1
|
Mazurov D, Herschhorn A. Ultrasensitive quantification of HIV-1 cell-to-cell transmission in primary human CD4 + T cells measures viral sensitivity to broadly neutralizing antibodies. mBio 2024; 15:e0242823. [PMID: 38063394 PMCID: PMC10790777 DOI: 10.1128/mbio.02428-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/07/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE HIV-1 can efficiently transmit from one cell to another but accurate quantification of this mode of transmission is still challenging. Here, we developed an ultrasensitive assay to measure HIV-1 transmission between cells and to evaluate HIV-1 escape from broadly neutralizing antibodies in primary human T cells. This assay will contribute to understanding the fundamental mechanisms of HIV-1 cell-to-cell transmission, allow evaluation of pre-existing or acquired HIV-1 resistance in clinical trials, and can be adapted to study the biology of other retroviruses.
Collapse
Affiliation(s)
- Dmitriy Mazurov
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Engineering in Medicine, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
- The College of Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Shi X, Won M, Tang C, Ding Q, Sharma A, Wang F, Kim JS. RNA splicing based on reporter genes system: Detection, imaging and applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Morcillo-Parra MÁ, Beltran G, Mas A, Torija MJ. Determination of melatonin by a whole cell bioassay in fermented beverages. Sci Rep 2019; 9:9120. [PMID: 31235891 PMCID: PMC6591416 DOI: 10.1038/s41598-019-45645-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/12/2019] [Indexed: 11/09/2022] Open
Abstract
Melatonin is a bioactive compound that is present in fermented beverages, such as wine and beer, at concentrations ranging from picograms to nanograms per mL of product. The purpose of this study was to optimize a novel fluorescent bioassay for detecting melatonin based on a cell line that contains the human melatonin receptor 1B gene and to compare these results with LC-MS/MS as a reference method. Conditions that could affect cell growth and detection (cell number per well, stimulation time, presence or absence of fetal bovine serum and adhesion of cells) were tested in the TANGO® cell line. Food matrices (wine and grape must) could not be directly used for the cell line due to low response. Therefore, for the determination of melatonin in food samples, an extraction procedure was required before conducting the assay. We demonstrated an improvement in melatonin determination by the cell-based bioassay due to increased sensitivity and specificity and improved quantification in complex matrices. Therefore, this method is a good alternative to determine melatonin content in some food samples, especially for those containing very low melatonin levels.
Collapse
Affiliation(s)
| | - Gemma Beltran
- Departament de Bioquimica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Albert Mas
- Departament de Bioquimica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - María-Jesús Torija
- Departament de Bioquimica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, Tarragona, Spain.
| |
Collapse
|
4
|
Shi Y, Liu W, Zheng H, Li Z, Shi X, Cai S, Jiao Z, Mao W, Xie J, Tian J, Wang F. Imaging of pre-mRNA splicing in living subjects using a genetically encoded luciferase reporter. BIOMEDICAL OPTICS EXPRESS 2018; 9:518-528. [PMID: 29552390 PMCID: PMC5854055 DOI: 10.1364/boe.9.000518] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/13/2017] [Accepted: 12/20/2017] [Indexed: 06/08/2023]
Abstract
Pre-mRNA splicing is an essential step in gene expression in most eukaryote genes. Here we present the feasibility of a genetically encoded luciferase reporter to monitor the pre-mRNA splicing process in living cells and animals. We showed that the splicing activity change induced by isoginkgetin could be readily visualized in vitro both in a dose and time dependent manner. Moreover, the pre-mRNA splicing process could be also obviously detected in mice by bioluminescence imaging and confirmed by RT-PCR. Our work provided a reporter system that allows high-throughput screening of chemical libraries to identify potential compounds leading to aberrant patterns of splicing.
