1
|
Rodríguez Lagar P, Concheso A, Barreda D, González Z, Montes-Morán MA, Menéndez JA, Blanco C, Santamaría R, Rocha VG. Direct Ink Writing of 3D-Structured All-Carbon Electrodes with High Electrical Conductivity for (Vanadium) Redox Flow Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2417641. [PMID: 40375603 DOI: 10.1002/advs.202417641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/25/2025] [Indexed: 05/18/2025]
Abstract
Redox flow batteries are attractive systems for large-scale energy storage due to their capability to uncouple energy and power but still need to make several improvements to reach full commercial scale. The need to search for better components, including electrode materials that allow the internal flow of electrolytes and have optimal electrochemical performance is a hot topic in the development of this kind of battery. The use of direct ink writing technology to engineer complex electrode materials both in the architecture and chemical composition opens a new field of research to optimize electrode performance. In this study, several formulations are prepared using graphite, multiwall carbon nanotubes, and two different Polyacrylonitrile (PAN)-based short carbon fibers. Furthermore, a graphitizable binder is added to the formulation to help consolidate the printed object into a highly conductive (3000-8000 Sm-1) and mechanically resistant carbon electrode after a moderate heat treatment (800 °C). The 3D electrodes are successfully tested in an all vanadium redox flow cell showing a competitive performance when compared to benchmark electrodes (graphite felts).
Collapse
Affiliation(s)
- Pablo Rodríguez Lagar
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, C/Francisco Pintado Fe, 26, Oviedo, 33011, Spain
| | - Alejandro Concheso
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, C/Francisco Pintado Fe, 26, Oviedo, 33011, Spain
| | - Daniel Barreda
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, C/Francisco Pintado Fe, 26, Oviedo, 33011, Spain
| | - Zoraida González
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, C/Francisco Pintado Fe, 26, Oviedo, 33011, Spain
| | - Miguel A Montes-Morán
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, C/Francisco Pintado Fe, 26, Oviedo, 33011, Spain
| | - J Angel Menéndez
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, C/Francisco Pintado Fe, 26, Oviedo, 33011, Spain
| | - Clara Blanco
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, C/Francisco Pintado Fe, 26, Oviedo, 33011, Spain
| | - Ricardo Santamaría
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, C/Francisco Pintado Fe, 26, Oviedo, 33011, Spain
| | - Victoria G Rocha
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, C/Francisco Pintado Fe, 26, Oviedo, 33011, Spain
| |
Collapse
|
2
|
Clemens A, Jung K, Ferrucci M, Ellis ME, Davis JT, Chandrasekaran S, Qi Z, Orme CA, Worsley MA, Akolkar R, Ivanovskaya A, Dudukovic NA. Understanding the Current Distribution and Mass Transport Properties in 3D-Printed Architected Flow-Through Electrodes. ACS APPLIED ENGINEERING MATERIALS 2025; 3:600-612. [PMID: 40177117 PMCID: PMC11960682 DOI: 10.1021/acsaenm.4c00561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 04/05/2025]
Abstract
Architected materials offer promising advancements in energy storage by enabling highly customizable, high-surface-area, ordered, and low-defect porous structures. This study investigates the current distribution and mass transport within complex 3D-printed lattice electrodes under flow-through conditions. Conductive lattices were fabricated using microstereolithography followed by pyrolytic carbonization. Lattice geometry effects were analyzed by varying the unit cell type [simple cubic (SC), body- and face-centered cubic (BCC/FCC), IsoTruss, and Octet], porosity, and current density. Current distribution uniformity was investigated using a model high-efficiency copper deposition reaction. Local film thickness distributions were predicted using a numerical model and validated experimentally using micro-X-ray computed tomography. Scaling relationships for informing electrochemical reaction conditions and current uniformity are formulated as a modified lattice-based Wagner number (Wa Lattice) and a corresponding inverse Damkohler number (Da Lattice -1). Validated models reveal that mass-transfer coefficients scale as Octet > IsoTruss > FCC ∼ BCC > SC. Inertial effects become significant at Reynolds number Re > 3 and are particularly pronounced in Octet structures due to an abundance of struts oriented away from the fluid flow direction. The study underscores the importance of electrode engineering and process conditions necessary to tailor mass transport and current uniformities to various device applications.
