1
|
Yin SY, Shao XX, Shen SY, Zhang JR, Shen ZQ, Liang LF, Chen C, Yue N, Fu XJ, Yu J. Key role of PPAR-γ-mediated suppression of the NFκB signaling pathway in rutin's antidepressant effect. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156178. [PMID: 39467428 DOI: 10.1016/j.phymed.2024.156178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 09/11/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Depression is a chronic and recurrent disorder with an unknown etiology. Efficacious antidepressant treatments with minimal side effects are urgently needed. Neuroinflammation may contribute to depression, as anti-inflammatory drugs have been shown to alleviate depressive symptoms in clinical practice. Rutin, a naturally occurring flavonoid derived from plants, is abundant in many antidepressant herbs, including Hemerocallis citrina Baroni. Historical Chinese medical texts, including the renowned Compendium of Materia Medica, document H. citrina Baroni as possessing antidepressant properties. Rutin, one of its primary active constituents, is recognized for its anti-inflammatory effects. Despite this, little is known about its specific target and mechanism. METHODS In the present study, molecular docking, and surface plasmon resonance imaging (SPRi) analysis were used to identify the special targets of rutin. Meanwhile, the potential antidepressant effects were evaluated in the chronic social defeat stress (CSDS) paradigm, an animal model of depression. Then, Western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), Co-immunoprecipitation (Co-IP) as well as antagonists of PPAR-γ were utilized to investigate the mechanism underlying the antidepressant effect of rutin. RESULTS Both molecular docking and SPRi analysis showed high docking scores and interactions between rutin and PPAR-γ. In vivo, rutin promoted the nuclear translocation of PPAR-γ in the hippocampus of mice, inhibited NFκB-mediated inflammatory pathways, and subsequently reduced the expression of pro-inflammatory factors (e.g., iNOS, IL-6), aligning with an antidepressant effect. However, this therapeutic effect was attenuated by GW9662, a specific antagonist of PPAR-γ. CONCLUSION As a result of activating PPAR-γ and inhibiting NFκB pathway activation, rutin reduces neuroinflammation and exhibits an antidepressant effect. These findings shed light on the antidepressant mechanism of rutin and could be valuable for the development of new antidepressants.
Collapse
Affiliation(s)
- Shu-Yuan Yin
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xin-Xin Shao
- Institute for Traditional Chinese Medicine Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Shi-Yu Shen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jia-Rui Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zu-Qi Shen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ling-Feng Liang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Cong Chen
- Institute for Traditional Chinese Medicine Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Na Yue
- Department of Clinical Lab, Institute of Pediatrics of Weifang Medical University, Weifang Maternal and Child Health Hospital, Brunch of Shandong Provincial Clinical Research Center for Children's Health and Disease, Peking University Health Science Center-Weifang Joint Research Center for Maternal and Child Health, Weifang, 261061, China.
| | - Xian-Jun Fu
- Institute for Traditional Chinese Medicine Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Jin Yu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai 200433, China.
| |
Collapse
|
2
|
Yu L, He K, Wu Y, Hao K, Wang Y, Yao J, Zhao Y, Yu Q, Shen Y, Chen M, Xu K, Zhang X, Zhang L. UGT708S6 from Dendrobium catenatum, catalyzes the formation of flavonoid C-glycosides. BMC Biotechnol 2024; 24:94. [PMID: 39563265 DOI: 10.1186/s12896-024-00923-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Dendrobium catenatum is a perennial herb of the genus Dendrobium orchidaceae. It has been known as "Golden Grass, Soft Gold" since ancient times with effects of strengthening the body, benefiting the stomach, generating body fluid, nourishing Yin and clearing internal heat. The flowers of D. catenatum have anti-oxidation, immune regulation and other biological activities. The composition analysis of flowers showed that flavonoid glycosides were significantly accumulated in floral tissue. However, in the flowers of D. catenatum, there was only one case of the UDP-glycosyltransferase (UGT) responsible for the glycosylation of flavonoids has been reported. RESULT In this study, a new UGT (named UGT708S6) was cloned from D. catenatum flowers rich in O-glycosides and C-glycosides, and its function and biochemical properties were characterized. Through homology comparison and molecular docking, we identified the key amino acid residues affecting the catalytic function of UGT708S6. The glycosyltransferase UGT708S6 was characterized and demonstrated C-glycosyltransferase (CGT) activity in vitro assay using phloretin and 2-hydroxynaringenin as sugar acceptors. The catalytic promiscuity assay revealed that UGT708S6 has a clear sugar donor preference, and displayed O-glycosyltransferase (OGT) activity towards luteolin, naringenin and liquiritigenin. Furthermore, the catalytic characteristics of UGT708S6 were explored, shedding light on the structural basis of substrate promiscuity and the catalytic mechanism involved in the formation of flavonoid C-glycosides. R271 was a key amino acid residue site that sustained the catalytic reaction. The smaller binding pocket resulted in the production of new O-glycosides and the reduction of C-glycosides. This highlighted the importance of the binding pocket in determining whether C-glycosides or O-glycosides were produced. CONCLUSIONS The findings suggest that UGT708S6 holds promise as a new glycosyltransferase for synthesizing flavonoid glycosides and offer valuable insights for further understanding the catalytic mechanisms of flavonoid glycosyltransferases.