Collapse
Affiliation(s)
- Yaru Shi
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
- Equal contribution
| | - Wei Liu
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
- Equal contribution
| | - Haifeng Zheng
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Zhiqiang Li
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Xiaorui Shi
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Shixuan Cai
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Zhiqiang Jiao
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Wenjie Mao
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Jinrong Xie
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Jie Tian
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Fu Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| |
Collapse
|
5
|
Noguchi K, Ishitu Y, Takaku H. Evaluating target silencing by short hairpin RNA mediated by the group I intron in cultured mammalian cells. BMC Biotechnol 2011; 11:79. [PMID: 21781346 PMCID: PMC3151216 DOI: 10.1186/1472-6750-11-79] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 07/25/2011] [Indexed: 02/07/2023] Open
Abstract
Background The group I intron, a ribozyme that catalyzes its own splicing reactions in the absence of proteins in vitro, is a potential target for rational engineering and attracted our interest due to its potential utility in gene repair using trans-splicing. However, the ribozyme activity of a group I intron appears to be facilitated by RNA chaperones in vivo; therefore, the efficiency of self-splicing could be dependent on the structure around the insert site or the length of the sequence to be inserted. To better understand how ribozyme activity could be modulated in cultured mammalian cells, a group I intron was inserted into a short hairpin RNA (shRNA), and silencing of a reporter gene by the shRNA was estimated to reflect self-splicing activity in vivo. In addition, we appended a theophylline-binding aptamer to the ribozyme to investigate any potential effects caused by a trans-effector. Results shRNA-expression vectors in which the loop region of the shRNA was interrupted by an intron were constructed to target firefly luciferase mRNA. There was no remarkable toxicity of the shRNA-expression vectors in Cos cells, and the decrease in luciferase activity was measured as an index of the ribozyme splicing activity. In contrast, the expression of the shRNA through intron splicing was completely abolished in 293T cells, although the silencing induced by the shRNA-expressing vector alone was no different from that in the Cos cells. The splicing efficiency of the aptamer-appended intron also had implications for the potential of trans-factors to differentially promote self-splicing among cultured mammalian cells. Conclusions Silencing by shRNAs interrupted by a group I intron could be used to monitor self-splicing activity in cultured mammalian cells, and the efficiency of self-splicing appears to be affected by cell-type specific factors, demonstrating the potential effectiveness of a trans-effector.
Collapse
Affiliation(s)
- Kousei Noguchi
- Department of Life and Environmental Science, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | | | | |
Collapse
|
6
|
Jiang T, Xing B, Rao J. Recent developments of biological reporter technology for detecting gene expression. Biotechnol Genet Eng Rev 2011; 25:41-75. [PMID: 21412349 DOI: 10.5661/bger-25-41] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Reporter gene assay is an invaluable tool for both biomedical and pharmaceutical researches to monitor cellular events associated with gene expression, regulation and signal transduction. On the basis of the alternations in reporter gene activities mediated by attaching response elements to these reporter genes, one sensitive, reliable and convenient assay can be provided to efficiently report the activation of particular messenger cascades and their effects on gene expression and regulations inside cells or living subjects. In this review, we introduce the current status of several commonly used reporter genes such as chloramphenicol acetyltransferase (CAT), alkaline phosphatase (AP), β-galactosidase (β-gal), luciferases, green fluorescent protein (GFP), and β-lactamase. Their applications in monitoring gene expression and regulations in vitro and in vivo will be summarized. With the development of advanced technology in gene expression and optical imaging modalities, reporter genes will become increasingly important in real-time detection of the gene expression at the single-cell level. This synergy will make it possible to understand the molecular basis of diseases, track the effectiveness of pharmaceuticals, monitor the response to therapies and evaluate the development process of new drugs.
Collapse
Affiliation(s)
- Tingting Jiang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | | | | |
Collapse
|
7
|
Razgulin A, Ma N, Rao J. Strategies for in vivo imaging of enzyme activity: an overview and recent advances. Chem Soc Rev 2011; 40:4186-216. [DOI: 10.1039/c1cs15035a] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
8
|
Fiskaa T, Birgisdottir AB. RNA reprogramming and repair based on trans-splicing group I ribozymes. N Biotechnol 2010; 27:194-203. [PMID: 20219714 DOI: 10.1016/j.nbt.2010.02.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
While many traditional gene therapy strategies attempt to deliver new copies of wild-type genes back to cells harboring the defective genes, RNA-directed strategies offer a range of novel therapeutic applications. Revision or reprogramming of mRNA is a form of gene therapy that modifies mRNA without directly changing the transcriptional regulation or the genomic gene sequence. Group I ribozymes can be engineered to act in trans by recognizing a separate RNA molecule in a sequence-specific manner, and to covalently link a new RNA sequence to this separate RNA molecule. Group I ribozymes have been shown to repair defective transcripts that cause human genetic or malignant diseases, as well as to replace transcript sequences by foreign RNA resulting in new cellular functions. This review provides an overview of current strategies using trans-splicing group I ribozymes in RNA repair and reprogramming.
Collapse
Affiliation(s)
- Tonje Fiskaa
- RNA and Transcriptomics Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway.
| | | |
Collapse
|
9
|
Gao Y, Yang Z, Kuang Y, Ma ML, Li J, Zhao F, Xu B. Enzyme-instructed self-assembly of peptide derivatives to form nanofibers and hydrogels. Biopolymers 2010; 94:19-31. [DOI: 10.1002/bip.21321] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
10
|
Yang G, Withers SG. Ultrahigh-throughput FACS-based screening for directed enzyme evolution. Chembiochem 2010; 10:2704-15. [PMID: 19780076 DOI: 10.1002/cbic.200900384] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Directed enzyme evolution has proven to be a powerful tool for improving a range of properties of enzymes through consecutive rounds of diversification and selection. However, its success depends heavily on the efficiency of the screening strategy employed. Fluorescence-activated cell sorting (FACS) has recently emerged as a powerful tool for screening enzyme libraries due to its high sensitivity and its ability to analyze as many as 10(8) mutants per day. Applications of FACS screening have allowed the isolation of enzyme variants with significantly improved activities, altered substrate specificities, or even novel functions. This review discusses FACS-based screening for enzymatic activity and its potential application for the directed evolution of enzymes, ribozymes, and catalytic antibodies.
Collapse
Affiliation(s)
- Guangyu Yang
- Centre for High-Throughput Biology (CHiBi) and Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, B.C. V6T 1Z1, Canada
| | | |
Collapse
|
11
|
A medaka model of cancer allowing direct observation of transplanted tumor cells in vivo at a cellular-level resolution. Proc Natl Acad Sci U S A 2009; 106:13832-7. [PMID: 19666513 DOI: 10.1073/pnas.0903999106] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The recent success with small fish as an animal model of cancer with the aid of fluorescence technique has attracted cancer modelers' attention because it would be possible to directly visualize tumor cells in vivo in real time. Here, we report a medaka model capable of allowing the observation of various cell behaviors of transplanted tumor cells, such as cell proliferation and metastasis, which were visualized easily in vivo. We established medaka melanoma (MM) cells stably expressing GFP and transplanted them into nonirradiated and irradiated medaka. The tumor cells were grown at the injection sites in medaka, and the spatiotemporal changes were visualized under a fluorescence stereoscopic microscope at a cellular-level resolution, and even at a single-cell level. Tumor dormancy and metastasis were also observed. Interestingly, in irradiated medaka, accelerated tumor growth and metastasis of the transplanted tumor cells were directly visualized. Our medaka model provides an opportunity to visualize in vivo tumor cells "as seen in a culture dish" and would be useful for in vivo tumor cell biology.
