1
|
Rodriguez-Polo I, Behr R. Non-human primate pluripotent stem cells for the preclinical testing of regenerative therapies. Neural Regen Res 2022; 17:1867-1874. [PMID: 35142660 PMCID: PMC8848615 DOI: 10.4103/1673-5374.335689] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Non-human primates play a key role in the preclinical validation of pluripotent stem cell-based cell replacement therapies. Pluripotent stem cells used as advanced therapy medical products boost the possibility to regenerate tissues and organs affected by degenerative diseases. Therefore, the methods to derive human induced pluripotent stem cell and embryonic stem cell lines following clinical standards have quickly developed in the last 15 years. For the preclinical validation of cell replacement therapies in non-human primates, it is necessary to generate non-human primate pluripotent stem cell with a homologous quality to their human counterparts. However, pluripotent stem cell technologies have developed at a slower pace in non-human primates in comparison with human cell systems. In recent years, however, relevant progress has also been made with non-human primate pluripotent stem cells. This review provides a systematic overview of the progress and remaining challenges for the generation of non-human primate induced pluripotent stem cells/embryonic stem cells for the preclinical testing and validation of cell replacement therapies. We focus on the critical domains of (1) reprogramming and embryonic stem cell line derivation, (2) cell line maintenance and characterization and, (3) application of non-human primate pluripotent stem cells in the context of selected preclinical studies to treat cardiovascular and neurodegenerative disorders performed in non-human primates.
Collapse
|
2
|
Srivastava RN, Agrahari AK, Singh A, Chandra T, Raj S. Effectiveness of bone marrow-derived mononuclear stem cells for neurological recovery in participants with spinal cord injury: A randomized controlled trial. Asian J Transfus Sci 2019; 13:120-128. [PMID: 31896919 PMCID: PMC6910030 DOI: 10.4103/ajts.ajts_44_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 12/02/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND: Complete lesion after spinal cord injury (SCI) remains irreversible with little hope of neurological recovery. Newer interventions such as re-stimulation of damaged neurons using artificial agents and the use of stem cells for neuronal regeneration have shown promising results. AIM: This study was undertaken for evaluating the neurological status of acute SCI participants after stem cell augmentation and comparing them with other treatment methods. SETTING AND DESIGN: Randomized controlled trial in the northern Indian population. MATERIALS AND METHODS: A total 193 SCI participants of complete paraplegia with unstable T4–L2 injury having thoracolumbar injury severity score ≥4 were enrolled in this study. Participants were randomly allocated for three different treatment modalities, namely, conventional with stem cell augmentation (Group-1), conventional (Group-2), and conservative (Group-3). Neurological recovery after 1 year was evaluated through the ASIA Impairment Scale (AIS)-grading, sensory, and motor scores. STATISTICAL ANALYSIS: T-test for sensory-motor score analysis of each group and analysis of variance for comparison of same variables between the groups. RESULTS: After 1-year significant difference was observed in the AIS-grade, sensory and motor scores in-Group 1 (P < 0.001). In Group-1 versus 2, the mean difference at 1 year for AIS grade, sensory and motor scores were 0.40 (P = 0.010, 95% confidence interval [CI] 0.075–0.727), 8.52 (P = 0.030, 95% CI 0.619–16.419), and 4.55(P = 0.003, 95% CI 1.282–7.815), respectively. In Group-1 versus 3, 1.03, 19.02 and 7.22 (P < 0.001 for each of the parameters) and in Group-2 versus 3, 0.63 (P < 0.001), 10.49 (P = 0.009), and 2.68 (P = 0.019), respectively. CONCLUSIONS: Significant motor neurological recovery and AIS-grade promotion was observed in Group-1 as compared to Group-2 and 3.
Collapse
Affiliation(s)
| | - Ashok Kumar Agrahari
- Department of Orthopedic Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Alka Singh
- Department of Orthopedic Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Tulika Chandra
- Department of Transfusion Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Saloni Raj
- Department of Orthopedic Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
3
|
Biotechnology for Wildlife. ADVANCES IN ANIMAL BIOTECHNOLOGY 2019. [PMCID: PMC7153411 DOI: 10.1007/978-3-030-21309-1_46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
|
4
|
Mai Q, Mai X, Huang X, Zhang D, Huang K, Zhou C. Imprinting Status in Two Human Parthenogenetic Embryonic Stem Cell Lines: Analysis of 63 Imprinted Gene Expression Levels in Undifferentiated and Early Differentiated Stages. Stem Cells Dev 2018; 27:430-439. [PMID: 29402175 DOI: 10.1089/scd.2017.0247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human parthenogenetic embryonic stem cells (hPESCs) represent a source of histocompatible tissues for transplantation and carry two copies of the maternal genome, but lack the paternal genome. In this study, we selected 63 known human imprinted genes to investigate the imprinting status of hPESC. The expression level of these genes, including 27 maternally and 36 paternally imprinted were illustrated in hPESC and human embryonic stem cells (hESCs) derived from fertilized embryo lines. The expression activity changes of these genes were analyzed in undifferentiated and early differentiated hPESC lines. In addition, the methylation status of four differentially methylated regions (DMRs) of the imprinted genes was analyzed in undifferentiated and early differentiated hPESC and hESC lines. As a result, we found that all the maternally imprinted genes were expressed at similar levels in the undifferentiated hPESC lines and the hESC lines, except ZNF264 and ATP10A. Twenty-one analyzed paternal imprinted genes were expressed at the same level in two separated hPESC lines as well as compared with the hESC lines, whereas 15 other paternal imprinted genes were significantly downregulated or inactivated in hPESC lines as compared with the hESC line. During prolonged passage, the expression levels of the majority of imprinted genes remained stable in two hPESC lines. The four DMRs, including PEG3/ZIM2 (DMRs), SNURF/SNRPN DMRs, and KVDMR1 DMRs are highly methylated in the genes of two undifferentiated hPESCs and its embryonic bodies (EBs), whereas the genes of the undifferentiated hESCs and its EBs are half methylated. During the early differentiation stage, the imprinted genes showed the same expression trend and the expression levels of H19, IGF2, SLC22A2, SLC22A3/SLC22A18, and CPA4 were significantly upregulated in both hPESC lines. As conclusion, hPESCs show a substantial degree of epigenetic stability with respect to some imprinted genes.
Collapse
Affiliation(s)
- Qingyun Mai
- 1 Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| | - Xiuyun Mai
- 1 Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou, China .,2 Reproductive Medical Center , Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Xin Huang
- 1 Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| | - Dan Zhang
- 1 Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| | - Kejun Huang
- 1 Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| | - Canquan Zhou
- 1 Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| |
Collapse
|
5
|
Dalamagkas K, Tsintou M, Seifalian AM. Stem cells for spinal cord injuries bearing translational potential. Neural Regen Res 2018; 13:35-42. [PMID: 29451202 PMCID: PMC5840986 DOI: 10.4103/1673-5374.224360] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2017] [Indexed: 01/11/2023] Open
Abstract
Spinal cord injury (SCI) is a highly debilitating neurological disease, which still lacks effective treatment strategies, causing significant financial burden and distress to the affected families. Nevertheless, nanotechnology and regenerative medicine strategies holding promise for the development of novel therapies that would reach from bench to bedside to serve the SCI patients. There has already been significant progress in the field of cell-based therapies, with the clinical application for SCI, currently in phase II of the clinical trial. Stem cells (e.g., induced pluripotent stem cells, fetal stem cells, human embryonic stem cells, and olfactory ensheathing cells) are certainly not to be considered the panacea for neural repair but, especially when combined with rehabilitation or other combinatorial approaches using the help of nanotechnology, they seem to be the source of some of the most promising and clinical translatable cell-based therapies that could help solving impactful problems on neural repair.
