1
|
Tomar MS, Mohit, Kumar A, Shrivastava A. Circadian immunometabolism: A future insight for targeted therapy in cancer. Sleep Med Rev 2025; 80:102031. [PMID: 39603026 DOI: 10.1016/j.smrv.2024.102031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Circadian rhythms send messages to regulate the sleep-wake cycle in living beings, which, regulate various biological activities. It is well known that altered sleep-wake cycles affect host metabolism and significantly deregulate the host immunity. The dysregulation of circadian-related genes is critical for various malignancies. One of the hallmarks of cancer is altered metabolism, the effects of which spill into surrounding microenvironments. Here, we review the emerging literature linking the circadian immunometabolic axis to cancer. Small metabolites are the products of various metabolic pathways, that are usually perturbed in cancer. Genes that regulate circadian rhythms also regulate host metabolism and control metabolite content in the tumor microenvironment. Immune cell infiltration into the tumor site is critical to perform anticancer functions, and altered metabolite content affects their trafficking to the tumor site. A compromised immune response in the tumor microenvironment aids cancer cell proliferation and immune evasion, resulting in metastases. The role of circadian rhythms in these processes is largely overlooked and demands renewed attention in the search for targets against cancer growth and spread. The precision medicine approach requires targeting the circadian immune metabolism in cancer.
Collapse
Affiliation(s)
- Manendra Singh Tomar
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Mohit
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India; Department of Prosthodontics, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Bhopal, Saket Nagar, Bhopal, Madhya Pradesh, 462020, India.
| | - Ashutosh Shrivastava
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India.
| |
Collapse
|
2
|
Xu Z, Huang W, Zou X, Liu S. Integrated machine learning constructed a circadian-rhythm-related model to assess clinical outcomes and therapeutic advantages in hepatocellular carcinoma. Transl Cancer Res 2025; 14:1799-1823. [PMID: 40224982 PMCID: PMC11985180 DOI: 10.21037/tcr-24-1155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 01/18/2025] [Indexed: 04/15/2025]
Abstract
Background Circadian rhythm (CR) coordinates a variety of internal biological processes with the external daily cycles of light and dark. However, the implications of CR-related regulator in hepatocellular carcinoma (HCC) are quite obscure. Here, we aimed to identify pivotal CR-related markers in HCC for predicting survival and treatment outcomes. Methods The prognostic value of CR regulators in HCC was analyzed. Multi-step machine learning feature selection approaches were employed to establish a model. Thereafter, we evaluated its capacity of clinical prediction and treatment guidance. Results First, we depicted the prognostic stratification value of CR regulators in HCC. Two CR-related phenotypes were identified, revealing a distinct clinical outcome, biological pathways and drug sensitivity. Subsequently, via four topological approaches and differentially expressed genes (DEGs) from real-world cohorts, we screened out CRY2 as the pivotal CR regulator with significant prognostic value in HCC. We performed the relevant basic assay validation for CRY2. Overexpression of CRY2 inhibited the proliferation and migration abilities of Huh7 and Hep3B cells. Moreover, three machine learning algorithms [random forest (RF), extreme gradient boosting (XGBoost) and least absolute shrinkage and selection operator (LASSO)] were implemented to construct a risk-scoring model named CR predictor, which exhibited clinical benefits and therapeutic advantages for HCC. An online nomogram based on CR predictor was developed for predicting individualized survival (https://lihc.shinyapps.io/CR_predictor/). Finally, Mendelian randomization (MR) was performed. Among model genes in CR predictor, PPARGC1A revealed a significant causal effect on HCC. Conclusions We proposed a CR-related risk classifier in HCC, to predict patients' overall survival (OS) and therapeutic response. Targeting CR could be a promising treatment modality against HCC.
Collapse
Affiliation(s)
- Ziyuan Xu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Huang
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xi Zou
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shenlin Liu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
3
|
Zhang S, Chen X, Li J, Xu A, Bode AM, Luo X. The role of cryptochrome (CRY) in cancer: molecular mechanisms and Clock-based therapeutic strategies. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 40109093 DOI: 10.3724/abbs.2025025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
The circadian rhythm is a phenomenon in which physiological, behavioral, and biochemical processes within an organism naturally fluctuate over a period of approximately 24 hours. This phenomenon is ubiquitous in living organisms. Disruption of circadian rhythms in mammals leads to different diseases, such as cancer, and neurodegenerative and metabolic disorders. In specific tissues, numerous genes have been found to have circadian oscillations, suggesting a broad role for rhythm genes in the regulation of gene expression. This review systematically summarizes the role of cryptochromes (CRYs) in the initiation and progression of different types of cancer and discusses the relationships between Clock genes and the tumor microenvironment (TME), as well as clock-based therapeutic strategies.
Collapse
Affiliation(s)
- Shuzhao Zhang
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha 410078, China
| | - Xue Chen
- Early Clinical Trial Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Jiayi Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha 410078, China
| | - Anan Xu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha 410078, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Xiangjian Luo
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha 410078, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha 410078, China
| |
Collapse
|
4
|
Wang J, Shao F, Yu QX, Ye L, Wusiman D, Wu R, Tuo Z, Wang Z, Li D, Cho WC, Wei W, Feng D. The Common Hallmarks and Interconnected Pathways of Aging, Circadian Rhythms, and Cancer: Implications for Therapeutic Strategies. RESEARCH (WASHINGTON, D.C.) 2025; 8:0612. [PMID: 40046513 PMCID: PMC11880593 DOI: 10.34133/research.0612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 03/17/2025]
Abstract
The intricate relationship between cancer, circadian rhythms, and aging is increasingly recognized as a critical factor in understanding the mechanisms underlying tumorigenesis and cancer progression. Aging is a well-established primary risk factor for cancer, while disruptions in circadian rhythms are intricately associated with the tumorigenesis and progression of various tumors. Moreover, aging itself disrupts circadian rhythms, leading to physiological changes that may accelerate cancer development. Despite these connections, the specific interplay between these processes and their collective impact on cancer remains inadequately explored in the literature. In this review, we systematically explore the physiological mechanisms of circadian rhythms and their influence on cancer development. We discuss how core circadian genes impact tumor risk and prognosis, highlighting the shared hallmarks of cancer and aging such as genomic instability, cellular senescence, and chronic inflammation. Furthermore, we examine the interplay between circadian rhythms and aging, focusing on how this crosstalk contributes to tumorigenesis, tumor proliferation, and apoptosis, as well as the impact on cellular metabolism and genomic stability. By elucidating the common pathways linking aging, circadian rhythms, and cancer, this review provides new insights into the pathophysiology of cancer and identifies potential therapeutic strategies. We propose that targeting the circadian regulation of cancer hallmarks could pave the way for novel treatments, including chronotherapy and antiaging interventions, which may offer important benefits in the clinical management of cancer.