Collapse
|
12
|
Furukawa K, Abe H, Hibino K, Sako Y, Tsuneda S, Ito Y. Reduction-Triggered Fluorescent Amplification Probe for the Detection of Endogenous RNAs in Living Human Cells. Bioconjug Chem 2009; 20:1026-36. [DOI: 10.1021/bc900040t] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kazuhiro Furukawa
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-Shi, Saitama, 351-0198 Japan, Cellar Informatics Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-Shi, Saitama, 351-0198 Japan, and Department of Life Science and Medical Bio-Science, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hiroshi Abe
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-Shi, Saitama, 351-0198 Japan, Cellar Informatics Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-Shi, Saitama, 351-0198 Japan, and Department of Life Science and Medical Bio-Science, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Kayo Hibino
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-Shi, Saitama, 351-0198 Japan, Cellar Informatics Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-Shi, Saitama, 351-0198 Japan, and Department of Life Science and Medical Bio-Science, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yasushi Sako
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-Shi, Saitama, 351-0198 Japan, Cellar Informatics Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-Shi, Saitama, 351-0198 Japan, and Department of Life Science and Medical Bio-Science, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Satoshi Tsuneda
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-Shi, Saitama, 351-0198 Japan, Cellar Informatics Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-Shi, Saitama, 351-0198 Japan, and Department of Life Science and Medical Bio-Science, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-Shi, Saitama, 351-0198 Japan, Cellar Informatics Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-Shi, Saitama, 351-0198 Japan, and Department of Life Science and Medical Bio-Science, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
13
|
So MK, Gowrishankar G, Hasegawa S, Chung JK, Rao J. Imaging Target mRNA and siRNA-Mediated Gene Silencing In Vivo with Ribozyme-Based Reporters. Chembiochem 2008; 9:2682-91. [DOI: 10.1002/cbic.200800370] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Abstract
Enzymes, a class of highly efficient and specific catalysts in Nature, dictate a myriad of reactions that constitute various cascades in biological systems. Self-assembly, a process prevalent in Nature, also plays important roles in biology, from maintaining the integrity of cells to performing cellular functions and inducing abnormalities that cause disease. To explore enzyme-regulated molecular self-assembly in an aqueous medium will help to understand and control those important biological processes. On the other hand, certain small organic molecules self-assemble in water to form molecular nanofibers and result in a hydrogel, which is referred to as a "supramolecular hydrogel" (and the small molecules are referred to as "supramolecular hydrogelators"). Supramolecular hydrogelators share common features, such as amphiphilicity and supramolecular interactions (pi-pi interactions, hydrogen bonding, and charge interactions among the molecules, among others) that result in nanostructures and form the three-dimensional networks as the matrices of hydrogels. In this Account, we discuss the use of enzymes to trigger and control the self-assembly of small molecules for hydrogelation, which takes place in vitro or in vivo, extra- or intracellularly. Using phosphatase, thermolysin, beta-lactamase, and phosphatase/kinase as examples, we illustrate the design and application of enzyme-catalyzed or -regulated formation of supramolecular hydrogels that offer a new strategy for detecting the activity of enzymes, screening for enzyme inhibitors, typing bacteria, drug delivery systems, and controlling the fate of cells. Since the expression and distribution of enzymes differ by the types and states of cells, tissues, and organs, using an enzymatic reaction to convert precursors into hydrogelators that self-assemble into nanofibers as the matrices of the hydrogel, one can control the delivery, function, and response of a hydrogel according to a specific biological condition or environment, thus providing an accessible route to create sophisticated materials for biomedicine. Particularly, intracellular enzymatic hydrogelation of small molecules offers a unique means for scientists to integrate molecular self-assembly with inherent enzymatic reactions inside cells for developing new biomaterials and therapeutics at the supramolecular level and improving the basic understanding of dynamic molecular self-assembly in water.
Collapse
Affiliation(s)
- Zhimou Yang
- Department of Chemistry
- Bioengineering Program
- The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong, China
| | - Gaolin Liang
- Department of Chemistry
- Bioengineering Program
- The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong, China
| | - Bing Xu
- Department of Chemistry
- Bioengineering Program
- The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
15
|
Yao H, So MK, Rao J. A Bioluminogenic Substrate for In Vivo Imaging of β-Lactamase Activity. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200701931] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Yao H, So MK, Rao J. A Bioluminogenic Substrate for In Vivo Imaging of β-Lactamase Activity. Angew Chem Int Ed Engl 2007; 46:7031-4. [PMID: 17676567 DOI: 10.1002/anie.200701931] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Hequan Yao
- Molecular Imaging Program at Stanford, Department of Radiology, Biophysics, Cancer Biology Programs, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305-5484, USA
| | | | | |
Collapse
|
17
|
Yang Z, Ho PL, Liang G, Chow KH, Wang Q, Cao Y, Guo Z, Xu B. Using beta-lactamase to trigger supramolecular hydrogelation. J Am Chem Soc 2007; 129:266-7. [PMID: 17212393 DOI: 10.1021/ja0675604] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhimou Yang
- Department of Chemistry and Center for Cancer Research, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Ribozymes are RNA molecules capable of associating with other RNA molecules through base-pairing and catalyzing various reactions involving phosphate group transfer. Of particular interest to us is the well known ribozyme from Tetrahymena thermophila capable of catalyzing RNA splicing in eukaryotic systems, chiefly because of its potential use as a gene therapy agent. In this article we review the progress made towards visualizing the RNA splicing mediated by the Tetrahymena ribozyme in single living mammalian cells with the beta-lactamase reporter system and highlight the development made in imaging RNA splicing with the luciferase reporter system in living animals.