Collapse
Affiliation(s)
- Kyriakos Dalamagkas
- Department of Tissue Engineering, Harvard Medical School, Boston, MA, USA
- Nanotechnology & Regenerative Medicine Centre, Division of Surgery and Interventional Science, University College London, London, UK
| | - Magdalini Tsintou
- Department of Tissue Engineering, Harvard Medical School, Boston, MA, USA
- Nanotechnology & Regenerative Medicine Centre, Division of Surgery and Interventional Science, University College London, London, UK
| | - Alexander M. Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (Ltd.), The London BioScience Innovation Centre, London, UK
| |
Collapse
|
6
|
Triolo F, Gridelli B. End-Stage Organ Failure: Will Regenerative Medicine Keep its Promise? Cell Transplant 2017; 15 Suppl 1:S3-10. [PMID: 16826790 DOI: 10.3727/000000006783982340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
End-stage organ failure is a major cause of death worldwide that can occur in patients of all ages and transplantation is the current standard of care for chronic end-stage disease of many organs. Despite the success of organ transplantation, it is becoming clear that there will never be enough organs made available through donation to meet the increasing demand. The past decade's rapid advancement in stem cell biology and tissue engineering generated an explosive outburst of reports that gave rise to regenerative medicine, a new field that promises to “fix” damaged organs through regeneration provided by transplanted cells, stimulation of endogenous repair mechanisms, or implantation of bioengineered tissue. Whether, and if so when, regenerative medicine will keep its promise is uncertain. As we continue to strive to find new effective solutions, alternative approaches based on the development of targeted, preventive interventions aimed at maintaining normal organ function, instead of repairing organ damage, should also be pursued.
Collapse
Affiliation(s)
- Fabio Triolo
- ISMETT-Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione, Palermo, Italy
| | | |
Collapse
|
7
|
|
8
|
QIU X, LI N, XIAO X, LI Y. Aggregation of a parthenogenetic diploid embryo and a male embryo improves the blastocyst development and parthenogenetic embryonic stem cell derivation. Turk J Biol 2017. [DOI: 10.3906/biy-1612-30] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
9
|
Rebuzzini P, Zuccotti M, Redi CA, Garagna S. Chromosomal Abnormalities in Embryonic and Somatic Stem Cells. Cytogenet Genome Res 2015; 147:1-9. [PMID: 26583376 DOI: 10.1159/000441645] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2015] [Indexed: 12/20/2022] Open
Abstract
The potential use of stem cells (SCs) for tissue engineering, regenerative medicine, disease modeling, toxicological studies, drug delivery, and as in vitro model for the study of basic developmental processes implies large-scale in vitro culture. Here, after a brief description of the main techniques used for karyotype analysis, we will give a detailed overview of the chromosome abnormalities described in pluripotent (embryonic and induced pluripotent SCs) and somatic SCs, and the possible causes of their origin during culture.
Collapse
Affiliation(s)
- Paola Rebuzzini
- Laboratorio di Biologia dello Sviluppo, Dipartimento di Biologia e Biotecnologie, Universitx00E0; degli Studi di Pavia, Pavia, Italy
| | | | | | | |
Collapse
|
10
|
Parthenogenesis and Human Assisted Reproduction. Stem Cells Int 2015; 2016:1970843. [PMID: 26635881 PMCID: PMC4655294 DOI: 10.1155/2016/1970843] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/20/2015] [Accepted: 06/24/2015] [Indexed: 11/17/2022] Open
Abstract
Parthenogenetic activation of human oocytes obtained from infertility treatments has gained new interest in recent years as an alternative approach to create embryos with no reproductive purpose for research in areas such as assisted reproduction technologies itself, somatic cell, and nuclear transfer experiments and for derivation of clinical grade pluripotent embryonic stem cells for regenerative medicine. Different activating methods have been tested on human and nonhuman oocytes, with varying degrees of success in terms of parthenote generation rates, embryo development stem cell derivation rates. Success in achieving a standardized artificial activation methodology for human oocytes and the subsequent potential therapeutic gain obtained from these embryos depends mainly on the availability of gametes donated from infertility treatments. This review will focus on the creation of parthenotes from clinically unusable oocytes for derivation and establishment of human parthenogenetic stem cell lines and their potential applications in regenerative medicine.
Collapse
|
11
|
Abstract
The hydatidiform mole (HM) is a placental pathology of androgenetic origin. Placental villi have an abnormal hyperproliferation event and hydropic degeneration. Three situations can be envisaged at its origin: 1. The destruction/expulsion of the female pronucleus at the time of fertilization by 1 or 2 spermatozoa with the former being followed by an endoreplication of the male pronucleus leading to a complete hydatidiform mole (CHM) 2. A triploid zygote (fertilization by 2 spermatozoa) leading to a partial hydatidiform mole (PHM) but can also lead to haploid and diploid clones. The diploid clone may produce a normal fetus while the haploid clone after endoreplication generates a CHM 3. A nutritional defect during the differentiation of the oocytes or the deterioration of the limited oxygen pressure during the first trimester of gestation may lead to the formation of a HM. In countries with poor medical health care system, moles (mainly the CHM) can become invasive or, in rare cases, lead to gestational choriocarcinomas.
Collapse
Affiliation(s)
- Jean-Jacques Candelier
- a Unité 1197 INSERM, Stem cell-niches Interactions: Physiology , Tumors and Tissular Repair, Hôpital Paul Brousse, Bâtiment Lavoisier , Villejuif , France.,b University of Paris-Saclay , Saint-Aubin , France
| |
Collapse
|
12
|
Li J, He J, Lin G, Lu G. Inducing human parthenogenetic embryonic stem cells into islet‑like clusters. Mol Med Rep 2014; 10:2882-90. [PMID: 25241773 PMCID: PMC4227434 DOI: 10.3892/mmr.2014.2588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/09/2014] [Indexed: 11/05/2022] Open
Abstract
In order to determine whether human parthenogenetic embryonic stem (hpES) cells have the potential to differentiate into functional cells, a modified four-step protocol was used to induce the hpES cells into islet-like clusters (ILCs) in vitro. Growth factors activin A, retinoic acid, nicotinamide, Exendin-4 and betacellulin were added sequentially to the hpES cells at each step. The terminally differentiated cells were shown to gather into ILCs. Immunohistochemistry and semi quantitative polymerase chain reaction analyses demonstrated that the ILCs expressed islet specific hormones and functional markers. Furthermore, an insulin release test indicated that the clusters had the same physiological function as islets. The ILCs derived from hpES cells shared similar characteristics with islets. These results indicate that hpES cell-derived ILCs may be used as reliable material for the treatment of type I diabetes mellitus.
Collapse
Affiliation(s)
- Jin Li
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan 410078, P.R. China
| | - Jingjing He
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan 410078, P.R. China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan 410078, P.R. China
| | - Guangxiu Lu
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
13
|
Vinnitsky V. The development of a malignant tumor is due to a desperate asexual self-cloning process in which cancer stem cells develop the ability to mimic the genetic program of germline cells. INTRINSICALLY DISORDERED PROTEINS 2014; 2:e29997. [PMID: 28232878 PMCID: PMC5314931 DOI: 10.4161/idp.29997] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/17/2014] [Accepted: 07/17/2014] [Indexed: 02/08/2023]
Abstract
To date there is no explanation why the development of almost all types of solid tumors occurs sharing a similar scenario: (1) creation of a cancer stem cell (CSC), (2) CSC multiplication and formation of a multicellular tumor spheroid (TS), (3) vascularization of the TS and its transformation into a vascularized primary tumor, (4) metastatic spreading of CSCs, (5) formation of a metastatic TSs and its transformation into metastatic tumors, and (6) potentially endless repetition of this cycle of events. The above gaps in our knowledge are related to the biology of cancer and specifically to tumorigenesis, which covers the process from the creation of a CSC to the formation of a malignant tumor and the development of metastases. My Oncogerminative Theory of Tumorigenesis considers tumor formation as a dynamic self-organizing process that mimics a self-organizing process of early embryo development. In the initial step in that process, gene mutations combined with epigenetic dysregulation cause somatic cells to be reprogrammed into CSCs, which are immortal pseudo-germline cells. Mimicking the behavior of fertilized germline cells, the CSC achieves immortality by passing through the stages of its life-cycle and developing into a pseudo-blastula-stage embryo, which manifests in the body as a malignant tumor. In this view, the development of a malignant tumor from a CSC is a phenomenon of developmental biology, which we named a desperate asexual self-cloning event. The theory explains seven core characteristics of malignant tumors: (1) CSC immortality, (2) multistep development of a malignant tumor from a single CSC, (3) heterogeneity of malignant tumor cell populations, (4) metastatic spread of CSCs, (5) invasive growth, (6) malignant progression, and (7) selective immune tolerance toward cancer cells. The Oncogerminative Theory of Tumorigenesis suggests new avenues for discovery of revolutionary therapies to treat, prevent, and eradicate cancer.
