AMPK/mTOR signalling through N4-acetylcytidine modification of SLC30A9. Clin Transl Med 2024; 14:e1747. [PMID: 38961519 PMCID: PMC11222071 DOI: 10.1002/ctm2.1747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Accumulating studies suggested that posttranscriptional modifications exert a vital role in the tumorigenesis of diffuse large B-cell lymphoma (DLBCL). N4-acetylcytidine (ac4C) modification, catalyzed by the N-acetyltransferase 10 (NAT10), was a novel type of chemical modification that improves translation efficiency and mRNA stability. METHODS GEO databases and clinical samples were used to explore the expression and clinical value of NAT10 in DLBCL. CRISPER/Cas9-mediated knockout of NAT10 was performed to determine the biological functions of NAT10 in DLBCL. RNA sequencing, acetylated RNA immunoprecipitation sequencing (acRIP-seq), LC-MS/MS, RNA immunoprecipitation (RIP)-qPCR and RNA stability assays were performed to explore the mechanism by which NAT10 contributed to DLBCL progression. RESULTS Here, we demonstrated that NAT10-mediated ac4C modification regulated the occurrence and progression of DLBCL. Dysregulated N-acetyltransferases expression was found in DLBCL samples. High expression of NAT10 was associated with poor prognosis of DLBCL patients. Deletion of NAT10 expression inhibited cell proliferation and induced G0/G1 phase arrest. Furthermore, knockout of NAT10 increased the sensitivity of DLBCL cells to ibrutinib. AcRIP-seq identified solute carrier family 30 member 9 (SLC30A9) as a downstream target of NAT10 in DLBCL. NAT10 regulated the mRNA stability of SLC30A9 in an ac4C-dependent manner. Genetic silencing of SLC30A9 suppressed DLBCL cell growth via regulating the activation of AMP-activated protein kinase (AMPK) pathway. CONCLUSION Collectively, these findings highlighted the essential role of ac4C RNA modification mediated by NAT10 in DLBCL, and provided insights into novel epigenetic-based therapeutic strategies.
Collapse
Affiliation(s)
- Mengfei Ding
- Department of Hematology, Shandong Provincial HospitalShandong UniversityJinanShandongChina
| | - Zhuoya Yu
- Department of Hematology, Shandong Provincial HospitalShandong UniversityJinanShandongChina
| | - Tiange Lu
- Department of Hematology, Shandong Provincial HospitalShandong UniversityJinanShandongChina
| | - Shunfeng Hu
- Department of Hematology, Shandong Provincial HospitalShandong UniversityJinanShandongChina
| | - Xiangxiang Zhou
- Department of HematologyShandong Provincial Hospital, Affiliated to Shandong First Medical UniversityJinanShandongChina
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xin Wang
- Department of Hematology, Shandong Provincial HospitalShandong UniversityJinanShandongChina
- Department of HematologyShandong Provincial Hospital, Affiliated to Shandong First Medical UniversityJinanShandongChina
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Taishan Scholars Program of Shandong ProvinceJinanShandongChina
- Branch of National Clinical Research Center for Hematologic DiseasesJinanShandongChina
| |
Collapse
|
10
|
Chen Y, Hao L, Cong J, Ji J, Dai Y, Xu L, Gong B. Transcriptomic analysis reveals the crosstalk between type 2 diabetes and chronic pancreatitis. Health Sci Rep 2024; 7:e2079. [PMID: 38690006 PMCID: PMC11058262 DOI: 10.1002/hsr2.2079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/15/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
Background and Aims Mounting evidence highlights a strong association between chronic pancreatitis (CP) and type 2 diabetes (T2D), although the exact mechanism of interaction remains unclear. This study aimed to investigate the crosstalk genes and pathogenesis between CP and T2D. Methods Transcriptomic gene expression profiles of CP and T2D were extracted from Gene Expression Omnibus, respectively, and the common differentially expressed genes (DEGs) were subsequently identified. Further analysis, such as Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), protein-protein interaction, transcription factors (TFs), microRNA (miRNAs), and candidate chemicals identification, was performed to explore the possible common signatures between the two diseases. Results In total, we acquired 281 common DEGs by interacting CP and T2D datasets, and identified 10 hub genes using CytoHubba. GO and KEGG analyses revealed that endoplasmic reticulum stress and mitochondrial dysfunction were closely related to these common DEGs. Among the shared genes, EEF2, DLD, RAB5A, and SLC30A9 showed promising diagnostic value for both diseases based on receiver operating characteristic curve and precision-recall curves. Additionally, we identified 16 key TFs and 16 miRNAs that were strongly correlated with the hub genes, which may serve as new molecular targets for CP and T2D. Finally, candidate chemicals that might become potential drugs for treating CP and T2D were screened out. Conclusion This study provides evidence that there are shared genes and pathological signatures between CP and T2D. The genes EEF2, DLD, RAB5A, and SLC30A9 have been identified as having the highest diagnostic efficiency and could be served as biomarkers for these diseases, providing new insights into precise diagnosis and treatment for CP and T2D.