Collapse
Affiliation(s)
- Jie Wang
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Fanglin Shao
- Department of Rehabilitation,
The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Qing Xin Yu
- Department of Pathology,
Ningbo Clinical Pathology Diagnosis Center, Ningbo, Zhejiang 315211, China
- Department of Pathology,
Ningbo Medical Centre Lihuili Hospital, Ningbo, Zhejiang 315040, China
| | - Luxia Ye
- Department of Public Research Platform,
Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Dilinaer Wusiman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47906, USA
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Zhouting Tuo
- Department of Urological Surgery, Daping Hospital, Army Medical Center of PLA,
Army Medical University, Chongqing, China
| | - Zhipeng Wang
- Department of Urology, Sichuan Provincial People’s Hospital,
University of Electronic Science and Technology of China, Chengdu, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
| | - William C. Cho
- Department of Clinical Oncology,
Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
- Division of Surgery and Interventional Science,
University College London, London W1W 7TS, UK
| |
Collapse
|
5
|
Motiei M, Abu-Dawud R, Relógio A, Assaf C. Circadian rhythms in haematological malignancies: therapeutic potential and personalised interventions. EBioMedicine 2024; 110:105451. [PMID: 39566400 PMCID: PMC11617894 DOI: 10.1016/j.ebiom.2024.105451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/13/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024] Open
Abstract
The circadian clock, a fundamental cellular mechanism, regulates the rhythmic expression of numerous genes and biological processes across various organs. Disruptions in this system, driven by genetic or environmental factors, have been reported to be involved in cancer progression. This review explores the role of the circadian clock in cancer hallmarks and its impact on cellular homeostasis within haematological malignancies. Drawing on findings from in vitro, in vivo, and clinical trials, this review highlights the potential of clock genes as diagnostic and prognostic biomarkers, and as therapeutic targets for optimising treatment timing. It discusses how circadian rhythms can enhance treatment efficacy through both pharmacological and non-pharmacological interventions, outlining strategies for optimising dosing schedules and implementing personalised chronobiological interventions, with a particular focus on haematological malignancies, including cutaneous lymphoma. Ongoing research holds promise for advancing personalised therapeutic approaches and ultimately improving cancer care standards.
Collapse
Affiliation(s)
- Marjan Motiei
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg 20457, Germany
| | - Raed Abu-Dawud
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg 20457, Germany
| | - Angela Relógio
- Institute for Systems Medicine, and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg 20457, Germany
| | - Chalid Assaf
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg 20457, Germany; Department of Dermatology, HELIOS Klinikum Krefeld, Krefeld 47805, Germany.
| |
Collapse
|
6
|
Su Z, Hu Q, Li X, Wang Z, Xie Y. The Influence of Circadian Rhythms on DNA Damage Repair in Skin Photoaging. Int J Mol Sci 2024; 25:10926. [PMID: 39456709 PMCID: PMC11507642 DOI: 10.3390/ijms252010926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Circadian rhythms, the internal timekeeping systems governing physiological processes, significantly influence skin health, particularly in response to ultraviolet radiation (UVR). Disruptions in circadian rhythms can exacerbate UVR-induced skin damage and increase the risk of skin aging and cancer. This review explores how circadian rhythms affect various aspects of skin physiology and pathology, with a special focus on DNA repair. Circadian regulation ensures optimal DNA repair following UVR-induced damage, reducing mutation accumulation, and enhancing genomic stability. The circadian control over cell proliferation and apoptosis further contributes to skin regeneration and response to UVR. Oxidative stress management is another critical area where circadian rhythms exert influence. Key circadian genes like brain and muscle ARNT-like 1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK) modulate the activity of antioxidant enzymes and signaling pathways to protect cells from oxidative stress. Circadian rhythms also affect inflammatory and immune responses by modulating the inflammatory response and the activity of Langerhans cells and other immune cells in the skin. In summary, circadian rhythms form a complex defense network that manages UVR-induced damage through the precise regulation of DNA damage repair, cell proliferation, apoptosis, inflammatory response, oxidative stress, and hormonal signaling. Understanding these mechanisms provides insights into developing targeted skin protection and improving skin cancer prevention.
Collapse
Affiliation(s)
- Zhi Su
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Qianhua Hu
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Xiang Li
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Zirun Wang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Ying Xie
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
7
|
Janoski JR, Aiello I, Lundberg CW, Finkielstein CV. Circadian clock gene polymorphisms implicated in human pathologies. Trends Genet 2024; 40:834-852. [PMID: 38871615 DOI: 10.1016/j.tig.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024]
Abstract
Circadian rhythms, ~24 h cycles of physiological and behavioral processes, can be synchronized by external signals (e.g., light) and persist even in their absence. Consequently, dysregulation of circadian rhythms adversely affects the well-being of the organism. This timekeeping system is generated and sustained by a genetically encoded endogenous mechanism composed of interlocking transcriptional/translational feedback loops that generate rhythmic expression of core clock genes. Genome-wide association studies (GWAS) and forward genetic studies show that SNPs in clock genes influence gene regulation and correlate with the risk of developing various conditions. We discuss genetic variations in core clock genes that are associated with various phenotypes, their implications for human health, and stress the need for thorough studies in this domain of circadian regulation.