Collapse
Affiliation(s)
- Vladimir Vinnitsky
- Department of Experimental Cancer Therapeutics; R.E. Kavetsky Institute for Experimental Pathology, Oncology, and Radiobiology; Kiev, Ukraine
- Sequent Development (CRO), LLC; Madison, VA USA
| |
Collapse
|
14
|
Liu Y, Han XJ, Liu MH, Wang SY, Jia CW, Yu L, Ren G, Wang L, Li W. Three-day-old human unfertilized oocytes after in vitro fertilization/intracytoplasmic sperm injection can be activated by calcium ionophore a23187 or strontium chloride and develop to blastocysts. Cell Reprogram 2014; 16:276-80. [PMID: 24960285 DOI: 10.1089/cell.2013.0081] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Our objective was to observe the effectiveness of the calcium ionophore A23187 or strontium chloride on the activation and subsequent embryonic development of 3-day-old human unfertilized oocytes after in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI). A total of 279 3-day-old unfertilized oocytes after IVF or ICSI were randomized to be activated by the calcium ionophore A23187 (n=138) or strontium chloride (n=141). The activated oocytes were cultured in vitro for 3-5 days. Activation rate, pronucleus formation, cleavage rate, and developmental potential of parthenotes during culture were evaluated. A total of 170 unfertilized oocytes were activated; 65 developed to cleavage stage, 19 developed to greater than the eight-cell stage, and five blastocysts were obtained. The activation rate of the calcium ionophore A23187 group was higher than that of the strontium chloride group (75.4% and 46.8%, respectively; p<0.05); there was significant difference between two groups (p<0.05). Among the 44 cleaved oocytes in the calcium ionophore A23187 group, eight developed to the two- to four-cell stage, 17 developed to the five- to eight-cell stage, 15 developed to greater than the eight-cell stage, and four blastocysts were obtained. Among the 21 cleaved oocytes in the strontium chloride group, six developed to the two- to four- cell stage, 10 developed to the five- to eight-cell stage, four developed to greater than the eight-cell stage, and one blastocyst was obtained. Three-day-old unfertilized human oocytes after IVF or ICSI could be activated by the calcium ionophore A23187 or strontium chloride, and a small part of parthenogenetic embryos developed into blastocysts. The treatment with the calcium ionophore A23187 was better than that of strontium chloride in respect to the activation rate of 3-day-old unfertilized human oocytes after IVF or ICSI.
Collapse
Affiliation(s)
- Ying Liu
- Department of Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University , Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Analysis of imprinted IGF2/H19 gene methylation and expression in normal fertilized and parthenogenetic embryonic stem cells of pigs. Anim Reprod Sci 2014; 147:47-55. [DOI: 10.1016/j.anireprosci.2014.03.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 12/31/2022]
|
16
|
Daughtry B, Mitalipov S. Concise review: parthenote stem cells for regenerative medicine: genetic, epigenetic, and developmental features. Stem Cells Transl Med 2014; 3:290-8. [PMID: 24443005 DOI: 10.5966/sctm.2013-0127] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Embryonic stem cells (ESCs) have the potential to provide unlimited cells and tissues for regenerative medicine. ESCs derived from fertilized embryos, however, will most likely be rejected by a patient's immune system unless appropriately immunomatched. Pluripotent stem cells (PSCs) genetically identical to a patient can now be established by reprogramming of somatic cells. However, practical applications of PSCs for personalized therapies are projected to be unfeasible because of the enormous cost and time required to produce clinical-grade cells for each patient. ESCs derived from parthenogenetic embryos (pESCs) that are homozygous for human leukocyte antigens may serve as an attractive alternative for immunomatched therapies for a large population of patients. In this study, we describe the biology and genetic nature of mammalian parthenogenesis and review potential advantages and limitations of pESCs for cell-based therapies.
Collapse
Affiliation(s)
- Brittany Daughtry
- Departments of Cell and Developmental Biology and Molecular and Medical Genetics, and Program in Molecular and Cellular Biosciences, School of Medicine, and Divisions of Reproductive and Developmental Sciences, Oregon National Primate Research Center, and Reproductive Endocrinology, Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon, USA
| | | |
Collapse
|
17
|
Generation of parthenogenetic goat blastocysts: effects of different activation methods and culture media. ZYGOTE 2014; 23:327-35. [PMID: 24405529 DOI: 10.1017/s0967199413000580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The present study was carried out to investigate the effects of different activation methods and culture media on the in vitro development of parthenogenetic goat blastocysts. Calcium (Ca2+) ionophore, ethanol or a combination of the two, used as activating reagents, and embryo development medium (EDM), modified Charles Rosenkrans (mCR2a) medium and research vitro cleave (RVCL) medium were used to evaluate the developmental competence of goat blastocysts. Quantitative expression of apoptosis, stress and developmental competence-related genes were analysed in different stages of embryos. In RVCL medium, the cleavage rate of Ca2+ ionophore-treated oocytes (79.61 ± 0.86) was significantly (P < 0.05) higher than in ethanol (74.90 ± 1.51) or in the combination of both Ca2+ ionophore and ethanol. In mCR2a or EDM, hatched blastocyst production rate of Ca2+ ionophore-treated oocytes (8.33 ± 1.44) was significantly higher than in ethanol (6.46 ± 0.11) or in the combined treatment (6.70 ± 0.24). In ethanol, the cleavage, blastocyst and hatched blastocyst production rates in RVCL medium (74.90 ± 1.51, 18.30 ± 1.52 and 8.24 ± 0.15, respectively) were significantly higher than in EDM (67.81 ± 3.21, 14.59 ± 0.27 and 5.59 ± 0.42) or mCR2a medium (65.09 ± 1.57, 15.36 ± 0.52 and 6.46 ± 0.11). The expression of BAX, Oct-4 and GlUT1 transcripts increased gradually from 2-cell stage to blastocyst-stage embryos, whereas the transcript levels of Bcl-2 and MnSOD were significantly lower in blastocysts. In addition, different activation methods and culture media had little effect on the pattern of variation and relative abundance of the above genes in different stages of parthenogenetic activated goat embryos. In conclusion, Ca2+ ionophore as the activating agent, and RVCL as the culture medium are better than other tested options for development of parthenogenetic activated goat blastocysts.