Collapse
Affiliation(s)
- Youlan Chen
- Institute of Integrated Traditional Chinese and Western Medicine Digestive Diseases, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Lixiao Hao
- Department of Gastroenterology, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jun Cong
- Department of Gastroenterology, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jianmei Ji
- Department of Gastroenterology, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yancheng Dai
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine Integrated HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Li Xu
- Department of Gastroenterology, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Biao Gong
- Institute of Integrated Traditional Chinese and Western Medicine Digestive Diseases, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- Department of Gastroenterology, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
11
|
Han Y, Tong X, Zhou R, Wang Y, Chen Y, Chen L, Hong X, Wu L, Lin Z, Zhang Y, Zhang X, Hu C, Li B, Ping Y, Cao Z, Ye Z, Song Z, Li Y, Wen C, Zhou Y, Lin J, Huang S. Biodegradable Zn-5Dy Alloy with Enhanced Osteo/Angio-Genic Activity and Osteointegration Effect via Regulation of SIRT4-Dependent Mitochondrial Function. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307812. [PMID: 38243646 PMCID: PMC10987155 DOI: 10.1002/advs.202307812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/30/2023] [Indexed: 01/21/2024]
Abstract
Zinc (Zn)-dysprosium (Dy) binary alloys are promising biodegradable bone fracture fixation implants owing to their attractive biodegradability and mechanical properties. However, their clinical application is a challenge for bone fracture healing, due to the lack of Zn-Dy alloys with tailored proper bio-mechanical and osteointegration properties for bone regeneration. A Zn-5Dy alloy with high strength and ductility and a degradation rate aligned with the bone remodeling cycle is developed. Here, mechanical stability is further confirmed, proving that Zn-5Dy alloy can resist aging in the degradation process, thus meeting the mechanical requirements of fracture fixation. In vitro cellular experiments reveal that the Zn-5Dy alloy enhances osteogenesis and angiogenesis by elevating SIRT4-mediated mitochondrial function. In vivo Micro-CT, SEM-EDS, and immunohistochemistry analyses further indicate good biosafety, suitable biodegradation rate, and great osteointegration of Zn-5Dy alloy during bone healing, which also depends on the upregulation of SIRT4-mediated mitochondrial events. Overall, the study is the first to report a Zn-5Dy alloy that exerts remarkable osteointegration properties and has a strong potential to promote bone healing. Furthermore, the results highlight the importance of mitochondrial modulation and shall guide the future development of mitochondria-targeting materials in enhancing bone fracture healing.
Collapse
Affiliation(s)
- Yue Han
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Xian Tong
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Runqi Zhou
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Yilin Wang
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Yuge Chen
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
- Department of DentistryFaculty of Medicine and DentistryUniversity of AlbertaEdmontonT6G2R3Canada
| | - Liang Chen
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Xinhua Hong
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Linmei Wu
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Zhiqiang Lin
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Yichi Zhang
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Xuejia Zhang
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Chaoming Hu
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Bin Li
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Yifan Ping
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Zelin Cao
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Zhou Ye
- Applied Oral Sciences and Community Dental CareFaculty of DentistryUniversity of Hong KongHong Kong999077China
| | - Zhongchen Song
- Department of PeriodontologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200125China
| | - Yuncang Li
- School of EngineeringRMIT UniversityMelbourneVIC3001Australia
| | - Cuie Wen
- School of EngineeringRMIT UniversityMelbourneVIC3001Australia
| | - Yongsheng Zhou
- Department of ProsthodonticsNational Center for StomatologyNational Engineering Research Center of Oral Biomaterials and Digital Medical DevicesNational Clinical Research Center for Oral DiseaseBeijing Key Laboratory of Digital StomatologyResearch Center of Engineering and Technology for Computerized Dentistry Ministry of HealthPeking University School and Hospital of StomatologyBeijing100081China
| | - Jixing Lin
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Shengbin Huang
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| |
Collapse
|
12
|
Yang X, Li W, Ding M, Liu KJ, Qi Z, Zhao Y. Contribution of zinc accumulation to ischemic brain injury and its mechanisms about oxidative stress, inflammation, and autophagy: an update. Metallomics 2024; 16:mfae012. [PMID: 38419293 DOI: 10.1093/mtomcs/mfae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
Ischemic stroke is a leading cause of death and disability worldwide, and presently, there is no effective neuroprotective therapy. Zinc is an essential trace element that plays important physiological roles in the central nervous system. Free zinc concentration is tightly regulated by zinc-related proteins in the brain under normal conditions. Disruption of zinc homeostasis, however, has been found to play an important role in the mechanism of brain injury following ischemic stroke. A large of free zinc releases from storage sites after cerebral ischemia, which affects the functions and survival of nerve cells, including neurons, astrocytes, and microglia, resulting in cell death. Ischemia-triggered intracellular zinc accumulation also disrupts the function of blood-brain barrier via increasing its permeability, impairing endothelial cell function, and altering tight junction levels. Oxidative stress and neuroinflammation have been reported to be as major pathological mechanisms in cerebral ischemia/reperfusion injury. Studies have showed that the accumulation of intracellular free zinc could impair mitochondrial function to result in oxidative stress, and form a positive feedback loop between zinc accumulation and reactive oxygen species production, which leads to a series of harmful reactions. Meanwhile, elevated intracellular zinc leads to neuroinflammation. Recent studies also showed that autophagy is one of the important mechanisms of zinc toxicity after ischemic injury. Interrupting the accumulation of zinc will reduce cerebral ischemia injury and improve neurological outcomes. This review summarizes the role of zinc toxicity in cellular and tissue damage following cerebral ischemia, focusing on the mechanisms about oxidative stress, inflammation, and autophagy.