Collapse
Affiliation(s)
- Jesse R Janoski
- Integrated Cellular Responses Laboratory, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Ignacio Aiello
- Integrated Cellular Responses Laboratory, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
| | - Clayton W Lundberg
- Integrated Cellular Responses Laboratory, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Academy of Integrated Sciences, College of Science, Virginia Tech, Blacksburg, VA, USA
| | - Carla V Finkielstein
- Integrated Cellular Responses Laboratory, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA; Molecular Diagnostics Laboratory, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Academy of Integrated Sciences, College of Science, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
8
|
Villacis RAR, Côrtes L, Basso TR, do Canto LM, Souza JS, Aagaard MM, da Cruz Formiga MN, Aguiar S, Achatz MI, Rogatto SR. Germline DNA Damage Repair Gene Alterations in Patients with Metachronous Breast and Colorectal Cancer. Int J Mol Sci 2024; 25:10275. [PMID: 39408606 PMCID: PMC11476855 DOI: 10.3390/ijms251910275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
A hereditary component of breast (BC) and colorectal cancer (CRC) has been described in approximately one-third of these tumor types. BC patients have an increased risk of developing CRC as a second primary tumor and vice versa. Germline genomic variants (NextSeq550, Illumina) were investigated in 24 unrelated BC and/or CRC patients and 7 relatives from 3 index patients. Fifty-six pathogenic or likely pathogenic variants were identified in 19 of 24 patients. We detected single-nucleotide variants (SNVs) in CRC predisposition genes (MLH1 and MUTYH) and other promising candidates (CDK5RAP3, MAD1L1, NOS3, and POLM). Eighteen patients presented SNVs or copy number variants (CNVs) in DNA damage repair genes. We also identified SNVs recently associated with BC or CRC predisposition (PABPC1, TYRO3, MAP3K1, SLC15A4, and LAMA1). The PABPC1c.1255C>T variant was detected in nine unrelated patients. Each patient presented at least one SNV/CNV in a candidate gene, and most had alterations in more than one gene, reinforcing a polygenic model for BC/CRC predisposition. A significant fraction of BC/CRC patients with a family history of these tumors harbored deleterious germline variants in DNA repair genes. Our findings can lead to strategies to improve the diagnosis, genetic counseling, and treatment of patients and their relatives.
Collapse
Affiliation(s)
- Rolando André Rios Villacis
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (R.A.R.V.); (L.C.); (T.R.B.); (L.M.d.C.); (M.M.A.)
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília-UnB, Brasília 70910-900, DF, Brazil
| | - Luiza Côrtes
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (R.A.R.V.); (L.C.); (T.R.B.); (L.M.d.C.); (M.M.A.)
- Tocogynecology Graduation Program, Medical School, São Paulo State University UNESP, Botucatu 18618-687, SP, Brazil
| | - Tatiane Ramos Basso
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (R.A.R.V.); (L.C.); (T.R.B.); (L.M.d.C.); (M.M.A.)
| | - Luisa Matos do Canto
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (R.A.R.V.); (L.C.); (T.R.B.); (L.M.d.C.); (M.M.A.)
| | | | - Mads Malik Aagaard
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (R.A.R.V.); (L.C.); (T.R.B.); (L.M.d.C.); (M.M.A.)
| | | | - Samuel Aguiar
- Colorectal Cancer Reference Center, A.C. Camargo Cancer Center, São Paulo 01509-010, SP, Brazil;
| | - Maria Isabel Achatz
- Cancer Genetics Unit, Oncology Branch, Hospital Sirio-Libanês, São Paulo 01308-050, SP, Brazil;
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (R.A.R.V.); (L.C.); (T.R.B.); (L.M.d.C.); (M.M.A.)
- Institute of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, 5000 Odense, Denmark
- Danish Colorectal Cancer Center South, 7100 Vejle, Denmark
- Botucatu Medical School Hospital, São Paulo State University UNESP, Botucatu 18618-687, SP, Brazil
| |
Collapse
|
9
|
Xu S, Jia M, Guo J, He J, Chen X, Xu Y, Hu W, Wu D, Wu C, Ji X. Ticking Brain: Circadian Rhythm as a New Target for Cerebroprotection. Stroke 2024; 55:2385-2396. [PMID: 39011642 DOI: 10.1161/strokeaha.124.046684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Circadian rhythm is a master process observed in nearly every type of cell throughout the body, and it macroscopically regulates daily physiology. Recent clinical trials have revealed the effects of circadian variation on the incidence, pathophysiological processes, and prognosis of acute ischemic stroke. Furthermore, core clock genes, the cell-autonomous pacemakers of the circadian rhythm, affect the neurovascular unit-composing cells in a nonparallel manner after the same pathophysiological processes of ischemia/reperfusion. In this review, we discuss the influence of circadian rhythms and clock genes on each type of neurovascular unit cell in the pathophysiological processes of acute ischemic stroke.