Collapse
|
18
|
De AK, Garg S, Singhal DK, Malik H, Mukherjee A, Jena MK, Kumar S, Kaushik JK, Mohanty AK, Das BC, Bag S, Bhanja SK, Malakar D. Derivation of goat embryonic stem cell-like cell lines from in vitro produced parthenogenetic blastocysts. Small Rumin Res 2013. [DOI: 10.1016/j.smallrumres.2013.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
19
|
Singh KP, Kaushik R, Garg V, Sharma R, George A, Singh MK, Manik RS, Palta P, Singla SK, Chauhan MS. Expression pattern of pluripotent markers in different embryonic developmental stages of buffalo (Bubalus bubalis) embryos and putative embryonic stem cells generated by parthenogenetic activation. Cell Reprogram 2013. [PMID: 23194456 DOI: 10.1089/cell.2012.0032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In this study, we describe the production of buffalo parthenogenetic blastocysts and subsequent isolation of parthenogenetic embryonic stem cell (PGESC)-like cells. PGESC colonies exhibited dome-shaped morphology and were clearly distinguishable from the feeder layer cells. Different stages of development of parthenogenetic embryos and derived embryonic stem cell (ESC)-like cells expressed key ESC-specific markers, including OCT-4, NANOG, SOX-2, FOXD3, REX-1, STAT-3, TELOMERASE, NUCLEOSTEMIN, and cMYC. Immunofluorescence-based studies revealed that the PGESCs were positive for surface-based pluripotent markers, viz., SSEA-3, SSEA-4, TRA 1-80, TRA 1-60, CD-9, and CD-90 and exhibited high alkaline phosphatase (ALP) activity. PGEC cell-like cells formed embryoid body (EB)-like structures in hanging drop cultures and when cultured for extended period of time spontaneously differentiated into derivatives of three embryonic germ layers as confirmed by RT-PCR for ectodermal (CYTOKERATIN8, NF-68), mesodermal (MSX1, BMP-4, ASA), and endodermal markers (AFP, HNF-4, GATA-4). Differentiation of PGESCs toward the neuronal lineage was successfully directed by supplementation of serum-containing media with retinoic acid. Our results indicate that the isolated ESC-like cells from parthenogenetic blastocyst hold properties of ESCs and express markers of pluripotency. The pluripotency markers were also expressed by early cleavage-stage of buffalo embryos.
Collapse
Affiliation(s)
- Karn P Singh
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Brevini TAL, Pennarossa G, Maffei S, Tettamanti G, Vanelli A, Isaac S, Eden A, Ledda S, de Eguileor M, Gandolfi F. Centrosome amplification and chromosomal instability in human and animal parthenogenetic cell lines. Stem Cell Rev Rep 2013; 8:1076-87. [PMID: 22661117 DOI: 10.1007/s12015-012-9379-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Parthenotes have been proposed as a source of embryonic stem cells but they lack the centriole which is inherited through the sperm in all mammalian species, except for rodents. We investigated the centrosome of parthenotes and parthenogenetic embryonic stem cells using parthenogenetic and biparental pig pre-implantation embryos, human and pig parthenogenetic and biparental embryonic stem cells, sheep fibroblasts derived from post implantation parthenogenetic and biparental embryos developed in vivo. We also determined the level of aneuploidy in parthenogenetic cells. Oocytes of all species were activated using ionomycin and 6-dimethylaminopurine (6-DMAP). Over 60% of parthenogenetic blastomeres were affected by an excessive number of centrioles. Centrosome amplification, was observed by microscopical and ultrastructural analysis also in parthenogenetic cell lines of all three species. Over expression of PLK2 and down regulation of CCNF, respectively involved in the stimulation and inhibition of centrosome duplication, were present in all species. We also detected down regulation of spindle assembly checkpoint components such as BUB1, CENPE and MAD2. Centrosome amplification was accompanied by multipolar mitotic spindles and all cell lines were affected by a high rate of aneuploidy. These observations indicate a link between centrosome amplification and the high incidence of aneuploidy and suggest that parthenogenetic stem cells may be a useful model to investigate how aneuploidy can be compatible with cell proliferation and differentiation.
Collapse
Affiliation(s)
- Tiziana A L Brevini
- Laboratory of Biomedical Embryology, Centre for Stem Cell Research (UniStem), Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Didié M, Christalla P, Rubart M, Muppala V, Döker S, Unsöld B, El-Armouche A, Rau T, Eschenhagen T, Schwoerer AP, Ehmke H, Schumacher U, Fuchs S, Lange C, Becker A, Tao W, Scherschel JA, Soonpaa MH, Yang T, Lin Q, Zenke M, Han DW, Schöler HR, Rudolph C, Steinemann D, Schlegelberger B, Kattman S, Witty A, Keller G, Field LJ, Zimmermann WH. Parthenogenetic stem cells for tissue-engineered heart repair. J Clin Invest 2013; 123:1285-98. [PMID: 23434590 DOI: 10.1172/jci66854] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/03/2013] [Indexed: 01/14/2023] Open
Abstract
Uniparental parthenotes are considered an unwanted byproduct of in vitro fertilization. In utero parthenote development is severely compromised by defective organogenesis and in particular by defective cardiogenesis. Although developmentally compromised, apparently pluripotent stem cells can be derived from parthenogenetic blastocysts. Here we hypothesized that nonembryonic parthenogenetic stem cells (PSCs) can be directed toward the cardiac lineage and applied to tissue-engineered heart repair. We first confirmed similar fundamental properties in murine PSCs and embryonic stem cells (ESCs), despite notable differences in genetic (allelic variability) and epigenetic (differential imprinting) characteristics. Haploidentity of major histocompatibility complexes (MHCs) in PSCs is particularly attractive for allogeneic cell-based therapies. Accordingly, we confirmed acceptance of PSCs in MHC-matched allotransplantation. Cardiomyocyte derivation from PSCs and ESCs was equally effective. The use of cardiomyocyte-restricted GFP enabled cell sorting and documentation of advanced structural and functional maturation in vitro and in vivo. This included seamless electrical integration of PSC-derived cardiomyocytes into recipient myocardium. Finally, we enriched cardiomyocytes to facilitate engineering of force-generating myocardium and demonstrated the utility of this technique in enhancing regional myocardial function after myocardial infarction. Collectively, our data demonstrate pluripotency, with unrestricted cardiogenicity in PSCs, and introduce this unique cell type as an attractive source for tissue-engineered heart repair.
Collapse
Affiliation(s)
- Michael Didié
- Institute of Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Human embryonic stem cells (hESCs) are pluripotent cells derived from the inner cell mass (ICM) of the developing embryo. hESCs culture as cell lines in vitro and possess great potential in such research fields as developmental biology and cell-based therapy, as well as such industrial purposes as drug screening and toxicology. When ESCs were first derived by Thomson and colleagues, traditional methods of immunostaining and culturing, using primary mouse embryonic fibroblasts and medium supplemented by serum were used. Considerable efforts have since led to improved methods for isolating new lines in defined and reproducible conditions. This chapter discusses sources for embryos for ESC isolation, commonly used methods for deriving hESC lines, and a number of possible culture systems.
Collapse
Affiliation(s)
- Michal Amit
- Department of Obstetrics and Gynecology, Technion Israel Institute of Technology, Rambam Medical Center, Haifa, Israel
| |
Collapse
|
23
|
Naturil-Alfonso C, Saenz-de-Juano MDD, Peñaranda DS, Vicente JS, Marco-Jiménez F. Transcriptome profiling of rabbit parthenogenetic blastocysts developed under in vivo conditions. PLoS One 2012; 7:e51271. [PMID: 23251477 PMCID: PMC3522381 DOI: 10.1371/journal.pone.0051271] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/30/2012] [Indexed: 11/29/2022] Open
Abstract
Parthenogenetic embryos are one attractive alternative as a source of embryonic stem cells, although many aspects related to the biology of parthenogenetic embryos and parthenogenetically derived cell lines still need to be elucidated. The present work was conducted to investigate the gene expression profile of rabbit parthenote embryos cultured under in vivo conditions using microarray analysis. Transcriptomic profiles indicate 2541 differentially expressed genes between parthenotes and normal in vivo fertilised blastocysts, of which 76 genes were upregulated and 16 genes downregulated in in vivo cultured parthenote blastocyst, using 3 fold-changes as a cut-off. While differentially upregulated expressed genes are related to transport and protein metabolic process, downregulated expressed genes are related to DNA and RNA binding. Using microarray data, 6 imprinted genes were identified as conserved among rabbits, humans and mice: GRB10, ATP10A, ZNF215, NDN, IMPACT and SFMBT2. We also found that 26 putative genes have at least one member of that gene family imprinted in other species. These data strengthen the view that a large fraction of genes is differentially expressed between parthenogenetic and normal embryos cultured under the same conditions and offer a new approach to the identification of imprinted genes in rabbit.