Collapse
Affiliation(s)
- Xueqi Yang
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing 100053, China
- Beijing Geriatric Medical Research Center, Beijing 100053, China
| | - Wei Li
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing 100053, China
- Beijing Geriatric Medical Research Center, Beijing 100053, China
| | - Mao Ding
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing 100053, China
| | - Ke Jian Liu
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Zhifeng Qi
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing 100053, China
- Beijing Geriatric Medical Research Center, Beijing 100053, China
| | - Yongmei Zhao
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing 100053, China
- Beijing Geriatric Medical Research Center, Beijing 100053, China
| |
Collapse
|
13
|
Song Y, Geng W, Zhu D, Liang H, Du Z, Tong B, Wang K, Li S, Gao Y, Feng X, Liao Z, Mei R, Yang C. SYNJ2BP ameliorates intervertebral disc degeneration by facilitating mitochondria-associated endoplasmic reticulum membrane formation and mitochondrial Zn 2+ homeostasis. Free Radic Biol Med 2024; 212:220-233. [PMID: 38158052 DOI: 10.1016/j.freeradbiomed.2023.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Nucleus pulposus (NP) cell function-loss is one main contributor during intervertebral disc degeneration (IDD) progression. Both mitochondria and endoplasmic reticulum (ER) play vital roles in sustaining NP cell homeostasis, while the precise function of ER-mitochondria tethering and cross talk in IDD remain to be clarified. Here, we demonstrated that a notable disruption of mitochondria-associated ER membrane (MAM) was identified in degenerated discs and TBHP-induced NP cells, accompanied by mitochondrial Zn2+ overload and NP cell senescence. Importantly, experimental coupling of MAM contacts by MFN2, a critical regulator of MAM formation, could enhance NLRX1-SLC39A7 complex formation and mitochondrial Zn2+ homeostasis. Further using the sequencing data from TBHP-induced degenerative model of NP cells, combining the reported MAM proteomes, we demonstrated that SYNJ2BP loss was one critical pathological characteristic of NP cell senescence and IDD progression, which showed close relationship with MAM disruption. Overexpression of SYNJ2BP could facilitate MAM contact organization and NLRX1-SLC39A7 complex formation, thus promoted mitochondrial Zn2+ homeostasis, NP cell proliferation and intervertebral disc rejuvenation. Collectively, our present study revealed a critical role of SYNJ2BP in maintaining mitochondrial Zn2+ homeostasis in NP cells during IDD progression, partially via sustaining MAM contact and NLRX1-SLC39A7 complex formation.
Collapse
Affiliation(s)
- Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wen Geng
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dingchao Zhu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huaizhen Liang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhi Du
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bide Tong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yong Gao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhiwei Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Rongcheng Mei
- Department of Orthopaedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, China.
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
14
|
Jin H, Ju C, Duan C, Zhang N, Cao Y, Xia Q, Zhou J, Gao S, Wang Y, Huang H. Revealing the elevation of Zn 2+ in the brain of depressed mice by a ratiometric fluorescent probe with dual near-infrared emissions. Chem Commun (Camb) 2024; 60:1100-1103. [PMID: 38165284 DOI: 10.1039/d3cc05529a] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
A mitochondria-targeted ratiometric fluorescent probe (Mito-Zn) was first designed and synthesized with dual emissions both located in the near-infrared region, for Zn2+ detection with high sensitivity and selectivity. By using the developed Mito-Zn, a high level of Zn2+ in the depressed mouse brain was discovered for the first time.
Collapse
Affiliation(s)
- Haobin Jin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Can Ju
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Chenxu Duan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Ningwen Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Yongyong Cao
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Qineng Xia
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Jin Zhou
- School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| | - Shumei Gao
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Yangang Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Hong Huang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| |
Collapse
|
15
|
Fan YG, Wu TY, Zhao LX, Jia RJ, Ren H, Hou WJ, Wang ZY. From zinc homeostasis to disease progression: Unveiling the neurodegenerative puzzle. Pharmacol Res 2024; 199:107039. [PMID: 38123108 DOI: 10.1016/j.phrs.2023.107039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Zinc is a crucial trace element in the human body, playing a role in various physiological processes such as oxidative stress, neurotransmission, protein synthesis, and DNA repair. The zinc transporters (ZnTs) family members are responsible for exporting intracellular zinc, while Zrt- and Irt-like proteins (ZIPs) are involved in importing extracellular zinc. These processes are essential for maintaining cellular zinc homeostasis. Imbalances in zinc metabolism have been linked to the development of neurodegenerative diseases. Disruptions in zinc levels can impact the survival and activity of neurons, thereby contributing to the progression of neurodegenerative diseases through mechanisms like cell apoptosis regulation, protein phase separation, ferroptosis, oxidative stress, and neuroinflammation. Therefore, conducting a systematic review of the regulatory network of zinc and investigating the relationship between zinc dysmetabolism and neurodegenerative diseases can enhance our understanding of the pathogenesis of these diseases. Additionally, it may offer new insights and approaches for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| | - Ting-Yao Wu
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Rong-Jun Jia
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Hang Ren
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Wen-Jia Hou
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| |
Collapse
|
16
|
Roca-Umbert A, Garcia-Calleja J, Vogel-González M, Fierro-Villegas A, Ill-Raga G, Herrera-Fernández V, Bosnjak A, Muntané G, Gutiérrez E, Campelo F, Vicente R, Bosch E. Human genetic adaptation related to cellular zinc homeostasis. PLoS Genet 2023; 19:e1010950. [PMID: 37747921 PMCID: PMC10553801 DOI: 10.1371/journal.pgen.1010950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/05/2023] [Accepted: 08/31/2023] [Indexed: 09/27/2023] Open
Abstract
SLC30A9 encodes a ubiquitously zinc transporter (ZnT9) and has been consistently suggested as a candidate for positive selection in humans. However, no direct adaptive molecular phenotype has been demonstrated. Our results provide evidence for directional selection operating in two major complementary haplotypes in Africa and East Asia. These haplotypes are associated with differential gene expression but also differ in the Met50Val substitution (rs1047626) in ZnT9, which we show is found in homozygosis in the Denisovan genome and displays accompanying signatures suggestive of archaic introgression. Although we found no significant differences in systemic zinc content between individuals with different rs1047626 genotypes, we demonstrate that the expression of the derived isoform (ZnT9 50Val) in HEK293 cells shows a gain of function when compared with the ancestral (ZnT9 50Met) variant. Notably, the ZnT9 50Val variant was found associated with differences in zinc handling by the mitochondria and endoplasmic reticulum, with an impact on mitochondrial metabolism. Given the essential role of the mitochondria in skeletal muscle and since the derived allele at rs1047626 is known to be associated with greater susceptibility to several neuropsychiatric traits, we propose that adaptation to cold may have driven this selection event, while also impacting predisposition to neuropsychiatric disorders in modern humans.