Collapse
Affiliation(s)
- Auston
L. Clemens
- Materials
Engineering Division, Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Kyle Jung
- Materials
Engineering Division, Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Massimiliano Ferrucci
- Materials
Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Megan E. Ellis
- Materials
Engineering Division, Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Jonathan T. Davis
- Materials
Engineering Division, Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Swetha Chandrasekaran
- Materials
Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Zhen Qi
- Materials
Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Christine A. Orme
- Materials
Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Marcus A. Worsley
- Materials
Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Rohan Akolkar
- Department
of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Anna Ivanovskaya
- Materials
Engineering Division, Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Nikola A. Dudukovic
- Materials
Engineering Division, Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
3
|
Xin H, Zhang W, Zhang X, Zhang G, Ji Q, Liu H, Qu J. Energy Recovery from Hexavalent Chromium Reduction for In Situ Electrocatalytic Hydrogen Peroxide Production. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17485-17496. [PMID: 39290141 DOI: 10.1021/acs.est.4c03827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Recovering chemical energy embedded in pollutants is significant in achieving carbon-neutral industrial wastewater treatment. Considering that industrial wastewater is usually treated in a decentralized manner, in situ utilization of chemical energy to achieve waste-to-treasure should be given priority. Herein, the chemical energy released by the electroreduction of Cr(VI) was used to enhance on-site H2O2 generation in a stacked flow-through electrochemical system. The driving force of water flow efficiently coupled O2 evolution with 2-e O2 reduction to facilitate H2O2 generation by transporting anode-produced O2 to the cathode. Meanwhile, the chemical energy released by Cr(VI) promoted O2 evolution and impeded H2 evolution by regulating the electrode potentials, accounting for the enhanced H2O2 generation. The system could completely reduce 10-100 ppm of Cr(VI), reaching the maximum H2O2 concentration of 2.41 mM. In particular, the H2O2 concentrations in the Cr(VI)-containing electrolyte were 10.6-88.1% higher than those in the Cr(VI) free electrolyte at 1.8-2.5 V. A 24-day continuous experiment demonstrated the high efficiency and stability of the system, achieving a 100% reduction efficiency for 100 ppm of Cr(VI) and producing ∼1.5 mM H2O2 at 1.8 V. This study presents a feasible strategy for Cr(VI) detoxification and synchronous on-site H2O2 generation, providing a new perspective for innovative Cr(VI) wastewater treatment toward resource utilization.
Collapse
Affiliation(s)
- Huaijia Xin
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wei Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaofeng Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qinghua Ji
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
4
|
Davis JT, Jayathilake BS, Chandrasekaran S, Wong JJ, Deotte JR, Baker SE, Beck VA, Duoss EB, Worsley MA, Lin TY. 3D printed optimized electrodes for electrochemical flow reactors. Sci Rep 2024; 14:22662. [PMID: 39349533 PMCID: PMC11443137 DOI: 10.1038/s41598-024-71765-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/30/2024] [Indexed: 10/02/2024] Open
Abstract
Recent advances in 3D printing have enabled the manufacture of porous electrodes which cannot be machined using traditional methods. With micron-scale precision, the pore structure of an electrode can now be designed for optimal energy efficiency, and a 3D printed electrode is not limited to a single uniform porosity. As these electrodes scale in size, however, the total number of possible pore designs can be intractable; choosing an appropriate pore distribution manually can be a complex task. To address this challenge, we adopt an inverse design approach. Using physics-based models, the electrode structure is optimized to minimize power losses in a flow reactor. The computer-generated structure is then printed and benchmarked against homogeneous porosity electrodes. We show how an optimized electrode decreases the power requirements by 16% compared to the best-case homogeneous porosity. Future work could apply this approach to flow batteries, electrolyzers, and fuel cells to accelerate their design and implementation.