Collapse
Affiliation(s)
- Luyao Yu
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
- Navy Special Medical Centre, Second Military Medical University, Shanghai, 200433, China
| | - Kun He
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
- Department of Epidemiology, Naval Medical University, Shanghai, 200433, China
| | - Yu Wu
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Kai Hao
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
- The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, 221009, China
| | - Yun Wang
- Biomedical Innovation R&D Center, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Jinbo Yao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yuxue Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Qiaoxian Yu
- Zhejiang Senyu Co., Ltd, Jinhua, Zhejiang, 312000, China
| | - Yanghui Shen
- Pan'an Traditional Chinese Medicine Industry Innovation and Development Institute, Zhejiang, 322300, China
| | - Mengxuan Chen
- Shanghai Analytical Applications Center, Shimadzu (China) Co., LTD, Shanghai, 200030, China
| | - Ke Xu
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
| | - Xinfeng Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
- Biomedical Innovation R&D Center, School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
3
|
Calcino A, Cooke I, Cowman P, Higgie M, Massault C, Schmitz U, Whittaker M, Field MA. Harnessing genomic technologies for one health solutions in the tropics. Global Health 2024; 20:78. [PMID: 39543642 PMCID: PMC11566161 DOI: 10.1186/s12992-024-01083-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND The targeted application of cutting-edge high-throughput molecular data technologies provides an enormous opportunity to address key health, economic and environmental issues in the tropics within the One Health framework. The Earth's tropical regions are projected to contain > 50% of the world's population by 2050 coupled with 80% of its biodiversity however these regions are relatively less developed economically, with agricultural productivity substantially lower than temperate zones, a large percentage of its population having limited health care options and much of its biodiversity understudied and undescribed. The generation of high-throughput molecular data and bespoke bioinformatics capability to address these unique challenges offers an enormous opportunity for people living in the tropics. MAIN: In this review we discuss in depth solutions to challenges to populations living in tropical zones across three critical One Health areas: human health, biodiversity and food production. This review will examine how some of the challenges in the tropics can be addressed through the targeted application of advanced omics and bioinformatics and will discuss how local populations can embrace these technologies through strategic outreach and education ensuring the benefits of the One Health approach is fully realised through local engagement. CONCLUSION Within the context of the One Health framework, we will demonstrate how genomic technologies can be utilised to improve the overall quality of life for half the world's population.
Collapse
Affiliation(s)
- Andrew Calcino
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Ira Cooke
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Pete Cowman
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
- Queensland Museum, Townsville, QLD, Australia
| | - Megan Higgie
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Cecile Massault
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture James Cook University, Townsville, QLD, Australia
| | - Ulf Schmitz
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Maxine Whittaker
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Matt A Field
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia.
