1
|
Zerbib J, Bloomberg A, Ben-David U. Targeting vulnerabilities of aneuploid cells for cancer therapy. Trends Cancer 2025:S2405-8033(25)00097-4. [PMID: 40368673 DOI: 10.1016/j.trecan.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 05/16/2025]
Abstract
Aneuploidy is a common feature of cancer that drives tumor evolution, but it also creates cellular vulnerabilities that might be exploited therapeutically. Recent advances in genomic technologies and experimental models have uncovered diverse cellular consequences of aneuploidy, revealing dependencies on mitotic regulation, DNA replication and repair, proteostasis, metabolism, and immune interactions. Harnessing aneuploidy for precision oncology requires the combination of genomic, functional, and clinical studies that will enable translation of our improved understanding of aneuploidy to targeted therapies. In this review we discuss approaches to targeting both highly aneuploid cells and cells with specific common aneuploidies, summarize the biological underpinning of these aneuploidy-induced vulnerabilities, and explore their therapeutic implications.
Collapse
Affiliation(s)
- Johanna Zerbib
- Department of Human Molecular Genetics and Biochemistry, Gray Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Amit Bloomberg
- Department of Human Molecular Genetics and Biochemistry, Gray Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Gray Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
2
|
Linstra R, Stappenbelt C, Bakker FJ, Everts M, Bhattacharya A, Yu S, van Bergen SD, van der Vegt B, Wisman GBA, Fehrmann RSN, de Bruyn M, van Vugt MATM. MYC controls STING levels to downregulate inflammatory signaling in breast cancer cells upon DNA damage. J Biol Chem 2025:108560. [PMID: 40311680 DOI: 10.1016/j.jbc.2025.108560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025] Open
Abstract
Amplification of the MYC proto-oncogene is frequently observed in various cancer types, including triple negative breast cancer (TNBC). Emerging evidence suggests that suppression of local anti-tumor immune responses by MYC, at least in part, explains the tumor-promoting effects of MYC. Specifically, MYC upregulation was demonstrated to suppress the tumor-cell intrinsic activation of a type I IFN response and thereby hamper innate inflammatory signaling, which may contribute to the disappointing response to immunotherapy in patients with TNBC. In this study, we show that MYC interferes with protein expression and functionality of the STING pathway. MYC-mediated STING downregulation in BT-549 and MDA-MB-231 triple-negative breast cancer cell lines require the DNA binding ability of MYC, and is independent of binding of MYC to its co-repressor MIZ1. Both STAT1 and STAT3 promote the steady-state expression levels of STING, and STAT3 cooperates with MYC in regulating STING. Conversely, MYC-mediated downregulation of STING affects protein levels of STAT1 and downstream chemokine production. Furthermore, we show that MYC overexpression hampers immune cell activation triggered by DNA damage through etoposide or irradiation treatment, and specifically impedes the activation of natural killer cells. Collectively, these results show that MYC controls STING levels and thereby regulates tumor cell-intrinsic inflammatory signaling. These results contribute to our understanding of how MYC suppresses inflammatory signaling in TNBC, and may explain why a large fraction of patients with TNBC do not benefit from immunotherapy.
Collapse
Affiliation(s)
- Renske Linstra
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, the Netherlands
| | - Chantal Stappenbelt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, the Netherlands
| | - Femke J Bakker
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, the Netherlands
| | - Marieke Everts
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, the Netherlands
| | - Arkajyoti Bhattacharya
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, the Netherlands
| | - Shibo Yu
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Stella D van Bergen
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, the Netherlands
| | - Bert van der Vegt
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - G Bea A Wisman
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rudolf S N Fehrmann
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, the Netherlands
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, the Netherlands.
| |
Collapse
|
3
|
Tavella S, di Lillo A, Conti A, Iannelli F, Mancheno-Ferris A, Matti V, Di Micco R, Fagagna FDD. Weaponizing CRISPR/Cas9 for selective elimination of cells with an aberrant genome. DNA Repair (Amst) 2025; 149:103840. [PMID: 40319546 DOI: 10.1016/j.dnarep.2025.103840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/27/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
The CRISPR/Cas9 technology is a powerful and versatile tool to disrupt genes' functions by introducing sequence-specific DNA double-strand breaks (DSBs). Here, we repurpose this technology to eradicate aberrant cells by specifically targeting silent and non-functional genomic sequences present only in target cells to be eliminated. Indeed, an intrinsic challenge of most current therapies against cancer and viral infections is the non-specific toxicity that they can induce in normal tissues because of their impact on important cellular mechanisms shared, to different extents, between unhealthy and healthy cells. The CRISPR/Cas9 technology has potential to overcome this limitation; however, so far effectiveness of these approaches was made dependent on the targeting and inactivation of a functional gene product. Here, we generate proof-of-principle evidence by engineering HeLa and RKO cells with a promoterless Green Fluorescent Protein (GFP) construct. The integration of this construct simulates either a genomic alteration, as in cancer cells, or a silent proviral genome. Cas9-mediated DSBs in the GFP sequence activate the DNA damage response (DDR), reduce cell viability and increase mortality. This is associated with increased cell size, multinucleation, cGAS-positive micronuclei accumulation and the activation of an inflammatory response. Pharmacological inhibition of the DNA repair factor DNA-PK enhances cell death. These results demonstrate the therapeutic potential of the CRISPR/Cas9 system in eliminating cells with an aberrant genome, regardless of the expression or the function of the target DNA sequence.
Collapse
Affiliation(s)
- Sara Tavella
- Institute of Molecular Genetics (IGM), National Research Institute (CNR), Pavia, Italy; IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy.
| | - Alessia di Lillo
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Anastasia Conti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Hospital, Milan, Italy
| | - Fabio Iannelli
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Valentina Matti
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Hospital, Milan, Italy; University School of Advanced Studies IUSS, Pavia 27100, Italy
| | - Fabrizio d'Adda di Fagagna
- Institute of Molecular Genetics (IGM), National Research Institute (CNR), Pavia, Italy; IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy; Lead Contact, Italy.
| |
Collapse
|
4
|
Smarduch S, Moreno-Velasquez SD, Ilic D, Dadsena S, Morant R, Ciprinidis A, Pereira G, Binder M, García-Sáez AJ, Acebrón SP. A novel biosensor for the spatiotemporal analysis of STING activation during innate immune responses to dsDNA. EMBO J 2025; 44:2157-2182. [PMID: 39984755 PMCID: PMC11962129 DOI: 10.1038/s44318-025-00370-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 12/23/2024] [Accepted: 01/10/2025] [Indexed: 02/23/2025] Open
Abstract
The cGAS-STING signalling pathway has a central role in the innate immune response to extrinsic and intrinsic sources of cytoplasmic dsDNA. At the core of this pathway is cGAS-dependent production of the intra- and extra-cellular messenger cGAMP, which activates STING and leads to IRF3-dependent expression of cytokines and interferons. Despite its relevance to viral and bacterial infections, cell death, and genome instability, the lack of specific live-cell reporters has precluded spatiotemporal analyses of cGAS-STING signalling. Here, we generate a fluorescent biosensor termed SIRF (STING-IRF3), which reports on the functional interaction between activated STING and IRF3 at the Golgi. We show that cells harbouring SIRF react in a time- and concentration-dependent manner both to STING agonists and to microenvironmental cGAMP. We demonstrate that the new biosensor is suitable for single-cell characterisation of immune responses to HSV-1 infection, mtDNA release upon apoptosis, or other sources of cytoplasmic dsDNA. Furthermore, our results indicate that STING signalling is not activated by ruptured micronuclei, suggesting that other cytosolic pattern recognition receptors underlie the interferon responses to chromosomal instability.
Collapse
Affiliation(s)
- Steve Smarduch
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | | | - Doroteja Ilic
- Division of Virus-associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Shashank Dadsena
- Institute of Genetics, CECAD, University of Cologne, Cologne, Germany
| | - Ryan Morant
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Anja Ciprinidis
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Gislene Pereira
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
- Molecular Biology of Centrosome and Cilia, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Marco Binder
- Division of Virus-associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana J García-Sáez
- Institute of Genetics, CECAD, University of Cologne, Cologne, Germany
- Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Sergio P Acebrón
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany.
- IKERBASQUE, Basque Foundation of Science, Bilbao, Spain.
- University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
5
|
Chen Z, Li Z, Wang Y, Dushimova Z, Gulnara K, Takeda S, Zhou Z, Xu X. ISGylation: is our genome yearning for such a modification? Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 40103488 DOI: 10.3724/abbs.2025028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
ISGylation is the post-translational modification of protein substrates covalently conjugated with the ubiquitin-like protein, interferon-stimulated gene 15 (ISG15). Although initially linked to antiviral immunity, recent evidence highlights important roles for ISGylation in various biological processes, such as maintaining genomic stability, promoting tumourigenesis, and being involved in other pathological conditions. In this review, we examine the molecular mechanisms underlying ISGylation, its interplay with other post-translational modifications, and its involvement in diverse biological and pathological processes. We propose future research directions to advance the field and discuss how ISGylation might be harnessed to ensure human health, particularly genome instability-associated diseases.
Collapse
Affiliation(s)
- Zheng Chen
- Shenzhen University General Hospital-Dehua Hospital Joint Research Center on Precision Medicine (sgh-dhhCPM), Dehua Hospital, Dehua 362500, China
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Zheng Li
- Shenzhen University General Hospital-Dehua Hospital Joint Research Center on Precision Medicine (sgh-dhhCPM), Dehua Hospital, Dehua 362500, China
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Ying Wang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zaure Dushimova
- Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan
| | - Kapanova Gulnara
- Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan
| | - Shunichi Takeda
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Zhongjun Zhou
- School of Biomedical Sciences, University of Hong Kong, Hong Kong 999077, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| |
Collapse
|
6
|
Simovic-Lorenz M, Ernst A. Chromothripsis in cancer. Nat Rev Cancer 2025; 25:79-92. [PMID: 39548283 DOI: 10.1038/s41568-024-00769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 11/17/2024]
Abstract
Chromothripsis is a mutational phenomenon in which a single catastrophic event generates extensive rearrangements of one or a few chromosomes. This extreme form of genome instability has been detected in 30-50% of cancers. Studies conducted in the past few years have uncovered insights into how chromothripsis arises and deciphered some of the cellular and molecular consequences of chromosome shattering. This Review discusses the defining features of chromothripsis and describes its prevalence across different cancer types as indicated by the manifestations of chromothripsis detected in human cancer samples. The different mechanistic models of chromothripsis, derived from in vitro systems that enable causal inference through experimental manipulation, are discussed in detail. The contribution of chromothripsis to cancer development, the selective advantages that cancer cells might gain from chromothripsis, the evolutionary trajectories of chromothriptic tumours, and the potential vulnerabilities and therapeutic opportunities presented by chromothriptic cells are also highlighted.