Collapse
Affiliation(s)
- Ana Roca-Umbert
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Jorge Garcia-Calleja
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Marina Vogel-González
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Alejandro Fierro-Villegas
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Gerard Ill-Raga
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Víctor Herrera-Fernández
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Anja Bosnjak
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Gerard Muntané
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
- Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, Reus, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Esteban Gutiérrez
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Rubén Vicente
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Elena Bosch
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
17
|
Figiel M, Górka AK, Górecki A. Zinc Ions Modulate YY1 Activity: Relevance in Carcinogenesis. Cancers (Basel) 2023; 15:4338. [PMID: 37686614 PMCID: PMC10487186 DOI: 10.3390/cancers15174338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
YY1 is widely recognized as an intrinsically disordered transcription factor that plays a role in development of many cancers. In most cases, its overexpression is correlated with tumor progression and unfavorable patient outcomes. Our latest research focusing on the role of zinc ions in modulating YY1's interaction with DNA demonstrated that zinc enhances the protein's multimeric state and affinity to its operator. In light of these findings, changes in protein concentration appear to be just one element relevant to modulating YY1-dependent processes. Thus, alterations in zinc ion concentration can directly and specifically impact the regulation of gene expression by YY1, in line with reports indicating a correlation between zinc ion levels and advancement of certain tumors. This review concentrates on other potential consequences of YY1 interaction with zinc ions that may act by altering charge distribution, conformational state distribution, or oligomerization to influence its interactions with molecular partners that can disrupt gene expression patterns.
Collapse
Affiliation(s)
| | | | - Andrzej Górecki
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Physical Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.F.); (A.K.G.)
| |
Collapse
|
18
|
Kizhakkedath P, AlDhaheri W, Baydoun I, Tabouni M, John A, Almansoori TM, Al-Turki S, Al-Jasmi F, Alblooshi H. Case report: Birk-Landau-Perez syndrome linked to the SLC30A9 gene-identification of additional cases and expansion of the phenotypic spectrum. Front Genet 2023; 14:1219514. [PMID: 37576556 PMCID: PMC10414535 DOI: 10.3389/fgene.2023.1219514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023] Open
Abstract
Birk-Landau-Perez syndrome (BILAPES) is an autosomal recessive cerebro-renal syndrome associated with genetic defects in the SLC30A9 gene, initially reported in 2017 in six individuals belonging to a large Bedouin kindred. The SLC30A9 gene encodes a putative mitochondrial zinc transporter with ubiquitous expression, the highest found in the brain, kidney, and skeletal muscle. Since the first report, only one additional affected patient has been described, but there were some inconsistencies, such as hearing loss, failure to thrive, and neuroimaging findings between the clinical presentation of the disease in the Bedouin family and the second patient. Here, we present two more patients from a consanguineous Middle Eastern family with features of chronic kidney disease, neurodevelopmental regression, ataxia, hearing loss, and eye abnormalities, which were largely consistent with BILAPES. Whole-exome sequencing detected a homozygous in-frame deletion c.1049_1051delCAG (p.Ala350del) in the SLC30A9 gene, which was the same variant detected in the patients from the primary literature report and the variant segregated with disease in the family. However, in the patients described here, brain MRI showed cerebellar atrophy, which was not a cardinal feature of the syndrome from the primary report. Our findings provide further evidence for SLC30A9-associated BILAPES and contribute to defining the clinical spectrum.
