1
|
Weiner E, Berryman E, González Solís A, Shi Y, Otegui MS. The green ESCRTs: Newly defined roles for ESCRT proteins in plants. J Biol Chem 2025; 301:108465. [PMID: 40157538 PMCID: PMC12051064 DOI: 10.1016/j.jbc.2025.108465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/19/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025] Open
Abstract
Endocytosis and endosomal trafficking of plasma membrane proteins for degradation regulate cellular homeostasis and development. As part of these processes, ubiquitinated plasma membrane proteins (cargo) are recognized, clustered, and sorted into intraluminal vesicles of multivesicular endosomes by endosomal sorting complexes required for transport (ESCRT) proteins. At endosomes, ESCRT proteins recognize ubiquitinated cargo and mediate the deformation of the endosomal membrane in a negative geometry, away from the cytosol. ESCRTs are organized in five major complexes that are sequentially recruited to the endosomal membrane where they mediate its vesiculation and cargo sequestration. ESCRTs also participate in other membrane remodeling events and are widely conserved across organisms, both eukaryotes and prokaryotes. Plants contain both conserved and unique ESCRT components and show a general trend toward gene family expansion. Plant endosomes show a wide range of membrane budding patterns with potential implications in cargo sequestration efficiency, plant development, and hormone signaling. Understanding the diversification and specialization of plant ESCRT proteins can provide valuable insights in the mechanisms of ESCRT-mediated membrane bending. In this review, we discuss the endosomal function of ESCRT proteins, their unique features in plants, and the potential connections to the modes of plant endosomal vesiculation.
Collapse
Affiliation(s)
- Ethan Weiner
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin, USA
| | - Elizabeth Berryman
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin, USA
| | - Ariadna González Solís
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin, USA
| | - Yuchen Shi
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin, USA.
| |
Collapse
|
2
|
Vázquez-Montejo P, Božič B, Guven J. Equatorial deformation of homogeneous spherical fluid vesicles by a rigid ring. Phys Rev E 2025; 111:035411. [PMID: 40247493 DOI: 10.1103/physreve.111.035411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/04/2025] [Indexed: 04/19/2025]
Abstract
We examine the deformation of homogeneous spherical fluid vesicles along their equator by a circular rigid ring. We consider deformations preserving the axial and equatorial mirror symmetries of the vesicles. The configurations of the vesicle are determined employing the spontaneous curvature model subject to the constraints imposed by the ring as well as of having constant area or volume. We determine two expressions of the force exerted by the ring, one involving a discontinuity in the derivative of the curvature of the membrane across the ring, and another one in terms of the global quantities of the vesicle. For small enough values of the spontaneous curvature there is only one sequence of configurations for either fixed area or volume. The behavior of constricted vesicles is similar for both constraints: they follow a transition from prolate to dumbbell shapes, which culminates in two quasispherical vesicles connected by a small catenoidlike neck. We analyze the geometry and the force of the small neck employing a perturbative analysis about the catenoid. A stretched vesicle initially adopts an oblate shape for either constraint. If the area is fixed the vesicle increasingly flattens until it attains a disklike shape, which we examine using an asymptotic analysis. If the volume is fixed, the poles approach until they touch and the vesicle adopts a discocyte shape. When the spontaneous curvature of the vesicle is close to the mean curvature of the constricted quasispherical vesicles, the sequences of configurations of both constraints develop bifurcations, and some of the configurations corresponding to one of their branches have the lowest energy.