Collapse
Affiliation(s)
- Milena Simovic-Lorenz
- Group Genome Instability in Tumors, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Aurélie Ernst
- Group Genome Instability in Tumors, German Cancer Research Center, Heidelberg, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
7
|
Kong N, Chen K, Chanboonyasitt P, Jiang H, Wong K, Ma H, Chan Y. The interplay of the translocase activity and protein recruitment function of PICH in ultrafine anaphase bridge resolution and genomic stability. Nucleic Acids Res 2025; 53:gkae1249. [PMID: 39704103 PMCID: PMC11797016 DOI: 10.1093/nar/gkae1249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024] Open
Abstract
Incomplete sister centromere decatenation results in centromeric ultrafine anaphase bridges (UFBs). PICH (PLK1-interacting checkpoint helicase), a DNA translocase, plays a crucial role in UFB resolution by recruiting UFB-binding proteins and stimulating topoisomerase IIα. However, the involvement of distinct PICH functions in UFB resolution remains ambiguous. Here, we demonstrate that PICH depletion in non-transformed diploid cells induces DNA damage, micronuclei formation, p53 activation, G1-phase delay and cell death. Whole-genome sequencing reveals that segregation defects induced by PICH depletion cause chromosomal rearrangements, including translocations and inversions, emphasizing its significance in preserving genomic integrity. Furthermore, a PICH mutant that impairs UFB recruitment of BLM and RIF1 partially inhibits UFB resolution while a translocase-inactive mutant (PICHK128A) fails to resolve UFBs. Notably, expression of PICHK128A inhibits single-stranded UFB formation and induces hypocondensed chromosomes. We propose that PICH's translocase activity plays a dual role in promoting UFB resolution by facilitating the generation of single-stranded UFBs and stimulating topoisomerase IIα.
Collapse
Affiliation(s)
- Nannan Kong
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Kun Chen
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Primrose Chanboonyasitt
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Huadong Jiang
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Ka Yan Wong
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hoi Tang Ma
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Liver Research, The University of Hong Kong, 5 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Ying Wai Chan
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
8
|
Chen X, Agustinus AS, Li J, DiBona M, Bakhoum SF. Chromosomal instability as a driver of cancer progression. Nat Rev Genet 2025; 26:31-46. [PMID: 39075192 DOI: 10.1038/s41576-024-00761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/31/2024]
Abstract
Chromosomal instability (CIN) refers to an increased propensity of cells to acquire structural and numerical chromosomal abnormalities during cell division, which contributes to tumour genetic heterogeneity. CIN has long been recognized as a hallmark of cancer, and evidence over the past decade has strongly linked CIN to tumour evolution, metastasis, immune evasion and treatment resistance. Until recently, the mechanisms by which CIN propels cancer progression have remained elusive. Beyond the generation of genomic copy number heterogeneity, recent work has unveiled additional tumour-promoting consequences of abnormal chromosome segregation. These mechanisms include complex chromosomal rearrangements, epigenetic reprogramming and the induction of cancer cell-intrinsic inflammation, emphasizing the multifaceted role of CIN in cancer.
Collapse
Affiliation(s)
- Xuelan Chen
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Albert S Agustinus
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Pharmacology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Jun Li
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melody DiBona
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel F Bakhoum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
9
|
Harrington K, Kitano S, Gambardella V, Parkes EE, Moreno I, Alonso G, Doi T, Berz D, Gutierrez ME, Fernandez N, Schmohl M, Barrueco J, LoRusso P. Open-label, phase Ia study of STING agonist BI 1703880 plus ezabenlimab for patients with advanced solid tumors. Future Oncol 2025; 21:195-200. [PMID: 39817655 PMCID: PMC11792791 DOI: 10.1080/14796694.2024.2441107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/09/2024] [Indexed: 01/18/2025] Open
Abstract
BI 1703880, a novel STimulator of INterferon Genes (STING) agonist, has demonstrated preclinical antitumor activity. As STING activation can upregulate programmed death ligand 1 and human leukocyte antigen in tumor cells, a combination of BI 1703880 and an anti-programmed cell death protein 1-antibody, such as ezabenlimab, may improve efficacy. This first-in-human phase Ia study (NCT05471856) is evaluating BI 1703880 plus ezabenlimab in patients with advanced solid tumors. The study utilizes an innovative lead-in design; all patients receive BI 1703880 monotherapy in Cycle 1 and combination therapy from Cycle 2. The primary endpoint is dose-limiting toxicities during the maximum tolerated dose evaluation period. Results will inform the future development of BI 1703880 for treatment of metastatic or recurrent malignancies.Clinical Trial number: NCT05471856.
Collapse
Affiliation(s)
- Kevin Harrington
- The Institute of Cancer Research/The Royal Marsden NHS Foundation Trust, London, UK
| | | | - Valentina Gambardella
- INCLIVA Biomedical Research Institute, Hospital Clínico de Valencia, Valencia, Spain
| | - Eileen E. Parkes
- Department of Oncology, University of Oxford, Churchill Hospital, Oxford, UK
| | - Irene Moreno
- START Madrid, CIOCC, Centro Integral Oncológico Clara Campal, Madrid, Spain
| | | | | | - David Berz
- Valkyrie Clinical Trials, Los Angeles, CA, USA
| | | | - Natalia Fernandez
- Boehringer Ingelheim España, S.A, Sant Cugat del Vallès, Barcelona, Spain
| | | | - José Barrueco
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | | |
Collapse
|
10
|
Szmyd R, Casolin S, French L, Manjón AG, Walter M, Cavalli L, Nelson CB, Page SG, Dhawan A, Hau E, Pickett HA, Gee HE, Cesare AJ. Homologous recombination promotes non-immunogenic mitotic cell death upon DNA damage. Nat Cell Biol 2025; 27:59-72. [PMID: 39805921 PMCID: PMC11735404 DOI: 10.1038/s41556-024-01557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/14/2024] [Indexed: 01/16/2025]
Abstract
Double-strand breaks (DSBs) can initiate mitotic catastrophe, a complex oncosuppressive phenomenon characterized by cell death during or after cell division. Here we unveil how cell cycle-regulated DSB repair guides disparate cell death outcomes through single-cell analysis of extended live imaging. Following DSB induction in S or G2, passage of unresolved homologous recombination intermediates into mitosis promotes non-immunogenic intrinsic apoptosis in the immediate attempt at cell division. Conversely, non-homologous end joining, microhomology-mediated end joining and single-strand annealing cooperate to enable damaged G1 cells to complete the first cell cycle with an aberrant cell division at the cost of delayed extrinsic lethality and interferon production. Targeting non-homologous end joining, microhomology-mediated end joining or single-strand annealing promotes mitotic death, while suppressing mitotic death enhances interferon production. Together the data indicate that a temporal repair hierarchy, coupled with cumulative DSB load, serves as a reliable predictor of mitotic catastrophe outcomes following genome damage. In this pathway, homologous recombination suppresses interferon production by promoting mitotic lethality.
Collapse
Affiliation(s)
- Radoslaw Szmyd
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
- Radiation Oncology Network, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Sienna Casolin
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
- Radiation Oncology Network, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Lucy French
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
- Radiation Oncology Network, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Anna G Manjón
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
- Radiation Oncology Network, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Melanie Walter
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
- Radiation Oncology Network, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Léa Cavalli
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Christopher B Nelson
- Telomere Length Regulation Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Scott G Page
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Andrew Dhawan
- Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Eric Hau
- Radiation Oncology Network, Western Sydney Local Health District, Sydney, New South Wales, Australia
- Westmead Clinical School, University of Sydney, Westmead, New South Wales, Australia
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Harriet E Gee
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia.
- Radiation Oncology Network, Western Sydney Local Health District, Sydney, New South Wales, Australia.
- Westmead Clinical School, University of Sydney, Westmead, New South Wales, Australia.
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.
| | - Anthony J Cesare
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia.
| |
Collapse
|
11
|
Miglietta G, Russo M, Capranico G, Marinello J. Stimulation of cGAS-STING pathway as a challenge in the treatment of small cell lung cancer: a feasible strategy? Br J Cancer 2024; 131:1567-1575. [PMID: 39215193 PMCID: PMC11555062 DOI: 10.1038/s41416-024-02821-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Lung cancer has a significant incidence among the population and, unfortunately, has an unfavourable prognosis in most cases. The World Health Organization (WHO) classifies lung tumours into two subtypes based on their phenotype: the Non-Small Cell Lung Cancer (NSCLC) and the Small Cell Lung Cancer (SCLC). SCLC treatment, despite advances in chemotherapy and radiotherapy, is often unsuccessful for cancer recurrence highlighting the need to develop novel therapeutic strategies. In this review, we describe the genetic landscape and tumour microenvironment that characterize the pathological processes of SCLC and how they are responsible for tumour immune evasion. The immunosuppressive mechanisms engaged in SCLC are critical factors to understand the failure of immunotherapy in SCLC and, conversely, suggest that new signalling pathways, such as cGAS/STING, should be investigated as possible targets to stimulate an innate immune response in this subtype of lung cancer. The full comprehension of the innate immunity of cancer cells is thus crucial to open new challenges for successful immunotherapy in treating SCLC and improving patient outcomes.
Collapse
Affiliation(s)
- Giulia Miglietta
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Marco Russo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy.
| | - Jessica Marinello
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy.
| |
Collapse
|
12
|
Hintzen DC, Schubert M, Soto M, Medema RH, Raaijmakers JA. Reduction of chromosomal instability and inflammation is a common aspect of adaptation to aneuploidy. EMBO Rep 2024; 25:5169-5193. [PMID: 39294502 PMCID: PMC11549362 DOI: 10.1038/s44319-024-00252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/20/2024] Open
Abstract
Aneuploidy, while detrimental to untransformed cells, is notably prevalent in cancer. Aneuploidy is found as an early event during tumorigenesis which indicates that cancer cells have the ability to surmount the initial stress responses associated with aneuploidy, enabling rapid proliferation despite aberrant karyotypes. To generate more insight into key cellular processes and requirements underlying adaptation to aneuploidy, we generated a panel of aneuploid clones in p53-deficient RPE-1 cells and studied their behavior over time. As expected, de novo-generated aneuploid clones initially display reduced fitness, enhanced levels of chromosomal instability (CIN), and an upregulated inflammatory response. Intriguingly, after prolonged culturing, aneuploid clones exhibit increased proliferation rates while maintaining aberrant karyotypes, indicative of an adaptive response to the aneuploid state. Interestingly, all adapted clones display reduced CIN and reduced inflammatory signaling, suggesting that these are common aspects of adaptation to aneuploidy. Collectively, our data suggests that CIN and concomitant inflammation are key processes that require correction to allow for fast proliferation in vitro. Finally, we provide evidence that amplification of oncogenic KRAS can promote adaptation.
Collapse
Affiliation(s)
- Dorine C Hintzen
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Michael Schubert
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Mar Soto
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - René H Medema
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
- Oncode Institute, Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
| | - Jonne A Raaijmakers
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Singh M, Raseley K, Perez A, MacKenzie D, Kosiyatrakul S, Desai S, Batista N, Guru N, Loomba K, Abid H, Wang Y, Udo-Bellner L, Stout R, Schildkraut C, Xiao M, Zhang D. Elucidation of the molecular mechanism of the breakage-fusion-bridge (BFB) cycle using a CRISPR-dCas9 cellular model. Nucleic Acids Res 2024; 52:11689-11703. [PMID: 39193906 PMCID: PMC11514482 DOI: 10.1093/nar/gkae747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/04/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Chromosome instability (CIN) is frequently observed in many tumors. The breakage-fusion-bridge (BFB) cycle has been proposed to be one of the main drivers of CIN during tumorigenesis and tumor evolution. However, the detailed mechanism for the individual steps of the BFB cycle warrants further investigation. Here, we demonstrate that a nuclease-dead Cas9 (dCas9) coupled with a telomere-specific single-guide RNA (sgTelo) can be used to model the BFB cycle. First, we show that targeting dCas9 to telomeres using sgTelo impedes DNA replication at telomeres and induces a pronounced increase of replication stress and DNA damage. Using Single-Molecule Telomere Assay via Optical Mapping (SMTA-OM), we investigate the genome-wide features of telomeres in the dCas9/sgTelo cells and observe a dramatic increase of chromosome end fusions, including fusion/ITS+ and fusion/ITS-. Consistently, we also observe an increase in the formation of dicentric chromosomes, anaphase bridges, and intercellular telomeric chromosome bridges (ITCBs). Utilizing the dCas9/sgTelo system, we uncover many interesting molecular and structural features of the ITCB and demonstrate that multiple DNA repair pathways are implicated in the formation of ITCBs. Our studies shed new light on the molecular mechanisms of the BFB cycle, which will advance our understanding of tumorigenesis, tumor evolution, and drug resistance.