Collapse
Affiliation(s)
| | | | | | | | - Francisco Marco-Jiménez
- Instituto de Ciencia y Tecnología Animal, Universidad Politécnica de Valencia, Valencia, Spain
- * E-mail:
| |
Collapse
|
24
|
Kyurkchiev S, Gandolfi F, Hayrabedyan S, Brevini TAL, Dimitrov R, Fitzgerald JS, Jabeen A, Mourdjeva M, Photini SM, Spencer P, Fernández N, Markert UR. Stem Cells in the Reproductive System. Am J Reprod Immunol 2012; 67:445-62. [DOI: 10.1111/j.1600-0897.2012.01140.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 03/16/2012] [Indexed: 01/01/2023] Open
Affiliation(s)
- Stanimir Kyurkchiev
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences; Sofia; Bulgaria
| | - Fulvio Gandolfi
- Laboratory of Biomedical Embryology, UNISTEM; Università degli Studi di Milano; Milan; Italy
| | - Soren Hayrabedyan
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences; Sofia; Bulgaria
| | - Tiziana A. L. Brevini
- Laboratory of Biomedical Embryology, UNISTEM; Università degli Studi di Milano; Milan; Italy
| | - Roumen Dimitrov
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences; Sofia; Bulgaria
| | | | - Asma Jabeen
- School of Biological Sciences; University of Essex; Colchester; Essex; UK
| | | | - Stella M. Photini
- Placenta , Department of Obstetrics; University Hospital Jena; Jena; Germany
| | - Patrick Spencer
- School of Biological Sciences; University of Essex; Colchester; Essex; UK
| | - Nelson Fernández
- School of Biological Sciences; University of Essex; Colchester; Essex; UK
| | - Udo R. Markert
- Placenta , Department of Obstetrics; University Hospital Jena; Jena; Germany
| |
Collapse
|
25
|
Brevini T, Pennarossa G, Vanelli A, Maffei S, Gandolfi F. Parthenogenesis in non-rodent species: developmental competence and differentiation plasticity. Theriogenology 2012; 77:766-72. [DOI: 10.1016/j.theriogenology.2011.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 10/19/2011] [Accepted: 11/24/2011] [Indexed: 11/16/2022]
|
26
|
Kang H, Sung J, Jung HM, Woo KM, Hong SD, Roh S. Insulin-Like Growth Factor 2 Promotes Osteogenic Cell Differentiation in the Parthenogenetic Murine Embryonic Stem Cells. Tissue Eng Part A 2012; 18:331-41. [DOI: 10.1089/ten.tea.2011.0074] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Hoin Kang
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute and CLS21, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Jihye Sung
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute and CLS21, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Hong-Moon Jung
- Department of Cell and Developmental Biology, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Kyung Mi Woo
- Department of Cell and Developmental Biology, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Seong-Doo Hong
- Department of Oral Pathology, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Sangho Roh
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute and CLS21, Seoul National University School of Dentistry, Seoul, Republic of Korea
| |
Collapse
|
27
|
Zhang H, Albersen M, Jin X, Lin G. Stem cells: novel players in the treatment of erectile dysfunction. Asian J Androl 2012; 14:145-55. [PMID: 22002437 PMCID: PMC3735142 DOI: 10.1038/aja.2011.79] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/30/2011] [Accepted: 07/19/2011] [Indexed: 01/09/2023] Open
Abstract
Stem cells are defined by their capacity for both self-renewal and directed differentiation; thus, they represent great promise for regenerative medicine. Historically, stem cells have been categorized as either embryonic stem cells (ESCs) or adult stem cells (ASCs). It was previously believed that only ESCs hold the ability to differentiate into any cell type, whereas ASCs have the capacity to give rise only to cells of a given germ layer. More recently, however, numerous studies demonstrated the ability of ASCs to differentiate into cell types beyond their tissue origin. The aim of this review was to summarize contemporary evidence regarding stem cell availability, differentiation, and more specifically, the potential of these cells in the diagnosis and treatment of erectile dysfunction (ED) in both animal models and human research. We performed a search on PubMed for articles related to definition, localisation and circulation of stem cells as well as the application of stem cells in both diagnosis and treatment of ED. Strong evidence supports the concept that stem cell therapy is potentially the next therapeutic approach for ED. To date, a large spectrum of stem cells, including bone marrow mesenchymal stem cells, adipose tissue-derived stem cells and muscle-derived stem cells, have been investigated for neural, vascular, endothelial or smooth muscle regeneration in animal models for ED. In addition, several subtypes of ASCs are localized in the penis, and circulating endogenous stem cells can be employed to predict the outcome of ED and ED-related cardiovascular diseases.
Collapse
Affiliation(s)
- Haiyang Zhang
- Minimally Invasive Urology Center, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | | | | | | |
Collapse
|
28
|
Generation of mouse parthenogenetic embryonic stem cells and preliminary study of the differentiation ability to motor neurons. YI CHUAN = HEREDITAS 2011; 33:1231-8. [DOI: 10.3724/sp.j.1005.2011.01231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Taylor CJ, Bolton EM, Bradley JA. Immunological considerations for embryonic and induced pluripotent stem cell banking. Philos Trans R Soc Lond B Biol Sci 2011; 366:2312-22. [PMID: 21727137 DOI: 10.1098/rstb.2011.0030] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent advances in stem cell technology have generated enthusiasm for their potential to study and treat a diverse range of human disease. Pluripotent human stem cells for therapeutic use may, in principle, be obtained from two sources: embryonic stem cells (hESCs), which are capable of extensive self-renewal and expansion and have the potential to differentiate into any somatic tissue, and induced pluripotent stem cells (iPSCs), which are derived from differentiated tissue such as adult skin fibroblasts and appear to have the same properties and potential, but their generation is not dependent upon a source of embryos. The likelihood that clinical transplantation of hESC- or iPSC-derived tissues from an unrelated (allogeneic) donor that express foreign human leucocyte antigens (HLA) may undergo immunological rejection requires the formulation of strategies to attenuate the host immune response to transplanted tissue. In clinical practice, individualized iPSC tissue derived from the intended recipient offers the possibility of personalized stem cell therapy in which graft rejection would not occur, but the logistics of achieving this on a large scale are problematic owing to relatively inefficient reprogramming techniques and high costs. The creation of stem cell banks comprising HLA-typed hESCs and iPSCs is a strategy that is proposed to overcome the immunological barrier by providing HLA-matched (histocompatible) tissue for the target population. Estimates have shown that a stem cell bank containing around 10 highly selected cell lines with conserved homozygous HLA haplotypes would provide matched tissue for the majority of the UK population. These simulations have practical, financial, political and ethical implications for the establishment and design of stem cell banks incorporating cell lines with HLA types that are compatible with different ethnic populations throughout the world.