- Garvan Institute of Medical Research, Victoria Street, Darlinghurst, NSW, Australia.
| |
Collapse
|
4
|
Yazzie MT, Reitz ZL, Schmid R, Petras D, Aron AT. Native metabolomics for mass spectrometry-based siderophore discovery. Methods Enzymol 2024; 702:317-352. [PMID: 39155117 DOI: 10.1016/bs.mie.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Microorganisms, plants, and animals alike have specialized acquisition pathways for obtaining metals, with microorganisms and plants biosynthesizing and secreting small molecule natural products called siderophores and metallophores with high affinities and specificities for iron or other non-iron metals, respectively. This chapter details a novel approach to discovering metal-binding molecules, including siderophores and metallophores, from complex samples ranging from microbial supernatants to biological tissue to environmental samples. This approach, called Native Metabolomics, is a mass spectrometry method in which pH adjustment and metal infusion post-liquid chromatography are interfaced with ion identity molecular networking (IIMN). This rule-based data analysis workflow that enables the identification of metal-binding species based on defined mass (m/z) offsets with the same chromatographic profiles and retention times. Ion identity molecular networking connects compounds that are structurally similar by their fragmentation pattern and species that are ion adducts of the same compound by chromatographic shape correlations. This approach has previously revealed new insights into metal binding metabolites, including that yersiniabactin can act as a biological zincophore (in addition to its known role as a siderophore), that the recently elucidated lepotchelin natural products are cyanobacterial metallophores, and that antioxidants in traditional medicine bind iron. Native metabolomics can be conducted on any liquid chromatography-mass spectrometry system to explore the binding of any metal or multiple metals simultaneously, underscoring the potential for this method to become an essential strategy for elucidating biological metal-binding molecules.
Collapse
Affiliation(s)
- Marquis T Yazzie
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, United States
| | - Zachary L Reitz
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, United States
| | - Robin Schmid
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Daniel Petras
- Department of Biochemistry, University of California Riverside, Riverside, CA, United States; Interfaculty of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Allegra T Aron
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, United States.
| |
Collapse
|
5
|
Mokhtari M, Amiri P, Miller D, Gresham D, Bloor SJ, Munkacsi AB. Chemical genomic analysis reveals the interplay between iron chelation, zinc homeostasis, and retromer function in the bioactivity of an ethanol adduct of the feijoa fruit-derived ellagitannin vescalagin. G3 (BETHESDA, MD.) 2024; 14:jkae098. [PMID: 38805688 PMCID: PMC11228861 DOI: 10.1093/g3journal/jkae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/30/2024]
Abstract
Nature has been a rich source of pharmaceutical compounds, producing 80% of our currently prescribed drugs. The feijoa plant, Acca sellowiana, is classified in the family Myrtaceae, native to South America, and currently grown worldwide to produce feijoa fruit. Feijoa is a rich source of bioactive compounds with anticancer, anti-inflammatory, antibacterial, and antifungal activities; however, the mechanism of action of these compounds is largely not known. Here, we used chemical genetic analyses in the model organism Saccharomyces cerevisiae to investigate the mechanism of action of a feijoa-derived ethanol adduct of vescalagin (EtOH-vescalagin). Genome-wide barcode sequencing analysis revealed yeast strains lacking genes in iron metabolism, zinc metabolism, retromer function, or mitochondrial function were hypersensitive to 0.3 µM EtOH-vescalagin. This treatment increased expression of iron uptake proteins at the plasma membrane, which was a compensatory response to reduced intracellular iron. Likewise, EtOH-vescalagin increased expression of the Cot1 protein in the vacuolar membrane that transports zinc into the vacuole to prevent cytoplasmic accumulation of zinc. Each individual subunit in the retromer complex was required for the iron homeostatic mechanism of EtOH-vescalagin, while only the cargo recognition component in the retromer complex was required for the zinc homeostatic mechanism. Overexpression of either retromer subunits or high-affinity iron transporters suppressed EtOH-vescalagin bioactivity in a zinc-replete condition, while overexpression of only retromer subunits increased EtOH-vescalagin bioactivity in a zinc-deficient condition. Together, these results indicate that EtOH-vescalagin bioactivity begins with extracellular iron chelation and proceeds with intracellular transport of zinc via the retromer complex. More broadly, this is the first report of a bioactive compound to further characterize the poorly understood interaction between zinc metabolism and retromer function.