Collapse
Affiliation(s)
- Manrose Singh
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Kaitlin Raseley
- School of Biomedical Engineering, Science and Health System, Drexel University, Philadelphia, PA 19104, USA
| | - Alexis M Perez
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Danny MacKenzie
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | | | - Sanket Desai
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Noelle Batista
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Navjot Guru
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Katherine K Loomba
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Heba Z Abid
- School of Biomedical Engineering, Science and Health System, Drexel University, Philadelphia, PA 19104, USA
| | - Yilin Wang
- School of Biomedical Engineering, Science and Health System, Drexel University, Philadelphia, PA 19104, USA
| | - Lars Udo-Bellner
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Randy F Stout
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Carl L Schildkraut
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ming Xiao
- School of Biomedical Engineering, Science and Health System, Drexel University, Philadelphia, PA 19104, USA
- Center for Genomic Sciences and Center for Advanced Microbial Processing, Institute of Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Dong Zhang
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
- Center for Cancer Research, New York Institute of Technology, Old Westbury, NY 11568, USA
| |
Collapse
|
14
|
He M, Jiang H, Li S, Xue M, Wang H, Zheng C, Tong J. The crosstalk between DNA-damage responses and innate immunity. Int Immunopharmacol 2024; 140:112768. [PMID: 39088918 DOI: 10.1016/j.intimp.2024.112768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
DNA damage is typically caused during cell growth by DNA replication stress or exposure to endogenous or external toxins. The accumulation of damaged DNA causes genomic instability, which is the root cause of many serious disorders. Multiple cellular organisms utilize sophisticated signaling pathways against DNA damage, collectively known as DNA damage response (DDR) networks. Innate immune responses are activated following cellular abnormalities, including DNA damage. Interestingly, recent studies have indicated that there is an intimate relationship between the DDR network and innate immune responses. Diverse kinds of cytosolic DNA sensors, such as cGAS and STING, recognize damaged DNA and induce signals related to innate immune responses, which link defective DDR to innate immunity. Moreover, DDR components operate in immune signaling pathways to induce IFNs and/or a cascade of inflammatory cytokines via direct interactions with innate immune modulators. Consistently, defective DDR factors exacerbate the innate immune imbalance, resulting in severe diseases, including autoimmune disorders and tumorigenesis. Here, the latest progress in understanding crosstalk between the DDR network and innate immune responses is reviewed. Notably, the dual function of innate immune modulators in the DDR network may provide novel insights into understanding and developing targeted immunotherapies for DNA damage-related diseases, even carcinomas.
Collapse
Affiliation(s)
- Mei He
- College of Life Sciences, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Hua Jiang
- Department of Hematology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200000, China
| | - Shun Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu 610041, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China.
| | - Huiqing Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| | - Jie Tong
- College of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
15
|
Ribeiro ARS, Neuper T, Horejs-Hoeck J. The Role of STING-Mediated Activation of Dendritic Cells in Cancer Immunotherapy. Int J Nanomedicine 2024; 19:10685-10697. [PMID: 39464674 PMCID: PMC11512692 DOI: 10.2147/ijn.s477320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
The signaling pathway that comprises cyclic guanosine monophosphate-adenosine monophosphate (cGAMP or GMP-AMP) synthase (cGAS) and Stimulator of Interferon Genes (STING) is emerging as a druggable target for immunotherapy, with tumor-resident dendritic cells (DC) playing a critical role in mediating its effects. The STING receptor is part of the DNA-sensing cellular machinery, that can trigger the secretion of pro-inflammatory mediators, priming effector T cells and initiating specific antitumor responses. Yet, recent studies have highlighted the dual role of STING activation in the context of cancer: STING can either promote antitumor responses or enhance tumor progression. This dichotomy often depends on the cell type in which cGAS-STING signaling is induced and the activation mode, namely acute versus chronic. Of note, STING activation at the DC level appears to be particularly important for tumor eradication. This review outlines the contribution of the different conventional and plasmacytoid DC subsets and describes the mechanisms underlying STING-mediated activation of DCs in cancer. We further highlight how the STING pathway plays an intricate role in modulating the function of DCs embedded in tumor tissue. Additionally, we discuss the strategies being employed to harness STING activation for cancer treatment, such as the development of synthetic agonists and nano-based delivery systems, spotlighting the current techniques used to prompt STING engagement specifically in DCs.
Collapse
Affiliation(s)
- Ana R S Ribeiro
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, 5020, Austria
| | - Theresa Neuper
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, 5020, Austria
- Center for Tumor biology and Immunology (CTBI), Salzburg, 5020, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, 5020, Austria
- Center for Tumor biology and Immunology (CTBI), Salzburg, 5020, Austria
| |
Collapse
|
16
|
Requesens M, Foijer F, Nijman HW, de Bruyn M. Genomic instability as a driver and suppressor of anti-tumor immunity. Front Immunol 2024; 15:1462496. [PMID: 39544936 PMCID: PMC11562473 DOI: 10.3389/fimmu.2024.1462496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 11/17/2024] Open
Abstract
Genomic instability is a driver and accelerator of tumorigenesis and influences disease outcomes across cancer types. Although genomic instability has been associated with immune evasion and worsened disease prognosis, emerging evidence shows that genomic instability instigates pro-inflammatory signaling and enhances the immunogenicity of tumor cells, making them more susceptible to immune recognition. While this paradoxical role of genomic instability in cancer is complex and likely context-dependent, understanding it is essential for improving the success rates of cancer immunotherapy. In this review, we provide an overview of the underlying mechanisms that link genomic instability to pro-inflammatory signaling and increased immune surveillance in the context of cancer, as well as discuss how genomically unstable tumors evade the immune system. A better understanding of the molecular crosstalk between genomic instability, inflammatory signaling, and immune surveillance could guide the exploitation of immunotherapeutic vulnerabilities in cancer.
Collapse
Affiliation(s)
- Marta Requesens
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hans W. Nijman
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
17
|
Sudaryo V, Carvalho DR, Lee JM, Carozza JA, Cao X, Cordova AF, Li L. Toxicity of extracellular cGAMP and its analogs to T cells is due to SLC7A1-mediated import. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.21.614248. [PMID: 39386698 PMCID: PMC11463533 DOI: 10.1101/2024.09.21.614248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
STING agonists are promising innate immune therapies and can synergize with adaptive immune checkpoint blockade therapies for cancer treatment, but their effectiveness is limited by the toxicity to activated T cells. An important class of STING agonists are analogs of the endogenous STING agonist, cGAMP, and while transporters for these small molecules are known in some cell types, how they enter and kill T cells remains unknown. Here, we identify the cationic amino acid transporter SLC7A1 as the dominant transporter of cGAMP and its analogs in activated primary mouse and human T cells. T cells upregulate this transporter upon activation and rapid proliferation to meet their high metabolic demand, but this comes at the cost of enabling increased transport and toxicity of cGAMP. To circumvent the essentiality of SLC7A1 to proliferating T cells, we found that the residues responsible for cGAMP transport are separate from the arginine binding pocket allowing us to perturb cGAMP transport and STING-activation mediated killing without impacting arginine transport. These results suggest that SLC7A1 is a potential target for alleviating T cell toxicity associated with cGAMP and its analogs.
Collapse
|
18
|
De S, Ehrlich M. Arrest and Attack: Microtubule-Targeting Agents and Oncolytic Viruses Employ Complementary Mechanisms to Enhance Anti-Tumor Therapy Efficacy. Genes (Basel) 2024; 15:1193. [PMID: 39336785 PMCID: PMC11431212 DOI: 10.3390/genes15091193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Oncolytic viruses (OVs) are promising cancer immunotherapy agents that stimulate anti-tumor immunity through the preferential infection and killing of tumor cells. OVs are currently under limited clinical usage, due in part to their restricted efficacy as monotherapies. Current efforts for enhancement of the therapeutic potency of OVs involve their combination with other therapy modalities, aiming at the concomitant exploitation of complementary tumor weaknesses. In this context, microtubule-targeting agents (MTAs) pose as an enticing option, as they perturb microtubule dynamics and function, induce cell-cycle arrest, and cause mitotic cell death. MTAs induce therapeutic benefit through cancer-cell-autonomous and non-cell-autonomous mechanisms and are a main component of the standard of care for different malignancies. However, off-target effects and acquired resistance involving distinct cellular and molecular mechanisms may limit the overall efficacy of MTA-based therapy. When combined, OVs and MTAs may enhance therapeutic efficacy through increases in OV infection and immunogenic cell death and a decreased probability of acquired resistance. In this review, we introduce OVs and MTAs, describe molecular features of their activity in cancer cells, and discuss studies and clinical trials in which the combination has been tested.
Collapse
Affiliation(s)
| | - Marcelo Ehrlich
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel;
| |
Collapse
|
19
|
Al-Rawi DH, Lettera E, Li J, DiBona M, Bakhoum SF. Targeting chromosomal instability in patients with cancer. Nat Rev Clin Oncol 2024; 21:645-659. [PMID: 38992122 DOI: 10.1038/s41571-024-00923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2024] [Indexed: 07/13/2024]
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and a driver of metastatic dissemination, therapeutic resistance, and immune evasion. CIN is present in 60-80% of human cancers and poses a formidable therapeutic challenge as evidenced by the lack of clinically approved drugs that directly target CIN. This limitation in part reflects a lack of well-defined druggable targets as well as a dearth of tractable biomarkers enabling direct assessment and quantification of CIN in patients with cancer. Over the past decade, however, our understanding of the cellular mechanisms and consequences of CIN has greatly expanded, revealing novel therapeutic strategies for the treatment of chromosomally unstable tumours as well as new methods of assessing the dynamic nature of chromosome segregation errors that define CIN. In this Review, we describe advances that have shaped our understanding of CIN from a translational perspective, highlighting both challenges and opportunities in the development of therapeutic interventions for patients with chromosomally unstable cancers.
Collapse
Affiliation(s)
- Duaa H Al-Rawi
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emanuele Lettera
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jun Li
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melody DiBona
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel F Bakhoum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
20
|
Popęda M, Kowalski K, Wenta T, Beznoussenko GV, Rychłowski M, Mironov A, Lavagnino Z, Barozzi S, Richert J, Bertolio R, Myszczyński K, Szade J, Bieńkowski M, Miszewski K, Matuszewski M, Żaczek AJ, Braga L, Del Sal G, Bednarz-Knoll N, Maiuri P, Nastały P. Emerin mislocalization during chromatin bridge resolution can drive prostate cancer cell invasiveness in a collagen-rich microenvironment. Exp Mol Med 2024; 56:2016-2032. [PMID: 39218980 PMCID: PMC11446916 DOI: 10.1038/s12276-024-01308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 09/04/2024] Open
Abstract
Micronuclei (MN) can form through many mechanisms, including the breakage of aberrant cytokinetic chromatin bridges. The frequent observation of MN in tumors suggests that they might not merely be passive elements but could instead play active roles in tumor progression. Here, we propose a mechanism through which the presence of micronuclei could induce specific phenotypic and functional changes in cells and increase the invasive potential of cancer cells. Through the integration of diverse in vitro imaging and molecular techniques supported by clinical samples from patients with prostate cancer (PCa) defined as high-risk by the D'Amico classification, we demonstrate that the resolution of chromosome bridges can result in the accumulation of Emerin and the formation of Emerin-rich MN. These structures are negative for Lamin A/C and positive for the Lamin-B receptor and Sec61β. MN can act as a protein sinks and result in the pauperization of Emerin from the nuclear envelope. The Emerin mislocalization phenotype is associated with a molecular signature that is correlated with a poor prognosis in PCa patients and is enriched in metastatic samples. Emerin mislocalization corresponds with increases in the migratory and invasive potential of tumor cells, especially in a collagen-rich microenvironment. Our study demonstrates that the mislocalization of Emerin to MN results in increased cell invasiveness, thereby worsening patient prognosis.