Collapse
Affiliation(s)
- Pablo Vázquez-Montejo
- Universidad Autónoma de Yucatán, SECIHTI-Facultad de Matemáticas, Periférico Norte, Tablaje 13615, 97110, Mérida, Yucatán, México
| | - Bojan Božič
- University of Ljubljana, Institute of Biophysics, Faculty of Medicine, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Jemal Guven
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apdo. Postal 70-543, 04510, Coyoacán, Ciudad de México, México
| |
Collapse
|
3
|
Liu J, Lelek M, Yang Y, Salles A, Zimmer C, Shen Y, Krupovic M. A relay race of ESCRT-III paralogs drives cell division in a hyperthermophilic archaeon. mBio 2025; 16:e0099124. [PMID: 39699168 PMCID: PMC11796394 DOI: 10.1128/mbio.00991-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
Cell division is a fundamental process ensuring the perpetuation of all cellular life forms. Archaea of the order Sulfolobales divide using a simpler version of the eukaryotic endosomal sorting complexes required for transport (ESCRT) machinery, composed of three ESCRT-III homologs (ESCRT-III, -III-1, and -III-2), AAA+ ATPase Vps4 and an archaea-specific component CdvA. Here, we clarify how these components act sequentially to drive the division of the hyperthermophilic archaeon Saccharolobus islandicus. Our data suggest that ESCRT-III plays an active role during the early stage of membrane constriction during cytokinesis, whereas ESCRT-III-1 and ESCRT-III-2 are indispensable for the "pre-late" and "late" stages of cytokinesis, respectively. In the escrt-III-1 deletion strain, the division is blocked when the mid-cell constriction reaches ~30% of the initial cell diameter ("pre-late" stage), yielding "chain-like" cellular aggregates. Depletion of ESCRT-III-2 leads to the accumulation of cells connected through narrow membrane bridges ("late" stage), consistent with the key role of this protein in the final membrane abscission. We used 3D-single molecule localization microscopy to image ESCRT-III rings of different diameters and show that the decrease in the ESCRT-III ring diameter and membrane constriction are inconsistent with a mechanism exclusively based on spiraling of the ESCRT-III filaments. By contrast, the cone-shaped assemblies of ESCRT-III-1 and ESCRT-III-2 are consistent with spiral formation, highlighting the distinct roles of the three ESCRT-III proteins during the cytokinesis. We propose the "relay race" model, whereby the cytokinesis is achieved through a sequential and concerted action of different ESCRT machinery components. IMPORTANCE Two major cytokinesis mechanisms, rooted in contractile FtsZ and endosomal sorting complexes required for transport (ESCRT) rings, respectively, have emerged in the course of evolution. Whereas bacteria rely on the FtsZ-based mechanism, different lineages of archaea use either of the two systems, and eukaryotes have inherited the ESCRT-based cell division machinery from their archaeal ancestors. The mechanism of ESCRT-based cell division in archaea remains poorly understood and mechanistic studies on different archaeal model systems are essential to unravel the natural history of the ESCRT machinery. Here we investigate the interplay between three major ESCRT-III homologs during the division of a hyperthermophilic archaeon Saccharolobus islandicus and propose the "relay race" model of cytokinesis.
Collapse
Affiliation(s)
- Junfeng Liu
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
- CRISPR and Archaea Biology Research Centre, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Mickaël Lelek
- Imaging and Modeling Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Yunfeng Yang
- CRISPR and Archaea Biology Research Centre, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Audrey Salles
- Institut Pasteur, Université Paris Cité, Unit of Technology and Service Photonic BioImaging (UTechS PBI), C2RT, Paris, France
| | - Christophe Zimmer
- Imaging and Modeling Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Yulong Shen
- CRISPR and Archaea Biology Research Centre, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| |
Collapse
|
4
|
Peng Z, Liu Y, Ma H, Xiao S, Au-Yeung A, Zhang L, Zeng Q, Guo Y. Characterization of extracellular vesicles released from Prochlorococcus MED4 at the steady state and under a light-dark cycle. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230339. [PMID: 39842488 PMCID: PMC11753881 DOI: 10.1098/rstb.2023.0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/20/2024] [Accepted: 05/28/2024] [Indexed: 01/24/2025] Open
Abstract
Bacterial extracellular vesicles (EVs) are vesicles secreted by bacteria into the extracellular environment. Containing DNA, RNA and proteins, EVs are implicated to mediate intercellular communications. The marine cyanobacterium Prochlorococcus, the most abundant photosynthetic organism in marine ecosystems, has been shown to generate EVs continuously during cell growth. However, biogenesis and functions of EVs released by Prochlorococcus remain largely unclear. Here, we isolated and characterized EVs released by Prochlorococcus MED4 culture. We found that the majority of MED4 EVs are elliptical and enriched with specific proteins performing particular cellular functions. The light-dark cycle has been demonstrated to affect the cell cycle of Prochlorococcus, with cell division occurring at night time. Interestingly, we found that the net production of MED4 EVs was faster during the night time. Moreover, we revealed that MED4 EVs that are released or absorbed in the night time are enriched with distinct proteins, suggesting the release and absorbance of EVs are influenced by the diel cycle. We found that inhibiting cell division decreased the net production of MED4 EVs during the night time, suggesting that cell division is important for the biogenesis of MED4 EVs. These analyses provide novel insights into biogenesis and functions of EVs released from bacteria.This article is part of the Theo Murphy meeting issue 'Circadian rhythms in infection and immunity'.