Collapse
Affiliation(s)
- Jonathan T Davis
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | | | | | - Jonathan J Wong
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Joshua R Deotte
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Sarah E Baker
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Victor A Beck
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Eric B Duoss
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Marcus A Worsley
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Tiras Y Lin
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
| |
Collapse
|
5
|
Yang W, Chen MA, Lee SH, Kang PK. Fluid inertia controls mineral precipitation and clogging in pore to network-scale flows. Proc Natl Acad Sci U S A 2024; 121:e2401318121. [PMID: 38968103 PMCID: PMC11252985 DOI: 10.1073/pnas.2401318121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/27/2024] [Indexed: 07/07/2024] Open
Abstract
Mineral precipitation caused by fluid mixing presents complex control and predictability challenges in a variety of natural and engineering processes, including carbon mineralization, geothermal energy, and microfluidics. Precipitation dynamics, particularly under the influence of fluid flow, remain poorly understood. Combining microfluidic experiments and three-dimensional reactive transport simulations, we demonstrate that fluid inertia controls mineral precipitation and clogging at flow intersections, even in laminar flows. We observe distinct precipitation regimes as a function of Reynolds number (Re). At low Reynolds numbers (Re < 10), precipitates form a thin, dense layer along the mixing interface, which shuts precipitation off, while at high Reynolds numbers (Re > 50), strong three-dimensional flows significantly enhance precipitation over the entire intersection, resulting in rapid clogging. When injection rates from two inlets are uneven, flow symmetry-breaking leads to unexpected flow bifurcation phenomena, which result in enhanced concurrent precipitation in both downstream channels. Finally, we extend our findings to rough channel networks and demonstrate that the identified inertial effects on precipitation at the intersection scale are also present and even more dramatic at the network scale. This study sheds light on the fundamental mechanisms underlying mixing-induced mineral precipitation and provides a framework for designing and optimizing processes involving mineral precipitation.
Collapse
Affiliation(s)
- Weipeng Yang
- Department of Earth and Environmental Sciences, College of Science and Engineering, University of Minnesota, Minneapolis, MN55455
| | - Michael A. Chen
- Department of Earth and Environmental Sciences, College of Science and Engineering, University of Minnesota, Minneapolis, MN55455
| | - Sang Hyun Lee
- Department of Earth and Environmental Sciences, College of Science and Engineering, University of Minnesota, Minneapolis, MN55455
| | - Peter K. Kang
- Department of Earth and Environmental Sciences, College of Science and Engineering, University of Minnesota, Minneapolis, MN55455
- Saint Anthony Falls Laboratory, College of Science and Engineering, University of Minnesota, Minneapolis, MN55414
| |
Collapse
|
6
|
Lee D, Ruf M, Karadimitriou N, Steeb H, Manousidaki M, Varouchakis EA, Tzortzakis S, Yiotis A. Development of stochastically reconstructed 3D porous media micromodels using additive manufacturing: numerical and experimental validation. Sci Rep 2024; 14:9375. [PMID: 38654100 DOI: 10.1038/s41598-024-60075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
We propose an integrated methodology for the design and fabrication of 3D micromodels that are suitable for the pore-scale study of transport processes in macroporous materials. The micromodels, that bear the pore-scale characteristics of sandstone, such as porosity, mean pore size, etc, are designed following a stochastic reconstruction algorithm that allows for fine-tuning the porosity and the correlation length of the spatial distribution of the solid material. We then construct a series of 3D micromodels at very fine resolution (i.e. 16 μ m) using a state-of-the-art 3D printing infrastructure, specifically a ProJet MJP3600 3D printer, that utilizes the Material Jetting technology. Within the technical constraints of the 3D printer resolution, the fabricated micromodels represent scaled-up replicas of natural sandstones, that are suitable for the study of the scaling between the permeability, the porosity and the mean pore size. The REV- and pore-scale characteristics of the resulting physical micromodels are recovered using a combination of X-ray micro-CT and microfluidic studies. The experimental results are then compared with single-phase flow simulations at pore-scale and geostatistic models in order to determine the effects of the design parameters on the intrinsic permeability and the spatial correlation of the velocity profile. Our numerical and experimental measurements reveal an excellent match between the properties of the designed and fabricated 3D domains, thus demonstrating the robustness of the proposed methodology for the construction of 3D micromodels with fine-tuned and well-controlled pore-scale characteristics. Furthermore, a pore-scale numerical study over a wider range of 3D digital domain realizations reveals a very good match of the measured permeabilities with the predictions of the Kozeny-Carman formulation based on a single control parameter, k 0 , that is found to have a practically constant value for porosities ϕ ≥ 0.2 . This, in turn, enables us to customize the sample size to meet REV constraints, including enlarging pore morphology while considering the Reynolds number. It is also found that at lower porosities there is a significant increase in the fraction of the non-percolating pores, thus leading to different k 0 , as the porosity approaches a numerically determined critical porosity value, ϕ c , where the domain is no longer percolating.