Collapse
Affiliation(s)
- Shuaili Xu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders (S.X., X.J.), Capital Medical University, Beijing, China
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
| | - Milan Jia
- Department of Neurology, Xuanwu Hospital (M.J., X.C., Y.X., W.H., C.W., X.J.), Capital Medical University, Beijing, China
| | - Jiaqi Guo
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
| | - Jiachen He
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
| | - Xi Chen
- Department of Neurology, Xuanwu Hospital (M.J., X.C., Y.X., W.H., C.W., X.J.), Capital Medical University, Beijing, China
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
| | - Yi Xu
- Department of Neurology, Xuanwu Hospital (M.J., X.C., Y.X., W.H., C.W., X.J.), Capital Medical University, Beijing, China
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
| | - Wenbo Hu
- Department of Neurology, Xuanwu Hospital (M.J., X.C., Y.X., W.H., C.W., X.J.), Capital Medical University, Beijing, China
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
| | - Di Wu
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
| | - Chuanjie Wu
- Department of Neurology, Xuanwu Hospital (M.J., X.C., Y.X., W.H., C.W., X.J.), Capital Medical University, Beijing, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders (S.X., X.J.), Capital Medical University, Beijing, China
- Department of Neurology, Xuanwu Hospital (M.J., X.C., Y.X., W.H., C.W., X.J.), Capital Medical University, Beijing, China
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital (X.J.), Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Swanton C, Bernard E, Abbosh C, André F, Auwerx J, Balmain A, Bar-Sagi D, Bernards R, Bullman S, DeGregori J, Elliott C, Erez A, Evan G, Febbraio MA, Hidalgo A, Jamal-Hanjani M, Joyce JA, Kaiser M, Lamia K, Locasale JW, Loi S, Malanchi I, Merad M, Musgrave K, Patel KJ, Quezada S, Wargo JA, Weeraratna A, White E, Winkler F, Wood JN, Vousden KH, Hanahan D. Embracing cancer complexity: Hallmarks of systemic disease. Cell 2024; 187:1589-1616. [PMID: 38552609 PMCID: PMC12077170 DOI: 10.1016/j.cell.2024.02.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 04/02/2024]
Abstract
The last 50 years have witnessed extraordinary developments in understanding mechanisms of carcinogenesis, synthesized as the hallmarks of cancer. Despite this logical framework, our understanding of the molecular basis of systemic manifestations and the underlying causes of cancer-related death remains incomplete. Looking forward, elucidating how tumors interact with distant organs and how multifaceted environmental and physiological parameters impinge on tumors and their hosts will be crucial for advances in preventing and more effectively treating human cancers. In this perspective, we discuss complexities of cancer as a systemic disease, including tumor initiation and promotion, tumor micro- and immune macro-environments, aging, metabolism and obesity, cancer cachexia, circadian rhythms, nervous system interactions, tumor-related thrombosis, and the microbiome. Model systems incorporating human genetic variation will be essential to decipher the mechanistic basis of these phenomena and unravel gene-environment interactions, providing a modern synthesis of molecular oncology that is primed to prevent cancers and improve patient quality of life and cancer outcomes.
Collapse
Affiliation(s)
- Charles Swanton
- The Francis Crick Institute, London, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| | - Elsa Bernard
- The Francis Crick Institute, London, UK; INSERM U981, Gustave Roussy, Villejuif, France
| | | | - Fabrice André
- INSERM U981, Gustave Roussy, Villejuif, France; Department of Medical Oncology, Gustave Roussy, Villejuif, France; Paris Saclay University, Kremlin-Bicetre, France
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Allan Balmain
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | | | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Susan Bullman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Ayelet Erez
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gerard Evan
- The Francis Crick Institute, London, UK; Kings College London, London, UK
| | - Mark A Febbraio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Andrés Hidalgo
- Department of Immunobiology, Yale University, New Haven, CT 06519, USA; Area of Cardiovascular Regeneration, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Johanna A Joyce
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | | | - Katja Lamia
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA; Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Sherene Loi
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; The Sir Department of Medical Oncology, The University of Melbourne, Parkville, VIC, Australia
| | | | - Miriam Merad
- Department of immunology and immunotherapy, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kathryn Musgrave
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK; Department of Haematology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Ketan J Patel
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Sergio Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Jennifer A Wargo
- Department of Surgical Oncology, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashani Weeraratna
- Sidney Kimmel Cancer Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA; Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton, NJ, USA
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - John N Wood
- Molecular Nociception Group, WIBR, University College London, London, UK
| | | | - Douglas Hanahan
- Lausanne Branch, Ludwig Institute for Cancer Research, Lausanne, Switzerland; Swiss institute for Experimental Cancer Research (ISREC), EPFL, Lausanne, Switzerland; Agora Translational Cancer Research Center, Lausanne, Switzerland.
| |
Collapse
|
11
|
Lamia KA. Telling time in tumor samples reveals diversity of clock disruption. Proc Natl Acad Sci U S A 2024; 121:e2401496121. [PMID: 38422063 PMCID: PMC10945801 DOI: 10.1073/pnas.2401496121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Affiliation(s)
- Katja A. Lamia
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA92037
| |
Collapse
|
12
|
Lai H, Xiang X, Long X, Chen Z, Liu Y, Huang X. Multi-omics and single-cell sequencing analyses reveal the potential significance of circadian pathways in cancer therapy. Expert Rev Mol Diagn 2024; 24:107-121. [PMID: 38288973 DOI: 10.1080/14737159.2023.2296668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/24/2023] [Indexed: 02/22/2024]
Abstract
BACKGROUND Circadian rhythm disturbance is an independent risk factor for cancer. However, few studies have been reported on circadian rhythm related genes (CRGs) in cancer, so it is important to further explore the impact of CRGs in pan-cancer. RESEARCH DESIGN AND METHODS The Cancer Genome Atlas database was used to collect cancer-related data such as copy number variation, single nucleotide variants, methylation, and survival differences. Immunohistochemistry (IHC) was used to verify the expression of circadian rhythm hub genes. The circadian pathway scores (CRS) were calculated using single-sample gene enrichment analysis. TIMER and GEPIA databases were used for immune-cell integration and assessment. Single-cell sequencing data was used to evaluate the abundance of CRS in tumor microenvironment cells. RESULTS In this study, we found that the expression of circadian pathway varies between tumors. CSNK1E was significantly up-regulated in most tumors and CRY2 was significantly down-regulated in most tumors. The protein interaction network suggested CRY2 as the core gene and IHC verified its significant low expression in KIRC. In addition, CRGs were found to be protective factors in most tumors and have the potential to act as specific immune markers in different tumors. CRS was significantly lower in abundance in most tumors. CRS was significantly associated with overall survival in tumor patients and associated with the expression of many immune cells in the tumor immune microenvironment. CRS is significantly associated with tumor mutational burden and microsatellite instability scores in most tumors and may serve as a potential immunotherapeutic marker. CONCLUSIONS The circadian rhythm pathway may be a breakthrough point in regulating the tumor microenvironment meanwhile a suitable immunotherapy method in the future.