Collapse
Affiliation(s)
- Marta Popęda
- Division of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Kamil Kowalski
- Division of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Tomasz Wenta
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | | - Michał Rychłowski
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | | | - Zeno Lavagnino
- IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Sara Barozzi
- IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Julia Richert
- Division of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Rebecca Bertolio
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, Trieste, Italy
| | - Kamil Myszczyński
- Centre of Biostatistics and Bioinformatics Analysis, Medical University of Gdansk, Gdansk, Poland
| | - Jolanta Szade
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Bieńkowski
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Kevin Miszewski
- Department of Urology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Anna J Żaczek
- Division of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Luca Braga
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, Trieste, Italy
| | - Giannino Del Sal
- IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, Trieste, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Natalia Bednarz-Knoll
- Division of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Paolo Maiuri
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Paulina Nastały
- Division of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland.
| |
Collapse
|
21
|
Zych MG, Hatch EM. Small spaces, big problems: The abnormal nucleoplasm of micronuclei and its consequences. Curr Opin Struct Biol 2024; 87:102839. [PMID: 38763098 DOI: 10.1016/j.sbi.2024.102839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 05/21/2024]
Abstract
Micronuclei (MN) form from missegregated chromatin that recruits its own nuclear envelope during mitotic exit and are a common consequence of chromosomal instability. MN are unstable due to errors in nuclear envelope organization and frequently rupture, leading to loss of compartmentalization, loss of nuclear functions, and major changes in genome stability and gene expression. However, recent work found that, even prior to rupture, nuclear processes can be severely defective in MN, which may contribute to rupture-associated defects and have lasting consequences for chromatin structure and function. In this review we discuss work that highlights nuclear function defects in intact MN, including their mechanisms and consequences, and how biases in chromosome missegregation into MN may affect the penetrance of these defects. Illuminating the nuclear environment of MN demonstrates that MN formation alone has major consequences for both the genome and cell and provides new insight into how nuclear content is regulated.
Collapse
Affiliation(s)
- Molly G Zych
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA, USA; Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA. https://twitter.com/ZychMolly
| | - Emily M Hatch
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
22
|
Chiu K, Berrada Y, Eskndir N, Song D, Fong C, Naughton S, Chen T, Moy S, Gyurmey S, James L, Ezeiruaku C, Capistran C, Lowey D, Diwanji V, Peterson S, Parakh H, Burgess AR, Probert C, Zhu A, Anderson B, Levi N, Gerlitz G, Packard MC, Dorfman KA, Bahiru MS, Stephens AD. CTCF is essential for proper mitotic spindle structure and anaphase segregation. Chromosoma 2024; 133:183-194. [PMID: 37728741 DOI: 10.1007/s00412-023-00810-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/11/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023]
Abstract
Mitosis is an essential process in which the duplicated genome is segregated equally into two daughter cells. CTCF has been reported to be present in mitosis and has a role in localizing CENP-E, but its importance for mitotic fidelity remains to be determined. To evaluate the importance of CTCF in mitosis, we tracked mitotic behaviors in wild-type and two different CTCF CRISPR-based genetic knockdowns. We find that knockdown of CTCF results in prolonged mitoses and failed anaphase segregation via time-lapse imaging of SiR-DNA. CTCF knockdown did not alter cell cycling or the mitotic checkpoint, which was activated upon nocodazole treatment. Immunofluorescence imaging of the mitotic spindle in CTCF knockdowns revealed disorganization via tri/tetrapolar spindles and chromosomes behind the spindle pole. Imaging of interphase nuclei showed that nuclear size increased drastically, consistent with failure to divide the duplicated genome in anaphase. Long-term inhibition of CNEP-E via GSK923295 recapitulates CTCF knockdown abnormal mitotic spindles with polar chromosomes and increased nuclear sizes. Population measurements of nuclear shape in CTCF knockdowns do not display decreased circularity or increased nuclear blebbing relative to wild-type. However, failed mitoses do display abnormal nuclear morphologies relative to successful mitoses, suggesting that population images do not capture individual behaviors. Thus, CTCF is important for both proper metaphase organization and anaphase segregation which impacts the size and shape of the interphase nucleus likely through its known role in recruiting CENP-E.
Collapse
Affiliation(s)
- Katherine Chiu
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Yasmin Berrada
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Nebiyat Eskndir
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Dasol Song
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Claire Fong
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Sarah Naughton
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Tina Chen
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Savanna Moy
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Sarah Gyurmey
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Liam James
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Chimere Ezeiruaku
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Caroline Capistran
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Daniel Lowey
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Vedang Diwanji
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Samantha Peterson
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Harshini Parakh
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Ayanna R Burgess
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Cassandra Probert
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Annie Zhu
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Bryn Anderson
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Nehora Levi
- Biology Department of Molecular Biology, Faculty of Life Sciences, Ariel University, 40700, Ariel, Israel
| | - Gabi Gerlitz
- Biology Department of Molecular Biology, Faculty of Life Sciences, Ariel University, 40700, Ariel, Israel
| | - Mary C Packard
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Katherine A Dorfman
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Michael Seifu Bahiru
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Andrew D Stephens
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
- Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
23
|
Bharti V, Kumar A, Wang Y, Roychowdhury N, de Lima Bellan D, Kassaye BB, Watkins R, Capece M, Chung CG, Hilinski G, Vilgelm AE. TTK inhibitor OSU13 promotes immunotherapy responses by activating tumor STING. JCI Insight 2024; 9:e177523. [PMID: 38900577 PMCID: PMC11383830 DOI: 10.1172/jci.insight.177523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/18/2024] [Indexed: 06/22/2024] Open
Abstract
TTK spindle assembly checkpoint kinase is an emerging cancer target. This preclinical study explored the antitumor mechanism of TTK inhibitor OSU13 to define a strategy for clinical development. We observed prominent antitumor activity of OSU13 in melanoma, colon and breast cancer cells, organoids derived from patients with melanoma, and mice bearing colon tumors associated with G2 cell cycle arrest, senescence, and apoptosis. OSU13-treated cells displayed DNA damage and micronuclei that triggered the cytosolic DNA-sensing cGAS/STING pathway. STING was required for the induction of several proteins involved in T cell recruitment and activity. Tumors from OSU13-treated mice showed an increased proportion of T and NK cells and evidence of PD-1/PD-L1 immune checkpoint activation. Combining a low-toxicity dose of OSU13 with anti-PD-1 checkpoint blockade resulted in prominent STING- and CD8+ T cell-dependent tumor inhibition and improved survival. These findings provide a rationale for utilizing TTK inhibitors in combination with immunotherapy in STING-proficient tumors.
Collapse
Affiliation(s)
- Vijaya Bharti
- Department of Pathology
- Pelotonia Institute for Immunooncology, and
- Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Amrendra Kumar
- Department of Pathology
- Pelotonia Institute for Immunooncology, and
- Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Yinchong Wang
- Department of Pathology
- Pelotonia Institute for Immunooncology, and
- Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
- Molecular Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | - Nikhil Roychowdhury
- Department of Pathology
- Pelotonia Institute for Immunooncology, and
- Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Daniel de Lima Bellan
- Department of Pathology
- Pelotonia Institute for Immunooncology, and
- Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | | | - Reese Watkins
- Department of Pathology
- Pelotonia Institute for Immunooncology, and
- Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Marina Capece
- Department of Pathology
- Pelotonia Institute for Immunooncology, and
- Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | | | - Gerard Hilinski
- Drug Development Institute, Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, Columbus, Ohio, USA
| | - Anna E Vilgelm
- Department of Pathology
- Pelotonia Institute for Immunooncology, and
- Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
24
|
Schuyler SC, Chen HY, Chang KP. Suppressing Anaphase-Promoting Complex/Cyclosome-Cell Division Cycle 20 Activity to Enhance the Effectiveness of Anti-Cancer Drugs That Induce Multipolar Mitotic Spindles. Int J Mol Sci 2024; 25:6329. [PMID: 38928036 PMCID: PMC11203710 DOI: 10.3390/ijms25126329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Paclitaxel induces multipolar spindles at clinically relevant doses but does not substantially increase mitotic indices. Paclitaxel's anti-cancer effects are hypothesized to occur by promoting chromosome mis-segregation on multipolar spindles leading to apoptosis, necrosis and cyclic-GMP-AMP Synthase-Stimulator of Interferon Genes (cGAS-STING) pathway activation in daughter cells, leading to secretion of type I interferon (IFN) and immunogenic cell death. Eribulin and vinorelbine have also been reported to cause increases in multipolar spindles in cancer cells. Recently, suppression of Anaphase-Promoting Complex/Cyclosome-Cell Division Cycle 20 (APC/C-CDC20) activity using CRISPR/Cas9 mutagenesis has been reported to increase sensitivity to Kinesin Family 18a (KIF18a) inhibition, which functions to suppress multipolar mitotic spindles in cancer cells. We propose that a way to enhance the effectiveness of anti-cancer agents that increase multipolar spindles is by suppressing the APC/C-CDC20 to delay, but not block, anaphase entry. Delaying anaphase entry in genomically unstable cells may enhance multipolar spindle-induced cell death. In genomically stable healthy human cells, delayed anaphase entry may suppress the level of multipolar spindles induced by anti-cancer drugs and lower mitotic cytotoxicity. We outline specific combinations of molecules to investigate that may achieve the goal of enhancing the effectiveness of anti-cancer agents.
Collapse
Affiliation(s)
- Scott C. Schuyler
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan
- Department of Otolaryngology—Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Hsin-Yu Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan
| | - Kai-Ping Chang
- Department of Otolaryngology—Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
25
|
Takaki T, Millar R, Hiley CT, Boulton SJ. Micronuclei induced by radiation, replication stress, or chromosome segregation errors do not activate cGAS-STING. Mol Cell 2024; 84:2203-2213.e5. [PMID: 38749421 DOI: 10.1016/j.molcel.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/15/2024] [Accepted: 04/23/2024] [Indexed: 06/09/2024]
Abstract
The cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a pivotal role in innate immune responses to viral infection and inhibition of autoimmunity. Recent studies have suggested that micronuclei formed by genotoxic stress can activate innate immune signaling via the cGAS-STING pathway. Here, we investigated cGAS localization, activation, and downstream signaling from micronuclei induced by ionizing radiation, replication stress, and chromosome segregation errors. Although cGAS localized to ruptured micronuclei via binding to self-DNA, we failed to observe cGAS activation; cGAMP production; downstream phosphorylation of STING, TBK1, or IRF3; nuclear accumulation of IRF3; or expression of interferon-stimulated genes. Failure to activate the cGAS-STING pathway was observed across primary and immortalized cell lines, which retained the ability to activate the cGAS-STING pathway in response to dsDNA or modified vaccinia virus infection. We provide evidence that micronuclei formed by genotoxic insults contain histone-bound self-DNA, which we show is inhibitory to cGAS activation in cells.