Collapse
Affiliation(s)
- Dongwon Lee
- Institute of Applied Mechanics (CE), University of Stuttgart, Pfaffenwaldring 7, 70569, Stuttgart, Germany.
| | - Matthias Ruf
- Institute of Applied Mechanics (CE), University of Stuttgart, Pfaffenwaldring 7, 70569, Stuttgart, Germany
| | - Nikolaos Karadimitriou
- Institute of Applied Mechanics (CE), University of Stuttgart, Pfaffenwaldring 7, 70569, Stuttgart, Germany
| | - Holger Steeb
- Institute of Applied Mechanics (CE), University of Stuttgart, Pfaffenwaldring 7, 70569, Stuttgart, Germany
- SC SimTech, University of Stuttgart, Pfaffenwaldring 5, 70569, Stuttgart, Germany
| | - Mary Manousidaki
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 71110, Heraklion, Greece
| | - Emmanouil A Varouchakis
- School of Mineral Resources Engineering, Technical University of Crete, 73100, Chania, Greece
| | - Stelios Tzortzakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 71110, Heraklion, Greece
| | - Andreas Yiotis
- School of Mineral Resources Engineering, Technical University of Crete, 73100, Chania, Greece
| |
Collapse
|
7
|
Zhu H, Luo Z, Zhang L, Shen Q, Yang R, Cheng W, Zhang Y, Jiang M, Guo C, Fu B, Song C, Tao P, An S, Shang W, Deng T. Manipulation of Convection Using Infrared Light Emitted from Human Hands. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307020. [PMID: 38239054 DOI: 10.1002/advs.202307020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/07/2023] [Indexed: 03/28/2024]
Abstract
Control of convection plays an important role in heat transfer regulation, bio/chemical sensing, phase separation, etc. Current convection controlling systems generally depend on engineered energy sources to drive and manipulate the convection, which brings additional energy consumption into the system. Here the use of human hand as a natural and sustainable infrared (IR) radiation source for the manipulation of liquid convection is demonstrated. The fluid can sense the change of the relative position or the shape of the hand with the formation of different convection patterns. Besides the generation of static complex patterns, dynamic manipulation of convections can also be realized via moving of hand or finger. The use of such sustainable convections to control the movement of a floating "boat" is further achieved. The use of human hands as the natural energy sources provides a promising approach for the manipulation of liquid convection without the need of extra external energy, which may be further utilized for low-cost and intelligent bio/chemical sensing and separation.
Collapse
Affiliation(s)
- Hanrui Zhu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhen Luo
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Lifu Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA
| | - Qingchen Shen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Runheng Yang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Weizheng Cheng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yingyue Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Modi Jiang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chunzhi Guo
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Benwei Fu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chengyi Song
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Peng Tao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shun An
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wen Shang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Tao Deng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Shanghai Key Laboratory of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
8
|
Di Y, Gu Z, Kang Y, Tian J, Hu C. Enhanced oxidation of organic pollutants by regulating the interior reaction region of reactive electrochemical membranes. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133584. [PMID: 38286047 DOI: 10.1016/j.jhazmat.2024.133584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/01/2024] [Accepted: 01/19/2024] [Indexed: 01/31/2024]
Abstract
Reactive electrochemical membrane (REM) emerges as an attractive strategy for the elimination of refractory organic pollutants that exist in wastewater. However, the limited reaction sites in traditional REMs greatly hinder its practical application. Herein, a feed-through coating methodology was developed to realize the uniform loading of SnO2-Sb catalysts on the interior surface of a REM. The uniformly coated REM (Unif-REM) exhibited 2.4 times higher reaction kinetics (0.29 min-1) than that of surface coated REM (Surf-REM) for the degradation of 2 mM 4-chlorophenol (4-CP), rendering an energy consumption as low as 0.016 kWh gTOC-1. The fast degradation of various emerging contaminants, e.g., sulfamethoxazole (SMX), ofloxacin (OFLX), and tetracycline (TC), also confirms its superior oxidation capability. Besides, the Unif-REM exhibited good performance in generating hydroxyl radicals (•OH) and a relatively long service lifetime. The simulation of spatial current distribution demonstrates that the interior reaction region in the Unif-REM channels can be drastically extended, thereby maximizing the surface coupling of mass diffusion and electron transfer. This study offers an in-depth look at the spatially confined reactions in REM and provides a reference for the design of electrochemical systems with economically efficient water purification.