Collapse
Affiliation(s)
- Praseetha Kizhakkedath
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Watfa AlDhaheri
- Department of Pediatrics, Tawam Hospital, Al Ain, United Arab Emirates
| | - Ibrahim Baydoun
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed Tabouni
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Anne John
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Taleb M. Almansoori
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Saeed Al-Turki
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Fatma Al-Jasmi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Department of Pediatrics, Tawam Hospital, Al Ain, United Arab Emirates
| | - Hiba Alblooshi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
19
|
Guo M, Qiao X, Wang Y, Li ZH, Shi C, Chen Y, Kang L, Chen C, Zhou XL. Mitochondrial translational defect extends lifespan in C. elegans by activating UPR mt. Redox Biol 2023; 63:102722. [PMID: 37167879 DOI: 10.1016/j.redox.2023.102722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are indispensable players in translation. Usually, two or three genes encode cytoplasmic and mitochondrial threonyl-tRNA synthetases (ThrRSs) in eukaryotes. Here, we reported that Caenorhabditis elegans harbors only one tars-1, generating cytoplasmic and mitochondrial ThrRSs via translational reinitiation. Mitochondrial tars-1 knockdown decreased mitochondrial tRNAThr charging and translation and caused pleotropic phenotypes of delayed development, decreased motor ability and prolonged lifespan, which could be rescued by replenishing mitochondrial tars-1. Mitochondrial tars-1 deficiency leads to compromised mitochondrial functions including the decrease in oxygen consumption rate, complex Ⅰ activity and the activation of the mitochondrial unfolded protein response (UPRmt), which contributes to longevity. Furthermore, deficiency of other eight mitochondrial aaRSs in C. elegans and five in mammal also caused activation of the UPRmt. In summary, we deciphered the mechanism of one tars-1, generating two aaRSs, and elucidated the biochemical features and physiological function of C. elegans tars-1. We further uncovered a conserved connection between mitochondrial translation deficiency and UPRmt.
Collapse
Affiliation(s)
- Miaomiao Guo
- University of Chinese Academy of Sciences, Beijing, 100049, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuanyuan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zi-Han Li
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chang Shi
- University of Chinese Academy of Sciences, Beijing, 100049, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yun Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lu Kang
- University of Chinese Academy of Sciences, Beijing, 100049, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chang Chen
- University of Chinese Academy of Sciences, Beijing, 100049, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiao-Long Zhou
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
20
|
Guan X, Yang J, Wang W, Zhao B, Hu S, Yu D, Yuan L, Shi Y, Xu J, Dong J, Wang J, Cheng XD, Qin JJ. Dual inhibition of MYC and SLC39A10 by a novel natural product STAT3 inhibitor derived from Chaetomium globosum suppresses tumor growth and metastasis in gastric cancer. Pharmacol Res 2023; 189:106703. [PMID: 36804016 DOI: 10.1016/j.phrs.2023.106703] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
Gastric cancer remains one of the most common deadly diseases and lacks effective targeted therapies. In the present study, we confirmed that the signal transducer and activator of transcription 3 (STAT3) is highly expressed and associated with a poor prognosis in gastric cancer. We further identified a novel natural product inhibitor of STAT3, termed XYA-2, which interacts specifically with the SH2 domain of STAT3 (Kd= 3.29 μM) and inhibits IL-6-induced STAT3 phosphorylation at Tyr705 and nuclear translocation. XYA-2 inhibited the viability of seven human gastric cancer cell lines with 72-h IC50 values ranging from 0.5 to 0.7 μΜ. XYA-2 at 1 μΜ inhibited the colony formation and migration ability of MGC803 (72.6% and 67.6%, respectively) and MKN28 (78.5% and 96.6%, respectively) cells. In the in vivo studies, intraperitoneal administration of XYA-2 (10 mg/kg/day, 7 days/week) significantly suppressed 59.8% and 88.8% tumor growth in the MKN28-derived xenograft mouse model and MGC803-derived orthotopic mouse model, respectively. Similar results were obtained in a patient-derived xenograft (PDX) mouse model. Moreover, XYA-2 treatment extended the survival of mice bearing PDX tumors. The molecular mechanism studies based on transcriptomics and proteomics analyses indicated that XYA-2 might exert its anticancer activity by synergistically inhibiting the expression of MYC and SLC39A10, two downstream genes of STAT3 in vitro and in vivo. Together, these findings suggested that XYA-2 may be a potent STAT3 inhibitor for treating gastric cancer, and dual inhibition of MYC and SLC39A10 may be an effective therapeutic strategy for STAT3-activated cancer.
Collapse
Affiliation(s)
- Xiaoqing Guan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jing Yang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Weiyi Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China.
| | - Bing Zhao
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Shiyu Hu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Dehua Yu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Li Yuan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yunfu Shi
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jingli Xu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jinyun Dong
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jinxin Wang
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xiang-Dong Cheng
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Jiang-Jiang Qin
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
21
|
Vrieling F, Stienstra R. Obesity and dysregulated innate immune responses: impact of micronutrient deficiencies. Trends Immunol 2023; 44:217-230. [PMID: 36709082 DOI: 10.1016/j.it.2023.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/28/2023]
Abstract
Obesity is associated with the development of various complications, including diabetes, atherosclerosis, and an increased risk for infections, driven by dysfunctional innate immune responses. Recent insights have revealed that the availability of nutrients is a key determinant of innate immune cell function. Although the presence of obesity is associated with overnutrition of macronutrients, several micronutrient deficiencies, including Vitamin D and zinc, are often present. Micronutrients have been attributed important immunomodulatory roles. In this review, we summarize current knowledge of the immunomodulatory effects of Vitamin D and zinc. We also suggest future lines of research to further improve our understanding of these micronutrients; this may serve as a stepping-stone to explore micronutrient supplementation to improve innate immune cell function during obesity.