Collapse
Affiliation(s)
- Ziqing Peng
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yaxin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Haiying Ma
- Department of Biomedical Sciences, and Tung Biomedical Sciences Center, City University of Hong Kong, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Shiwei Xiao
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Allan Au-Yeung
- Department of Biomedical Sciences, and Tung Biomedical Sciences Center, City University of Hong Kong, Hong Kong, China
| | - Liang Zhang
- Department of Biomedical Sciences, and Tung Biomedical Sciences Center, City University of Hong Kong, Hong Kong, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Futian Research Institute, Shenzhen, China
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yusong Guo
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen, China
- Thrust of Bioscience and Biomedical Engineering, Hong Kong University of Science and Technology, Guangzhou, China
| |
Collapse
|
5
|
Beiter J, Voth GA. Making the cut: Multiscale simulation of membrane remodeling. Curr Opin Struct Biol 2024; 87:102831. [PMID: 38740001 PMCID: PMC11283976 DOI: 10.1016/j.sbi.2024.102831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Biological membranes are dynamic heterogeneous materials, and their shape and organization are tightly coupled to the properties of the proteins in and around them. However, the length scales of lipid and protein dynamics are far below the size of membrane-bound organelles, much less an entire cell. Therefore, multiscale modeling approaches are often necessary to build a comprehensive picture of the interplay of these factors, and have provided critical insights into our understanding of membrane dynamics. Here, we review computational methods for studying membrane remodeling, as well as passive and active examples of protein-driven membrane remodeling. As the field advances towards the modeling of key aspects of organelles and whole cells - an increasingly accessible regime of study - we summarize here recent successes and offer comments on future trends.
Collapse
Affiliation(s)
- Jeriann Beiter
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
6
|
Carlton JG, Baum B. Roles of ESCRT-III polymers in cell division across the tree of life. Curr Opin Cell Biol 2023; 85:102274. [PMID: 37944425 PMCID: PMC7615534 DOI: 10.1016/j.ceb.2023.102274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
Every cell becomes two through a carefully orchestrated process of division. Prior to division, contractile machinery must first be assembled at the cell midzone to ensure that the cut, when it is made, bisects the two separated copies of the genetic material. Second, this contractile machinery must be dynamically tethered to the limiting plasma membrane so as to bring the membrane with it as it constricts. Finally, the connecting membrane must be severed to generate two physically separate daughter cells. In several organisms across the tree of life, Endosomal Sorting Complex Required for Transport (ESCRT)-III family proteins aid cell division by forming composite polymers that function together with the Vps4 AAA-ATPase to constrict and cut the membrane tube connecting nascent daughter cells from the inside. In this review, we discuss unique features of ESCRT-III that enable it to play this role in division in many archaea and eukaryotes.
Collapse
Affiliation(s)
- Jeremy Graham Carlton
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, Guy's Hospital, London, SE1 1UL, UK; Organelle Dynamics Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| | - Buzz Baum
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
7
|
Pfitzner AK, Zivkovic H, Bernat-Silvestre C, West M, Peltier T, Humbert F, Odorizzi G, Roux A. Vps60 initiates alternative ESCRT-III filaments. J Cell Biol 2023; 222:e202206028. [PMID: 37768378 PMCID: PMC10538557 DOI: 10.1083/jcb.202206028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 03/08/2023] [Accepted: 06/12/2023] [Indexed: 09/29/2023] Open
Abstract
Endosomal sorting complex required for transport-III (ESCRT-III) participates in essential cellular functions, from cell division to endosome maturation. The remarkable increase of its subunit diversity through evolution may have enabled the acquisition of novel functions. Here, we characterize a novel ESCRT-III copolymer initiated by Vps60. Membrane-bound Vps60 polymers recruit Vps2, Vps24, Did2, and Ist1, as previously shown for Snf7. Snf7- and Vps60-based filaments can coexist on membranes without interacting as their polymerization and recruitment of downstream subunits remain spatially and biochemically separated. In fibroblasts, Vps60/CHMP5 and Snf7/CHMP4 are both recruited during endosomal functions and cytokinesis, but their localization is segregated and their recruitment dynamics are different. Contrary to Snf7/CHMP4, Vps60/CHMP5 is not recruited during nuclear envelope reformation. Taken together, our results show that Vps60 and Snf7 form functionally distinct ESCRT-III polymers, supporting the notion that diversification of ESCRT-III subunits through evolution is linked to the acquisition of new cellular functions.