Collapse
Affiliation(s)
- Mona Mokhtari
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Pegah Amiri
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Darach Miller
- Department of Genetics, Stanford University Medical School, Stanford, CA 94305, USA
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - David Gresham
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | | | - Andrew B Munkacsi
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
6
|
Hammond J, Das IM, Paenga R, Caddie M, Skinner D, Sheridan JP, Miller MR, Munkacsi AB. Multi-omic analysis reveals genes and proteins integral to bioactivity of Echinochrome A isolated from the waste stream of the sea urchin industry in Aotearoa New Zealand. Food Sci Nutr 2024; 12:4927-4943. [PMID: 39055184 PMCID: PMC11266889 DOI: 10.1002/fsn3.4140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 07/27/2024] Open
Abstract
Evechinus chloroticus (commonly known as kina) is a sea urchin species endemic to New Zealand. Its roe is a culinary delicacy to the indigenous Māori and a globally exported food product. Echinochrome A (Ech A) is a bioactive compound isolated from the waste product of kina shells and spines; however, the molecular mechanisms of Ech A bioactivity are not well understood, partly due to Ech A never being studied using unbiased genome-wide analysis. To explore the high-value pharmaceutical potential of kina food waste, we obtained unbiased functional genomic and proteomic profiles of yeast cells treated with Echinochrome A. Abundance was measured for 4100 proteins every 30 min for four hours using fluorescent microscopy, resulting in the identification of 92 proteins with significant alterations in protein abundance caused by Ech A treatment that were over-represented with specific changes in DNA replication, repair and RNA binding after 30 min, followed by specific changes in the metabolism of metal ions (specifically iron and copper) from 60-240 min. Further analysis indicated that Ech A chelated iron, and that iron supplementation negated the growth inhibition caused by Ech A. Via a growth-based genome-wide analysis of 4800 gene deletion strains, 20 gene deletion strains were sensitive to Ech A in an iron-dependent manner. These genes were over-represented in the cellular response to oxidative stress, suggesting that Ech A suppressed growth inhibition caused by oxidative stress. Unexpectedly, genes integral to cardiolipin and inositol phosphate biosynthesis were required for Ech A bioactivity. Overall, these results identify genes, proteins, and cellular processes mediating the bioactivity of Ech A. Moreover, we demonstrate unbiased genomic and proteomic methodology that will be useful for characterizing bioactive compounds in food and food waste.
Collapse
Affiliation(s)
- Joseph Hammond
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| | | | - Ruihana Paenga
- Hikurangi Bioactives Limited PartnershipRuatōriaNew Zealand
| | - Manu Caddie
- Hikurangi Bioactives Limited PartnershipRuatōriaNew Zealand
| | - Damian Skinner
- Hikurangi Bioactives Limited PartnershipRuatōriaNew Zealand
| | - Jeffrey P. Sheridan
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| | | | - Andrew B. Munkacsi
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for BiodiscoveryVictoria University of WellingtonWellingtonNew Zealand
| |
Collapse
|
7
|
Vitale GA, Geibel C, Minda V, Wang M, Aron AT, Petras D. Connecting metabolome and phenotype: recent advances in functional metabolomics tools for the identification of bioactive natural products. Nat Prod Rep 2024; 41:885-904. [PMID: 38351834 PMCID: PMC11186733 DOI: 10.1039/d3np00050h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 06/20/2024]
Abstract
Covering: 1995 to 2023Advances in bioanalytical methods, particularly mass spectrometry, have provided valuable molecular insights into the mechanisms of life. Non-targeted metabolomics aims to detect and (relatively) quantify all observable small molecules present in a biological system. By comparing small molecule abundances between different conditions or timepoints in a biological system, researchers can generate new hypotheses and begin to understand causes of observed phenotypes. Functional metabolomics aims to investigate the functional roles of metabolites at the scale of the metabolome. However, most functional metabolomics studies rely on indirect measurements and correlation analyses, which leads to ambiguity in the precise definition of functional metabolomics. In contrast, the field of natural products has a history of identifying the structures and bioactivities of primary and specialized metabolites. Here, we propose to expand and reframe functional metabolomics by integrating concepts from the fields of natural products and chemical biology. We highlight emerging functional metabolomics approaches that shift the focus from correlation to physical interactions, and we discuss how this allows researchers to uncover causal relationships between molecules and phenotypes.