Collapse
Affiliation(s)
- Frank Vrieling
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Rinke Stienstra
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands; Department of Internal Medicine, RadboudUMC, Nijmegen, The Netherlands.
| |
Collapse
|
22
|
Jiang J, Zhou D, Zhang A, Yu W, Du L, Yuan H, Zhang C, Wang Z, Jia X, Zhang ZN, Luan B. Thermogenic adipocyte-derived zinc promotes sympathetic innervation in male mice. Nat Metab 2023; 5:481-494. [PMID: 36879120 DOI: 10.1038/s42255-023-00751-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/31/2023] [Indexed: 03/08/2023]
Abstract
Sympathetic neurons activate thermogenic adipocytes through release of catecholamine; however, the regulation of sympathetic innervation by thermogenic adipocytes is unclear. Here, we identify primary zinc ion (Zn) as a thermogenic adipocyte-secreted factor that promotes sympathetic innervation and thermogenesis in brown adipose tissue and subcutaneous white adipose tissue in male mice. Depleting thermogenic adipocytes or antagonizing β3-adrenergic receptor on adipocytes impairs sympathetic innervation. In obesity, inflammation-induced upregulation of Zn chaperone protein metallothionein-2 decreases Zn secretion from thermogenic adipocytes and leads to decreased energy expenditure. Furthermore, Zn supplementation ameliorates obesity by promoting sympathetic neuron-induced thermogenesis, while sympathetic denervation abrogates this antiobesity effect. Thus, we have identified a positive feedback mechanism for the reciprocal regulation of thermogenic adipocytes and sympathetic neurons. This mechanism is important for adaptive thermogenesis and could serve as a potential target for the treatment of obesity.
Collapse
Affiliation(s)
- Junkun Jiang
- Department of Endocrinology, Tongji Hospital Affiliated to Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Donglei Zhou
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Anke Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenjing Yu
- Department of Endocrinology, Tongji Hospital Affiliated to Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Lei Du
- Department of Metabolic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huiwen Yuan
- Department of Endocrinology, Tongji Hospital Affiliated to Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Chuan Zhang
- Department of Endocrinology, Tongji Hospital Affiliated to Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Zelin Wang
- Department of Endocrinology, Tongji Hospital Affiliated to Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Xuyang Jia
- Department of Metabolic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhen-Ning Zhang
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Bing Luan
- Department of Endocrinology, Tongji Hospital Affiliated to Tongji University School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
23
|
A mutation in SLC30A9, a zinc transporter, causes an increased sensitivity to oxidative stress in the nematode Caenorhabditis elegans. Biochem Biophys Res Commun 2022; 634:175-181. [DOI: 10.1016/j.bbrc.2022.09.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
|
24
|
Tang J, Liu Z, Han J, Xue J, Liu L, Lin J, Wu C, Zhang Q, Wu S, Liu C, Huang H, Fu Y, Li M, Zhuo Y, Li Y. Increased Mobile Zinc Regulates Retinal Ganglion Cell Survival via Activating Mitochondrial OMA1 and Integrated Stress Response. Antioxidants (Basel) 2022; 11:antiox11102001. [PMID: 36290724 PMCID: PMC9598227 DOI: 10.3390/antiox11102001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 11/26/2022] Open
Abstract
Retinal ganglion cells (RGCs), the projection neurons of the eye, are irreversibly lost once the optic nerve is injured, which is a critical mechanism of glaucoma. Mobile zinc (Zn2+) levels rapidly increase in retinal interneuron amacrine cells and Zn2+ is then transferred to RGCs via the Zn2+ transporter protein ZnT-3, triggering RGC loss in optic nerve injury. Zn2+ chelation and ZnT-3 deletion promote long-term RGC survival. However, the downstream signaling pathways of Zn2+ in RGCs remains unknown. Here, we show that increased levels of Zn2+ upregulate the expression and activity of mitochondrial zinc metallopeptidase OMA1 in the retina, leading to the cleavage of DELE1 and activation of cytosolic eIF2α kinase PKR, triggering the integrated stress response (ISR) in RGCs. Our study identified OMA1 and ISR as the downstream molecular mechanisms of retinal Zn2+ and potential targets for preventing the progression of Zn2+-associated neuronal damage.
Collapse
Affiliation(s)
- Jiahui Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zhe Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jiaxu Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jingfei Xue
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Liyan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jicheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Caiqing Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Qi Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Siting Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Canying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Haishun Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yuanyuan Fu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Min Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
- Correspondence: (Y.Z.); (Y.L.)
| | - Yiqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
- Correspondence: (Y.Z.); (Y.L.)