Collapse
Affiliation(s)
- Tohru Takaki
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Rhona Millar
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Cancer Research UK Radnet City of London Centre, UCL Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
| | - Crispin T Hiley
- Cancer Research UK Radnet City of London Centre, UCL Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
| | - Simon J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Artios Pharma Ltd., Babraham Research Campus, Meditrina Building, Cambridge CB22 3AT, UK.
| |
Collapse
|
26
|
Li L. Stimulating STING for cancer therapy: Taking the extracellular route. Cell Chem Biol 2024; 31:851-861. [PMID: 38723635 DOI: 10.1016/j.chembiol.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/14/2024] [Accepted: 04/09/2024] [Indexed: 05/19/2024]
Abstract
Ten years ago, the second messenger cGAMP was discovered as the activator of the anti-cancer STING pathway. The characterization of cGAMP's paracrine action and dominant extracellular hydrolase ENPP1 cemented cGAMP as an intercellular immunotransmitter that coordinates the innate and adaptive immune systems to fight cancer. In this Perspective, I look back at a decade of discovery of extracellular cGAMP biology and drug development aiming to supply or preserve extracellular cGAMP for cancer treatment. Reviewing our understanding of the cell type-specific regulatory mechanisms of STING agonists, including their transporters and degradation enzymes, I explain on a molecular and cellular level the successes and challenges of direct STING agonists for cancer therapy. Based on what we know now, I propose new ways to stimulate the STING pathway in a manner that is not only cancer specific, but also cell type specific to fully harness the anti-cancer effect of cGAMP while avoiding collateral damage.
Collapse
Affiliation(s)
- Lingyin Li
- Arc Institute, Palo Alto, CA, 94304 USA; Department of Biochemistry and Sarafan ChEM-H Institute, Stanford University, Stanford, CA, 94305 USA.
| |
Collapse
|
27
|
Haruna S, Okuda K, Shibata A, Isono M, Tateno K, Sato H, Oike T, Uchihara Y, Kato Y, Shibata A. Characterization of the signal transduction cascade for inflammatory gene expression in fibroblasts with ATM-ATR deficiencies after Ionizing radiation. Radiother Oncol 2024; 194:110198. [PMID: 38438016 DOI: 10.1016/j.radonc.2024.110198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND AND PURPOSE Ionizing radiation (IR) induces DNA double-strand breaks (DSBs), leading to micronuclei formation, which has emerged as a key mediator of inflammatory responses after IR. This study aimed to investigate the signaling cascade in inflammatory gene expression using fibroblasts harboring DNA damage response deficiency after exposure to IR. MATERIALS AND METHODS Micronuclei formation was examined in human dermal fibroblasts derived from patients with deficiencies in ATM, ATR, MRE11, XLF, Artemis, or BRCA2 after IR. RNA-sequencing analysis was performed to assess gene expression, pathway mapping, and the balance of transcriptional activity using the transcription factor-based downstream gene expression mapping (TDEM) method developed in this study. RESULTS Deficiencies in ATM, ATR, or MRE11 led to increased micronuclei formation after IR compared to normal cells. RNA-seq analysis revealed significant upregulation of inflammatory expression in cells deficient in ATM, ATR, or MRE11 following IR. Pathway mapping analysis identified the upregulation of RIG-I, MDA-5, IRF7, IL6, and interferon stimulated gene expression after IR. These changes were pronounced in cells deficient in ATM, ATR, or MRE11. TDEM analysis suggested the differential activation of STAT1/3-pathway between ATM and ATR deficiency. CONCLUSION Enhanced micronuclei formation upon ATM, ATR, or MRE11 deficiency activated the cGAS/STING, RIG-I-MDA-5-IRF7-IL6 pathway, resulting in its downstream interferon stimulated gene expression following exposure to IR. Our study provides comprehensive information regarding the status of inflammation-related gene expression under DSB repair deficiency after IR. The generated dataset may be useful in developing functional biomarkers to accurately identify patients sensitive to radiotherapy.
Collapse
Affiliation(s)
- Shunji Haruna
- Division of Molecular Oncological Pharmacy, Faculty of Pharmacy, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Ken Okuda
- Division of Molecular Oncological Pharmacy, Faculty of Pharmacy, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Akiko Shibata
- Gunma University Heavy Ion Medical Center, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Mayu Isono
- Division of Molecular Oncological Pharmacy, Faculty of Pharmacy, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Kohei Tateno
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, 3-39-22, Showa-machi, Maebashi 371-8511, Japan
| | - Hiro Sato
- Gunma University Heavy Ion Medical Center, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan; Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Takahiro Oike
- Gunma University Heavy Ion Medical Center, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan; Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Yuki Uchihara
- Division of Molecular Oncological Pharmacy, Faculty of Pharmacy, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Yu Kato
- Division of Molecular Oncological Pharmacy, Faculty of Pharmacy, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| | - Atsushi Shibata
- Division of Molecular Oncological Pharmacy, Faculty of Pharmacy, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| |
Collapse
|
28
|
Tong J, Song J, Zhang W, Zhai J, Guan Q, Wang H, Liu G, Zheng C. When DNA-damage responses meet innate and adaptive immunity. Cell Mol Life Sci 2024; 81:185. [PMID: 38630271 PMCID: PMC11023972 DOI: 10.1007/s00018-024-05214-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
When cells proliferate, stress on DNA replication or exposure to endogenous or external insults frequently results in DNA damage. DNA-Damage Response (DDR) networks are complex signaling pathways used by multicellular organisms to prevent DNA damage. Depending on the type of broken DNA, the various pathways, Base-Excision Repair (BER), Nucleotide Excision Repair (NER), Mismatch Repair (MMR), Homologous Recombination (HR), Non-Homologous End-Joining (NHEJ), Interstrand Crosslink (ICL) repair, and other direct repair pathways, can be activated separately or in combination to repair DNA damage. To preserve homeostasis, innate and adaptive immune responses are effective defenses against endogenous mutation or invasion by external pathogens. It is interesting to note that new research keeps showing how closely DDR components and the immune system are related. DDR and immunological response are linked by immune effectors such as the cyclic GMP-AMP synthase (cGAS)-Stimulator of Interferon Genes (STING) pathway. These effectors act as sensors of DNA damage-caused immune response. Furthermore, DDR components themselves function in immune responses to trigger the generation of inflammatory cytokines in a cascade or even trigger programmed cell death. Defective DDR components are known to disrupt genomic stability and compromise immunological responses, aggravating immune imbalance and leading to serious diseases such as cancer and autoimmune disorders. This study examines the most recent developments in the interaction between DDR elements and immunological responses. The DDR network's immune modulators' dual roles may offer new perspectives on treating infectious disorders linked to DNA damage, including cancer, and on the development of target immunotherapy.
Collapse
Affiliation(s)
- Jie Tong
- College of Life Science, Hebei University, Baoding, 071002, China
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Jiangwei Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100089, China
| | - Wuchao Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071000, China
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Qingli Guan
- The Affiliated Hospital of Chinese PLA 80th Group Army, Weifang, 261000, China
| | - Huiqing Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Gentao Liu
- Department of Oncology, Tenth People's Hospital Affiliated to Tongji University & Cancer Center, Tongji University School of Medicine, Shanghai, 20000, China.
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
29
|
Dvorkin S, Cambier S, Volkman HE, Stetson DB. New frontiers in the cGAS-STING intracellular DNA-sensing pathway. Immunity 2024; 57:718-730. [PMID: 38599167 PMCID: PMC11013568 DOI: 10.1016/j.immuni.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 04/12/2024]
Abstract
The cGAS-STING intracellular DNA-sensing pathway has emerged as a key element of innate antiviral immunity and a promising therapeutic target. The existence of an innate immune sensor that can be activated by any double-stranded DNA (dsDNA) of any origin raises fundamental questions about how cGAS is regulated and how it responds to "foreign" DNA while maintaining tolerance to ubiquitous self-DNA. In this review, we summarize recent evidence implicating important roles for cGAS in the detection of foreign and self-DNA. We describe two recent and surprising insights into cGAS-STING biology: that cGAS is tightly tethered to the nucleosome and that the cGAMP product of cGAS is an immunotransmitter acting at a distance to control innate immunity. We consider how these advances influence our understanding of the emerging roles of cGAS in the DNA damage response (DDR), senescence, aging, and cancer biology. Finally, we describe emerging approaches to harness cGAS-STING biology for therapeutic benefit.
Collapse
Affiliation(s)
- Steve Dvorkin
- Departments of Immunology and Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Stephanie Cambier
- Departments of Immunology and Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Hannah E Volkman
- Departments of Immunology and Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Daniel B Stetson
- Departments of Immunology and Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
30
|
Ma M, Jiang W, Zhou R. DAMPs and DAMP-sensing receptors in inflammation and diseases. Immunity 2024; 57:752-771. [PMID: 38599169 DOI: 10.1016/j.immuni.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/17/2024] [Accepted: 03/01/2024] [Indexed: 04/12/2024]
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous danger molecules produced in cellular damage or stress, and they can activate the innate immune system. DAMPs contain multiple types of molecules, including nucleic acids, proteins, ions, glycans, and metabolites. Although these endogenous molecules do not trigger immune response under steady-state condition, they may undergo changes in distribution, physical or chemical property, or concentration upon cellular damage or stress, and then they become DAMPs that can be sensed by innate immune receptors to induce inflammatory response. Thus, DAMPs play an important role in inflammation and inflammatory diseases. In this review, we summarize the conversion of homeostatic molecules into DAMPs; the diverse nature and classification, cellular origin, and sensing of DAMPs; and their role in inflammation and related diseases. Furthermore, we discuss the clinical strategies to treat DAMP-associated diseases via targeting DAMP-sensing receptors.
Collapse
Affiliation(s)
- Ming Ma
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Wei Jiang
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Rongbin Zhou
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China; Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
31
|
MacDonald KM, Khan S, Lin B, Hurren R, Schimmer AD, Kislinger T, Harding SM. The proteomic landscape of genotoxic stress-induced micronuclei. Mol Cell 2024; 84:1377-1391.e6. [PMID: 38423013 DOI: 10.1016/j.molcel.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/20/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
Micronuclei (MN) are induced by various genotoxic stressors and amass nuclear- and cytoplasmic-resident proteins, priming the cell for MN-driven signaling cascades. Here, we measured the proteome of micronuclear, cytoplasmic, and nuclear fractions from human cells exposed to a panel of six genotoxins, comprehensively profiling their MN protein landscape. We find that MN assemble a proteome distinct from both surrounding cytoplasm and parental nuclei, depleted of spliceosome and DNA damage repair components while enriched for a subset of the replisome. We show that the depletion of splicing machinery within transcriptionally active MN contributes to intra-MN DNA damage, a known precursor to chromothripsis. The presence of transcription machinery in MN is stress-dependent, causing a contextual induction of MN DNA damage through spliceosome deficiency. This dataset represents a unique resource detailing the global proteome of MN, guiding mechanistic studies of MN generation and MN-associated outcomes of genotoxic stress.