Collapse
Affiliation(s)
- Giovanni Andrea Vitale
- CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Tuebingen, Tuebingen, Germany
| | - Christian Geibel
- CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Tuebingen, Tuebingen, Germany
| | - Vidit Minda
- Division of Pharmacology and Pharmaceutical Sciences, University of Missouri - Kansas City, Kansas City, USA
- Department of Chemistry and Biochemistry, University of Denver, Denver, USA.
| | - Mingxun Wang
- Department of Computer Science, University of California Riverside, Riverside, USA.
| | - Allegra T Aron
- Department of Chemistry and Biochemistry, University of Denver, Denver, USA.
| | - Daniel Petras
- CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Tuebingen, Tuebingen, Germany
- Department of Biochemistry, University of California Riverside, Riverside, USA.
| |
Collapse
|
8
|
Shi Y, Zhang X, Pei S, Wang Y. Ethnopharmacological study on Adenosma buchneroides Bonati inhibiting inflammation via the regulation of TLR4/MyD88/NF-κB signaling pathway. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:36. [PMID: 38833115 DOI: 10.1007/s13659-024-00458-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
Adenosma buchneroides Bonati, also known as fleagrass, is an important medicinal plant used by the Akha (Hani) people of China for treating inflammation-related skin swelling, acne, and diarrhoea, among other conditions. In this study, we aimed to evaluate the anti-inflammatory activities and explore the molecular mechanisms of fleagrass on treating skin swelling and acne. The results demonstrated that fleagrass inhibited the enzymatic activities of 5-LOX and COX-2 in vitro, and decreased the release of NO, IL-6, TNF-α, and IL-10 in the LPS-induced RAW264.7 macrophages. The levels of proteins associated with the nuclear factor-kappa B (NF-κB) pathway were examined by western blotting and immunofluorescence, demonstrating that fleagrass downregulated the expression of TLR4, MyD88, NF-κB/p65, and iNOS and blocked the nuclear translocation of NF-κB/p65. Furthermore, fleagrass exhibited acute anti-inflammatory activity in paw oedema models. The results confirm that fleagrass exhibits remarkable anti-inflammatory activity and can be used in alleviating inflammation, suggesting that fleagrass has the potential to be a novel anti-inflammatory agent.
Collapse
Affiliation(s)
- Yuru Shi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Heilongtan, Kunming, 650201, Yunnan, China
| | - Xiaoqian Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Heilongtan, Kunming, 650201, Yunnan, China
| | - Shengji Pei
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Heilongtan, Kunming, 650201, Yunnan, China
| | - Yuhua Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Heilongtan, Kunming, 650201, Yunnan, China.
| |
Collapse
|
9
|
Koenig CJ, Vasquez TS, Peterson EB, Wollney EN, Bylund CL, Ho EY. Mapping Uncharted Terrain: A Systematic Review of Complementary and Integrative Health Communication Using Observational Data in Biomedical Settings. HEALTH COMMUNICATION 2023; 38:3147-3162. [PMID: 36602254 DOI: 10.1080/10410236.2022.2140080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Complementary and integrative health (CIH) use is diverse and highly prevalent worldwide. Prior research of CIH communication in biomedical encounters address safety, efficacy, symptom management, and overall wellness. Observational methods are rarely used to study CIH communication and avoid recall bias, preserve ecological validity, and contextualize situated clinical communication. Following PRISMA guidelines, we systematically reviewed studies at the intersection of social scientific observational research and findings about CIH communication between clinicians, patients, and caregivers in biomedical settings. We identified international, peer-reviewed publications from seven databases between January 2010 and December 2020. Titles and abstracts were first screened for inclusion, then full studies were coded using explicit criteria. We used a standard checklist was modified to assess article quality. Ten of 11,793 studies examined CIH communication using observational methods for CIH communication in biomedical settings. Studies used a range of observational techniques, including participant and non-participant observation, which includes digital audio or video recordings. Results generated two broad sets of findings, one focused on methodological insights and another on CIH communication. Despite methodological and topic similarities, included studies addressed CIH communication as a process and as proximal and intermediate health outcomes. We recommend how observational studies of CIH communication can better highlight relationships between communication processes and health outcomes. Current research using observational methods offers an incomplete picture of CIH communication in biomedical settings. Future studies should standardize how observational techniques are reported to enhance consistency and comparability within and across biomedical settings to improve comparability.