| |
Collapse
|
25
|
Zhang C, Dischler A, Glover K, Qin Y. Neuronal signalling of zinc: from detection and modulation to function. Open Biol 2022; 12:220188. [PMID: 36067793 PMCID: PMC9448499 DOI: 10.1098/rsob.220188] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Zinc is an essential trace element that stabilizes protein structures and allosterically modulates a plethora of enzymes, ion channels and neurotransmitter receptors. Labile zinc (Zn2+) acts as an intracellular and intercellular signalling molecule in response to various stimuli, which is especially important in the central nervous system. Zincergic neurons, characterized by Zn2+ deposits in synaptic vesicles and presynaptic Zn2+ release, are found in the cortex, hippocampus, amygdala, olfactory bulb and spinal cord. To provide an overview of synaptic Zn2+ and intracellular Zn2+ signalling in neurons, the present paper summarizes the fluorescent sensors used to detect Zn2+ signals, the cellular mechanisms regulating the generation and buffering of Zn2+ signals, as well as the current perspectives on their pleiotropic effects on phosphorylation signalling, synapse formation, synaptic plasticity, as well as sensory and cognitive function.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - Anna Dischler
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - Kaitlyn Glover
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - Yan Qin
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| |
Collapse
|
26
|
Lv C, Kang W, Liu S, Yang P, Nishina Y, Ge S, Bianco A, Ma B. Growth of ZIF-8 Nanoparticles In Situ on Graphene Oxide Nanosheets: A Multifunctional Nanoplatform for Combined Ion-Interference and Photothermal Therapy. ACS NANO 2022; 16:11428-11443. [PMID: 35816172 DOI: 10.1021/acsnano.2c05532] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The regulation of intracellular ions' overload to interrupt normal bioprocesses and cause cell death has been developed as an efficient strategy (named as ion-interference therapy/IIT) to treat cancer. In this study, we design a multifunctional nanoplatform (called BSArGO@ZIF-8 NSs) by in situ growth of metal organic framework nanoparticles (ZIF-8 NPs) onto the graphene oxide (GO) surface, subsequently reduced by ascorbic acid and modified by bovine serum albumin. This nanocomplex causes the intracellular overload of Zn2+, an increase of reactive oxygen species (ROS), and exerts a broad-spectrum lethality to different kinds of cancer cells. BSArGO@ZIF-8 NSs can promote cell apoptosis by initiating bim (a pro-apoptotic protein)-mediated mitochondrial apoptotic events, up-regulating PUMA/NOXA expression, and down-regulating the level of Bid/p53AIP1. Meanwhile, Zn2+ excess triggers cellular dysfunction and mitochondria damage by activating the autophagy signaling pathways and disturbing the intracellular environmental homeostasis. Combined with the photothermal effect of reduced GO (rGO), BSArGO@ZIF-8 NSs mediated ion-interference and photothermal combined therapy leads to effective apoptosis and inhibits cell proliferation and angiogenesis, bringing a higher efficacy in tumor suppression in vivo. This designed Zn-based multifunctional nanoplatform will allow promoting further the development of IIT and the corresponding combined cancer therapy strategy.
Collapse
Affiliation(s)
- Chunxu Lv
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Wenyan Kang
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Shuo Liu
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Pishan Yang
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Yuta Nishina
- Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
- Research Core for Interdisciplinary Sciences, Okayama University, Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Shaohua Ge
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Baojin Ma
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| |
Collapse
|
27
|
Wei T, Huang S, Hu Q, Wang J, Huo Z, Liu C, Lu S, Chen H. Directed evolution of the genetically encoded zinc(II) FRET sensor ZapCY1. Biochim Biophys Acta Gen Subj 2022; 1866:130201. [PMID: 35835349 DOI: 10.1016/j.bbagen.2022.130201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Abstract
Zinc(II) ions (Zn2+) play an essential role in living systems, with their delicate concentration balance differing among the various intracellular organelles. The spatiotemporal distribution and homeostasis of Zn2+ can be monitored through photoluminescence imaging using zinc sensors. Among such biosensors, genetically encoded fluorescent sensor proteins are attractive tools owing to their subcellular localization advantage and high biocompatibility. However, the limited fluorescent properties of these proteins, such as their insufficient quantum yield and dynamic range, restrict their practical use. In this study, we developed an expression-screening-directed evolution system and used it to improve ZapCY1, a genetically encoded fluorescence resonance energy transfer (FRET) sensor. After four rounds of directed evolution, the FRET dynamic range of the modified sensor (designated ZapTV-EH) was increased by 1.5-1.7-fold. With its enhanced signal-to-noise ratio and ability to detect a wide Zn2+ concentration range, ZapTV-EH proves to be a better visualization tool for monitoring Zn2+ at the subcellular level. Combined with the simplified subcloning and expression steps and sufficient mutant libraries, this directed evolution system may provide a more simple and efficient way to develop and optimize genetically encoded FRET sensors through high-throughput screening.
Collapse
Affiliation(s)
- Tianbiao Wei
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Shanqing Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Qingyuan Hu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Jue Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Zhongzhong Huo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Chunhong Liu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Shuyu Lu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Hao Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
28
|
Interplay between Zn2+ Homeostasis and Mitochondrial Functions in Cardiovascular Diseases and Heart Ageing. Int J Mol Sci 2022; 23:ijms23136890. [PMID: 35805904 PMCID: PMC9266371 DOI: 10.3390/ijms23136890] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Zinc plays an important role in cardiomyocytes, where it exists in bound and histochemically reactive labile Zn2+ forms. Although Zn2+ concentration is under tight control through several Zn2+-transporters, its concentration and intracellular distribution may vary during normal cardiac function and pathological conditions, when the protein levels and efficacy of Zn2+ transporters can lead to zinc re-distribution among organelles in cardiomyocytes. Such dysregulation of cellular Zn2+ homeostasis leads to mitochondrial and ER stresses, and interrupts normal ER/mitochondria cross-talk and mitophagy, which subsequently, result in increased ROS production and dysregulated metabolic function. Besides cardiac structural and functional defects, insufficient Zn2+ supply was associated with heart development abnormalities, induction and progression of cardiovascular diseases, resulting in accelerated cardiac ageing. In the present review, we summarize the recently identified connections between cellular and mitochondrial Zn2+ homeostasis, ER stress and mitophagy in heart development, excitation–contraction coupling, heart failure and ischemia/reperfusion injury. Additionally, we discuss the role of Zn2+ in accelerated heart ageing and ageing-associated rise of mitochondrial ROS and cardiomyocyte dysfunction.