Collapse
Affiliation(s)
| | - Henry Zivkovic
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | | | - Matt West
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Tanner Peltier
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Frédéric Humbert
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Greg Odorizzi
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
- National Center of Competence in Research in Chemical Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
8
|
Wang C, Chen Y, Hu S, Liu X. Insights into the function of ESCRT and its role in enveloped virus infection. Front Microbiol 2023; 14:1261651. [PMID: 37869652 PMCID: PMC10587442 DOI: 10.3389/fmicb.2023.1261651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) is an essential molecular machinery in eukaryotic cells that facilitates the invagination of endosomal membranes, leading to the formation of multivesicular bodies (MVBs). It participates in various cellular processes, including lipid bilayer remodeling, cytoplasmic separation, autophagy, membrane fission and re-modeling, plasma membrane repair, as well as the invasion, budding, and release of certain enveloped viruses. The ESCRT complex consists of five complexes, ESCRT-0 to ESCRT-III and VPS4, along with several accessory proteins. ESCRT-0 to ESCRT-II form soluble complexes that shuttle between the cytoplasm and membranes, mainly responsible for recruiting and transporting membrane proteins and viral particles, as well as recruiting ESCRT-III for membrane neck scission. ESCRT-III, a soluble monomer, directly participates in vesicle scission and release, while VPS4 hydrolyzes ATP to provide energy for ESCRT-III complex disassembly, enabling recycling. Studies have confirmed the hijacking of ESCRT complexes by enveloped viruses to facilitate their entry, replication, and budding. Recent research has focused on the interaction between various components of the ESCRT complex and different viruses. In this review, we discuss how different viruses hijack specific ESCRT regulatory proteins to impact the viral life cycle, aiming to explore commonalities in the interaction between viruses and the ESCRT system.
Collapse
Affiliation(s)
- Chunxuan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yu Chen
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| |
Collapse
|
9
|
Lebedev M, Chan FY, Lochner A, Bellessem J, Osório DS, Rackles E, Mikeladze-Dvali T, Carvalho AX, Zanin E. Anillin forms linear structures and facilitates furrow ingression after septin and formin depletion. Cell Rep 2023; 42:113076. [PMID: 37665665 PMCID: PMC10548094 DOI: 10.1016/j.celrep.2023.113076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 07/13/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023] Open
Abstract
During cytokinesis, a contractile ring consisting of unbranched filamentous actin (F-actin) and myosin II constricts at the cell equator. Unbranched F-actin is generated by formin, and without formin no cleavage furrow forms. In Caenorhabditis elegans, depletion of septin restores furrow ingression in formin mutants. How the cleavage furrow ingresses without a detectable unbranched F-actin ring is unknown. We report that, in this setting, anillin (ANI-1) forms a meshwork of circumferentially aligned linear structures decorated by non-muscle myosin II (NMY-2). Analysis of ANI-1 deletion mutants reveals that its disordered N-terminal half is required for linear structure formation and sufficient for furrow ingression. NMY-2 promotes the circumferential alignment of the linear ANI-1 structures and interacts with various lipids, suggesting that NMY-2 links the ANI-1 network with the plasma membrane. Collectively, our data reveal a compensatory mechanism, mediated by ANI-1 linear structures and membrane-bound NMY-2, that promotes furrowing when unbranched F-actin polymerization is compromised.
Collapse
Affiliation(s)
- Mikhail Lebedev
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, 91058 Erlangen, Germany; Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Fung-Yi Chan
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Anna Lochner
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, 91058 Erlangen, Germany
| | - Jennifer Bellessem
- Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Daniel S Osório
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Elisabeth Rackles
- Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Tamara Mikeladze-Dvali
- Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Ana Xavier Carvalho
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Esther Zanin
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, 91058 Erlangen, Germany; Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
10
|
Saar KL, Qian D, Good LL, Morgunov AS, Collepardo-Guevara R, Best RB, Knowles TPJ. Theoretical and Data-Driven Approaches for Biomolecular Condensates. Chem Rev 2023; 123:8988-9009. [PMID: 37171907 PMCID: PMC10375482 DOI: 10.1021/acs.chemrev.2c00586] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 05/14/2023]
Abstract
Biomolecular condensation processes are increasingly recognized as a fundamental mechanism that living cells use to organize biomolecules in time and space. These processes can lead to the formation of membraneless organelles that enable cells to perform distinct biochemical processes in controlled local environments, thereby supplying them with an additional degree of spatial control relative to that achieved by membrane-bound organelles. This fundamental importance of biomolecular condensation has motivated a quest to discover and understand the molecular mechanisms and determinants that drive and control this process. Within this molecular viewpoint, computational methods can provide a unique angle to studying biomolecular condensation processes by contributing the resolution and scale that are challenging to reach with experimental techniques alone. In this Review, we focus on three types of dry-lab approaches: theoretical methods, physics-driven simulations and data-driven machine learning methods. We review recent progress in using these tools for probing biomolecular condensation across all three fields and outline the key advantages and limitations of each of the approaches. We further discuss some of the key outstanding challenges that we foresee the community addressing next in order to develop a more complete picture of the molecular driving forces behind biomolecular condensation processes and their biological roles in health and disease.