Collapse
Affiliation(s)
- Kate M MacDonald
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Shahbaz Khan
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Brian Lin
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Rose Hurren
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Aaron D Schimmer
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Thomas Kislinger
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Shane M Harding
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C4, Canada; Department of Radiation Oncology and Immunology, University of Toronto, Toronto, ON M5T 1P5, Canada.
| |
Collapse
|
32
|
Singh M, Raseley K, Perez AM, MacKenzie D, Kosiyatrakul ST, Desai S, Batista N, Guru N, Loomba KK, Abid HZ, Wang Y, Udo-Bellner L, Stout RF, Schildkraut CL, Xiao M, Zhang D. Elucidation of the molecular mechanism of the breakage-fusion-bridge (BFB) cycle using a CRISPR-dCas9 cellular model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587951. [PMID: 38617299 PMCID: PMC11014597 DOI: 10.1101/2024.04.03.587951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Chromosome instability (CIN) is frequently observed in many tumors. The breakage-fusion-bridge (BFB) cycle has been proposed to be one of the main drivers of CIN during tumorigenesis and tumor evolution. However, the detailed mechanisms for the individual steps of the BFB cycle warrants further investigation. Here, we demonstrated that a nuclease-dead Cas9 (dCas9) coupled with a telomere-specific single-guide RNA (sgTelo) can be used to model the BFB cycle. First, we showed that targeting dCas9 to telomeres using sgTelo impeded DNA replication at telomeres and induced a pronounced increase of replication stress and DNA damage. Using Single-Molecule Telomere Assay via Optical Mapping (SMTA-OM), we investigated the genome-wide features of telomeres in the dCas9/sgTelo cells and observed a dramatic increase of chromosome end fusions, including fusion/ITS+ and fusion/ITS-.Consistently, we also observed an increase in the formation of dicentric chromosomes, anaphase bridges, and intercellular telomeric chromosome bridges (ITCBs). Utilizing the dCas9/sgTelo system, we uncovered many novel molecular and structural features of the ITCB and demonstrated that multiple DNA repair pathways are implicated in the formation of ITCBs. Our studies shed new light on the molecular mechanisms of the BFB cycle, which will advance our understanding of tumorigenesis, tumor evolution, and drug resistance.
Collapse
|
33
|
Sato Y, Hayashi MT. Micronucleus is not a potent inducer of the cGAS/STING pathway. Life Sci Alliance 2024; 7:e202302424. [PMID: 38307626 PMCID: PMC10837050 DOI: 10.26508/lsa.202302424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024] Open
Abstract
Micronuclei (MN) have been associated with the innate immune response. The abrupt rupture of MN membranes results in the accumulation of cGAS, potentially activating STING and downstream interferon-responsive genes. However, direct evidence connecting MN and cGAS activation has been lacking. We have developed the FuVis2 reporter system, which enables the visualization of the cell nucleus carrying a single sister chromatid fusion and, consequently, MN. Using this FuVis2 reporter equipped with cGAS and STING reporters, we rigorously assessed the potency of cGAS activation by MN in individual living cells. Our findings reveal that cGAS localization to membrane-ruptured MN during interphase is infrequent, with cGAS primarily capturing MN during mitosis and remaining bound to cytosolic chromatin. We found that cGAS accumulation during mitosis neither activates STING in the subsequent interphase nor triggers the interferon response. Gamma-ray irradiation activates STING independently of MN formation and cGAS localization to MN. These results suggest that cGAS accumulation in cytosolic MN is not a robust indicator of its activation and that MN are not the primary trigger of the cGAS/STING pathway.
Collapse
Affiliation(s)
- Yuki Sato
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- IFOM-KU Joint Research Laboratory, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Makoto T Hayashi
- IFOM-KU Joint Research Laboratory, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| |
Collapse
|
34
|
Adams DJ, Barlas B, McIntyre RE, Salguero I, van der Weyden L, Barros A, Vicente JR, Karimpour N, Haider A, Ranzani M, Turner G, Thompson NA, Harle V, Olvera-León R, Robles-Espinoza CD, Speak AO, Geisler N, Weninger WJ, Geyer SH, Hewinson J, Karp NA, Fu B, Yang F, Kozik Z, Choudhary J, Yu L, van Ruiten MS, Rowland BD, Lelliott CJ, Del Castillo Velasco-Herrera M, Verstraten R, Bruckner L, Henssen AG, Rooimans MA, de Lange J, Mohun TJ, Arends MJ, Kentistou KA, Coelho PA, Zhao Y, Zecchini H, Perry JRB, Jackson SP, Balmus G. Genetic determinants of micronucleus formation in vivo. Nature 2024; 627:130-136. [PMID: 38355793 PMCID: PMC10917660 DOI: 10.1038/s41586-023-07009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 12/21/2023] [Indexed: 02/16/2024]
Abstract
Genomic instability arising from defective responses to DNA damage1 or mitotic chromosomal imbalances2 can lead to the sequestration of DNA in aberrant extranuclear structures called micronuclei (MN). Although MN are a hallmark of ageing and diseases associated with genomic instability, the catalogue of genetic players that regulate the generation of MN remains to be determined. Here we analyse 997 mouse mutant lines, revealing 145 genes whose loss significantly increases (n = 71) or decreases (n = 74) MN formation, including many genes whose orthologues are linked to human disease. We found that mice null for Dscc1, which showed the most significant increase in MN, also displayed a range of phenotypes characteristic of patients with cohesinopathy disorders. After validating the DSCC1-associated MN instability phenotype in human cells, we used genome-wide CRISPR-Cas9 screening to define synthetic lethal and synthetic rescue interactors. We found that the loss of SIRT1 can rescue phenotypes associated with DSCC1 loss in a manner paralleling restoration of protein acetylation of SMC3. Our study reveals factors involved in maintaining genomic stability and shows how this information can be used to identify mechanisms that are relevant to human disease biology1.
Collapse
Affiliation(s)
- D J Adams
- Wellcome Sanger Institute, Cambridge, UK.
| | - B Barlas
- UK Dementia Research Institute at the University of Cambridge, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - I Salguero
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - A Barros
- Wellcome Sanger Institute, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - J R Vicente
- UK Dementia Research Institute at the University of Cambridge, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - N Karimpour
- UK Dementia Research Institute at the University of Cambridge, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - A Haider
- UK Dementia Research Institute at the University of Cambridge, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - M Ranzani
- Wellcome Sanger Institute, Cambridge, UK
| | - G Turner
- Wellcome Sanger Institute, Cambridge, UK
| | | | - V Harle
- Wellcome Sanger Institute, Cambridge, UK
| | | | - C D Robles-Espinoza
- Wellcome Sanger Institute, Cambridge, UK
- Laboratorio Internacional de Investigación Sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, México
| | - A O Speak
- Wellcome Sanger Institute, Cambridge, UK
| | - N Geisler
- Wellcome Sanger Institute, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - W J Weninger
- Division of Anatomy, MIC, Medical University of Vienna, Wien, Austria
| | - S H Geyer
- Division of Anatomy, MIC, Medical University of Vienna, Wien, Austria
| | - J Hewinson
- Wellcome Sanger Institute, Cambridge, UK
| | - N A Karp
- Wellcome Sanger Institute, Cambridge, UK
| | - B Fu
- Wellcome Sanger Institute, Cambridge, UK
| | - F Yang
- Wellcome Sanger Institute, Cambridge, UK
| | - Z Kozik
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK
| | - J Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK
| | - L Yu
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK
| | - M S van Ruiten
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - B D Rowland
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | - L Bruckner
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - A G Henssen
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M A Rooimans
- Department of Human Genetics, Section of Oncogenetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - J de Lange
- Department of Human Genetics, Section of Oncogenetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - T J Mohun
- Division of Developmental Biology, MRC, National Institute for Medical Research, London, UK
| | - M J Arends
- Division of Pathology, Cancer Research UK Scotland Centre, Institute of Genetics & Cancer The University of Edinburgh, Edinburgh, UK
| | - K A Kentistou
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - P A Coelho
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Y Zhao
- UK Dementia Research Institute at the University of Cambridge, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - H Zecchini
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - J R B Perry
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - S P Jackson
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, Cambridge, UK
| | - G Balmus
- Wellcome Sanger Institute, Cambridge, UK.
- UK Dementia Research Institute at the University of Cambridge, University of Cambridge, Cambridge, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
- Department of Molecular Neuroscience, Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania.
| |
Collapse
|
35
|
Krupina K, Goginashvili A, Cleveland DW. Scrambling the genome in cancer: causes and consequences of complex chromosome rearrangements. Nat Rev Genet 2024; 25:196-210. [PMID: 37938738 PMCID: PMC10922386 DOI: 10.1038/s41576-023-00663-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 11/09/2023]
Abstract
Complex chromosome rearrangements, known as chromoanagenesis, are widespread in cancer. Based on large-scale DNA sequencing of human tumours, the most frequent type of complex chromosome rearrangement is chromothripsis, a massive, localized and clustered rearrangement of one (or a few) chromosomes seemingly acquired in a single event. Chromothripsis can be initiated by mitotic errors that produce a micronucleus encapsulating a single chromosome or chromosomal fragment. Rupture of the unstable micronuclear envelope exposes its chromatin to cytosolic nucleases and induces chromothriptic shattering. Found in up to half of tumours included in pan-cancer genomic analyses, chromothriptic rearrangements can contribute to tumorigenesis through inactivation of tumour suppressor genes, activation of proto-oncogenes, or gene amplification through the production of self-propagating extrachromosomal circular DNAs encoding oncogenes or genes conferring anticancer drug resistance. Here, we discuss what has been learned about the mechanisms that enable these complex genomic rearrangements and their consequences in cancer.
Collapse
Affiliation(s)
- Ksenia Krupina
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Alexander Goginashvili
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Don W Cleveland
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
36
|
Choy L, Norris S, Wu X, Kolumam G, Firestone A, Settleman J, Stokoe D. Inhibition of Aurora Kinase Induces Endogenous Retroelements to Induce a Type I/III IFN Response via RIG-I. CANCER RESEARCH COMMUNICATIONS 2024; 4:540-555. [PMID: 38358346 PMCID: PMC10896070 DOI: 10.1158/2767-9764.crc-23-0432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/20/2023] [Accepted: 02/02/2024] [Indexed: 02/16/2024]
Abstract
Type I IFN signaling is a crucial component of antiviral immunity that has been linked to promoting the efficacy of some chemotherapeutic drugs. We developed a reporter system in HCT116 cells that detects activation of the endogenous IFI27 locus, an IFN target gene. We screened a library of annotated compounds in these cells and discovered Aurora kinase inhibitors (AURKi) as strong hits. Type I IFN signaling was found to be the most enriched gene signature after AURKi treatment in HCT116, and this signature was also strongly enriched in other colorectal cancer cell lines. The ability of AURKi to activate IFN in HCT116 was dependent on MAVS and RIG-I, but independent of STING, whose signaling is deficient in these cells. MAVS dependence was recapitulated in other colorectal cancer lines with STING pathway deficiency, whereas in cells with intact STING signaling, the STING pathway was required for IFN induction by AURKi. AURKis were found to induce expression of endogenous retroviruses (ERV). These ERVs were distinct from those induced by the DNA methyltransferase inhibitors (DNMTi), which can induce IFN signaling via ERV induction, suggesting a novel mechanism of action. The antitumor effect of alisertib in mice was accompanied by an induction of IFN expression in HCT116 or CT26 tumors. CT26 tumor growth inhibition by alisertib was absent in NSG mice versus wildtype (WT) mice, and tumors from WT mice with alisertib treatment showed increased in CD8+ T-cell infiltration, suggesting that antitumor efficacy of AURKi depends, at least in part, on an intact immune response. SIGNIFICANCE Some cancers deactivate STING signaling to avoid consequences of DNA damage from aberrant cell division. The surprising activation of MAVS/RIG-I signaling by AURKi might represent a vulnerability in STING signaling deficient cancers.