Collapse
Affiliation(s)
- Hao Lai
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Xiaoyun Xiang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Xingqing Long
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Zuyuan Chen
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Yanling Liu
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Xiaoliang Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| |
Collapse
|
13
|
Wang Z, Cai H, Li Z, Sun W, Zhao E, Cui H. Histone demethylase KDM4B accelerates the progression of glioblastoma via the epigenetic regulation of MYC stability. Clin Epigenetics 2023; 15:192. [PMID: 38093312 PMCID: PMC10720090 DOI: 10.1186/s13148-023-01608-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most malignant and invasive human brain tumor. Histone demethylase 4B (KDM4B) is abnormally expressed in GBM, but the molecular mechanisms by which KDM4B affects the malignant tumor progression are not well defined. METHODS GBM cell lines and xenograft tumor samples were subjected to quantitative PCR (qPCR), Western blot, immunohistochemical staining (IHC), as well as ubiquitination, immunoprecipitation (IP), and chromatin immunoprecipitation (ChIP) assays to investigate the role of KDM4B in the progression of GBM. RESULTS Here, we report that KDM4B is an epigenetic activator of GBM progression. Abnormal expression of KDM4B is correlated with a poor prognosis in GBM patients. In GBM cell lines, KDM4B silencing significantly inhibited cell survival, proliferation, migration, and invasion, indicating that KDM4B is essential for the anchorage-independent growth and tumorigenic activity of GBM cells. Mechanistically, KDM4B silencing led to downregulation of the oncoprotein MYC and suppressed the expression of cell cycle proteins and epithelial-to-mesenchymal transition (EMT)-related proteins. Furthermore, we found that KDM4B regulates MYC stability through the E3 ligase complex SCFFBXL3+CRY2 and epigenetically activates the transcription of CCNB1 by removing the repressive chromatin mark histone H3 lysine 9 trimethylation (H3K9me3). Finally, we provide evidence that KDM4B epigenetically activates the transcription of miR-181d-5p, which enhances MYC stability. CONCLUSIONS Our study has uncovered a KDM4B-dependent epigenetic mechanism in the control of tumor progression, providing a rationale for utilizing KDM4B as a promising therapeutic target for the treatment of MYC-amplified GBM.
Collapse
Affiliation(s)
- Zhongze Wang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei district, Chongqing, 400715, China
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China
| | - Huarui Cai
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei district, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
| | - Zekun Li
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei district, Chongqing, 400715, China
| | - Wei Sun
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei district, Chongqing, 400715, China
| | - Erhu Zhao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei district, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei district, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
| |
Collapse
|
14
|
Kaakour D, Fortin B, Masri S, Rezazadeh A. Circadian Clock Dysregulation and Prostate Cancer: A Molecular and Clinical Overview. Clin Med Insights Oncol 2023; 17:11795549231211521. [PMID: 38033743 PMCID: PMC10683379 DOI: 10.1177/11795549231211521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/15/2023] [Indexed: 12/02/2023] Open
Abstract
Circadian clock dysregulation has been implicated in various types of cancer and represents an area of growing research. However, the role of the circadian clock in prostate cancer has been relatively unexplored. This literature review will highlight the potential role of circadian clock dysregulation in prostate cancer by examining molecular, epidemiologic, and clinical data. The influence of melatonin, light, night shift work, chronotherapy, and androgen independence are discussed as they relate to the existing literature on their role in prostate cancer.
Collapse
Affiliation(s)
- Dalia Kaakour
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Orange, CA, USA
| | - Bridget Fortin
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Selma Masri
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Arash Rezazadeh
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Orange, CA, USA
| |
Collapse
|
15
|
Fortin BM, Mahieu AL, Fellows RC, Pannunzio NR, Masri S. Circadian clocks in health and disease: Dissecting the roles of the biological pacemaker in cancer. F1000Res 2023; 12:116. [PMID: 39282509 PMCID: PMC11399774 DOI: 10.12688/f1000research.128716.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 09/19/2024] Open
Abstract
In modern society, there is a growing population affected by circadian clock disruption through night shift work, artificial light-at-night exposure, and erratic eating patterns. Concurrently, the rate of cancer incidence in individuals under the age of 50 is increasing at an alarming rate, and though the precise risk factors remain undefined, the potential links between circadian clock deregulation and young-onset cancers is compelling. To explore the complex biological functions of the clock, this review will first provide a framework for the mammalian circadian clock in regulating critical cellular processes including cell cycle control, DNA damage response, DNA repair, and immunity under conditions of physiological homeostasis. Additionally, this review will deconvolute the role of the circadian clock in cancer, citing divergent evidence suggesting tissue-specific roles of the biological pacemaker in cancer types such as breast, lung, colorectal, and hepatocellular carcinoma. Recent evidence has emerged regarding the role of the clock in the intestinal epithelium, as well as new insights into how genetic and environmental disruption of the clock is linked with colorectal cancer, and the molecular underpinnings of these findings will be discussed. To place these findings within a context and framework that can be applied towards human health, a focus on how the circadian clock can be leveraged for cancer prevention and chronomedicine-based therapies will be outlined.
Collapse
Affiliation(s)
- Bridget M. Fortin
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, 92697, USA
| | - Alisa L. Mahieu
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, 92697, USA
| | - Rachel C. Fellows
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, 92697, USA
| | - Nicholas R. Pannunzio
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, 92697, USA
- Department of Medicine, University of California, Irvine, Irvine, California, 92697, USA
| | - Selma Masri
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, 92697, USA
| |
Collapse
|
16
|
Wu Z, Hu H, Zhang Q, Wang T, Li H, Qin Y, Ai X, Yi W, Wei X, Gao W, Ouyang C. Four circadian rhythm-related genes predict incidence and prognosis in hepatocellular carcinoma. Front Oncol 2022; 12:937403. [PMID: 36439444 PMCID: PMC9691441 DOI: 10.3389/fonc.2022.937403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/12/2022] [Indexed: 10/13/2023] Open
Abstract
Circadian dysregulation can be involved in the development of malignant tumors, though its relationship with the progression of hepatocellular carcinoma is not yet fully understood. We identified genes related to circadian rhythms from the Cancer Genome Atlas (TCGA), measured gene expression, and conducted genomic difference analysis to construct a circadian rhythm-related signature. The resulting prognosis model proved to be an effective biomarker, as demonstrated by Kaplan-Meier survival analysis for both the training (n = 370, P = 2.687e-10) and external validation cohorts (n = 230, P = 1.45e-02). Further, we found that patients considered 'high risk', with an associated poor prognosis, displayed elevated levels of immune checkpoint genes and immune filtration. We also conducted functional enrichment, which indicated that the risk model showed a significant positive correlation with certain malignant phenotypes, including G2M checkpoint, MYC targets, and the MTORC1 signaling pathway. In summary, we identified a novel circadian rhythm-related signature allowing assessment of prognosis for hepatocellular carcinoma patients, and further can be used to predict immune infiltration sensitivity.