Collapse
Affiliation(s)
- Gayatri Gowrishankar
- Molecular Imaging Program at Stanford, Department of Radiology & Bio-X Program, Cancer Biology Program, Stanford University School of Medicine, 1201 Welch Road, Stanford, California 94305-5484, USA.
| | | |
Collapse
|
19
|
Qureshi SA. β-Lactamase: an ideal reporter system for monitoring gene expression in live eukaryotic cells. Biotechniques 2007; 42:91-6. [PMID: 17269490 DOI: 10.2144/000112292] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To gain insightful information about the mechanisms through which genes are activated and repressed requires gene reporter systems that are sensitive, robust, and cost-effective. Although numerous reporter gene technologies are commercially available, none are as sophisticated and user-friendly as β-lactamase (BLA) when it comes to studying gene expression in live cells. This article presents an overview of the BLA technology and describes how it can be exploited for studying rare events such as homologous recombination in somatic cells and be used to deliver any DNA sequence of choice anywhere within the genome.
Collapse
Affiliation(s)
- Sohail A Qureshi
- Department of Biological & Biomedical Sciences, The Aga Khan University Hospital, Karachi, Pakistan.
| |
Collapse
|
20
|
Hasegawa S, Gowrishankar G, Rao J. Detection of mRNA in mammalian cells with a split ribozyme reporter. Chembiochem 2006; 7:925-8. [PMID: 16671127 DOI: 10.1002/cbic.200600061] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sumitaka Hasegawa
- Department of Radiology, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305-5484, USA
| | | | | |
Collapse
|
21
|
Xu C, Xing B, Rao J. A self-assembled quantum dot probe for detecting β-lactamase activity. Biochem Biophys Res Commun 2006; 344:931-5. [PMID: 16631595 DOI: 10.1016/j.bbrc.2006.03.225] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 03/31/2006] [Indexed: 11/22/2022]
Abstract
This communication describes a quantum dot probe that can be activated by a reporter enzyme, beta-lactamase. Our design is based on the principle of fluorescence resonance energy transfer (FRET). A biotinylated beta-lactamase substrate was labeled with a carbocyanine dye, Cy5, and immobilized on the surface of quantum dots through the binding of biotin to streptavidin pre-coated on the quantum dots. In assembling this nanoprobe, we have found that both the distance between substrates and the quantum dot surface, and the density of substrates are important for its function. The fluorescence emission from quantum dots can be efficiently quenched (up to 95%) by Cy5 due to FRET. Our final quantum dot probe, assembled with QD605 and 1:1 mixture of biotin and a Cy5-labeled lactam, can be activated by 32microg/mL of beta-lactamase with 4-fold increase in the fluorescence emission.
Collapse
Affiliation(s)
- Chenjie Xu
- Biophysics, Cancer Biology, and Molecular Imaging Programs, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
22
|
Hasegawa S, Rao J. Modulating the splicing activity of Tetrahymena ribozyme via RNA self-assembly. FEBS Lett 2006; 580:1592-6. [PMID: 16472807 DOI: 10.1016/j.febslet.2006.01.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 01/20/2006] [Accepted: 01/30/2006] [Indexed: 10/25/2022]
Abstract
The internal guiding sequence (IGS) is normally located at the 5' end of trans-splicing ribozymes that are derived from the Tetrahymena group I intron, and is required for the recognition of substrate RNAs and for trans-splicing reactions. Here, we separated the Tetrahymena group I intron at the L2 loop to produce two fragments: the IGS-containing substrate, and the IGS-lacking ribozyme. We show here that two fragments can complex not through the IGS interaction but under the guidance of appended interacting nucleotides, and perform trans-splicing. The splicing reactions took place both in vitro and in mammalian cells, and the spliced mRNA product from the self-assembled ribozyme complex can be translated into functional proteins in vivo. The splicing efficiency was dependent on the length of appending nucleotides.