Collapse
Affiliation(s)
- Yuting Di
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhenao Gu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China.
| | - Yuyang Kang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayu Tian
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
9
|
Kang Y, Gu Z, Ma B, Zhang W, Sun J, Huang X, Hu C, Choi W, Qu J. Unveiling the spatially confined oxidation processes in reactive electrochemical membranes. Nat Commun 2023; 14:6590. [PMID: 37852952 PMCID: PMC10584896 DOI: 10.1038/s41467-023-42224-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023] Open
Abstract
Electrocatalytic oxidation offers opportunities for sustainable environmental remediation, but it is often hampered by the slow mass transfer and short lives of electro-generated radicals. Here, we achieve a four times higher kinetic constant (18.9 min-1) for the oxidation of 4-chlorophenol on the reactive electrochemical membrane by reducing the pore size from 105 to 7 μm, with the predominate mechanism shifting from hydroxyl radical oxidation to direct electron transfer. More interestingly, such an enhancement effect is largely dependent on the molecular structure and its sensitivity to the direct electron transfer process. The spatial distributions of reactant and hydroxyl radicals are visualized via multiphysics simulation, revealing the compressed diffusion layer and restricted hydroxyl radical generation in the microchannels. This study demonstrates that both the reaction kinetics and the electron transfer pathway can be effectively regulated by the spatial confinement effect, which sheds light on the design of cost-effective electrochemical platforms for water purification and chemical synthesis.
Collapse
Affiliation(s)
- Yuyang Kang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenao Gu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing, 100085, China.
| | - Baiwen Ma
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- KENTECH Institute for Environmental & Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju, 58330, Korea
| | - Wei Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jingqiu Sun
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyang Huang
- KENTECH Institute for Environmental & Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju, 58330, Korea
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing, 100085, China
| | - Wonyong Choi
- KENTECH Institute for Environmental & Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju, 58330, Korea
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Hegde C, Rosental T, Tan JMR, Magdassi S, Wong LH. Angle-independent solar radiation capture by 3D printed lattice structures for efficient photoelectrochemical water splitting. MATERIALS HORIZONS 2023; 10:1806-1815. [PMID: 36857680 DOI: 10.1039/d2mh01475k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Photoelectrochemical water splitting is one of the sustainable routes to renewable hydrogen production. One of the challenges to deploying photoelectrochemical (PEC) based electrolyzers is the difficulty in the effective capture of solar radiation as the illumination angle changes throughout the day. Herein, we demonstrate a method for the angle-independent capture of solar irradiation by using transparent 3 dimensional (3D) lattice structures as the photoanode in PEC water splitting. The transparent 3D lattice structures were fabricated by 3D printing a silica sol-gel followed by aging and sintering. These transparent 3D lattice structures were coated with a conductive indium tin oxide (ITO) thin film and a Mo-doped BiVO4 photoanode thin film by dip coating. The sheet resistance of the conductive lattice structures can reach as low as 340 Ohms per sq for ∼82% optical transmission. The 3D lattice structures furnished large volumetric current densities of 1.39 mA cm-3 which is about 2.4 times higher than a flat glass substrate (0.58 mA cm-3) at 1.23 V and 1.5 G illumination. Further, the 3D lattice structures showed no significant loss in performance due to a change in the angle of illumination, whereas the performance of the flat glass substrate was significantly affected. This work opens a new paradigm for more effective capture of solar radiation that will increase the solar to energy conversion efficiency.