Collapse
|
17
|
Yagi M, Miller S, Nagai Y, Inuki S, Sato A, Hirota T. A methylbenzimidazole derivative regulates mammalian circadian rhythms by targeting Cryptochrome proteins. F1000Res 2022; 11:1016. [PMID: 36226040 PMCID: PMC9523283 DOI: 10.12688/f1000research.124658.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 01/13/2023] Open
Abstract
Background: Impairment of the circadian clock has been associated with numerous diseases, including sleep disorders and metabolic disease. Although small molecules that modulate clock function may form the basis of drug discovery of clock-related diseases, only a few compounds that selectively target core clock proteins have been identified. Three scaffolds were previously discovered as small-molecule activators of the clock protein Cryptochrome (CRY), and they have been providing powerful tools to understand and control the circadian clock system. Identifying new scaffolds will expand the possibilities of drug discovery. Methods: A methylbenzimidazole derivative TH401 identified from cell-based circadian screens was characterized. Effects of TH401 on circadian rhythms were evaluated in cellular assays. Functional assays and X-ray crystallography were used to elucidate the effects of the compound on CRY1 and CRY2 isoforms. Results: TH401 lengthened the period of circadian rhythms and stabilized both CRY1 and CRY2. The compound repressed Per2 reporter activity, which was reduced by Cry1 or Cry2 knockout and abolished by Cry1/Cry2 double knockout, indicating the dependence on CRY isoforms. Thermal shift assays showed slightly higher interaction of TH401 with CRY2 over CRY1. The crystal structure of CRY1 in complex with TH401 revealed a conformational change of the gatekeeper W399, which is involved in isoform-selectivity determination. Conclusions: The present study identified a new small molecule TH401 that targets both CRY isoforms. This compound has expanded the chemical diversity of CRY activators, and will ultimately aid in the development of therapeutics against circadian clock-related disorders.
Collapse
Affiliation(s)
- Moeri Yagi
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, 464-8601, Japan,Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, 464-8601, Japan
| | - Simon Miller
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, 464-8601, Japan
| | - Yoshiko Nagai
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, 464-8601, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, 464-8601, Japan
| | - Tsuyoshi Hirota
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, 464-8601, Japan,Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, 464-8601, Japan,
| |
Collapse
|
18
|
CRY2 isoform selectivity of a circadian clock modulator with antiglioblastoma efficacy. Proc Natl Acad Sci U S A 2022; 119:e2203936119. [PMID: 36161947 PMCID: PMC9546630 DOI: 10.1073/pnas.2203936119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mammalian cryptochrome isoforms, CRY1 and CRY2, are core circadian clock regulators that work redundantly. Recent studies revealed distinct roles of these closely related homologs in clock output pathways. Isoform-selective control of CRY1 and CRY2 is critical for further understanding their redundant and distinct roles. KL001 was the first identified small-molecule CRY modulator that activates both CRY1 and CRY2. SHP656 is an orally available KL001 derivative and has shown efficacy in blood glucose control and inhibition of glioblastoma stem cell (GSC) growth in animal models. However, CRY isoform selectivity of SHP656 was uncharacterized, limiting understanding of the roles of CRY1 and CRY2. Here, we report the elucidation of CRY2 selectivity of SHP656. SHP656 lengthened cellular circadian period in a CRY2-dependent manner and selectively interacted with CRY2. By determining the X-ray crystal structure of CRY2 in complex with SHP656 and performing molecular dynamics simulations, we elucidated compound interaction mechanisms. SHP656 binding was compatible with the intrinsic CRY2 gatekeeper W417 "in" orientation and also a close "further in" conformation. Perturbation of W417 interaction with the lid loop resulted in a reduced effect of SHP656 on CRY2, supporting an important role of gatekeeper orientation in isoform selectivity. We also identified the R form of SHP656 (called SHP1703) as the active isomer. Treatment with SHP1703 effectively reduced GSC viability. Our results suggest a direct role of CRY2 in glioblastoma antitumorigenesis and provide a rationale for the selective modulation of CRY isoforms in the therapeutic treatment of glioblastoma and other circadian clock-related diseases.
Collapse
|
19
|
Chun SK, Fortin BM, Fellows RC, Habowski AN, Verlande A, Song WA, Mahieu AL, Lefebvre AEYT, Sterrenberg JN, Velez LM, Digman MA, Edwards RA, Pannunzio NR, Seldin MM, Waterman ML, Masri S. Disruption of the circadian clock drives Apc loss of heterozygosity to accelerate colorectal cancer. SCIENCE ADVANCES 2022; 8:eabo2389. [PMID: 35947664 PMCID: PMC9365282 DOI: 10.1126/sciadv.abo2389] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/23/2022] [Indexed: 05/12/2023]
Abstract
An alarming rise in young onset colorectal cancer (CRC) has been reported; however, the underlying molecular mechanism remains undefined. Suspected risk factors of young onset CRC include environmental aspects, such as lifestyle and dietary factors, which are known to affect the circadian clock. We find that both genetic disruption and environmental disruption of the circadian clock accelerate Apc-driven CRC pathogenesis in vivo. Using an intestinal organoid model, we demonstrate that clock disruption promotes transformation by driving Apc loss of heterozygosity, which hyperactivates Wnt signaling. This up-regulates c-Myc, a known Wnt target, which drives heightened glycolytic metabolism. Using patient-derived organoids, we show that circadian rhythms are lost in human tumors. Last, we identify that variance between core clock and Wnt pathway genes significantly predicts the survival of patients with CRC. Overall, our findings demonstrate a previously unidentified mechanistic link between clock disruption and CRC, which has important implications for young onset cancer prevention.