Collapse
Affiliation(s)
- Lisa Choy
- Calico Life Sciences LLC, South San Francisco, California
| | - Stephen Norris
- Calico Life Sciences LLC, South San Francisco, California
| | - Xiumin Wu
- Calico Life Sciences LLC, South San Francisco, California
| | - Ganesh Kolumam
- Calico Life Sciences LLC, South San Francisco, California
| | - Ari Firestone
- Calico Life Sciences LLC, South San Francisco, California
| | | | - David Stokoe
- Calico Life Sciences LLC, South San Francisco, California
| |
Collapse
|
37
|
Goddard AM, Cho MG, Lerner LM, Gupta GP. Mechanisms of Immune Sensing of DNA Damage. J Mol Biol 2024; 436:168424. [PMID: 38159716 DOI: 10.1016/j.jmb.2023.168424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Genomic stability relies on a multifaceted and evolutionarily conserved DNA damage response (DDR). In multicellular organisms, an integral facet of the DDR involves the activation of the immune system to eliminate cells with persistent DNA damage. Recent research has shed light on a complex array of nucleic acid sensors crucial for innate immune activation in response to oncogenic stress-associated DNA damage, a process vital for suppressing tumor formation. Yet, these immune sensing pathways may also be co-opted to foster tolerance of chromosomal instability, thereby driving cancer progression. This review aims to provide an updated overview of how the innate immune system detects and responds to DNA damage. An improved understanding of the regulatory intricacies governing this immune response may uncover new avenues for cancer prevention and therapeutic intervention.
Collapse
Affiliation(s)
- Anna M Goddard
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Min-Guk Cho
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lynn M Lerner
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Genetics and Molecular Biology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gaorav P Gupta
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
38
|
Mazzagatti A, Engel JL, Ly P. Boveri and beyond: Chromothripsis and genomic instability from mitotic errors. Mol Cell 2024; 84:55-69. [PMID: 38029753 PMCID: PMC10842135 DOI: 10.1016/j.molcel.2023.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023]
Abstract
Mitotic cell division is tightly monitored by checkpoints that safeguard the genome from instability. Failures in accurate chromosome segregation during mitosis can cause numerical aneuploidy, which was hypothesized by Theodor Boveri over a century ago to promote tumorigenesis. Recent interrogation of pan-cancer genomes has identified unexpected classes of chromosomal abnormalities, including complex rearrangements arising through chromothripsis. This process is driven by mitotic errors that generate abnormal nuclear structures that provoke extensive yet localized shattering of mis-segregated chromosomes. Here, we discuss emerging mechanisms underlying chromothripsis from micronuclei and chromatin bridges, as well as highlight how this mutational cascade converges on the DNA damage response. A fundamental understanding of these catastrophic processes will provide insight into how initial errors in mitosis can precipitate rapid cancer genome evolution.
Collapse
Affiliation(s)
- Alice Mazzagatti
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Justin L Engel
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Cell Biology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
39
|
Zhang J, Yu S, Peng Q, Wang P, Fang L. Emerging mechanisms and implications of cGAS-STING signaling in cancer immunotherapy strategies. Cancer Biol Med 2024; 21:j.issn.2095-3941.2023.0440. [PMID: 38172538 PMCID: PMC10875285 DOI: 10.20892/j.issn.2095-3941.2023.0440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
The intricate interplay between the human immune system and cancer development underscores the central role of immunotherapy in cancer treatment. Within this landscape, the innate immune system, a critical sentinel protecting against tumor incursion, is a key player. The cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) pathway has been found to be a linchpin of innate immunity: activation of this signaling pathway orchestrates the production of type I interferon (IFN-α/β), thus fostering the maturation, differentiation, and mobilization of immune effectors in the tumor microenvironment. Furthermore, STING activation facilitates the release and presentation of tumor antigens, and therefore is an attractive target for cancer immunotherapy. Current strategies to activate the STING pathway, including use of pharmacological agonists, have made substantial advancements, particularly when combined with immune checkpoint inhibitors. These approaches have shown promise in preclinical and clinical settings, by enhancing patient survival rates. This review describes the evolving understanding of the cGAS-STING pathway's involvement in tumor biology and therapy. Moreover, this review explores classical and non-classical STING agonists, providing insights into their mechanisms of action and potential for optimizing immunotherapy strategies. Despite challenges and complexities, the cGAS-STING pathway, a promising avenue for enhancing cancer treatment efficacy, has the potential to revolutionize patient outcomes.
Collapse
Affiliation(s)
- Jiawen Zhang
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Sihui Yu
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qiao Peng
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Lan Fang
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
40
|
Jiang H, Chan YW. Chromatin bridges: stochastic breakage or regulated resolution? Trends Genet 2024; 40:69-82. [PMID: 37891096 DOI: 10.1016/j.tig.2023.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023]
Abstract
Genetic material is organized in the form of chromosomes, which need to be segregated accurately into two daughter cells in each cell cycle. However, chromosome fusion or the presence of unresolved interchromosomal linkages lead to the formation of chromatin bridges, which can induce DNA lesions and genome instability. Persistent chromatin bridges are trapped in the cleavage furrow and are broken at or after abscission, the final step of cytokinesis. In this review, we focus on recent progress in understanding the mechanism of bridge breakage and resolution. We discuss the molecular machinery and enzymes that have been implicated in the breakage and processing of bridge DNA. In addition, we outline both the immediate outcomes and genomic consequences induced by bridge breakage.
Collapse
Affiliation(s)
- Huadong Jiang
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China
| | - Ying Wai Chan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China.
| |
Collapse
|
41
|
Ha CT, Tageldein MM, Harding SM. The entanglement of DNA damage and pattern recognition receptor signaling. DNA Repair (Amst) 2024; 133:103595. [PMID: 37988925 DOI: 10.1016/j.dnarep.2023.103595] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/05/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Cells are under constant pressure to suppress DNA damage originating from both exogenous and endogenous sources. Cellular responses to DNA damage help to prevent mutagenesis and cell death that arises when DNA damage is either left unrepaired or repaired inaccurately. During the "acute phase" of DNA damage signaling, lesions are recognized, processed, and repaired to restore the primary DNA sequence whilst cell cycle checkpoints delay mitotic progression, cell death and the propagation of errors to daughter cells. Increasingly, there is recognition of a "chronic phase" of DNA damage signaling, exemplified by the secretion of dozens of cytokines days after the inciting damage event. In this review, we focus on the cellular origin of these chronic responses, the molecular pathways that control them and the increasing appreciation for the interconnection between acute and chronic DNA damage responses.
Collapse
Affiliation(s)
- Cindy T Ha
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Maha M Tageldein
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Shane M Harding
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada; Departments of Radiation Oncology and Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
42
|
Zhang J, Qiu R, Bieger BD, Oakley CE, Oakley BR, Egan MJ, Xiang X. Aspergillus SUMOylation mutants exhibit chromosome segregation defects including chromatin bridges. Genetics 2023; 225:iyad169. [PMID: 37724751 PMCID: PMC10697819 DOI: 10.1093/genetics/iyad169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023] Open
Abstract
Functions of protein SUMOylation remain incompletely understood in different cell types. Via forward genetics, here we identified ubaBQ247*, a loss-of-function mutation in a SUMO activation enzyme UbaB in the filamentous fungus Aspergillus nidulans. The ubaBQ247*, ΔubaB, and ΔsumO mutants all produce abnormal chromatin bridges, indicating the importance of SUMOylation in the completion of chromosome segregation. The bridges are enclosed by nuclear membrane containing peripheral nuclear pore complex proteins that normally get dispersed during mitosis, and the bridges are also surrounded by cytoplasmic microtubules typical of interphase cells. Time-lapse sequences further indicate that most bridges persist through interphase prior to the next mitosis, and anaphase chromosome segregation can produce new bridges that persist into the next interphase. When the first mitosis happens at a higher temperature of 42°C, SUMOylation deficiency produces not only chromatin bridges but also many abnormally shaped single nuclei that fail to divide. UbaB-GFP localizes to interphase nuclei just like the previously studied SumO-GFP, but the nuclear signals disappear during mitosis when the nuclear pores are partially open, and the signals reappear after mitosis. The nuclear localization is consistent with many SUMO targets being nuclear proteins. Finally, although the budding yeast SUMOylation machinery interacts with LIS1, a protein critical for dynein activation, loss of SUMOylation does not cause any obvious defect in dynein-mediated transport of nuclei and early endosomes, indicating that SUMOylation is unnecessary for dynein activation in A. nidulans.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences-F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Rongde Qiu
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences-F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Baronger D Bieger
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701, USA
| | - C Elizabeth Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Martin J Egan
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701, USA
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences-F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| |
Collapse
|
43
|
Gregorczyk M, Parkes EE. Targeting mitotic regulators in cancer as a strategy to enhance immune recognition. DNA Repair (Amst) 2023; 132:103583. [PMID: 37871511 DOI: 10.1016/j.dnarep.2023.103583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023]
Abstract
Eukaryotic DNA has evolved to be enclosed within the nucleus to protect the cellular genome from autoinflammatory responses driven by the immunogenic nature of cytoplasmic DNA. Cyclic GMP-AMP Synthase (cGAS) is the cytoplasmic dsDNA sensor, which upon activation of Stimulator of Interferon Genes (STING), mediates production of pro-inflammatory interferons (IFNs) and interferon stimulated genes (ISGs). However, although this pathway is crucial in detection of viral and microbial genetic material, cytoplasmic DNA is not always of foreign origin. It is now recognised that specifically in genomic instability, a hallmark of cancer, extranuclear material in the form of micronuclei (MN) can be generated as a result of unresolved DNA lesions during mitosis. Activation of cGAS-STING in cancer has been shown to regulate numerous tumour-immune interactions such as acquisition of 'immunologically hot' phenotype which stimulates immune-mediated elimination of transformed cells. Nonetheless, a significant percentage of poorly prognostic cancers is 'immunologically cold'. As this state has been linked with low proportion of tumour-infiltrating lymphocytes (TILs), improving immunogenicity of cold tumours could be clinically relevant by exhibiting synergy with immunotherapy. This review aims to present how inhibition of vital mitotic regulators could provoke cGAS-STING response in cancer and improve the efficacy of current immunotherapy regimens.
Collapse
Affiliation(s)
- Mateusz Gregorczyk
- Oxford Centre for Immuno-Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Eileen E Parkes
- Oxford Centre for Immuno-Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom.
| |
Collapse
|
44
|
Guo X, Jiang M, Dai X, Shen J, Wang X. Presenilin-1, mutated in familial Alzheimer's disease, maintains genome stability via a γ-secretase dependent way. DNA Repair (Amst) 2023; 131:103580. [PMID: 37804602 DOI: 10.1016/j.dnarep.2023.103580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Mutations in Presenilin-1 (PS1) account for over 80 % mutations linked to familial Alzheimer's disease (AD). However, the mechanisms of action of PS1 mutations in causing familial AD are not fully understood, limiting opportunities to develop targeted disease-modifying therapies for individuals carrying PS1 mutation. To gain more comprehensive insights into the impact of PS1 mutations on genome stability, we knocked down PS1 in SH-SY5Y, HMC3 and A549 cells. This revealed that PS1 knockdown (KD) dramatically induces genome instability (GIN) in all cell types, as indicated by the increased incidence of micronuclei, nucleoplasmic bridges and/or nuclear buds. Although amyloid β (Aβ) was able to induce GIN, PS1-KD was associated with decreased expression of Aβ in SH-SY5Y cells, suggesting Aβ is not the primary cause of GIN in PS1-KD cells. In contrast, inhibiting the PS1 γ-secretase activity by DAPT recapitulated GIN phenotype as seen in PS1-KD cells, indicating that the induction of GIN following PS1 KD can be attributed to the loss of γ-secretase activity. PS1 KD or γ-secretase inhibition markedly sensitizes SH-SY5Y to the genotoxicity of mitomycin C. Interestingly, overexpression of the wildtype PS1 dramatically increased GIN in SH-SY5Y. Collectively, our study demonstrates the potential of PS1 and its γ-secretase activity in maintaining genome stability, highlighting a novel potential link between PS1 loss-of-function or gain-of-function mutations and familial AD through GIN. Several mechanisms by which GIN induced by PS1 dys-expression may contribute to AD are discussed.