Collapse
Affiliation(s)
- Craig J Taylor
- Histocompatibility and Immunogenetics, Tissue Typing Laboratory, Cambridge University Teaching Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK. craig.taylor@addenbrookes
| | | | | |
Collapse
|
30
|
Hsieh YC, Intawicha P, Lee KH, Chiu YT, Lo NW, Ju JC. LIF and FGF Cooperatively Support Stemness of Rabbit Embryonic Stem Cells Derived from Parthenogenetically Activated Embryos. Cell Reprogram 2011; 13:241-55. [DOI: 10.1089/cell.2010.0097] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Ya-Chen Hsieh
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Payungsuk Intawicha
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Kun-Hsiung Lee
- Division of Biotechnology, Animal Technology Institute Taiwan, Chunan, Miaoli, Republic of China
| | - Yung-Tsung Chiu
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Republic of China
| | - Neng-Wen Lo
- Department of Animal Science and Biotechnology, Tunghai University, Taichung, Taiwan, Republic of China
| | - Jyh-Cherng Ju
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan, Republic of China
| |
Collapse
|
31
|
Affiliation(s)
- J Suaudeau
- Pontifical Academy for Life, Rome, Italy.
| |
Collapse
|
32
|
Peters A, Burridge PW, Pryzhkova MV, Levine MA, Park TS, Roxbury C, Yuan X, Péault B, Zambidis ET. Challenges and strategies for generating therapeutic patient-specific hemangioblasts and hematopoietic stem cells from human pluripotent stem cells. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2011; 54:965-90. [PMID: 20563986 DOI: 10.1387/ijdb.093043ap] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent characterization of hemangioblasts differentiated from human embryonic stem cells (hESC) has further confirmed evidence from murine, zebrafish and avian experimental systems that hematopoietic and endothelial lineages arise from a common progenitor. Such progenitors may provide a valuable resource for delineating the initial developmental steps of human hemato-endotheliogenesis, which is a process normally difficult to study due to the very limited accessibility of early human embryonic/fetal tissues. Moreover, efficient hemangioblast and hematopoietic stem cell (HSC) generation from patient-specific pluripotent stem cells has enormous potential for regenerative medicine, since it could lead to strategies for treating a multitude of hematologic and vascular disorders. However, significant scientific challenges remain in achieving these goals, and the generation of transplantable hemangioblasts and HSC derived from hESC currently remains elusive. Our previous work has suggested that the failure to derive engraftable HSC from hESC is due to the fact that current methodologies for differentiating hESC produce hematopoietic progenitors developmentally similar to those found in the human yolk sac, and are therefore too immature to provide adult-type hematopoietic reconstitution. Herein, we outline the nature of this challenge and propose targeted strategies for generating engraftable human pluripotent stem cell-derived HSC from primitive hemangioblasts using a developmental approach. We also focus on methods by which reprogrammed somatic cells could be used to derive autologous pluripotent stem cells, which in turn could provide unlimited sources of patient-specific hemangioblasts and HSC.
Collapse
Affiliation(s)
- Ann Peters
- Institute for Cell Engineering, Stem Cell Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wianny F, Bourillot PY, Dehay C. Embryonic stem cells in non-human primates: An overview of neural differentiation potential. Differentiation 2011; 81:142-52. [PMID: 21296479 DOI: 10.1016/j.diff.2011.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 12/18/2010] [Accepted: 01/11/2011] [Indexed: 12/11/2022]
Abstract
Non-human primate (NHP) embryonic stem (ES) cells show unlimited proliferative capacities and a great potential to generate multiple cell lineages. These properties make them an ideal resource both for investigating early developmental processes and for assessing their therapeutic potential in numerous models of degenerative diseases. They share the same markers and the same properties with human ES cells, and thus provide an invaluable transitional model that can be used to address the safety issues related to the clinical use of human ES cells. Here, we review the available information on the derivation and the specific features of monkey ES cells. We comment on the capacity of primate ES cells to differentiate into neural lineages and the current protocols to generate self-renewing neural stem cells. We also highlight the signalling pathways involved in the maintenance of these neural cell types. Finally, we discuss the potential of monkey ES cells for neuronal differentiation.
Collapse
Affiliation(s)
- Florence Wianny
- Inserm, U846, Stem Cell and Brain Research Institute, 18 Avenue Doyen Lépine, 69500 Bron, France.
| | | | | |
Collapse
|
34
|
Liu Z, Hu Z, Pan X, Li M, Togun TA, Tuck D, Pelizzola M, Huang J, Ye X, Yin Y, Liu M, Li C, Chen Z, Wang F, Zhou L, Chen L, Keefe DL, Liu L. Germline competency of parthenogenetic embryonic stem cells from immature oocytes of adult mouse ovary. Hum Mol Genet 2011; 20:1339-52. [PMID: 21239471 DOI: 10.1093/hmg/ddr016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Parthenogenetic embryonic stem cells (pESCs) have been generated in several mammalian species from parthenogenetic embryos that would otherwise die around mid-gestation. However, previous reports suggest that pESCs derived from in vivo ovulated (IVO) mature oocytes show limited pluripotency, as evidenced by low chimera production, high tissue preference and especially deficiency in germline competence, a critical test for genetic integrity and pluripotency of ESCs. Here, we report efficient generation of germline-competent pESC lines (named as IVM pESCs) from parthenogenetic embryos developed from immature oocytes of adult mouse ovaries following in vitro maturation (IVM) and artificial activation. In contrast, pESCs derived from IVO oocytes show defective germline competence, consistent with previous reports. Further, IVM pESCs resemble more ESCs from fertilized embryos (fESCs) than do IVO pESCs on genome-wide DNA methylation and global protein profiles. In addition, IVM pESCs express higher levels of Blimp1, Lin28 and Stella, relative to fESCs, and in their embryoid bodies following differentiation. This may indicate differences in differentiation potentially to the germline. The mechanisms for acquisition of pluripotency and germline competency of IVM pESCs from immature oocytes remain to be determined.
Collapse
Affiliation(s)
- Zhong Liu
- School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Salli U, Fox TE, Carkaci-Salli N, Sharma A, Robertson GP, Kester M, Vrana KE. Propagation of undifferentiated human embryonic stem cells with nano-liposomal ceramide. Stem Cells Dev 2010; 18:55-65. [PMID: 18393629 DOI: 10.1089/scd.2007.0271] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human embryonic stem (hES) cells, located on the periphery of the colonies, express the neuroectodermal markers nestin and Tuj1, suggesting a prematurely differentiated subgroup of cells. Here, we report that ceramide, a bioactive sphingolipid, selectively eliminates hES cells differentially expressing nestin and Tuj1. In contrast, undifferentiated cells are resistant to the apoptotic effects of ceramide. Ceramide-resistant hES cells express higher levels of the messenger RNA for ceramide-metabolizing enzymes that convert ceramide into pro-mitogenic metabolites. Based on these findings, we conducted long-term studies to determine whether liposomal ceramide can be used to maintain undifferentiated hES cells free of feeder cells. We continuously cultured hES cells on matrigel for 4 months with liposomal ceramide in a feeder cell-free system. Human ES cells treated with liposomal ceramide maintained their pluripotent state as determined by in vivo and in vitro differentiation studies and contained no chromosomal abnormalities. In conclusion, our findings suggest that exposure to ceramide provides a viable strategy to prevent premature hES cell differentiation and to maintain pluripotent stem cell populations in the absence of feeder cells.
Collapse
Affiliation(s)
- Ugur Salli
- Department of Pharmacology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033-0850, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Rooney GE, Nistor GI, Barry FB, Keirstead HS. In vitro differentiation potential of human embryonic versus adult stem cells. Regen Med 2010; 5:365-79. [PMID: 20455648 DOI: 10.2217/rme.10.20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND There is widespread controversy regarding the potential of human neural stem cells and human mesenchymal stem cells (hMSCs) to form cell types outside of their normal developmental lineage. A greater understanding of the differentiation potential and bias of these stem cell types would allow researchers to select the cell type that best suits the research or clinical need at hand. MATERIALS & METHODS We used identical in vitro protocols to quantitatively compare the potential of human embryonic stem cells, human neural stem cells and hMSCs to differentiate into specific ectodermal or mesodermal lineages. RESULTS Our findings demonstrate that human embryonic stem cells and human neural stem cells have the ability to differentiate into high purity neuronal progenitor or oligodendrocyte progenitor cultures. By contrast, hMSCs generated exceedingly limited numbers of neural lineages. Both human embryonic stem cells and hMSCs generated adipocytes and osteocytes when exposed to mesodermal differentiation conditions. CONCLUSION These studies underscore the importance of distinguishing differentiation potential from differentiation bias, an important consideration in the development of cell replacement strategies.