Collapse
Affiliation(s)
- Sung Kook Chun
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Bridget M. Fortin
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Rachel C. Fellows
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Amber N. Habowski
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697, USA
| | - Amandine Verlande
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Wei A. Song
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Alisa L. Mahieu
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | | | | | - Leandro M. Velez
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Michelle A. Digman
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Robert A. Edwards
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | | | - Marcus M. Seldin
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Marian L. Waterman
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697, USA
| | - Selma Masri
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
20
|
Sanford ABA, da Cunha LS, Machado CB, de Pinho Pessoa FMC, Silva ANDS, Ribeiro RM, Moreira FC, de Moraes Filho MO, de Moraes MEA, de Souza LEB, Khayat AS, Moreira-Nunes CA. Circadian Rhythm Dysregulation and Leukemia Development: The Role of Clock Genes as Promising Biomarkers. Int J Mol Sci 2022; 23:ijms23158212. [PMID: 35897788 PMCID: PMC9332415 DOI: 10.3390/ijms23158212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
The circadian clock (CC) is a daily system that regulates the oscillations of physiological processes and can respond to the external environment in order to maintain internal homeostasis. For the functioning of the CC, the clock genes (CG) act in different metabolic pathways through the clock-controlled genes (CCG), providing cellular regulation. The CC’s interruption can result in the development of different diseases, such as neurodegenerative and metabolic disorders, as well as cancer. Leukemias correspond to a group of malignancies of the blood and bone marrow that occur when alterations in normal cellular regulatory processes cause the uncontrolled proliferation of hematopoietic stem cells. This review aimed to associate a deregulated CC with the manifestation of leukemia, looking for possible pathways involving CG and their possible role as leukemic biomarkers.
Collapse
Affiliation(s)
- Ana Beatriz Aguiar Sanford
- Unichristus University Center, Faculty of Biomedicine, Fortaleza 60430-275, CE, Brazil; (A.B.A.S.); (L.S.d.C.)
| | - Leidivan Sousa da Cunha
- Unichristus University Center, Faculty of Biomedicine, Fortaleza 60430-275, CE, Brazil; (A.B.A.S.); (L.S.d.C.)
| | - Caio Bezerra Machado
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil; (C.B.M.); (F.M.C.d.P.P.); (M.O.d.M.F.); (M.E.A.d.M.)
| | - Flávia Melo Cunha de Pinho Pessoa
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil; (C.B.M.); (F.M.C.d.P.P.); (M.O.d.M.F.); (M.E.A.d.M.)
| | - Abigail Nayara dos Santos Silva
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (A.N.d.S.S.); (F.C.M.); (A.S.K.)
| | | | - Fabiano Cordeiro Moreira
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (A.N.d.S.S.); (F.C.M.); (A.S.K.)
| | - Manoel Odorico de Moraes Filho
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil; (C.B.M.); (F.M.C.d.P.P.); (M.O.d.M.F.); (M.E.A.d.M.)
| | - Maria Elisabete Amaral de Moraes
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil; (C.B.M.); (F.M.C.d.P.P.); (M.O.d.M.F.); (M.E.A.d.M.)
| | - Lucas Eduardo Botelho de Souza
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo 14051-140, SP, Brazil;
| | - André Salim Khayat
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (A.N.d.S.S.); (F.C.M.); (A.S.K.)
| | - Caroline Aquino Moreira-Nunes
- Unichristus University Center, Faculty of Biomedicine, Fortaleza 60430-275, CE, Brazil; (A.B.A.S.); (L.S.d.C.)
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil; (C.B.M.); (F.M.C.d.P.P.); (M.O.d.M.F.); (M.E.A.d.M.)
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (A.N.d.S.S.); (F.C.M.); (A.S.K.)
- Northeast Biotechnology Network (RENORBIO), Itaperi Campus, Ceará State University, Fortaleza 60740-903, CE, Brazil
- Correspondence:
| |
Collapse
|
21
|
Abstract
The potential therapeutic uses of electromagnetic fields (EMF), part of the nonionizing radiation spectrum, increase with time. Among them, those considering the potential antitumor effects exerted by the Magnetic Fields (MFs), part of the EMF entity, have gained more and more interest. A recent review on this subject reports the MFs' effect on apoptosis of tumor cells as one of the most important breakthroughs. Apoptosis is considered a key mechanism regulating the genetic stability of cells and as such is considered of fundamental importance in cancer initiation and development. According to an atomic/sub-atomic analysis, based on quantum physics, of the complexity of biological life and the role played by oxygen and its radicals in cancer biology, a possible biophysical mechanism is described. The mechanism considers the influence of MFs on apoptosis through an effect on electron spin that is able to increase reactive oxygen species (ROS) concentration. Impacting on the delicate balance between ROS production and ROS elimination in tumor cells is considered a promising cancer therapy, affecting different biological processes, such as apoptosis and metastasis. An analysis in the literature, which allows correlation between MFs exposure characteristics and their influence on apoptosis and ROS concentration, supports the validity of the mechanism.