Collapse
Affiliation(s)
- Chidanand Hegde
- Department of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Tamar Rosental
- Casali Center for Applied Chemistry, Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Joel Ming Rui Tan
- Department of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Shlomo Magdassi
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
- Casali Center for Applied Chemistry, Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Lydia Helena Wong
- Department of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| |
Collapse
|
11
|
Wu J, Xu S. Manufacturing flow batteries using advanced 3D printing technology—A review. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2023.1144237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
In the past decade, electrochemical energy storage systems such as rechargeable batteries have been explored as potential candidates for the large-scale storage of intermittent power sources. Among these, redox flow batteries stand out due to their low fabrication costs, high scalability, and long cycle life. Several redox flow battery pilot plants with MWh capacity have been constructed worldwide, although their commercial profitability is currently under investigation. 3D printing as a burgeoning technology offers unlimited opportunities in the process of optimizing the design, performance, and fabrication cost of redox flow batteries as compared to traditional top-down manufacturing techniques. This review discusses the principles of various redox flow batteries and 3D printing techniques, followed by explaining the advantages, disadvantages, and major factors to consider when using 3D printing in the construction of efficient redox flow batteries. The practical applications of 3D printing for redox flow batteries with different redox chemistries in the past decade are critically summarized, including classical all-vanadium, Zn/Br, and novel competitors. Lastly, a summary is provided along with outlooks that may provide valuable guidance for scientists interested in this research frontier.
Collapse
|
12
|
Challenges and opportunities in continuous flow processes for electrochemically mediated carbon capture. iScience 2022; 25:105153. [PMID: 36204263 PMCID: PMC9529983 DOI: 10.1016/j.isci.2022.105153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Carbon capture from both stationary emitters and dilute sources is critically needed to mitigate climate change. Carbon dioxide separation methods driven by electrochemical stimuli show promise to sidestep the high-energy penalty and fossil-fuel dependency associated with the conventional pressure and temperature swings. Compared with a batch process, electrochemically mediated carbon capture (EMCC) operating in a continuous flow mode offers greater design flexibility. Therefore, this review introduces key advances in continuous flow EMCC for point source, air, and ocean carbon captures. Notably, the main challenges and future research opportunities for practical implementation of continuous flow EMCC processes are discussed from a multi-scale perspective, from molecules to electrochemical cells and finally to separation systems.
Collapse
|
13
|
Li M, Irtem E, Iglesias van Montfort HP, Abdinejad M, Burdyny T. Energy comparison of sequential and integrated CO 2 capture and electrochemical conversion. Nat Commun 2022; 13:5398. [PMID: 36104350 PMCID: PMC9474516 DOI: 10.1038/s41467-022-33145-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 09/06/2022] [Indexed: 11/09/2022] Open
Abstract
Integrating carbon dioxide (CO2) electrolysis with CO2 capture provides exciting new opportunities for energy reductions by simultaneously removing the energy-demanding regeneration step in CO2 capture and avoiding critical issues faced by CO2 gas-fed electrolysers. However, understanding the potential energy advantages of an integrated process is not straightforward due to the interconnected processes which require knowledge of both capture and electrochemical conversion processes. Here, we identify the upper limits of the integrated process from an energy perspective by comparing the working principles and performance of integrated and sequential approaches. Our high-level energy analyses unveil that an integrated electrolyser must show similar performance to the gas-fed electrolyser to ensure an energy benefit of up to 44% versus the sequential route. However, such energy benefits diminish if future gas-fed electrolysers resolve the CO2 utilisation issue and if an integrated electrolyser shows lower conversion efficiencies than the gas-fed system.
Collapse
Affiliation(s)
- Mengran Li
- Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, the Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Erdem Irtem
- Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, the Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Hugo-Pieter Iglesias van Montfort
- Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, the Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Maryam Abdinejad
- Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, the Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Thomas Burdyny
- Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, the Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
14
|
Chen Y, Zhang G, Ji Q, Lan H, Liu H, Qu J. Visualization of Electrochemically Accessible Sites in Flow-through Mode for Maximizing Available Active Area toward Superior Electrocatalytic Ammonia Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9722-9731. [PMID: 35737582 DOI: 10.1021/acs.est.2c01707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Active chlorine species-mediated electrocatalytic oxidation is a promising strategy for ammonia removal in decentralized wastewater treatment. Flow-through electrodes (FTEs) provide an ideal platform for this strategy because of enhanced mass transport and sufficient electrochemically accessible sites. However, limited insight into spatial distribution of electrochemically accessible sites within FTEs inhibits the improvement of reactor efficiency and the reduction of FTE costs. Herein, a microfluidic-based electrochemical system is developed for the operando observation of microspatial reactions within pore channels, which reveals that reactions occur only in the surface layer of the electrode thickness. To further quantify the spatial distribution, finite element simulations demonstrate that over 75.0% of the current is accumulated in the 20.0% thickness of the electrode surface. Based on these findings, a gradient-coated method for the active layer was proposed and applied to a Ti/RuO2 porous electrode with an optimized pore diameter of ∼25 μm, whose electrochemically accessible surface area was 381.7 times that of the planar electrode while alleviating bubble entrapment. The optimized reactor enables complete ammonia removal with an energy consumption of 60.4 kWh kg-1 N, which was 24.2% and 39.9% less than those with pore diameters of ∼3 μm and ∼90 μm, respectively.
Collapse
Affiliation(s)
- Yu Chen
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qinghua Ji
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huachun Lan
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Numerical Study of the Thermal and Fluid Behavior of Three-Dimensional Microstructures for Efficient Catalytic Converters. ENERGIES 2022. [DOI: 10.3390/en15124200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Global regulations for emission reduction are continually becoming stricter, and conventional catalytic converters may be efficient in the future because of their low conversion efficiencies at cold-start. In this study, to overcome the performance limitations of conventional catalytic converters, a three-dimensional (3D) microstructured catalytic substrate was designed, and simulations of the fluid flow, heat transfer, and chemical reaction for the proposed catalytic substrates were performed using computational fluid dynamics (CFD) analysis. The effect of the pressure drop on the catalytic conversion efficiency of various 3D microarchitectures was investigated. Due to the three-dimensional microstructure, the fluid flow changed and fluid pressure increased, which led to energy loss. It was confirmed that the abrupt change in flow increased the heat transfer. The findings showed that the fluid flow changed due to the existence of a complex periodic microlattice structure instead of the existing monolithic structure, which promoted the conversion of harmful substances. Based on the CFD analysis of the thermal and fluid properties, it was confirmed that 3D microarchitectures can provide alternatives to conventional catalytic supports structures for efficient catalytic converters.
Collapse
|
16
|
Low Heat Capacity 3D Hollow Microarchitected Reactors for Thermal and Fluid Applications. ENERGIES 2022. [DOI: 10.3390/en15114073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lightweight reactor materials that simultaneously possess low heat capacity and large surface area are desirable for various applications such as catalytic supports, heat exchangers, and biological scaffolds. However, they are challenging to satisfy this criterion originating from their structural property in most porous cellular solids. Microlattices have great potential to resolve this issue in directing transport phenomena because of their hierarchically ordered design and controllable geometrical features such as porosity, specific surface, and tortuosity. In this study, we report hollow ceramic microlattices comprising a 10 μm thick hollow nickel oxide beam in an octet-truss architecture with low heat capacity and high specific surface area. Our microarchitected reactors exhibited a low heat capacity for a rapid thermal response with a small Biot number (Bi << 1) and large intertwined surface area for homogeneous flow mixing and chemical reactions, which made them ideal candidates for various energy applications. The hollow ceramic microlattice was fabricated by digital light three-dimensional (3D) printing, composite electroless plating, polymer removal, and subsequent thermal annealing. The transient thermal response and fluidic properties of the 3D-printed microstructures were experimentally investigated using a small-scale thermal and fluid test system, and analytically interpreted using simplified models. Our findings indicate that hollow microarchitected reactors provide a promising platform for developing multifunctional materials for thermal and fluid applications.
Collapse
|
17
|
Bui JC, Lees EW, Pant LM, Zenyuk IV, Bell AT, Weber AZ. Continuum Modeling of Porous Electrodes for Electrochemical Synthesis. Chem Rev 2022; 122:11022-11084. [PMID: 35507321 DOI: 10.1021/acs.chemrev.1c00901] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Electrochemical synthesis possesses substantial promise to utilize renewable energy sources to power the conversion of abundant feedstocks to value-added commodity chemicals and fuels. Of the potential system architectures for these processes, only systems employing 3-D structured porous electrodes have the capacity to achieve the high rates of conversion necessary for industrial scale. However, the phenomena and environments in these systems are not well understood and are challenging to probe experimentally. Fortunately, continuum modeling is well-suited to rationalize the observed behavior in electrochemical synthesis, as well as to ultimately provide recommendations for guiding the design of next-generation devices and components. In this review, we begin by presenting an historical review of modeling of porous electrode systems, with the aim of showing how past knowledge of macroscale modeling can contribute to the rising challenge of electrochemical synthesis. We then present a detailed overview of the governing physics and assumptions required to simulate porous electrode systems for electrochemical synthesis. Leveraging the developed understanding of porous-electrode theory, we survey and discuss the present literature reports on simulating multiscale phenomena in porous electrodes in order to demonstrate their relevance to understanding and improving the performance of devices for electrochemical synthesis. Lastly, we provide our perspectives regarding future directions in the development of models that can most accurately describe and predict the performance of such devices and discuss the best potential applications of future models.
Collapse
Affiliation(s)
- Justin C Bui
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States.,Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Eric W Lees
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemical and Biological Engineering, University of British Columbia Vancouver, British Columbia V6T 1Z3, Canada
| | - Lalit M Pant
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Sustainable Energy Engineering, Indian Institute of Technology, Kanpur, Kanpur-208016, India
| | - Iryna V Zenyuk
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Alexis T Bell
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States.,Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Adam Z Weber
- Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
18
|
Ouimet JA, Xu J, Flores‐Hansen C, Phillip WA, Boudouris BW. Design Considerations for Next‐Generation Polymer Sorbents: From Polymer Chemistry to Device Configurations. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jonathan Aubuchon Ouimet
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana 46566 United States
| | - Jialing Xu
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana 46566 United States
| | - Carsten Flores‐Hansen
- Department of Chemistry Purdue University West Lafayette Indiana 47907 United States
| | - William A. Phillip
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana 46566 United States
| | - Bryan W. Boudouris
- Department of Chemistry Purdue University West Lafayette Indiana 47907 United States
- Charles D. Davidson School of Chemical Engineering Purdue University West Lafayette Indiana 47907 United States
| |
Collapse
|
19
|
Ibrahim OA, Navarro-Segarra M, Sadeghi P, Sabaté N, Esquivel JP, Kjeang E. Microfluidics for Electrochemical Energy Conversion. Chem Rev 2022; 122:7236-7266. [PMID: 34995463 DOI: 10.1021/acs.chemrev.1c00499] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Electrochemical energy conversion is an important supplement for storage and on-demand use of renewable energy. In this regard, microfluidics offers prospects to raise the efficiency and rate of electrochemical energy conversion through enhanced mass transport, flexible cell design, and ability to eliminate the physical ion-exchange membrane, an essential yet costly element in conventional electrochemical cells. Since the 2002 invention of the microfluidic fuel cell, the research field of microfluidics for electrochemical energy conversion has expanded into a great variety of cell designs, fabrication techniques, and device functions with a wide range of utility and applications. The present review aims to comprehensively synthesize the best practices in this field over the past 20 years. The underlying fundamentals and research methods are first summarized, followed by a complete assessment of all research contributions wherein microfluidics was proactively utilized to facilitate energy conversion in conjunction with electrochemical cells, such as fuel cells, flow batteries, electrolysis cells, hybrid cells, and photoelectrochemical cells. Moreover, emerging technologies and analytical tools enabled by microfluidics are also discussed. Lastly, opportunities for future research directions and technology advances are proposed.
Collapse
Affiliation(s)
- Omar A Ibrahim
- Fuel Cell Research Laboratory, School of Mechatronic Systems Engineering, Simon Fraser University, V3T 0A3 Surrey, British Columbia Canada.,Fuelium S.L., Edifici Eureka, Av. Can Domènech S/N, 08193 Bellaterra, Barcelona Spain
| | - Marina Navarro-Segarra
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/dels Til·lers sn, Campus UAB, 08193 Bellaterra Barcelona Spain
| | - Pardis Sadeghi
- Fuel Cell Research Laboratory, School of Mechatronic Systems Engineering, Simon Fraser University, V3T 0A3 Surrey, British Columbia Canada
| | - Neus Sabaté
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/dels Til·lers sn, Campus UAB, 08193 Bellaterra Barcelona Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Juan Pablo Esquivel
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/dels Til·lers sn, Campus UAB, 08193 Bellaterra Barcelona Spain.,BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Erik Kjeang
- Fuel Cell Research Laboratory, School of Mechatronic Systems Engineering, Simon Fraser University, V3T 0A3 Surrey, British Columbia Canada
| |
Collapse
|
20
|
|