Collapse
Affiliation(s)
| | | | - Emily B Peterson
- Annenberg School for Communication and Journalism, University of Southern California
| | | | - Carma L Bylund
- Health Outcomes & Biomedical Informatics, University of Florida
| | - Evelyn Y Ho
- Communication Studies, San Francisco State University
| |
Collapse
|
10
|
Kozachok S, Kolodziejczyk-Czepas J, Marchyshyn S, Wojtanowski KK, Zgórka G, Oleszek W. Comparison of Phenolic Metabolites in Purified Extracts of Three Wild-Growing Herniaria L. Species and Their Antioxidant and Anti-Inflammatory Activities In Vitro. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020530. [PMID: 35056848 PMCID: PMC8779723 DOI: 10.3390/molecules27020530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
Abstract
The work is aimed at phytochemical characterization and In Vitro evaluation of antioxidant actions, anti-inflammatory effects, and cytotoxicity of purified extracts from three rupturewort (Herniaria L.) species, i.e., Herniaria glabra (HG), H. polygama (HP), and H. incana herb (HIh). The total phenolic content established in the purified extracts (PEs) of HIh, HP, and HG was 29.6, 24.0, and 13.0%, respectively. Thirty-eight non-saponin metabolites were identified using LC-HR-QTOF-ESI-MS; however, only 9 were common for the studied Herniaria species. The most abundant phenolic compound in HG-PE was narcissin (7.4%), HP-PE shared 3 major constituents, namely cis-2-hydroxy-4-methoxycinnamic acid 2-O-β-glucoside (cis-GMCA, 5.8%), narcissin (5.4%), and rutin (5.3%). Almost half of HIh phenolic content (14.7%) belonged to oxytroflavoside A (7-O-methylkaempferol-3-O-[3-hydroxy-3-methylglutaryl-(1→6)]-[α-rhamnopyranosyl-(1→2)]-β-galactopyranoside). Antioxidant properties of the Herniaria PEs were evaluated employing an experimental model of human blood plasma, exposed to the peroxynitrite-induced oxidative stress. The assays demonstrated significant reduction of oxidative damage to protein and lipid plasma components (estimated by measurements of 3-nitrotyrosine, protein thiol groups, thiobarbituric acid-reactive substances), and moderate protection of its non-enzymatic antioxidant capacity. Anti-inflammatory properties of the Herniaria PEs were evaluated In Vitro as inhibitory effects against cyclooxygenases (COX-1 and -2) and concanavalin A-induced inflammatory response of the peripheral blood mononuclear cells (PBMCs). None of the studied plants showed inhibitory effects on COXs but all purified extracts partly reduced the release of interleukin 2 (IL-2) and tumor necrosis factor-alpha (TNF-α) from PBMCs, which suggested their prospective ability to up-regulate inflammatory response of the cells. The purified extract from H. glabra turned out to be the most efficient suppressor of PBMCs’ inflammatory response. Additionally, cytotoxicity of purified Herniaria extracts on PBMCs was ruled out based on In Vitro studies.
Collapse
Affiliation(s)
- Solomiia Kozachok
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland;
- Correspondence: (S.K.); (J.K.-C.); Tel.: +48-814-786-882 (S.K.); +48-42-635-44-83 (J.K.-C.)
| | - Joanna Kolodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
- Correspondence: (S.K.); (J.K.-C.); Tel.: +48-814-786-882 (S.K.); +48-42-635-44-83 (J.K.-C.)
| | - Svitlana Marchyshyn
- Department of Pharmacognosy and Medical Botany, I Horbachevsky Ternopil National Medical University, Maidan Voli 1, 46001 Ternopil, Ukraine;
| | - Krzysztof Kamil Wojtanowski
- Department of Pharmacognosy with the Medicinal Plant Garden, Medical University of Lublin, 1 Chodzki St., 20-093 Lublin, Poland; (K.K.W.); (G.Z.)
| | - Grażyna Zgórka
- Department of Pharmacognosy with the Medicinal Plant Garden, Medical University of Lublin, 1 Chodzki St., 20-093 Lublin, Poland; (K.K.W.); (G.Z.)
| | - Wieslaw Oleszek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland;
| |
Collapse
|