Collapse
Affiliation(s)
- G E Rooney
- Regenerative Medicine Institute, National Centre for Biomedical & Engineering Science, National University of Ireland, Galway, Ireland
| | | | | | | |
Collapse
|
37
|
Pashaiasl M, Khodadadi K, Holland MK, Verma PJ. The Efficient Generation of Cell Lines from Bovine Parthenotes. Cell Reprogram 2010; 12:571-9. [DOI: 10.1089/cell.2009.0118] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Maryam Pashaiasl
- Centre for Reproduction and Development, Monash Institute of Medical Research, VIC, Australia
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khodadad Khodadadi
- Centre for Reproduction and Development, Monash Institute of Medical Research, VIC, Australia
| | - Michael K. Holland
- Centre for Reproduction and Development, Monash Institute of Medical Research, VIC, Australia
- School of Veterinary Science, University of Queensland, QLD, Australia
| | - Paul J. Verma
- Centre for Reproduction and Development, Monash Institute of Medical Research, VIC, Australia
| |
Collapse
|
38
|
Gandolfi F, Brevini TAL. RFD Award Lecture 2009. In vitro maturation of farm animal oocytes: a useful tool for investigating the mechanisms leading to full-term development. Reprod Fertil Dev 2010; 22:495-507. [PMID: 20188022 DOI: 10.1071/rd09151] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 09/11/2009] [Indexed: 01/24/2023] Open
Abstract
Due to logistical and economic reasons, assisted reproduction of domestic animals has been based mostly on the use of oocytes isolated from ovaries collected at the slaughterhouse. In order to propagate valuable or rare genetic material, perform somatic cell nuclear transfer or generate genetically modified animals, it is essential to obtain fully competent oocytes that will allow full-term development of the in vitro-produced embryos. Such a need makes clear the crucial role played by oocyte quality. In fact, it is easy to compromise the oocyte's developmental potential but it is impossible to restore once it has been lost. Almost three decades after the first cow, sheep, goat, horse and pig in vitro-generated offspring were born, a large body of information has accumulated on the mechanisms regulating oocyte competence and on how the latter may be preserved during all the required manipulations. The amount of knowledge is far from complete and many laboratories are actively working to further expand it. In this review we will highlight the aspects of the ongoing research in which we have been actively involved.
Collapse
Affiliation(s)
- Fulvio Gandolfi
- Laboratory of Biomedical Embryology, Department of Animal Sciences, Università degli Studi di Milano, via Celoria, 10-20133, Milano, Italy.
| | | |
Collapse
|
39
|
Huang J, Okuka M, Wang F, Zuo B, Liang P, Kalmbach K, Liu L, Keefe DL. Generation of pluripotent stem cells from eggs of aging mice. Aging Cell 2010; 9:113-25. [PMID: 20003168 DOI: 10.1111/j.1474-9726.2009.00539.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Oocytes can reprogram genomes to form embryonic stem (ES) cells. Although ES cells largely escape senescence, oocytes themselves do senesce in the ovaries of most mammals. It remains to be determined whether ES cells can be established using eggs from old females, which exhibit reproductive senescence. We attempted to produce pluripotent stem cell lines from artificial activation of eggs (also called pES) from reproductive aged mice, to determine whether maternal aging affects pES cell production and pluripotency. We show that pES cell lines were generated with high efficiency from reproductive aged (old) mice, although parthenogenetic embryos from these mice produced fewer ES clones by initial two passages. Further, pES cell lines generated from old mice showed telomere length, expression of pluripotency molecular markers (Oct4, Nanog, SSEA1), alkaline phosphatase activity, teratoma formation and chimera production similar to young mice. Notably, DNA damage was reduced in pES cells from old mice compared to their progenitor parthenogenetic blastocysts, and did not differ from that of pES cells from young mice. Also, global gene expression differed only minimally between pES cells from young and old mice, in contrast to marked differences in gene expression in eggs from young and old mice. These data demonstrate that eggs from old mice can generate pluripotent stem cells, and suggest that the isolation and in vitro culture of ES cells must select cells with high levels of DNA and telomere integrity, and/or with capacity to repair DNA and telomeres.
Collapse
Affiliation(s)
- Junjiu Huang
- Department of Obstetrics and Gynecology, University of South Florida College of Medicine, Tampa, FL 33647, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Progenitor cells for regenerative medicine and consequences of ART and cloning-associated epimutations. Mol Biotechnol 2010; 45:187-97. [PMID: 20162468 DOI: 10.1007/s12033-010-9252-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The "holy grail" of regenerative medicine is the identification of an undifferentiated progenitor cell that is pluripotent, patient specific, and ethically unambiguous. Such a progenitor cell must also be able to differentiate into functional, transplantable tissue, while avoiding the risks of immune rejection. With reports detailing aberrant genomic imprinting associated with assisted reproductive technologies (ART) and reproductive cloning, the idea that human embryonic stem cells (hESCs) derived from surplus in vitro fertilized embryos or nuclear transfer ESCs (ntESCs) harvested from cloned embryos may harbor dangerous epigenetic errors has gained attention. Various progenitor cell sources have been proposed for human therapy, from hESCs to ntESCs, and from adult stem cells to induced pluripotent stem cells (iPS and piPS cells). This review highlights the advantages and disadvantages of each of these technologies, with particular emphasis on epigenetic stability.
Collapse
|
41
|
Bae JH, Yoo JJ. Cell-based therapy for urinary incontinence. Korean J Urol 2010; 51:1-7. [PMID: 20414402 PMCID: PMC2855472 DOI: 10.4111/kju.2010.51.1.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 01/14/2010] [Indexed: 12/11/2022] Open
Abstract
Urinary incontinence has become a societal problem that affects millions of people worldwide. Although numerous therapeutic modalities are available, none has been shown to be entirely satisfactory. Consequently, cell-based approaches using regenerative medicine technology have emerged as a potential solution that would provide a means of correcting anatomical deficiencies and restoring normal function. As such, numerous cell-based investigations have been performed to develop systems that are focused on addressing clinical needs. While most of these attempts remain in the experimental stages, several clinical trials are being designed or are in progress. This article provides an overview of the cell-based approaches that utilize various cell sources to develop effective treatment modalities for urinary incontinence.
Collapse
Affiliation(s)
- Jae Hyun Bae
- Department of Urology and Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | |
Collapse
|
42
|
Adams G, Buttery L, Stolnik S, Morris G, Harding S, Wang N. Stem cells: The therapeutic role in the treatment of diabetes mellitus. Biotechnol Genet Eng Rev 2010; 27:285-304. [PMID: 21415902 DOI: 10.1080/02648725.2010.10648154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The unlimited proliferative ability and plasticity to generate other cell types ensures that stem cells represent a dynamic system apposite for the identification of new molecular targets and the production and development of novel drugs. These cell lines derived from embryos could be used as a model for the study of basic and applied aspects in medical therapeutics, environmental mutagenesis and disease management. As a consequence, these can be tested for safety or to predict or anticipate potential toxicity in humans. Human ES cell lines may, therefore, prove clinically relevant to the development of safer and more effective drugs for patients presenting with diabetes mellitus.
Collapse
Affiliation(s)
- Gary Adams
- University of Nottingham, Faculty of Medicine and Health Sciences, Insulin Diabetes Experimental Research Group, Clifton Boulevard, Nottingham, UK.
| | | | | | | | | | | |
Collapse
|
43
|
Brevini TAL, Pennarossa G, Antonini S, Paffoni A, Tettamanti G, Montemurro T, Radaelli E, Lazzari L, Rebulla P, Scanziani E, de Eguileor M, Benvenisty N, Ragni G, Gandolfi F. Cell lines derived from human parthenogenetic embryos can display aberrant centriole distribution and altered expression levels of mitotic spindle check-point transcripts. Stem Cell Rev Rep 2009; 5:340-52. [PMID: 20058199 DOI: 10.1007/s12015-009-9086-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 08/04/2009] [Indexed: 10/20/2022]
Abstract
Human parthenogenetic embryos have recently been proposed as an alternative, less controversial source of embryonic stem cell (ESC) lines; however many aspects related to the biology of parthenogenetic embryos and parthenogenetic derived cell lines still need to be elucidated. We present here results on human cell lines (HP1 and HP3) derived from blastocysts obtained by oocyte parthenogenetic activation. Cell lines showed typical ESC morphology, expressed Oct-4, Nanog, Sox-2, Rex-1, alkaline phosphatase, SSEA-4, TRA 1-81 and had high telomerase activity. Expression of genes specific for different embryonic germ layers was detected from HP cells differentiated upon embryoid body (EBs) formation. Furthermore, when cultured in appropriate conditions, HP cell lines were able to differentiate into mature cell types of the neural and hematopoietic lineages. However, the injection of undifferentiated HP cells in immunodeficient mice resulted either in poor differentiation or in tumour formation with the morphological characteristics of myofibrosarcomas. Further analysis of HP cells indicated aberrant levels of molecules related to spindle formation as well as the presence of an abnormal number of centrioles and autophagic activity. Our results confirm and extend the notion that human parthenogenetic stem cells can be derived and can differentiate in mature cell types, but also highlight the possibility that, alteration of the proliferation mechanisms may occur in these cells, suggesting great caution if a therapeutic use of this kind of stem cells is considered.