Collapse
Affiliation(s)
- Sumitaka Hasegawa
- Biophysics Program, Department of Radiology, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305-5484, USA
| | | |
Collapse
|
23
|
Abe H, Kool ET. Flow cytometric detection of specific RNAs in native human cells with quenched autoligating FRET probes. Proc Natl Acad Sci U S A 2005; 103:263-8. [PMID: 16384914 PMCID: PMC1326184 DOI: 10.1073/pnas.0509938103] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We describe the use of modified fluorescent-labeled oligonucleotide probes in the sequence-specific detection of messenger RNAs in live human cells. To make this detection possible, we developed a previously undescribed probe design that combines earlier quenched autoligation chemistry with a previously undescribed fluorescence resonance energy transfer (FRET) strategy to lower background signals. The probe pairs consisted of a nucleophilic 3'-phosphorothioate probe carrying a Cy5 FRET acceptor, and an electrophilic probe containing the combination of a 5' end electrophile/quencher and a fluorescein FRET donor. Probes were introduced to HL-60 cells by use of the streptolysin O pore-forming peptide. Signals from three different messenger RNAs, as well as 28S ribosomal RNA, could be detected and quantitated by flow cytometry. Probes targeted to ribosomal sequences and beta-actin mRNA also could be detected over background by confocal fluorescence microscopy. Varying the target site and probe backbone chemistry were found to have large effects on signal. The data suggest that quenched autoligating probes may be of general utility as biological tools in following localization, transcription, and processing of eukaryotic cellular messages and may have applications in diagnostic or prognostic analysis of disease-related RNAs in human tissues.
Collapse
Affiliation(s)
- Hiroshi Abe
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA
| | | |
Collapse
|
24
|
Xing B, Khanamiryan A, Rao J. Cell-permeable near-infrared fluorogenic substrates for imaging beta-lactamase activity. J Am Chem Soc 2005; 127:4158-9. [PMID: 15783183 DOI: 10.1021/ja042829+] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This communication describes a design of cell-permeable near-infrared fluorogenic substrates for imaging beta-lactamase expression in living mammalian cells. This design is based on fluorescence energy transfer resonance and utilizes a peracetylated d-glucosamine to facilitate the transport of the near-infrared probe across cell membranes. This new type of fluorogenic probe may also be applied to image gene expression in living animals.
Collapse
Affiliation(s)
- Bengang Xing
- Department of Radiology, Biophysics, Bio-X, Cancer Biology, and Molecular Imaging Programs at Stanford, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305-5344, USA
| | | | | |
Collapse
|
25
|
Hasegawa S, Choi JW, Rao J. Single-Cell Detection of Trans-Splicing Ribozyme In Vivo Activity. J Am Chem Soc 2004; 126:7158-9. [PMID: 15186136 DOI: 10.1021/ja049144u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Tetrahymena trans-splicing ribozyme can edit RNA in a sequence-specific manner, but its efficiency needs to be improved for any functional rescues. This communication describes a simple method that uses a bacterial enzyme beta-lactamase to report trans-splicing activity of Tetrahymena ribozyme in single living mammalian cells by fluorescence microscopy and flow cytometry. This enzyme-based single-cell detection method is highly sensitive and compatible with living cell flow cytometry, and should allow a cell-based systematic screening of a vast library of ribozymes for better trans-spliced ribozyme variants.
Collapse
Affiliation(s)
- Sumitaka Hasegawa
- Department of Radiology & Bio-X Program, Molecular Imaging Program at Stanford, Stanford University, 300 Pasteur Drive, Stanford, California 94305-5344, USA
| | | | | |
Collapse
|
26
|
Affiliation(s)
- Robert E Campbell
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| |
Collapse
|