Collapse
Affiliation(s)
- Santi Tofani
- Department of Medical Physics, Ivrea Hospital - ASL Torino Nord-Ovest TO4, Ivrea Torino, Italy.,Department of Public Health Science, School of Medicine, University of Turin, Ivrea Torino, Italy
| |
Collapse
|
22
|
Zhou L, Zhang Z, Nice E, Huang C, Zhang W, Tang Y. Circadian rhythms and cancers: the intrinsic links and therapeutic potentials. J Hematol Oncol 2022; 15:21. [PMID: 35246220 PMCID: PMC8896306 DOI: 10.1186/s13045-022-01238-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
The circadian rhythm is an evolutionarily conserved time-keeping system that comprises a wide variety of processes including sleep-wake cycles, eating-fasting cycles, and activity-rest cycles, coordinating the behavior and physiology of all organs for whole-body homeostasis. Acute disruption of circadian rhythm may lead to transient discomfort, whereas long-term irregular circadian rhythm will result in the dysfunction of the organism, therefore increasing the risks of numerous diseases especially cancers. Indeed, both epidemiological and experimental evidence has demonstrated the intrinsic link between dysregulated circadian rhythm and cancer. Accordingly, a rapidly increasing understanding of the molecular mechanisms of circadian rhythms is opening new options for cancer therapy, possibly by modulating the circadian clock. In this review, we first describe the general regulators of circadian rhythms and their functions on cancer. In addition, we provide insights into the mechanisms underlying how several types of disruption of the circadian rhythm (including sleep-wake, eating-fasting, and activity-rest) can drive cancer progression, which may expand our understanding of cancer development from the clock perspective. Moreover, we also summarize the potential applications of modulating circadian rhythms for cancer treatment, which may provide an optional therapeutic strategy for cancer patients.
Collapse
Affiliation(s)
- Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Edouard Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yong Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Acupuncture and Chronobiology Laboratory of Sichuan Province, Chengdu, 610075, China.
| |
Collapse
|
23
|
Fekry B, Eckel-Mahan K. The Circadian Clock and Cancer: Links between Circadian Disruption and Disease Pathology. J Biochem 2022; 171:477-486. [PMID: 35191986 DOI: 10.1093/jb/mvac017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/04/2022] [Indexed: 11/14/2022] Open
Abstract
There is growing evidence that disruption of our 24-hour clock increases our risk for acquiring several diseases and disorders. One of these diseases is cancer. While the mechanistic links between circadian clock disruption and cancer initiation or progression are an active area of study, significantly more work needs to be done to understand the molecular substrates involved. Of particular complexity remains the functions of the clock in individual cells during the process of transformation (cancer initiation) vs. the functions of the clock in tumor-surrounding stroma in the process of tumor progression or metastasis. Indeed, the nexus of cellular circadian dynamics, metabolism, and carcinogenesis is drawing more attention, and many new studies are now highlighting the critical role of circadian rhythms and clock proteins in cancer prevention. In this brief review, we cover some of the basic mechanisms reported to link circadian disruption and cancer at the level of gene expression and metabolism. We also review some of the human studies addressing circadian disruption and cancer incidence as well as some controlled laboratory studies connecting the two in pre-clinical models. Finally, we discuss the tremendous opportunity to use circadian approaches for future prevention and treatment in the context of cancer in specific organs.
Collapse
Affiliation(s)
- Baharan Fekry
- University of Texas Health Science Center at Houston, Institute of Molecular Medicine. MD Anderson/UTHealth Graduate School for Biomedical Sciences, Houston, Texas 77030 United States
| | - Kristin Eckel-Mahan
- University of Texas Health Science Center at Houston, Institute of Molecular Medicine. MD Anderson/UTHealth Graduate School for Biomedical Sciences, Houston, Texas 77030 United States
| |
Collapse
|
24
|
Miller S, Hirota T. Structural and Chemical Biology Approaches Reveal Isoform-Selective Mechanisms of Ligand Interactions in Mammalian Cryptochromes. Front Physiol 2022; 13:837280. [PMID: 35153842 PMCID: PMC8831909 DOI: 10.3389/fphys.2022.837280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/05/2022] [Indexed: 01/27/2023] Open
Abstract
Cryptochromes (CRYs) are core components of the circadian feedback loop in mammals, which regulates circadian rhythmicity in a variety of physiological processes including sleep–wake cycles and metabolism. Dysfunction of CRY1 and CRY2 isoforms has been associated with a host of diseases, such as sleep phase disorder and metabolic diseases. Accumulating evidence for distinct roles of CRY1 and CRY2 has highlighted the need for CRY isoform-selective regulation; however, highly conserved sequences in CRY ligand-binding sites have hindered the design of isoform-selective compounds. Chemical biology approaches have been identifying small-molecule modulators of CRY proteins, which act in isoform-non-selective and also isoform-selective manners. In this review, we describe advances in our understanding of CRY isoform selectivity by comparing X-ray crystal structures of mammalian CRY isoforms in apo form and in complexes with compounds. We discuss how intrinsic conformational differences in identical residues of CRY1 and CRY2 contribute to unique interactions with different compound moieties for isoform selectivity.
Collapse
|
25
|
Goodenow D, Greer AJ, Cone SJ, Gaddameedhi S. Circadian effects on UV-induced damage and mutations. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108413. [PMID: 35690416 PMCID: PMC9188652 DOI: 10.1016/j.mrrev.2022.108413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 10/19/2022]
Abstract
Skin cancer is the most diagnosed type of cancer in the United States, and while most of these malignancies are highly treatable, treatment costs still exceed $8 billion annually. Over the last 50 years, the annual incidence of skin cancer has steadily grown; therefore, understanding the environmental factors driving these types of cancer is a prominent research-focus. A causality between ultraviolet radiation (UVR) exposure and skin cancer is well-established, but exposure to UVR alone is not necessarily sufficient to induce carcinogenesis. The emerging field of circadian biology intersects strongly with the physiological systems of the mammalian body and introduces a unique opportunity for analyzing mechanisms of homeostatic disruption. The circadian clock refers to the approximate 24-hour cycle, in which protein levels of specific clock-controlled genes (CCGs) fluctuate based on the time of day. Though these CCGs are tissue specific, the skin has been observed to have a robust circadian clock that plays a role in its response to UVR exposure. This in-depth review will detail the mechanisms of the circadian clock and its role in cellular homeostasis. Next, the skin's response to UVR exposure and its induction of DNA damage and mutations will be covered - with an additional focus placed on how the circadian clock influences this response through nucleotide excision repair. Lastly, this review will discuss current models for studying UVR-induced skin lesions and perturbations of the circadian clock, as well as the impact of these factors on human health.
Collapse
Affiliation(s)
- Donna Goodenow
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Adam J Greer
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Sean J Cone
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Shobhan Gaddameedhi
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27606, USA.
| |
Collapse
|