Collapse
|
29
|
Willekens J, Runnels LW. Impact of Zinc Transport Mechanisms on Embryonic and Brain Development. Nutrients 2022; 14:2526. [PMID: 35745255 PMCID: PMC9231024 DOI: 10.3390/nu14122526] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 12/04/2022] Open
Abstract
The trace element zinc (Zn) binds to over ten percent of proteins in eukaryotic cells. Zn flexible chemistry allows it to regulate the activity of hundreds of enzymes and influence scores of metabolic processes in cells throughout the body. Deficiency of Zn in humans has a profound effect on development and in adults later in life, particularly in the brain, where Zn deficiency is linked to several neurological disorders. In this review, we will summarize the importance of Zn during development through a description of the outcomes of both genetic and early dietary Zn deficiency, focusing on the pathological consequences on the whole body and brain. The epidemiology and the symptomology of Zn deficiency in humans will be described, including the most studied inherited Zn deficiency disease, Acrodermatitis enteropathica. In addition, we will give an overview of the different forms and animal models of Zn deficiency, as well as the 24 Zn transporters, distributed into two families: the ZIPs and the ZnTs, which control the balance of Zn throughout the body. Lastly, we will describe the TRPM7 ion channel, which was recently shown to contribute to intestinal Zn absorption and has its own significant impact on early embryonic development.
Collapse
Affiliation(s)
| | - Loren W. Runnels
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA;
| |
Collapse
|
30
|
Medlock AE, Hixon JC, Bhuiyan T, Cobine PA. Prime Real Estate: Metals, Cofactors and MICOS. Front Cell Dev Biol 2022; 10:892325. [PMID: 35669513 PMCID: PMC9163361 DOI: 10.3389/fcell.2022.892325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/02/2022] [Indexed: 12/23/2022] Open
Abstract
Metals are key elements for the survival and normal development of humans but can also be toxic to cells when mishandled. In fact, even mild disruption of metal homeostasis causes a wide array of disorders. Many of the metals essential to normal physiology are required in mitochondria for enzymatic activities and for the formation of essential cofactors. Copper is required as a cofactor in the terminal electron transport chain complex cytochrome c oxidase, iron is required for the for the formation of iron-sulfur (Fe-S) clusters and heme, manganese is required for the prevention of oxidative stress production, and these are only a few examples of the critical roles that mitochondrial metals play. Even though the targets of these metals are known, we are still identifying transporters, investigating the roles of known transporters, and defining regulators of the transport process. Mitochondria are dynamic organelles whose content, structure and localization within the cell vary in different tissues and organisms. Our knowledge of the impact that alterations in mitochondrial physiology have on metal content and utilization in these organelles is very limited. The rates of fission and fusion, the ultrastructure of the organelle, and rates of mitophagy can all affect metal homeostasis and cofactor assembly. This review will focus of the emerging areas of overlap between metal homeostasis, cofactor assembly and the mitochondrial contact site and cristae organizing system (MICOS) that mediates multiple aspects of mitochondrial physiology. Importantly the MICOS complexes may allow for localization and organization of complexes not only involved in cristae formation and contact between the inner and outer mitochondrial membranes but also acts as hub for metal-related proteins to work in concert in cofactor assembly and homeostasis.
Collapse
Affiliation(s)
- Amy E. Medlock
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- Augusta University/University of Georgia Medical Partnership, University of Georgia, Athens, GA, United States
| | - J. Catrice Hixon
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Tawhid Bhuiyan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Paul A. Cobine
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
- *Correspondence: Paul A. Cobine,
| |
Collapse
|
31
|
Rozenberg JM, Kamynina M, Sorokin M, Zolotovskaia M, Koroleva E, Kremenchutckaya K, Gudkov A, Buzdin A, Borisov N. The Role of the Metabolism of Zinc and Manganese Ions in Human Cancerogenesis. Biomedicines 2022; 10:biomedicines10051072. [PMID: 35625809 PMCID: PMC9139143 DOI: 10.3390/biomedicines10051072] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022] Open
Abstract
Metal ion homeostasis is fundamental for life. Specifically, transition metals iron, manganese and zinc play a pivotal role in mitochondrial metabolism and energy generation, anti-oxidation defense, transcriptional regulation and the immune response. The misregulation of expression or mutations in ion carriers and the corresponding changes in Mn2+ and Zn2+ levels suggest that these ions play a pivotal role in cancer progression. Moreover, coordinated changes in Mn2+ and Zn2+ ion carriers have been detected, suggesting that particular mechanisms influenced by both ions might be required for the growth of cancer cells, metastasis and immune evasion. Here, we present a review of zinc and manganese pathophysiology suggesting that these ions might cooperatively regulate cancerogenesis. Zn and Mn effects converge on mitochondria-induced apoptosis, transcriptional regulation and the cGAS-STING signaling pathway, mediating the immune response. Both Zn and Mn influence cancer progression and impact treatment efficacy in animal models and clinical trials. We predict that novel strategies targeting the regulation of both Zn and Mn in cancer will complement current therapeutic strategies.
Collapse
Affiliation(s)
- Julian Markovich Rozenberg
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- Correspondence:
| | - Margarita Kamynina
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.G.)
| | - Maksim Sorokin
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.G.)
| | - Marianna Zolotovskaia
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- OmicsWay Corporation, Walnut, CA 91789, USA
| | - Elena Koroleva
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
| | - Kristina Kremenchutckaya
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
| | - Alexander Gudkov
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.G.)
| | - Anton Buzdin
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.G.)
- OmicsWay Corporation, Walnut, CA 91789, USA
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Oncobox Ltd., 121205 Moscow, Russia
| | - Nicolas Borisov
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- OmicsWay Corporation, Walnut, CA 91789, USA
| |
Collapse
|