Collapse
Affiliation(s)
- Tiziana A L Brevini
- Laboratory of Biomedical Embryology, Centre for Stem Cell Research, University of Milan, 20133 Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lee SR, Kim JW, Kim BS, Yoo DH, Park YS, Lee TH, Ha JH, Hyun BH, Ryoo ZY. Parthenogenetic Induction of Canine Oocytes by Electrical Stimulation and Ca-EDTA. Reprod Domest Anim 2009; 44:740-4. [DOI: 10.1111/j.1439-0531.2008.01062.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Schatten H, Sun QY. The functional significance of centrosomes in mammalian meiosis, fertilization, development, nuclear transfer, and stem cell differentiation. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2009; 50:620-636. [PMID: 19402157 DOI: 10.1002/em.20493] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Centrosomes had been discovered in germ cells and germ cells continue to provide excellent but also challenging material in which to study complex centrosomal dynamics. The present review highlights the importance of centrosomes for meiotic spindle integrity and the susceptibility of meiotic spindle centrosomes to aging and drugs or toxic agents which may be associated with female infertility, aneuploidy, and developmental abnormalities. We discuss cell and molecular aspects of centrosomes during fertilization, a critical stage in which centrosomes play crucial roles in precisely organizing the sperm aster that allows apposition of male and female genomes followed by formation of the zygote aster that is important for the formation of the bipolar spindle apparatus during cell division. Development of an embryo involves sequential cell divisions in which centrosomes play a critical role in establishing asymmetry that allows differentiation of cells and targeted signal transductions for the developing embryo. Asymmetric centrosome dynamics are also critical for stem cell division to maintain one daughter cell as a stem cell while the other daughter cell undergoes centrosome growth in preparation for differentiation. This review also discusses the complex interactions of somatic cell centrosomes with the recipient oocyte in reconstructed (cloned) embryos in which centrosome remodeling is crucial to fulfill functions that are carried out by the zygote centrosome in fertilized eggs. We close our discussion with a look at centrosome dysfunctions and implications for male fertility and assisted reproduction.
Collapse
Affiliation(s)
- Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, 1600 E Rollins Street, Columbia, MO 65211, USA.
| | | |
Collapse
|
46
|
Pant D, Keefer CL. Expression of Pluripotency-Related Genes during Bovine Inner Cell Mass Explant Culture. CLONING AND STEM CELLS 2009; 11:355-65. [DOI: 10.1089/clo.2008.0078] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Disha Pant
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
| | - Carol L. Keefer
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
| |
Collapse
|
47
|
Heise MK, Koepsel R, McGee EA, Russell AJ. Dynamic oxygen enhances oocyte maturation in long-term follicle culture. Tissue Eng Part C Methods 2009; 15:323-32. [PMID: 19552585 PMCID: PMC2865977 DOI: 10.1089/ten.tec.2007.0418] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 11/12/2008] [Indexed: 11/12/2022] Open
Abstract
Traditionally, follicles have been grown in standard incubators with atmospheric oxygen concentration. However, preantral follicles exist in the avascular cortex of the ovary. This study examines the effectiveness of an oxygen delivery protocol that more closely mimics the in vivo environment of the ovary on oocyte viability, maturation, parthenogenetic activation, and fertilization from in vitro cultured rat preantral follicles. Of 54 oocytes cultured in the dynamic oxygen environment, 35 were viable while only 22 of 50 oocytes cultured within an ambient oxygen concentration remained viable (p < 0.05). Germinal vesicle breakdown was observed in 56% of oocytes from the dynamic oxygen group compared to 30% of oocytes from the ambient oxygen group (p < 0.05). Parthenogenetic activation was observed in a significant number of oocytes from the dynamic oxygen group, while none of the oocytes from the ambient oxygen group activated (p < 0.05). However, the proportions of oocytes from the dynamic oxygen group that remained viable underwent germinal vesicle breakdown, and activated were still significantly less than those from the in vivo control group (p < 0.05). Fertilization of the oocytes from the dynamic oxygen group was confirmed through a successful trial of intracytoplasmic sperm injection.
Collapse
Affiliation(s)
- Matthew K. Heise
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Richard Koepsel
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Elizabeth A. McGee
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Alan J. Russell
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
48
|
Abstract
Supporting or even replacing diseased myocardium with in vitro engineered heart muscle may become a viable option for patients with heart failure. The key to success will be to (1) generate human heart muscle equivalents in vitro, (2) integrate the latter into a failing heart, (3) ensure long-term functional competence of the grafts, and (4) prevent unwanted effects including arrhythmias, inflammation/rejection, and tumor formation. Several promising tissue engineering technologies have already been developed and are presently being tested in animal models. The rapidly evolving field of human stem cell biology has in parallel identified unique cell sources of potential clinical relevance. Somatic cell reprogramming and nontransduced, nonembryonic pluripotent stem cells may be of particular interest to eventually provide patient-specific cells and tissues. Yet, limited cardiac differentiation and cell immaturity still restrict a broad application of any stem cell type in cardiac muscle engineering. Bioreactor technologies, transgenic "optimization," and growth factor, as well as physical conditioning, have been used to address these caveats. This review summarizes different tissue engineering modalities, speculates on potential clinical uses, provides an overview on cell sources that may ultimately facilitate a patient-specific application, and discusses limitations of tissue engineering-based myocardial repair.
Collapse
|
49
|
Abstract
Spinal cord injury (SCI) results in loss of nervous tissue and consequently loss of motor and sensory function. There is no treatment available that restores the injury-induced loss of function to a degree that an independent life can be guaranteed. Transplantation of stem cells or progenitors may support spinal cord repair. Stem cells are characterized by self-renewal and their ability to become any cell in an organism. Promising results have been obtained in experimental models of SCI. Stem cells can be directed to differentiate into neurons or glia in vitro, which can be used for replacement of neural cells lost after SCI. Neuroprotective and axon regeneration-promoting effects have also been credited to transplanted stem cells. There are still issues related to stem cell transplantation that need to be resolved, including ethical concerns. This paper reviews the current status of stem cell application for spinal cord repair.
Collapse
|
50
|
Abstract
Children with severe congenital malformations, such as single-ventricle anomalies, have a daunting prognosis. Heart transplantation would be a therapeutic option but is restricted due to a lack of suitable donor organs and, even in case of successful heart transplantation, lifelong immune suppression would frequently be associated with a number of serious side effects. As an alternative to heart transplantation and classical cardiac reconstructive surgery, tissue-engineered myocardium might become available to augment hypomorphic hearts and/or provide new muscle material for complex myocardial reconstruction. These potential applications of tissue engineered myocardium will, however, impose major challenges to cardiac tissue engineers as well as heart surgeons. This review will provide an overview of available cardiac tissue-engineering technologies, discuss limitations, and speculate on a potential application of tissue-engineered heart muscle in pediatric heart surgery.
Collapse
|