Collapse
Affiliation(s)
- Kadi L. Saar
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United Kingdom
- Transition
Bio Ltd., Cambridge, United Kingdom
| | - Daoyuan Qian
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Lydia L. Good
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United Kingdom
- Laboratory
of Chemical Physics, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| | - Alexey S. Morgunov
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Rosana Collepardo-Guevara
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United Kingdom
- Department
of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Robert B. Best
- Laboratory
of Chemical Physics, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| | - Tuomas P. J. Knowles
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United Kingdom
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
11
|
Hurtig F, Burgers TC, Cezanne A, Jiang X, Mol FN, Traparić J, Pulschen AA, Nierhaus T, Tarrason-Risa G, Harker-Kirschneck L, Löwe J, Šarić A, Vlijm R, Baum B. The patterned assembly and stepwise Vps4-mediated disassembly of composite ESCRT-III polymers drives archaeal cell division. SCIENCE ADVANCES 2023; 9:eade5224. [PMID: 36921039 PMCID: PMC10017037 DOI: 10.1126/sciadv.ade5224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/14/2023] [Indexed: 05/13/2023]
Abstract
ESCRT-III family proteins form composite polymers that deform and cut membrane tubes in the context of a wide range of cell biological processes across the tree of life. In reconstituted systems, sequential changes in the composition of ESCRT-III polymers induced by the AAA-adenosine triphosphatase Vps4 have been shown to remodel membranes. However, it is not known how composite ESCRT-III polymers are organized and remodeled in space and time in a cellular context. Taking advantage of the relative simplicity of the ESCRT-III-dependent division system in Sulfolobus acidocaldarius, one of the closest experimentally tractable prokaryotic relatives of eukaryotes, we use super-resolution microscopy, electron microscopy, and computational modeling to show how CdvB/CdvB1/CdvB2 proteins form a precisely patterned composite ESCRT-III division ring, which undergoes stepwise Vps4-dependent disassembly and contracts to cut cells into two. These observations lead us to suggest sequential changes in a patterned composite polymer as a general mechanism of ESCRT-III-dependent membrane remodeling.
Collapse
Affiliation(s)
- Fredrik Hurtig
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Thomas C. Q. Burgers
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands
| | - Alice Cezanne
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Xiuyun Jiang
- Laboratory of Soft Matter Physics, The Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Frank N. Mol
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands
| | - Jovan Traparić
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Tim Nierhaus
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Lena Harker-Kirschneck
- University College London, Institute for the Physics of Living Systems, WC1E 6BT London, UK
| | - Jan Löwe
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Anđela Šarić
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Rifka Vlijm
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands
| | - Buzz Baum
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| |
Collapse
|
12
|
Paul S, Audhya A, Cui Q. Molecular mechanism of GTP binding- and dimerization-induced enhancement of Sar1-mediated membrane remodeling. Proc Natl Acad Sci U S A 2023; 120:e2212513120. [PMID: 36780528 PMCID: PMC9974494 DOI: 10.1073/pnas.2212513120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/18/2023] [Indexed: 02/15/2023] Open
Abstract
The Sar1 GTPase initiates coat protein II (COPII)-mediated protein transport by generating membrane curvature at subdomains on the endoplasmic reticulum, where it is activated by the guanine nucleotide exchange factor (GEF) Sec12. Crystal structures of GDP- and GTP-bound forms of Sar1 suggest that it undergoes a conformational switch in which GTP binding enhances the exposure of an amino-terminal amphipathic helix necessary for efficient membrane penetration. However, key residues in the amino terminus were not resolved in crystal structures, and experimental studies have suggested that the amino terminus of Sar1 is solvent-exposed in the absence of a membrane, even in the GDP-bound state. Therefore, the molecular mechanism by which GTP binding activates the membrane-remodeling activity of Sar1 remains unclear. Using atomistic molecular dynamics simulations, we compare the membrane-binding and curvature generation activities of Sar1 in its GDP- and GTP-bound states. We show that in the GTP-bound state, Sar1 inserts into the membrane with its complete (residues 1 to 23) amphipathic amino-terminal helix, while Sar1-GDP binds to the membrane only through its first 12 residues. Such differential membrane-binding modes translate into significant differences in the protein volume inserted into the membrane. As a result, Sar1-GTP generates positive membrane curvature 10 to 20 times higher than Sar1-GDP. Dimerization of the GTP-bound form of Sar1 further amplifies curvature generation. Taken together, our results present a detailed molecular mechanism for how the nucleotide-bound state of Sar1 regulates its membrane-binding and remodeling activities in a concentration-dependent manner, paving the way toward a better understanding COPII-mediated membrane transport.
Collapse
Affiliation(s)
- Sanjoy Paul
- Department of Chemistry, Boston University, Boston, MA02215
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Qiang Cui
- Department of Chemistry, Boston University, Boston, MA02215
- Departments of Physics, Boston University, Boston, MA02215
- Departments of Biomedical Engineering, Boston University, Boston, MA02215
| |
Collapse
|
13
|
Fu Y, Johnson ME. Modeling membrane reshaping driven by dynamic protein assemblies. Curr Opin Struct Biol 2023; 78:102505. [PMID: 36528994 PMCID: PMC9908840 DOI: 10.1016/j.sbi.2022.102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 12/23/2022]
Abstract
Remodeling of membranes in living systems is almost universally coupled to self-assembly of soluble proteins. Proteins assemble into semi-rigid shells that reshape attached membranes, and into filaments that protrude membranes. These assemblies are temporary, building from reversible protein and membrane interactions that must nucleate in the proper location. The interactions are strongly influenced by the nonequilibrium environment of the cell, such as gradients of components or active modifications by kinases. From a modeling perspective, understanding mechanisms and control thus requires 1. time-dependent approaches that ideally incorporate 2. macromolecular structure, 3. out-of-equilibrium processes, and 4. deformable membranes over microns and seconds. Realistically, tradeoffs must be made with these last three features. However, we see recent developments from the highly coarsened molecule-based scale, the continuum reaction-diffusion scale, and hybrid approaches as stimulating efforts in diverse applications. We discuss here methodological advances and progress towards simulating these processes as they occur physiologically.
Collapse
Affiliation(s)
- Yiben Fu
- T. C. Jenkins Department of Biophysics, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Margaret E Johnson
- T. C. Jenkins Department of Biophysics, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA.
| |
Collapse
|
14
|
The archaeal Cdv cell division system. Trends Microbiol 2023; 31:601-615. [PMID: 36658033 DOI: 10.1016/j.tim.2022.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023]
Abstract
The Cdv system is the protein machinery that performs cell division and other membrane-deforming processes in a subset of archaea. Evolutionarily, the system is closely related to the eukaryotic ESCRT machinery, with which it shares many structural and functional similarities. Since its first description 15 years ago, the understanding of the Cdv system progressed rather slowly, but recent discoveries sparked renewed interest and insights. The emerging physical picture appears to be that CdvA acts as a membrane anchor, CdvB as a scaffold that localizes division to the mid-cell position, CdvB1 and CvdB2 as the actual constriction machinery, and CdvC as the ATPase that detaches Cdv proteins from the membrane. This paper provides a comprehensive overview of the research done on Cdv and explains how this relatively understudied machinery acts to perform its cell-division function. Understanding of the Cdv system helps to better grasp the biophysics and evolution of archaea, and furthermore provides new opportunities for the bottom-up building of a divisome for synthetic cells.
Collapse
|
15
|
Azad K, Guilligay D, Boscheron C, Maity S, De Franceschi N, Sulbaran G, Effantin G, Wang H, Kleman JP, Bassereau P, Schoehn G, Roos WH, Desfosses A, Weissenhorn W. Structural basis of CHMP2A-CHMP3 ESCRT-III polymer assembly and membrane cleavage. Nat Struct Mol Biol 2023; 30:81-90. [PMID: 36604498 DOI: 10.1038/s41594-022-00867-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/12/2022] [Indexed: 01/07/2023]
Abstract
The endosomal sorting complex required for transport (ESCRT) is a highly conserved protein machinery that drives a divers set of physiological and pathological membrane remodeling processes. However, the structural basis of ESCRT-III polymers stabilizing, constricting and cleaving negatively curved membranes is yet unknown. Here we present cryo-EM structures of membrane-coated CHMP2A-CHMP3 filaments from Homo sapiens of two different diameters at 3.3 and 3.6 Å resolution. The structures reveal helical filaments assembled by CHMP2A-CHMP3 heterodimers in the open ESCRT-III conformation, which generates a partially positive charged membrane interaction surface, positions short N-terminal motifs for membrane interaction and the C-terminal VPS4 target sequence toward the tube interior. Inter-filament interactions are electrostatic, which may facilitate filament sliding upon VPS4-mediated polymer remodeling. Fluorescence microscopy as well as high-speed atomic force microscopy imaging corroborate that VPS4 can constrict and cleave CHMP2A-CHMP3 membrane tubes. We therefore conclude that CHMP2A-CHMP3-VPS4 act as a minimal membrane fission machinery.
Collapse
Affiliation(s)
- Kimi Azad
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Delphine Guilligay
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Cecile Boscheron
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Sourav Maity
- Moleculaire Biofysica, Zernike Institute, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Nicola De Franceschi
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France.,Curie Institute, Laboratory of Physical Chemistry Curie, University of PSL, Sorbonne University, CNRS, Paris, France
| | - Guidenn Sulbaran
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Gregory Effantin
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Haiyan Wang
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Jean-Philippe Kleman
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Patricia Bassereau
- Curie Institute, Laboratory of Physical Chemistry Curie, University of PSL, Sorbonne University, CNRS, Paris, France
| | - Guy Schoehn
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Institute, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Ambroise Desfosses
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France.
| | - Winfried Weissenhorn
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France.
| |
Collapse
|
16
|
Meadowcroft B, Palaia I, Pfitzner AK, Roux A, Baum B, Šarić A. Mechanochemical Rules for Shape-Shifting Filaments that Remodel Membranes. PHYSICAL REVIEW LETTERS 2022; 129:268101. [PMID: 36608212 DOI: 10.1103/physrevlett.129.268101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
The sequential exchange of filament composition to increase filament curvature was proposed as a mechanism for how some biological polymers deform and cut membranes. The relationship between the filament composition and its mechanical effect is lacking. We develop a kinetic model for the assembly of composite filaments that includes protein-membrane adhesion, filament mechanics and membrane mechanics. We identify the physical conditions for such a membrane remodeling and show this mechanism of sequential polymer assembly lowers the energetic barrier for membrane deformation.
Collapse
Affiliation(s)
- Billie Meadowcroft
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Ivan Palaia
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | | | - Aurélien Roux
- Biochemistry Department, University of Geneva, CH-1211 Geneva, Switzerland
- Swiss National Centre for Competence in Research Programme Chemical Biology, CH-1211 Geneva, Switzerland
| | - Buzz Baum
- MRC Laboratory of Molecular Biology, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Anđela Šarić
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
17
|
Rani B, Gupta DK, Johansson S, Kamranvar SA. Contribution of integrin adhesion to cytokinetic abscission and genomic integrity. Front Cell Dev Biol 2022; 10:1048717. [PMID: 36578785 PMCID: PMC9791049 DOI: 10.3389/fcell.2022.1048717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Recent research shows that integrin-mediated adhesion contributes to the regulation of cell division at two key steps: the formation of the mitotic spindle at the mitotic entry and the final cytokinetic abscission at the mitotic exit. Failure in either of these processes will have a direct impact on the other in each round of the cell cycle and on the genomic integrity. This review aims to present how integrin signals are involved at these cell cycle stages under normal conditions and some safety mechanisms that may counteract the generation of aneuploid cells in cases of defective integrin signals.
Collapse
Affiliation(s)
- Bhavna Rani
- Department of Medical Biochemistry and Microbiology (IMBIM), Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Deepesh K. Gupta
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Staffan Johansson
- Department of Medical Biochemistry and Microbiology (IMBIM), Biomedical Center, Uppsala University, Uppsala, Sweden,*Correspondence: Staffan Johansson, ; Siamak A. Kamranvar,
| | - Siamak A. Kamranvar
- Department of Medical Biochemistry and Microbiology (IMBIM), Biomedical Center, Uppsala University, Uppsala, Sweden,*Correspondence: Staffan Johansson, ; Siamak A. Kamranvar,
| |
Collapse
|
18
|
Jiang X, Harker-Kirschneck L, Vanhille-Campos C, Pfitzner AK, Lominadze E, Roux A, Baum B, Šarić A. Modelling membrane reshaping by staged polymerization of ESCRT-III filaments. PLoS Comput Biol 2022; 18:e1010586. [PMID: 36251703 PMCID: PMC9612822 DOI: 10.1371/journal.pcbi.1010586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/27/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022] Open
Abstract
ESCRT-III filaments are composite cytoskeletal polymers that can constrict and cut cell membranes from the inside of the membrane neck. Membrane-bound ESCRT-III filaments undergo a series of dramatic composition and geometry changes in the presence of an ATP-consuming Vps4 enzyme, which causes stepwise changes in the membrane morphology. We set out to understand the physical mechanisms involved in translating the changes in ESCRT-III polymer composition into membrane deformation. We have built a coarse-grained model in which ESCRT-III polymers of different geometries and mechanical properties are allowed to copolymerise and bind to a deformable membrane. By modelling ATP-driven stepwise depolymerisation of specific polymers, we identify mechanical regimes in which changes in filament composition trigger the associated membrane transition from a flat to a buckled state, and then to a tubule state that eventually undergoes scission to release a small cargo-loaded vesicle. We then characterise how the location and kinetics of polymer loss affects the extent of membrane deformation and the efficiency of membrane neck scission. Our results identify the near-minimal mechanical conditions for the operation of shape-shifting composite polymers that sever membrane necks.
Collapse
Affiliation(s)
- Xiuyun Jiang
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Lena Harker-Kirschneck
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Christian Vanhille-Campos
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Elene Lominadze
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Buzz Baum
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Anđela Šarić
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
19
|
Amphiphysin AoRvs167-Mediated Membrane Curvature Facilitates Trap Formation, Endocytosis, and Stress Resistance in Arthrobotrysoligospora. Pathogens 2022; 11:pathogens11090997. [PMID: 36145429 PMCID: PMC9501185 DOI: 10.3390/pathogens11090997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
Bin1/Amphiphysin/Rvs (BAR) domain-containing proteins mediate fundamental cellular processes, including membrane remodeling and endocytosis. Nematode-trapping (NT) fungi can differentiate to form trapping structures through highly reorganized cell membranes and walls. In this study, we identified the NT fungus Arthrobotrys oligospora ortholog of yeast Rvs167 and documented its involvement in membrane bending and endocytosis. We further confirmed that the deletion of AoRvs167 makes the fungus more hypersensitive to osmotic salt (Nacl), higher temperatures (28 to 30 °C), and the cell wall perturbation agent Congo red. In addition, the disruption of AoRvs167 reduced the trap formation capacity. Hence, AoRvs167 may regulate fungal pathogenicity through the integrity of plasma membranes and cell walls.
Collapse
|
20
|
Frey F, Idema T. Membrane area gain and loss during cytokinesis. Phys Rev E 2022; 106:024401. [PMID: 36110005 DOI: 10.1103/physreve.106.024401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
In cytokinesis of animal cells, the cell is symmetrically divided into two. Since the cell's volume is conserved, the projected area has to increase to allow for the change of shape. Here we aim to predict how membrane gain and loss adapt during cytokinesis. We work with a kinetic model in which membrane turnover depends on membrane tension and cell shape. We apply this model to a series of calculated vesicle shapes as a proxy for the shape of dividing cells. We find that the ratio of kinetic turnover parameters changes nonmonotonically with cell shape, determined by the dependence of exocytosis and endocytosis on membrane curvature. Our results imply that controlling membrane turnover will be crucial for the successful division of artificial cells.
Collapse
Affiliation(s)
- Felix Frey
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Timon Idema
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
21
|
Sadeghi M. Investigating the entropic nature of membrane-mediated interactions driving the aggregation of peripheral proteins. SOFT MATTER 2022; 18:3917-3927. [PMID: 35543220 DOI: 10.1039/d2sm00118g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Peripheral membrane-associated proteins are known to accumulate on the surface of biomembranes as a result of membrane-mediated interactions. For a pair of rotationally-symmetric curvature-inducing proteins, membrane mechanics at the low-temperature limit predicts pure repulsion. On the other hand, temperature-dependent entropic forces arise between pairs of stiff-binding proteins suppressing membrane fluctuations. These Casimir-like interactions have thus been suggested as candidates for attractive forces leading to aggregation. With dense assemblies of peripheral proteins on the membrane, both these abstractions encounter short-range and multi-body complications. Here, we make use of a particle-based membrane model augmented with flexible peripheral proteins to quantify purely membrane-mediated interactions and investigate their underlying nature. We introduce a continuous reaction coordinate corresponding to the progression of protein aggregation. We obtain free energy and entropy landscapes for different surface concentrations along this reaction coordinate. In parallel, we investigate time-dependent estimates of membrane entropy corresponding to membrane undulations and coarse-grained director field and how they change dynamically with protein aggregation. Congruent outcomes of the two approaches point to the conclusion that for low surface concentrations, interactions with an entropic nature may drive the aggregation. But at high concentrations, enthalpic contributions due to concerted membrane deformation by protein clusters are dominant.
Collapse
Affiliation(s)
- Mohsen Sadeghi
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 12, 14195 Berlin, Germany.
| |
Collapse
|