Collapse
Affiliation(s)
- Xihan Guo
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China; The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan 650500, China.
| | - Minyan Jiang
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Xueqin Dai
- Academy of Biomedical Engineering, Kunming Medical University, Kunming 650500, China
| | - Jie Shen
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Xu Wang
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China; The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan 650500, China; Yeda Institute of Gene and Cell Therapy, Taizhou, Zhejiang 318000, China
| |
Collapse
|
45
|
Wheeler OPG, Unterholzner L. DNA sensing in cancer: Pro-tumour and anti-tumour functions of cGAS-STING signalling. Essays Biochem 2023; 67:905-918. [PMID: 37534795 PMCID: PMC10539950 DOI: 10.1042/ebc20220241] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
The DNA sensor cGAS (cyclic GMP-AMP synthase) and its adaptor protein STING (Stimulator of Interferon Genes) detect the presence of cytosolic DNA as a sign of infection or damage. In cancer cells, this pathway can be activated through persistent DNA damage and chromosomal instability, which results in the formation of micronuclei and the exposure of DNA fragments to the cytosol. DNA damage from radio- or chemotherapy can further activate DNA sensing responses, which may occur in the cancer cells themselves or in stromal and immune cells in the tumour microenvironment (TME). cGAS-STING signalling results in the production of type I interferons, which have been linked to immune cell infiltration in 'hot' tumours that are susceptible to immunosurveillance and immunotherapy approaches. However, recent research has highlighted the complex nature of STING signalling, with tumours having developed mechanisms to evade and hijack this signalling pathway for their own benefit. In this mini-review we will explore how cGAS-STING signalling in different cells in the TME can promote both anti-tumour and pro-tumour responses. This includes the role of type I interferons and the second messenger cGAMP in the TME, and the influence of STING signalling on local immune cell populations. We examine how alternative signalling cascades downstream of STING can promote chronic interferon signalling, the activation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and the production of inflammatory cytokines, which can have pro-tumour functions. An in-depth understanding of DNA sensing in different cell contexts will be required to harness the anti-tumour functions of STING signalling.
Collapse
Affiliation(s)
- Otto P G Wheeler
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, U.K
| | - Leonie Unterholzner
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, U.K
| |
Collapse
|
46
|
Mason FM, Kounlavong ES, Tebeje AT, Dahiya R, Guess T, Khan A, Vlach L, Norris SR, Lovejoy CA, Dere R, Strahl BD, Ohi R, Ly P, Walker CL, Rathmell WK. SETD2 safeguards the genome against isochromosome formation. Proc Natl Acad Sci U S A 2023; 120:e2303752120. [PMID: 37722039 PMCID: PMC10523680 DOI: 10.1073/pnas.2303752120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/11/2023] [Indexed: 09/20/2023] Open
Abstract
Isochromosomes are mirror-imaged chromosomes with simultaneous duplication and deletion of genetic material which may contain two centromeres to create isodicentric chromosomes. Although isochromosomes commonly occur in cancer and developmental disorders and promote genome instability, mechanisms that prevent isochromosomes are not well understood. We show here that the tumor suppressor and methyltransferase SETD2 is essential to prevent these errors. Using cellular and cytogenetic approaches, we demonstrate that loss of SETD2 or its epigenetic mark, histone H3 lysine 36 trimethylation (H3K36me3), results in the formation of isochromosomes as well as isodicentric and acentric chromosomes. These defects arise during DNA replication and are likely due to faulty homologous recombination by RAD52. These data provide a mechanism for isochromosome generation and demonstrate that SETD2 and H3K36me3 are essential to prevent the formation of this common mutable chromatin structure known to initiate a cascade of genomic instability in cancer.
Collapse
Affiliation(s)
- Frank M. Mason
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| | - Emily S. Kounlavong
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| | - Anteneh T. Tebeje
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| | - Rashmi Dahiya
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Tiffany Guess
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN37232
| | - Abid Khan
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Logan Vlach
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| | - Stephen R. Norris
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| | | | - Ruhee Dere
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX77030
| | - Brian D. Strahl
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Cheryl Lyn Walker
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX77030
| | - W. Kimryn Rathmell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| |
Collapse
|
47
|
Wardlaw CP, Petrini JH. ISG15: A link between innate immune signaling, DNA replication, and genome stability. Bioessays 2023; 45:e2300042. [PMID: 37147792 PMCID: PMC10473822 DOI: 10.1002/bies.202300042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/07/2023]
Abstract
Interferon stimulated gene 15 (ISG15) encodes a ubiquitin-like protein that is highly induced upon activation of interferon signaling and cytoplasmic DNA sensing pathways. As part of the innate immune system ISG15 acts to inhibit viral replication and particle release via the covalent conjugation to both viral and host proteins. Unlike ubiquitin, unconjugated ISG15 also functions as an intracellular and extra-cellular signaling molecule to modulate the immune response. Several recent studies have shown ISG15 to also function in a diverse array of cellular processes and pathways outside of the innate immune response. This review explores the role of ISG15 in maintaining genome stability, particularly during DNA replication, and how this relates to cancer biology. It puts forth the hypothesis that ISG15, along with DNA sensors, function within a DNA replication fork surveillance pathway to help maintain genome stability.
Collapse
Affiliation(s)
| | - John H.J. Petrini
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
48
|
Zhang J, Qiu R, Bieger BD, Oakley CE, Oakley BR, Egan MJ, Xiang X. Aspergillus SUMOylation mutants have normal dynein function but exhibit chromatin bridges. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.16.537086. [PMID: 37131833 PMCID: PMC10153134 DOI: 10.1101/2023.04.16.537086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Functions of protein SUMOylation remain incompletely understood in different cell types. The budding yeast SUMOylation machinery interacts with LIS1, a protein critical for dynein activation, but dynein-pathway components were not identified as SUMO-targets in the filamentous fungus Aspergillus nidulans. Via A. nidulans forward genetics, here we identified ubaBQ247*, a loss-of-function mutation in a SUMO-activation enzyme UbaB. Colonies of the ubaBQ247*, ΔubaB and ΔsumO mutants looked similar and less healthy than the wild-type colony. In these mutants, about 10% of nuclei are connected by abnormal chromatin bridges, indicating the importance of SUMOylation in the completion of chromosome segregation. Nuclei connected by chromatin bridges are mostly in interphase, suggesting that these bridges do not prevent cell-cycle progression. UbaB-GFP localizes to interphase nuclei just like the previously studied SumO-GFP, but the nuclear signals disappear during mitosis when the nuclear pores are partially open, and the signals reappear after mitosis. The nuclear localization is consistent with many SUMO-targets being nuclear proteins, for example, topoisomerase II whose SUMOylation defect gives rise to chromatin bridges in mammalian cells. Unlike in mammalian cells, however, loss of SUMOylation in A. nidulans does not apparently affect the metaphase-to-anaphase transition, further highlighting differences in the requirements of SUMOylation in different cell types. Finally, loss of UbaB or SumO does not affect dynein- and LIS1-mediated early-endosome transport, indicating that SUMOylation is unnecessary for dynein or LIS1 function in A. nidulans.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, Maryland 20814, USA
| | - Rongde Qiu
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, Maryland 20814, USA
| | - Baronger D. Bieger
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR, USA
| | - C. Elizabeth Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Berl R. Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Martin J. Egan
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR, USA
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, Maryland 20814, USA
| |
Collapse
|
49
|
Jiang H, Kong N, Liu Z, West SC, Chan YW. Human Endonuclease ANKLE1 Localizes at the Midbody and Processes Chromatin Bridges to Prevent DNA Damage and cGAS-STING Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204388. [PMID: 36825683 PMCID: PMC10131833 DOI: 10.1002/advs.202204388] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/12/2022] [Indexed: 06/18/2023]
Abstract
Chromatin bridges connecting the two segregating daughter nuclei arise from chromosome fusion or unresolved interchromosomal linkage. Persistent chromatin bridges are trapped in the cleavage plane, triggering cytokinesis delay. The trapped bridges occasionally break during cytokinesis, inducing DNA damage and chromosomal rearrangements. Recently, Caenorhabditis elegans LEM-3 and human TREX1 nucleases have been shown to process chromatin bridges. Here, it is shown that ANKLE1 endonuclease, the human ortholog of LEM-3, accumulates at the bulge-like structure of the midbody via its N-terminal ankyrin repeats. Importantly, ANKLE1-/- knockout cells display an elevated level of G1-specific 53BP1 nuclear bodies, prolonged activation of the DNA damage response, and replication stress. Increased DNA damage observed in ANKLE1-/- cells is rescued by inhibiting actin polymerization or reducing actomyosin contractility. ANKLE1 does not act in conjunction with structure-selective endonucleases, GEN1 and MUS81 in resolving recombination intermediates. Instead, ANKLE1 acts on chromatin bridges by priming TREX1 nucleolytic activity and cleaving bridge DNA to prevent the formation of micronuclei and cytosolic dsDNA that activate the cGAS-STING pathway. It is therefore proposed that ANKLE1 prevents DNA damage and autoimmunity by cleaving chromatin bridges to avoid catastrophic breakage mediated by actomyosin contractile forces.
Collapse
Affiliation(s)
- Huadong Jiang
- School of Biological SciencesThe University of Hong KongPokfulamHong Kong
| | - Nannan Kong
- School of Biological SciencesThe University of Hong KongPokfulamHong Kong
| | - Zeyuan Liu
- School of Biological SciencesThe University of Hong KongPokfulamHong Kong
| | - Stephen C. West
- The Francis Crick InstituteDNA Recombination and Repair Laboratory1 Midland RoadLondonNW1 1ATUK
| | - Ying Wai Chan
- School of Biological SciencesThe University of Hong KongPokfulamHong Kong
| |
Collapse
|
50
|
cGAS-STING signalling in cancer: striking a balance with chromosomal instability. Biochem Soc Trans 2023; 51:539-555. [PMID: 36876871 DOI: 10.1042/bst20220838] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 03/07/2023]
Abstract
Chromosomal instability (CIN) is a hallmark of cancer that drives tumour evolution. It is now recognised that CIN in cancer leads to the constitutive production of misplaced DNA in the form of micronuclei and chromatin bridges. These structures are detected by the nucleic acid sensor cGAS, leading to the production of the second messenger 2'3'-cGAMP and activation of the critical hub of innate immune signalling STING. Activation of this immune pathway should instigate the influx and activation of immune cells, resulting in the eradication of cancer cells. That this does not universally occur in the context of CIN remains an unanswered paradox in cancer. Instead, CIN-high cancers are notably adept at immune evasion and are highly metastatic with typically poor outcomes. In this review, we discuss the diverse facets of the cGAS-STING signalling pathway, including emerging roles in homeostatic processes and their intersection with genome stability regulation, its role as a driver of chronic pro-tumour inflammation, and crosstalk with the tumour microenvironment, which may collectively underlie its apparent maintenance in cancers. A better understanding of the mechanisms whereby this immune surveillance pathway is commandeered by chromosomally unstable cancers is critical to the identification of new vulnerabilities for therapeutic exploitation.
Collapse
|