1
|
Cheng Y, Lee S, Xiao Y, Ohmura S, Bourdages LJ, Puma J, He Z, Yang Z, Brown J, Provost J, Li J. Ultrasound Cavitation Enables Rapid, Initiator-Free Fabrication of Tough Anti-Freezing Hydrogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416844. [PMID: 40245193 DOI: 10.1002/advs.202416844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/19/2025] [Indexed: 04/19/2025]
Abstract
Hydrogels are often synthesized with thermal or photo-initiated gelation, leaving alternative energy sources less explored. While ultrasound has been used for polymer synthesis and mechanochemistry, its application through cavitation for hydrogel synthesis as a constructive force is rare, and the underlying sonochemical mechanisms are poorly understood. Here, the application and mechanism of ultrasound cavitation for rapid, initiator-free, and oxygen-tolerant fabrication of tough anti-freezing hydrogels is reported. By incorporating polyol solvents and interpenetrating polymers into the gelling solution, radical generation is amplified and network formation is enhanced. Using tough polyacrylamide-alginate hydrogels as a model system, rapid gelation (as fast as 2 minutes) and high fracture toughness (up to 600 J m- 2) is demonstrated. By varying ultrasound intensity, crosslinker-to-monomer ratio, and glycerol concentration, the synthesis-structure-property relation is established for the resulting sonogels and the underlying mechanism is uncovered using combined molecular, optical, and mechanical testing techniques. The coupling of gelation and convection under ultrasound results in sonogels with unique structural and mechanical properties. Additionally, the fabrication of hydrogel constructs is demonstrated using both non-focused and high-intensity focused ultrasound. This work establishes a foundation for ultrasound-driven sono-fabrication and highlights new avenues in soft materials, advanced manufacturing, bioadhesives, and tissue engineering.
Collapse
Affiliation(s)
- Yixun Cheng
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St West, Montreal, Quebec, H3A 0C3, Canada
| | - Stephen Lee
- Department of Engineering Physics, Polytechnique Montreal, 2500 Chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada
| | - Yihang Xiao
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St West, Montreal, Quebec, H3A 0C3, Canada
| | - Shou Ohmura
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St West, Montreal, Quebec, H3A 0C3, Canada
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Louis-Jacques Bourdages
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St West, Montreal, Quebec, H3A 0C3, Canada
| | - Justin Puma
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St West, Montreal, Quebec, H3A 0C3, Canada
| | - Zixin He
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St West, Montreal, Quebec, H3A 0C3, Canada
| | - Zhen Yang
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St West, Montreal, Quebec, H3A 0C3, Canada
| | - Jeremy Brown
- Department of Electrical and Computer Engineering, Dalhousie University, 1459 Oxford Street, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Jean Provost
- Department of Engineering Physics, Polytechnique Montreal, 2500 Chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada
| | - Jianyu Li
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St West, Montreal, Quebec, H3A 0C3, Canada
- Department of Biomedical Engineering, McGill University, 3480 University Street, Montreal, Quebec, H3A 0E9, Canada
| |
Collapse
|
2
|
Liao J, Sun J, Jia W, He W, Wang H, Huang W, Wang Y, Yu M, Xie Y, Chen Y. External stimuli-driven catalytic hydrogels for biomedical applications. Chem Commun (Camb) 2025; 61:3946-3966. [PMID: 39957542 DOI: 10.1039/d4cc05256k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Hydrogels, bearing three-dimensional networks formed through chemical or physical crosslinking of hydrophilic macromolecules, benefit from their biocompatibility, tunable properties, and high loading capacities, and thus hold great promise for biomedical applications. Recent advancements have increasingly focused on the integration of non-invasive external stimuli-such as light, heat, electricity, magnetism, and ultrasound-into hydrogel design. These external stimuli-driven catalytic hydrogels can dynamically respond to these stimuli, allowing for high spatial and temporal precision in their application. This capability enables in situ activation, controlled degradation, and catalytic reactions, making them ideal for next-generation clinical interventions. This review discusses the design strategies for external stimuli-driven catalytic hydrogels, concentrating on essential mechanisms of catalytic processes aimed at optimizing therapeutic efficacy. The discussion highlights the importance of precise control over the chemical and physical properties of hydrogels in response to specific stimuli, elucidating the regulatory mechanisms that dictate hydrogel behavior and deepening the understanding of their applications with enhanced spatial and temporal resolution.
Collapse
Affiliation(s)
- Jing Liao
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China.
| | - Jijun Sun
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China.
| | - Wencong Jia
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China.
| | - Wenjin He
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China.
| | - Huijing Wang
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China.
| | - Weiyun Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yanmei Wang
- Department of Nursing, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, Shanghai, 200135, China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China.
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
3
|
Pauly C, Schlichter L, Ravoo BJ, Studer A. Sonochemical Nitroxide-Mediated Polymerization: Harnessing Sonochemistry for Polymer Synthesis. Macromol Rapid Commun 2025; 46:e2400732. [PMID: 39535421 DOI: 10.1002/marc.202400732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/31/2024] [Indexed: 11/16/2024]
Abstract
In polymer science, mechanochemistry is emerging as a powerful tool for materials science and molecular synthesis, offering novel avenues for controlled polymerization and post-synthetic modification. Building upon the previous research, nitroxide-mediated polymerization (NMP) is merged with mechanochemistry through the design of nitroxide-based mechanophore macroinitiators, pioneering the first instance of a sonochemical nitroxide-mediated-type polymerization. As NMP usually requires high temperatures, this study demonstrates that a sonochemical NMP-type process allows polymerization under reduced temperatures down to 55 °C. Moreover, depending on the nature of the employed monomers, gelated networks are obtained, demonstrating the adaptability of the mechanophore system. This study elucidates the potential of mechanochemistry in polymer synthesis, offering insights into manipulating polymerization kinetics and advancing materials science applications.
Collapse
Affiliation(s)
- Christophe Pauly
- Organic Chemistry Institute and Center for Soft Nanoscience, University of Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Lisa Schlichter
- Organic Chemistry Institute and Center for Soft Nanoscience, University of Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience, University of Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Armido Studer
- Organic Chemistry Institute and Center for Soft Nanoscience, University of Münster, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
4
|
Chen X, Feng Y, Zhang P, Ni Z, Xue Y, Liu J. Hydrogel Fibers-Based Biointerfacing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413476. [PMID: 39578344 DOI: 10.1002/adma.202413476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/12/2024] [Indexed: 11/24/2024]
Abstract
The unique 1D structure of fibers offers intriguing attributes, including a high length-to-diameter ratio, miniatured size, light-weight, and flexibility, making them suitable for various biomedical applications, such as health monitoring, disease treatment, and minimally invasive surgeries. However, traditional fiber devices, typically composed of rigid, dry, and non-living materials, are intrinsically different from the soft, wet, and living essence of biological tissues, thereby posing grand challenges for long-term, reliable, and seamless interfacing with biological systems. Hydrogel fibers have recently emerged as a promising candidate, in light of their similarity to biological tissues in mechanical, chemical and biological aspects, as well as distinct fiber geometry. In this review, a comprehensive overview of recent progress in hydrogel fibers-based biointerfacing technology is provided. It thoroughly summarizes the manufacturing strategy and functional design, especially for hydrogel fibers with distinct optical and electron conductive performance, as well as responsiveness to triggers including thermal, magnetic field and ultrasonic wave, etc. Such unique attributes enable various biomedical applications, which are also examined in detail. Future challenges and potential directions, including biosafety, long-term reliability, sterilization, multi-modalities integration and intelligent therapeutic systems, are raised. This review will serve as a valuable resource for further advancement and implementation as next-generation biointerfacing technology.
Collapse
Affiliation(s)
- Xingmei Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yinghui Feng
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Pei Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhipeng Ni
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yu Xue
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
5
|
Fu X, Hu X. Ultrasound-Controlled Prodrug Activation: Emerging Strategies in Polymer Mechanochemistry and Sonodynamic Therapy. ACS APPLIED BIO MATERIALS 2024; 7:8040-8058. [PMID: 38698527 PMCID: PMC11653258 DOI: 10.1021/acsabm.4c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Ultrasound has gained prominence in biomedical applications due to its noninvasive nature and ability to penetrate deep tissue with spatial and temporal resolution. The burgeoning field of ultrasound-responsive prodrug systems exploits the mechanical and chemical effects of ultrasonication for the controlled activation of prodrugs. In polymer mechanochemistry, materials scientists exploit the sonomechanical effect of acoustic cavitation to mechanochemically activate force-sensitive prodrugs. On the other hand, researchers in the field of sonodynamic therapy adopt fundamentally distinct methodologies, utilizing the sonochemical effect (e.g., generation of reactive oxygen species) of ultrasound in the presence of sonosensitizers to induce chemical transformations that activate prodrugs. This cross-disciplinary review comprehensively examines these two divergent yet interrelated approaches, both of which originated from acoustic cavitation. It highlights molecular and materials design strategies and potential applications in diverse therapeutic contexts, from chemotherapy to immunotherapy and gene therapy methods, and discusses future directions in this rapidly advancing domain.
Collapse
Affiliation(s)
- Xuancheng Fu
- Department
of Chemistry, BioInspired Institute, Syracuse
University, Syracuse, New York 13244, United States
| | - Xiaoran Hu
- Department
of Chemistry, BioInspired Institute, Syracuse
University, Syracuse, New York 13244, United States
| |
Collapse
|
6
|
Tang Z, Deng L, Zhang J, Jiang T, Xiang H, Chen Y, Liu H, Cai Z, Cui W, Xiong Y. Intelligent Hydrogel-Assisted Hepatocellular Carcinoma Therapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0477. [PMID: 39691767 PMCID: PMC11651419 DOI: 10.34133/research.0477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 12/19/2024]
Abstract
Given the high malignancy of liver cancer and the liver's unique role in immune and metabolic regulation, current treatments have limited efficacy, resulting in a poor prognosis. Hydrogels, soft 3-dimensional network materials comprising numerous hydrophilic monomers, have considerable potential as intelligent drug delivery systems for liver cancer treatment. The advantages of hydrogels include their versatile delivery modalities, precision targeting, intelligent stimulus response, controlled drug release, high drug loading capacity, excellent slow-release capabilities, and substantial potential as carriers of bioactive molecules. This review presents an in-depth examination of hydrogel-assisted advanced therapies for hepatocellular carcinoma, encompassing small-molecule drug therapy, immunotherapy, gene therapy, and the utilization of other biologics. Furthermore, it examines the integration of hydrogels with conventional liver cancer therapies, including radiation, interventional therapy, and ultrasound. This review provides a comprehensive overview of the numerous advantages of hydrogels and their potential to enhance therapeutic efficacy, targeting, and drug delivery safety. In conclusion, this review addresses the clinical implementation of hydrogels in liver cancer therapy and future challenges and design principles for hydrogel-based systems, and proposes novel research directions and strategies.
Collapse
Affiliation(s)
- Zixiang Tang
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Sichuan Digestive System Disease Clinical Medical Research Center,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Lin Deng
- Department of Clinical Medicine,
North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Jing Zhang
- Department of Gastroenterology,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Tao Jiang
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Sichuan Digestive System Disease Clinical Medical Research Center,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Honglin Xiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanyang Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Huzhe Liu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Yongfu Xiong
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Sichuan Digestive System Disease Clinical Medical Research Center,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| |
Collapse
|
7
|
Zhang H, Diesendruck CE. Mechanochemical Diversity in Block Copolymers. Chemistry 2024; 30:e202402632. [PMID: 39102406 DOI: 10.1002/chem.202402632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Covalent polymer chains are known to undergo mechanochemical events when subjected to mechanical forces. Such force-coupled reactions, like C-C bond scission in homopolymers, typically occur in a non-selective manner but with a higher probability at the mid-chain. In contrast, block copolymers (BCPs), composed of two or more chemically distinct chains linked by covalent bonds, have recently been shown to exhibit significantly different mechanochemical reactivities and selectivities. These differences may be attributable to the atypical conformations adopted by their chains, compared to the regular random coil. Beyond individual molecules, when BCPs self-assemble into ordered aggregates in solution, the non-covalent interactions between the chains lead to meaningful acceleration in the activation of embedded force-sensitive motifs. Furthermore, the microphase segregation of BCPs in bulk creates periodically dispersed polydomains, locking the blocks in specific conformations which have also been shown to affect their mechanochemical reactivity, with different morphologies influencing reactivity to varying extents. This review summarizes the studies of mechanochemistry in BCPs over the past two decades, from the molecular level to assemblies, and up to bulk materials.
Collapse
Affiliation(s)
- Hang Zhang
- Schulich Faculty of Chemistry and Resnick Sustainability Center for Catalysis, Technion - Israel Institute of Technology, Haifa, 3200008, Israel
| | - Charles E Diesendruck
- Schulich Faculty of Chemistry and Resnick Sustainability Center for Catalysis, Technion - Israel Institute of Technology, Haifa, 3200008, Israel
| |
Collapse
|
8
|
He C, Zhou Y, Chen J, Vinokur R, Kiessling F, Herrmann A. Ultrasonic Control of Protein Splicing by Split Inteins. J Am Chem Soc 2024; 146:26947-26956. [PMID: 39293002 DOI: 10.1021/jacs.4c08207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Utilizing ultrasound as an external stimulus to remotely modulate the activity of proteins is an important aspect of sonopharmacology and establishes the basis for the emerging field of sonogenetics. Here, we describe an ultrasound-responsive protein splicing system that enables spatiotemporal control of split-intein-mediated protein ligation. The system utilizes engineered split inteins that are caged and can be activated by thrombin released from a high molar mass DNA-based carrier under focused ultrasound sonication. This approach represents a general method for controlling the functions of proteins of interest by ultrasound, as demonstrated here by the controlled synthesis of the superfolder green fluorescence protein (GFP) and calcitonin. Furthermore, calcitonin receptor-mediated signal transduction in cells was triggered by this system in vitro without harming cell viability. By expanding the sonogenetic toolbox with protein splicing technologies, this study provides a possible pathway to deploy ultrasound for remotely controlling a variety of protein functions in deep tissue in the future.
Collapse
Affiliation(s)
- Chuanjiang He
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Yu Zhou
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AGGroningen, The Netherlands
| | - Junlin Chen
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstr.55, 52074 Aachen, Germany
| | - Rostislav Vinokur
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstr.55, 52074 Aachen, Germany
| | - Andreas Herrmann
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| |
Collapse
|
9
|
Wang J, Zhao S, Yi J, Sun Y, Agrawal M, Oelze ML, Li K, Moore JS, Chen YS. