1
|
Luo K, Yuan W, Lu Z, Xiong Z, Huang JH, Wang X, Feng X. Riverine songbirds capture high levels of atmospheric mercury pollution from brown food webs in forests by mercury isotopic evidence. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137347. [PMID: 39869980 DOI: 10.1016/j.jhazmat.2025.137347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Elevated methylmercury (MeHg) exposure poses significant risks to bird health, behavior, and reproduction. Still, the risk of MeHg exposure to forest birds, accounting for over 80 % of the world's bird species, is poorly understood. This study combines Hg isotopes and video analysis, aiming to assess MeHg exposure risks to a forest riverine songbird, the spotted forktail (Enicurus maculatus) from a remote subtropical montane forest. Noticeably, 83 % of feather MeHg concentrations of adult forktails exceeded 5000 ng g-1, a threshold level potentially impacting bird reproduction, and 50 % of feather MeHg concentrations in forktail nestlings exceeded the threshold level of 1000 ng g-1, that potentially impacts the nestling growth. Forktail nestlings ingested ∼ 99 % of their MeHg from prey within brown food webs (i.e., from forest floor, aquatic, and emergent aquatic prey). The Hg isotopes reveal that MeHg along the bird food chain is mostly derived from in situ methylation of litterfall deposited atmospheric Hg0, with limited photo-demethylation (i.e., 4-12 %) in shaded forest environments. The risk of MeHg exposure of forest songbirds correlated positively with the proportion of prey consumed from brown food webs. We recommend incorporating resident riverine songbirds in monitoring programs to better evaluate the effectiveness of the Minamata Convention, especially in remote forest ecosystems where in situ MeHg production may be underestimated.
Collapse
Affiliation(s)
- Kang Luo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zhiyun Lu
- Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong, Yunnan 676200, China
| | - Zichun Xiong
- Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong, Yunnan 676200, China
| | - Jen-How Huang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Belitz MW, Larsen EA, Hurlbert AH, Di Cecco GJ, Neupane N, Ries L, Tingley MW, Guralnick RP, Youngflesh C. Potential for bird-insect phenological mismatch in a tri-trophic system. J Anim Ecol 2025; 94:717-728. [PMID: 39994832 PMCID: PMC11962238 DOI: 10.1111/1365-2656.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/13/2025] [Indexed: 02/26/2025]
Abstract
Climate change is altering the seasonal timing of biological events across the tree of life. Phenological asynchrony has the potential to hasten population declines and disrupt ecosystem function. However, we lack broad comparisons of the degree of sensitivity to common phenological cues across multiple trophic levels. Overcoming the complexity of integrating data across trophic levels is essential for identifying spatial locations and species for which mismatches are most likely to occur. Here, we synthesized over 15 years of data across three trophic levels to estimate the timing of four interacting phenological events in eastern North America: the green-up of forest canopy trees, emergence of adult Lepidoptera and arrival and subsequent breeding of migratory birds. We next quantified the magnitude of phenological shift per one unit change of springtime temperature accumulation as measured by accumulated growing degree days (GDD). We expected trophic responses to spring temperature accumulation to be related to physiology, thus predicting a weaker response of birds to GDD than that of insects and plants. We found that insect and plant phenology indeed had similarly strong sensitivity to GDD, while bird phenology had lower sensitivity. We also found that vegetation green-up and bird arrival were more sensitive to GDD in higher latitudes, but the timing of bird breeding was less sensitive to GDD in higher latitudes. Migratory bird species with slow migration pace, early arrivals and more northerly wintering grounds shifted their arrival the most. Across Eastern Temperate Forests, the similar responses of vegetation green-up and Lepidoptera emergence to temperature shifts support the use of remotely sensed green-up to track how the timing of bird food resources is shifting in response to climate change. Our results indicate that, across our plant-insect-bird system, the bird-insect phenological link has a greater potential for phenological mismatch than the insect-plant link, with a higher risk of decoupling at higher latitudes.
Collapse
Affiliation(s)
- Michael W. Belitz
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFloridaUSA
| | - Elise A. Larsen
- Department of BiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| | - Allen H. Hurlbert
- Department of BiologyUniversity of North CarolinaChapel HillNorth CarolinaUSA
- Environment, Ecology and Energy ProgramUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Grace J. Di Cecco
- Department of BiologyUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Naresh Neupane
- Department of BiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| | - Leslie Ries
- Department of BiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| | - Morgan W. Tingley
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaLos AngelesCaliforniaUSA
| | | | - Casey Youngflesh
- Department of Biological SciencesClemson UniversityClemsonSouth CarolinaUSA
| |
Collapse
|
3
|
Wolfe JD, Luther DA, Jirinec V, Collings J, Johnson EI, Bierregaard RO, Stouffer PC. Climate change aggravates bird mortality in pristine tropical forests. SCIENCE ADVANCES 2025; 11:eadq8086. [PMID: 39879312 PMCID: PMC11777245 DOI: 10.1126/sciadv.adq8086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025]
Abstract
Stable understory microclimates within undisturbed rainforests are often considered refugia against climate change. However, this assumption contrasts with emerging evidence of Neotropical bird population declines in intact rainforests. We assessed the vulnerability of resident rainforest birds to climatic variability, focusing on dry season severity characterized by hotter temperatures and reduced rainfall. Analyzing 4264 individual bird captures over 27 years, we found that harsher Amazonian dry seasons significantly reduced apparent survival for 24 of 29 species, with longer-lived species being more strongly affected. Our model predicted that a 1°C increase in average dry season temperature would reduce the mean apparent survival of the understory bird community by 63%. These findings directly link climate change to declining bird survival in the Amazon, challenging the notion that pristine rainforests can fully protect their biodiversity under increasingly severe climate conditions.
Collapse
Affiliation(s)
- Jared D. Wolfe
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus 69060-001, Amazonas, Brazil
| | - David A. Luther
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus 69060-001, Amazonas, Brazil
- Biology Department, George Mason University, Fairfax, VA 22030, USA
| | - Vitek Jirinec
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus 69060-001, Amazonas, Brazil
- Integral Ecology Research Center, Blue Lake, CA 95525, USA
| | - Jeremy Collings
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Erik I. Johnson
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus 69060-001, Amazonas, Brazil
- Audubon Delta, National Audubon Society, New Orleans, LA 70119, USA
- School of Renewable Natural Resources, Louisiana State University and LSU AgCenter, Baton Rouge, LA 70803, USA
| | - Robert O. Bierregaard
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus 69060-001, Amazonas, Brazil
- Ornithology Department, The Academy of Natural Sciences of Drexel University, Philadelphia, PA 19103, USA
| | - Philip C Stouffer
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus 69060-001, Amazonas, Brazil
- School of Renewable Natural Resources, Louisiana State University and LSU AgCenter, Baton Rouge, LA 70803, USA
| |
Collapse
|
4
|
Kaplan G. Human-Caused High Direct Mortality in Birds: Unsustainable Trends and Ameliorative Actions. Animals (Basel) 2024; 15:73. [PMID: 39795016 PMCID: PMC11719028 DOI: 10.3390/ani15010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Human interaction with birds has never been more positive and supported by so many private citizens and professional groups. However, direct mortality of birds from anthropogenic causes has increased and has led to significant annual losses of birds. We know of the crucial impact of habitat loss on the survival of birds and its effects on biodiversity. Direct mortality via anthropogenic causes is an additive but biologically important cause of avian decline. This is the focus of this paper. This paper synthesises and interprets the data on direct anthropogenic causes of mortality in birds, and it also discusses emerging and relatively hidden problems, including new challenges that birds may not be able to manage. This paper points out that such deaths occur indiscriminately and have negative behavioural and reproductive consequences even for survivors. All of these factors are important to address, because any functional habitat depends on birds. This paper suggests that some of this death toll can be reduced substantially and immediately, even some of the seemingly intractable problems. This paper also proposes cross-disciplinary solutions, bearing in mind that "ecosystem services" provided by birds benefit us all, and that the continued existence of avian diversity is one cornerstone for human survival.
Collapse
Affiliation(s)
- Gisela Kaplan
- School of Science & Technology, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
5
|
Pollock HS, Tarwater CE, Karr JR, Brawn JD. Long-term monitoring reveals the long lifespans of Neotropical forest landbirds. Ecology 2024; 105:e4386. [PMID: 39049134 DOI: 10.1002/ecy.4386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/24/2024] [Accepted: 04/09/2024] [Indexed: 07/27/2024]
Affiliation(s)
- Henry S Pollock
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Corey E Tarwater
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| | - James R Karr
- Aquatic and Fishery Science, University of Washington, Seattle, Washington, USA
| | - Jeffrey D Brawn
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| |
Collapse
|
6
|
Freeman BG, Miller ET, Strimas-Mackey M. Interspecific competition shapes bird species' distributions along tropical precipitation gradients. Ecol Lett 2024; 27:e14487. [PMID: 39086139 DOI: 10.1111/ele.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
The hypothesis that species' ranges are limited by interspecific competition has motivated decades of debate, but a general answer remains elusive. Here we test this hypothesis for lowland tropical birds by examining species' precipitation niche breadths. We focus on precipitation because it-not temperature-is the dominant climate variable that shapes the biota of the lowland tropics. We used 3.6 million fine-scale citizen science records from eBird to measure species' precipitation niche breadths in 19 different regions across the globe. Consistent with the predictions of the interspecific competition hypothesis, multiple lines of evidence show that species have narrower precipitation niches in regions with more species. This means species inhabit more specialized precipitation niches in species-rich regions. We predict this niche specialization should make tropical species in high diversity regions disproportionately vulnerable to changes in precipitation regimes; preliminary empirical evidence is consistent with this prediction.
Collapse
Affiliation(s)
- Benjamin G Freeman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Eliot T Miller
- Cornell Lab of Ornithology, Cornell University, Ithaca, New York, USA
| | | |
Collapse
|
7
|
Leung B, Gonzalez A. Global monitoring for biodiversity: Uncertainty, risk, and power analyses to support trend change detection. SCIENCE ADVANCES 2024; 10:eadj1448. [PMID: 38363843 PMCID: PMC11639671 DOI: 10.1126/sciadv.adj1448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/17/2024] [Indexed: 02/18/2024]
Abstract
Global targets aim to reverse biodiversity declines by 2050 but require knowledge of current trends and future projections under policy intervention. First, given uncertainty in measurement of current trends, we propose a risk framework, considering probability and magnitude of decline. While only 11 of 198 systems analyzed (taxonomic groups by country from the Living Planet Database) showed declining abundance with high certainty, 20% of systems had a 70% chance of strong declines. Society needs to decide acceptable risks of biodiversity loss. Second, we calculated statistical power to detect trend change using ~12,000 populations from 62 systems currently showing strong declines. Current trend uncertainty hinders our ability to assess improvements. Trend change is detectable with high certainty in only 14 systems, even if thousands of populations are sampled, and conservation action reduces net declines to zero immediately, on average. We provide potential solutions to improve monitoring of progress toward biodiversity targets.
Collapse
Affiliation(s)
- Brian Leung
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
- Bieler School of Environment, McGill University, Montreal, Quebec H3A 2A7, Canada
- Smithsonian Tropical Research Institute (STRI), P.O. Box 0843-03092, Panama City, Panama
| | - Andrew Gonzalez
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
- Quebec Centre for Biodiversity Science (QCBS), Montreal, Quebec H3A 1B1, Canada
- Group on Earth Observations Biodiversity Observation Network (GEO BON), Montreal, Quebec H3A 1B1, Canada
| |
Collapse
|
8
|
Auliz-Ortiz DM, Benítez-Malvido J, Arroyo-Rodríguez V, Dirzo R, Pérez-Farrera MÁ, Luna-Reyes R, Mendoza E, Álvarez-Añorve MY, Álvarez-Sánchez J, Arias-Ataide DM, Ávila-Cabadilla LD, Botello F, Braasch M, Casas A, Campos-Villanueva DÁ, Cedeño-Vázquez JR, Chávez-Tovar JC, Coates R, Dechnik-Vázquez Y, del Coro Arizmendi M, Dias PA, Dorado O, Enríquez P, Escalona-Segura G, Farías-González V, Favila ME, García A, García-Morales LJ, Gavito-Pérez F, Gómez-Domínguez H, González-García F, González-Zamora A, Cuevas-Guzmán R, Haro-Belchez E, Hernández-Huerta AH, Hernández-Ordoñez O, Horváth A, Ibarra-Manríquez G, Lavín-Murcio PA, Lira-Saade R, López-Díaz K, MacSwiney G. MC, Mandujano S, Martínez-Camilo R, Martínez-Ávalos JG, Martínez-Meléndez N, Monroy-Ojeda A, Mora F, Mora-Olivo A, Muench C, Peña-Mondragón JL, Percino-Daniel R, Ramírez-Marcial N, Reyna-Hurtado R, Rodríguez-Ruíz ER, Sánchez-Cordero V, Suazo-Ortuño I, Terán-Juárez SA, Valdivieso-Pérez IA, Valencia V, Valenzuela-Galván D, Vargas-Contreras JA, Vázquez-Pérez JR, Vega-Rivera JH, Venegas-Barrera CS, Martínez-Ramos M. Underlying and proximate drivers of biodiversity changes in Mesoamerican biosphere reserves. Proc Natl Acad Sci U S A 2024; 121:e2305944121. [PMID: 38252845 PMCID: PMC10861858 DOI: 10.1073/pnas.2305944121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Protected areas are of paramount relevance to conserving wildlife and ecosystem contributions to people. Yet, their conservation success is increasingly threatened by human activities including habitat loss, climate change, pollution, and species overexploitation. Thus, understanding the underlying and proximate drivers of anthropogenic threats is urgently needed to improve protected areas' effectiveness, especially in the biodiversity-rich tropics. We addressed this issue by analyzing expert-provided data on long-term biodiversity change (last three decades) over 14 biosphere reserves from the Mesoamerican Biodiversity Hotspot. Using multivariate analyses and structural equation modeling, we tested the influence of major socioeconomic drivers (demographic, economic, and political factors), spatial indicators of human activities (agriculture expansion and road extension), and forest landscape modifications (forest loss and isolation) as drivers of biodiversity change. We uncovered a significant proliferation of disturbance-tolerant guilds and the loss or decline of disturbance-sensitive guilds within reserves causing a "winner and loser" species replacement over time. Guild change was directly related to forest spatial changes promoted by the expansion of agriculture and roads within reserves. High human population density and low nonfarming occupation were identified as the main underlying drivers of biodiversity change. Our findings suggest that to mitigate anthropogenic threats to biodiversity within biosphere reserves, fostering human population well-being via sustainable, nonfarming livelihood opportunities around reserves is imperative.
Collapse
Affiliation(s)
- Daniel Martín Auliz-Ortiz
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia58190, Mexico
| | - Julieta Benítez-Malvido
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia58190, Mexico
| | - Víctor Arroyo-Rodríguez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia58190, Mexico
- Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México, Mérida97357, Mexico
| | - Rodolfo Dirzo
- Department of Biology, Stanford University, Palo Alto, CA9430
- Department of Earth Systems Science, Stanford University, Palo Alto, CA9430
| | - Miguel Ángel Pérez-Farrera
- Herbario Eizi Matuda, Laboratorio de Ecología, Evolutiva, Instituto de Ciencias Biológicas Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez29039, Mexico
| | - Roberto Luna-Reyes
- Dirección de Áreas Naturales y Vida Silvestre, Secretaría de Medio Ambiente e Historia Natural, Tuxtla Gutiérrez29000, Mexico
| | - Eduardo Mendoza
- Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia58337, Mexico
| | | | - Javier Álvarez-Sánchez
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México04510, Mexico
| | - Dulce María Arias-Ataide
- Centro de Investigación y Educación Ambiental Sierra de Huautla, Universidad Autónoma del Estado de Morelos, Cuernavaca62914, Mexico
| | - Luis Daniel Ávila-Cabadilla
- Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México, Mérida97357, Mexico
| | - Francisco Botello
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México04510, Mexico
| | - Marco Braasch
- Faktorgruen, Landschaftsarchitekten bdla Beratende Ingenieure, Abteilung Landschaftsplanung, Rottweil, Baden-Württemberg78628, Germany
| | - Alejandro Casas
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia58190, Mexico
| | - Delfino Álvaro Campos-Villanueva
- Estación de Biología Tropical Los Tuxtlas, Instituto de Biología, Universidad Nacional Autónoma de México, San Andrés Tuxtla, Veracruz95701, Mexico
| | - José Rogelio Cedeño-Vázquez
- Departamento de Sistemática y Ecología Acuática, El Colegio de la Frontera Sur, Unidad Chetumal, Chetumal77014, Mexico
| | - José Cuauhtémoc Chávez-Tovar
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana Unidad Lerma, Lerma, Estado de México52006, Mexico
| | - Rosamond Coates
- Estación de Biología Tropical Los Tuxtlas, Instituto de Biología, Universidad Nacional Autónoma de México, San Andrés Tuxtla, Veracruz95701, Mexico
| | - Yanus Dechnik-Vázquez
- Pre-Planning Center of the Gulf, Federal Electricity Comission, Boca del Río, Veracruz94295, Mexico
| | - María del Coro Arizmendi
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalneplantla54090, Mexico
| | - Pedro Américo Dias
- Primate Behavioral Ecology Lab, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz91190, Mexico
| | - Oscar Dorado
- Centro de Investigación y Educación Ambiental Sierra de Huautla, Universidad Autónoma del Estado de Morelos, Cuernavaca62914, Mexico
| | - Paula Enríquez
- Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Unidad San Cristóbal, San Cristóbal de Las Casas, Chiapas29290, Mexico
| | - Griselda Escalona-Segura
- Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Unidad Campeche, Campeche24500, Mexico
| | - Verónica Farías-González
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalneplantla54090, Mexico
| | - Mario E. Favila
- Red de Ecoetología, Instituto de Ecología, A.C., Xalapa, Veracruz91070, Mexico
| | - Andrés García
- Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, San Patricio48980, Mexico
| | - Leccinum Jesús García-Morales
- Departamento de Posgrado e Investigación, Instituto Tecnológico de Ciudad Victoria, Ciudad Victoria, Tamaulipas87010, Mexico
| | - Fernando Gavito-Pérez
- Reserva de la Biosfera Sierra de Manantlán, Comisión Nacional de Áreas Naturales Protegidas, Autlán de Navarro48903, Mexico
| | - Héctor Gómez-Domínguez
- Herbario Eizi Matuda, Laboratorio de Ecología, Evolutiva, Instituto de Ciencias Biológicas Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez29039, Mexico
| | - Fernando González-García
- Red Biología y Conservación de Vertebrados, Instituto de Ecología, A.C., Xalapa, Veracruz91073, Mexico
| | - Arturo González-Zamora
- Instituto de Investigaciones Biológicas, Universidad Veracruzana, Xalapa, Veracruz911901, Mexico
| | - Ramón Cuevas-Guzmán
- Departamento de Ecología y Recursos Naturales, Centro Universitario de la Costa Sur, Universidad de Guadalajara, Autlán de Navarro48900, Mexico
| | | | | | - Omar Hernández-Ordoñez
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México04510, Mexico
| | - Anna Horváth
- Quirón, Centro de Intervenciones Asistidas con Equinos y Formación para el Bienestar y Sustentabilidad, Asociación Civil, Comitán de Domínguez30039, Mexico
| | - Guillermo Ibarra-Manríquez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia58190, Mexico
| | - Pablo Antonio Lavín-Murcio
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua32315, Mexico
| | - Rafael Lira-Saade
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalneplantla54090, Mexico
| | - Karime López-Díaz
- Centro de Investigación en Ciencias Cognitivas, Universidad Autónoma del Estado de Morelos, Cuernavaca62209, Mexico
| | | | - Salvador Mandujano
- Red Biología y Conservación de Vertebrados, Instituto de Ecología, A.C., Xalapa, Veracruz91073, Mexico
| | - Rubén Martínez-Camilo
- Unidad Villa Corzo, Facultad de Ingeniería, Universidad de Ciencias y Artes de Chiapas, Villa de Corzo30520, Mexico
| | | | - Nayely Martínez-Meléndez
- Orquidario y Jardín Botánico "Comitán", Secretaría de Medio Ambiente e Historia Natural, Comitán de Domínguez30106, Mexico
| | | | - Francisco Mora
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia58190, Mexico
| | - Arturo Mora-Olivo
- Instituto de Ecología Aplicada, Universidad Autónoma de Tamaulipas, Ciudad Victoria, Tamaulipas87019, Mexico
| | - Carlos Muench
- Coordinación Universitaria para la Sustentabilidad, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México04510, Mexico
| | - Juan L. Peña-Mondragón
- Consejo Nacional de Humanidades, Ciencia y Tecnología -Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia58190, Mexico
| | - Ruth Percino-Daniel
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México04510, Mexico
| | - Neptalí Ramírez-Marcial
- Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Unidad San Cristóbal, San Cristóbal de Las Casas, Chiapas29290, Mexico
| | - Rafael Reyna-Hurtado
- Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Unidad Campeche, Campeche24500, Mexico
| | - Erick Rubén Rodríguez-Ruíz
- Comisión de Parques y Biodiversidad de Tamaulipas, Gobierno del Estado de Tamaulipas, Ciudad Victoria, Tamaulipas87083, Mexico
| | - Víctor Sánchez-Cordero
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México04510, Mexico
| | - Ireri Suazo-Ortuño
- Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia58337, Mexico
| | - Sergio Alejandro Terán-Juárez
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México, Campus Ciudad Victoria, Ciudad Victoria, Tamaulipas87010, Mexico
| | - Ingrid Abril Valdivieso-Pérez
- División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Conkal, Tecnológico Nacional de México, Conkal97345, Mexico
| | - Vivian Valencia
- Department of Environment, Agriculture and Geography, Bishop’s University, Sherbrooke, QCJ1M 1Z7, Canada
| | - David Valenzuela-Galván
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Cuernavaca62209, Mexico
| | | | - José Raúl Vázquez-Pérez
- Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Unidad San Cristóbal, San Cristóbal de Las Casas, Chiapas29290, Mexico
| | - Jorge Humberto Vega-Rivera
- Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, San Patricio48980, Mexico
| | - Crystian Sadiel Venegas-Barrera
- Departamento de Posgrado e Investigación, Instituto Tecnológico de Ciudad Victoria, Ciudad Victoria, Tamaulipas87010, Mexico
| | - Miguel Martínez-Ramos
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia58190, Mexico
| |
Collapse
|
9
|
Pollock HS, Rutt CL, Cooper WJ, Brawn JD, Cheviron ZA, Luther DA. Equivocal support for the climate variability hypothesis within a Neotropical bird assemblage. Ecology 2024; 105:e4206. [PMID: 37950619 DOI: 10.1002/ecy.4206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 07/03/2023] [Accepted: 10/05/2023] [Indexed: 11/13/2023]
Abstract
The climate variability hypothesis posits that an organism's exposure to temperature variability determines the breadth of its thermal tolerance and has become an important framework for understanding variation in species' susceptibilities to climate change. For example, ectotherms from more thermally stable environments tend to have narrower thermal tolerances and greater sensitivity to projected climate warming. Among endotherms, however, the relationship between climate variability and thermal physiology is less clear, particularly with regard to microclimate variation-small-scale differences within or between habitats. To address this gap, we explored associations between two sources of temperature variation (habitat type and vertical forest stratum) and (1) thermal physiological traits and (2) temperature sensitivity metrics within a diverse assemblage of Neotropical birds (n = 89 species). We used long-term temperature data to establish that daily temperature regimes in open habitats and forest canopy were both hotter and more variable than those in the forest interior and forest understory, respectively. Despite these differences in temperature regime, however, we found little evidence that species' thermal physiological traits or temperature sensitivity varied in association with either habitat type or vertical stratum. Our findings provide two novel and important insights. First, and in contrast to the supporting empirical evidence from ectotherms, the thermal physiology of birds at our study site appears to be largely decoupled from local temperature variation, providing equivocal support for the climate variability hypothesis in endotherms. Second, we found no evidence that the thermal physiology of understory forest birds differed from that of canopy or open-habitat species-an oft-invoked, yet previously untested, mechanism for why these species are so vulnerable to environmental change.
Collapse
Affiliation(s)
- Henry S Pollock
- Department of Natural Resources and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Cameron L Rutt
- Department of Biology, George Mason University, Fairfax, Virginia, USA
- American Bird Conservancy, The Plains, Virginia, USA
| | | | - Jeffrey D Brawn
- Department of Natural Resources and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Zachary A Cheviron
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - David A Luther
- Department of Biology, George Mason University, Fairfax, Virginia, USA
| |
Collapse
|
10
|
Moulatlet GM, Dáttilo W, Villalobos F. Species-level drivers of avian centrality within seed-dispersal networks across different levels of organisation. J Anim Ecol 2023; 92:2126-2137. [PMID: 37454385 DOI: 10.1111/1365-2656.13986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Bird-plant seed-dispersal networks are structural components of ecosystems. The role of bird species in seed-dispersal networks (from less [peripheral] to more connected [central]), determines the interaction patterns and their ecosystem services. These roles may be driven by morphological and functional traits as well as evolutionary, geographical and environmental properties acting at different spatial extents. It is still unknown if such drivers are equally important in determining species centrality at different network levels, from individual local networks to the global meta-network representing interactions across all local networks. Using 308 networks covering five continents and 11 biogeographical regions, we show that at the global meta-network level species' range size was the most important driver of species centrality, with more central species having larger range sizes, which would facilitate the interaction with a higher number of plants and thus the maintenance of seed-dispersal interactions. At the local network level, body mass was the only driver with a significant effect, implying that local factors related to resource availability are more important at this level of network organisation than those related to broad spatial factors such as range sizes. This could also be related to the mismatch between species-level traits, which do not consider intraspecific variation, and the local networks that can depend on such variation. Taken together, our results show that the drivers determining species centrality are relative to the levels of network organisation, suggesting that prediction of species functional roles in seed-dispersal interactions requires combined local and global approaches.
Collapse
Affiliation(s)
| | - Wesley Dáttilo
- Red de Ecoetología, Instituto de Ecología A.C., Xalapa, Mexico
| | | |
Collapse
|
11
|
Trapote E, Canestrari D, Baglione V. Effects of meteorological conditions on brood care in cooperatively breeding carrion crow and consequences on reproductive success. Front Zool 2023; 20:24. [PMID: 37488542 PMCID: PMC10364382 DOI: 10.1186/s12983-023-00504-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023] Open
Abstract
Meteorological stressors (e.g., temperature and rain shortage) constrain brood provisioning in some bird species, but the consequences on reproductive success have been rarely quantified. Here we show, in a cooperatively breeding population of carrion crow Corvus corone in Spain, that individual feeding rates decreased significantly with rising air temperatures both in breeders and helpers, while lack of rain was associated with a significant reduction in the effort of the male helpers as compared to the other social categories. Group coordination, measured as the degree of alternation of nest visits by carers, was also negatively affected by rising temperature. Furthermore, we found that the body condition of the nestlings worsened when temperatures were high during the rearing period. Interestingly, the analysis of a long-term data set on crow reproduction showed that nestling body condition steadily deteriorated over the last 26-years. Although many factors may concur in causing population changes, our data suggest a possible causal link between global warming, brood caring behaviour and the decline of carrion crow population in the Mediterranean climatic region of Spain.
Collapse
Affiliation(s)
- Eva Trapote
- Departamento de Biodiversidad y Gestión Ambiental, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain.
| | - Daniela Canestrari
- Departamento de Biodiversidad y Gestión Ambiental, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - Vittorio Baglione
- Departamento de Biodiversidad y Gestión Ambiental, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| |
Collapse
|
12
|
Gonzalez A, Chase JM, O'Connor MI. A framework for the detection and attribution of biodiversity change. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220182. [PMID: 37246383 DOI: 10.1098/rstb.2022.0182] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/31/2023] [Indexed: 05/30/2023] Open
Abstract
The causes of biodiversity change are of great scientific interest and central to policy efforts aimed at meeting biodiversity targets. Changes in species diversity and high rates of compositional turnover have been reported worldwide. In many cases, trends in biodiversity are detected, but these trends are rarely causally attributed to possible drivers. A formal framework and guidelines for the detection and attribution of biodiversity change is needed. We propose an inferential framework to guide detection and attribution analyses, which identifies five steps-causal modelling, observation, estimation, detection and attribution-for robust attribution. This workflow provides evidence of biodiversity change in relation to hypothesized impacts of multiple potential drivers and can eliminate putative drivers from contention. The framework encourages a formal and reproducible statement of confidence about the role of drivers after robust methods for trend detection and attribution have been deployed. Confidence in trend attribution requires that data and analyses used in all steps of the framework follow best practices reducing uncertainty at each step. We illustrate these steps with examples. This framework could strengthen the bridge between biodiversity science and policy and support effective actions to halt biodiversity loss and the impacts this has on ecosystems. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.
Collapse
Affiliation(s)
- Andrew Gonzalez
- Department of Biology, McGill University, Montreal, Canada H3A 1B1
- Quebec Centre for Biodiversity Science, Montreal, Canada H3A 1B1
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 04103, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale) 06099, Germany
| | - Mary I O'Connor
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver V6T 1Z4, Canada
- Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
13
|
Monge O, Maggini I, Schulze CH, Dullinger S, Fusani L. Physiologically vulnerable or resilient? Tropical birds, global warming, and redistributions. Ecol Evol 2023; 13:e9985. [PMID: 37082319 PMCID: PMC10111238 DOI: 10.1002/ece3.9985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 02/16/2023] [Accepted: 03/23/2023] [Indexed: 04/22/2023] Open
Abstract
Tropical species are considered to be more threatened by climate change than those of other world regions. This increased sensitivity to warming is thought to stem from the assumptions of low physiological capacity to withstand temperature fluctuations and already living near their limits of heat tolerance under current climatic conditions. For birds, despite thorough documentation of community-level rearrangements, such as biotic attrition and elevational shifts, there is no consistent evidence of direct physiological sensitivity to warming. In this review, we provide an integrative outlook into the physiological response of tropical birds to thermal variation and their capacity to cope with warming. In short, evidence from the literature suggests that the assumed physiological sensitivity to warming attributed to tropical biotas does not seem to be a fundamental characteristic of tropical birds. Tropical birds do possess the physiological capacities to deal with fluctuating temperatures, including high-elevation species, and are prepared to withstand elevated levels of heat, even those living in hot and arid environments. However, there are still many unaddressed points that hinder a more complete understanding of the response of tropical birds to warming, such as cooling capacities when exposed to combined gradients of heat and humidity, the response of montane species to heat, and thermoregulation under increased levels of microclimatic stress in disturbed ecosystems. Further research into how populations and species from different ecological contexts handle warming will increase our understanding of current and future community rearrangements in tropical birds.
Collapse
Affiliation(s)
- Otto Monge
- Vienna Doctoral School of Ecology and EvolutionUniversity of ViennaDjerassiplatz 11030ViennaAustria
| | - Ivan Maggini
- Konrad‐Lorenz Institute of EthologyUniversity of Veterinary MedicineSavoyenstrasse 1a1160ViennaAustria
| | - Christian H. Schulze
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 141030ViennaAustria
| | - Stefan Dullinger
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 141030ViennaAustria
| | - Leonida Fusani
- Konrad‐Lorenz Institute of EthologyUniversity of Veterinary MedicineSavoyenstrasse 1a1160ViennaAustria
- Department of Behavioural and Cognitive BiologyUniversity of ViennaAlthanstrasse 141090ViennaAustria
| |
Collapse
|
14
|
Rutt CL, Cooper WJ, Andretti CB, Costa TVV, Stouffer PC, Vargas CF, Luther DA, Cohn‐Haft M. Low species turnover of upland Amazonian birds in the absence of physical barriers. DIVERS DISTRIB 2023. [DOI: 10.1111/ddi.13662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Affiliation(s)
- Cameron L. Rutt
- Department of Biology George Mason University Fairfax Virginia USA
- Biological Dynamics of Forest Fragments Project Instituto Nacional de Pesquisas da Amazônia Manaus Amazonas Brazil
- American Bird Conservancy The Plains Virginia USA
| | - W. Justin Cooper
- Department of Biology George Mason University Fairfax Virginia USA
| | | | - Thiago V. V. Costa
- Tropical Ecology Assessment and Monitoring (TEAM) Network Manaus Amazonas Brazil
| | - Philip C Stouffer
- Biological Dynamics of Forest Fragments Project Instituto Nacional de Pesquisas da Amazônia Manaus Amazonas Brazil
- School of Renewable Natural Resources Louisiana State University AgCenter and Louisiana State University Baton Rouge Louisiana USA
| | - Claudeir F. Vargas
- Tropical Ecology Assessment and Monitoring (TEAM) Network Manaus Amazonas Brazil
| | - David A. Luther
- Department of Biology George Mason University Fairfax Virginia USA
- Biological Dynamics of Forest Fragments Project Instituto Nacional de Pesquisas da Amazônia Manaus Amazonas Brazil
| | - Mario Cohn‐Haft
- Tropical Ecology Assessment and Monitoring (TEAM) Network Manaus Amazonas Brazil
- Coleções Zoológicas, Instituto Nacional de Pesquisas da Amazônia Manaus Amazonas Brazil
| |
Collapse
|
15
|
Martínez AE, Ponciano JM, Gomez JP, Valqui T, Novoa J, Antezana M, Biscarra G, Camerlenghi E, Carnes BH, Huayanca Munarriz R, Parra E, Plummer IM, Fitzpatrick JW, Robinson SK, Socolar JB, Terborgh J. The structure and organisation of an Amazonian bird community remains little changed after nearly four decades in Manu National Park. Ecol Lett 2023; 26:335-346. [PMID: 36604979 DOI: 10.1111/ele.14159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023]
Abstract
Documenting patterns of spatiotemporal change in hyper-diverse communities remains a challenge for tropical ecology yet is increasingly urgent as some long-term studies have shown major declines in bird communities in undisturbed sites. In 1982, Terborgh et al. quantified the structure and organisation of the bird community in a 97-ha. plot in southeastern Peru. We revisited the same plot in 2018 using the same methodologies as the original study to evaluate community-wide changes. Contrary to longitudinal studies of other neotropical bird communities (Tiputini, Manaus, and Panama), we found little change in community structure and organisation, with increases in 5, decreases in 2 and no change in 7 foraging guilds. This apparent stability suggests that large forest reserves such as the Manu National Park, possibly due to regional topographical influences on precipitation, still provide the conditions for establishing refugia from at least some of the effects of global change on bird communities.
Collapse
Affiliation(s)
- Ari E Martínez
- Museum of Vertebrate Zoology, Department of Integrative Biology, University of California, California, Berkeley, USA.,Department of Biological Sciences, California State University, Long Beach, California, USA
| | - José M Ponciano
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Juan P Gomez
- Departamento de Química y Biología, Universidad del Norte, Barranquilla, Colombia
| | - Thomas Valqui
- Facultad de Ciencias Forestales, Universidad Nacional Agraria, La Molina, Perú.,CORBIDI, Lima, Perú
| | | | | | - Gabriela Biscarra
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Ettore Camerlenghi
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | | | | | - Eliseo Parra
- San Francisco State University, San Francisco, California, USA
| | - Isabella M Plummer
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | | | - Scott K Robinson
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Jacob B Socolar
- Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - John Terborgh
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
16
|
Newell FL, Ausprey IJ, Robinson SK. Wet and dry extremes reduce arthropod biomass independently of leaf phenology in the wet tropics. GLOBAL CHANGE BIOLOGY 2023; 29:308-323. [PMID: 36102197 PMCID: PMC10087840 DOI: 10.1111/gcb.16379] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 06/01/2023]
Abstract
Warming temperatures are increasing rainfall extremes, yet arthropod responses to climatic fluctuations remain poorly understood. Here, we used spatiotemporal variation in tropical montane climate as a natural experiment to compare the importance of biotic versus abiotic drivers in regulating arthropod biomass. We combined intensive field data on arthropods, leaf phenology and in situ weather across a 1700-3100 m elevation and rainfall gradient, along with desiccation-resistance experiments and multi-decadal modelling. We found limited support for biotic drivers with weak increases in some herbivorous taxa on shrubs with new leaves, but no landscape-scale effects of leaf phenology, which tracked light and cloud cover. Instead, rainfall explained extensive interannual variability with maximum biomass at intermediate rainfall (130 mm month-1 ) as both 3 months of high and low rainfall reduced arthropods by half. Based on 50 years of regional rainfall, our dynamic arthropod model predicted shifts in the timing of biomass maxima within cloud forests before plant communities transition to seasonally deciduous dry forests (mean annual rainfall 1000-2500 mm vs. <800 mm). Rainfall magnitude was the primary driver, but during high solar insolation, the 'drying power of air' (VPDmax ) reduced biomass within days contributing to drought related to the El Niño-Southern Oscillation (ENSO). Highlighting risks from drought, experiments demonstrated community-wide susceptibility to desiccation except for some caterpillars in which melanin-based coloration appeared to reduce the effects of evaporative drying. Overall, we provide multiple lines of evidence that several months of heavy rain or drought reduce arthropod biomass independently of deep-rooted plants with the potential to destabilize insectivore food webs.
Collapse
Affiliation(s)
- Felicity L. Newell
- Florida Museum of Natural History & Department of BiologyUniversity of FloridaGainesvilleFloridaUSA
- Division of Conservation BiologyInstitute of Ecology and Evolution, University of BernBernCH‐3012Switzerland
| | - Ian J. Ausprey
- Florida Museum of Natural History & Department of BiologyUniversity of FloridaGainesvilleFloridaUSA
- Division of Conservation BiologyInstitute of Ecology and Evolution, University of BernBernCH‐3012Switzerland
| | - Scott K. Robinson
- Florida Museum of Natural History & Department of BiologyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|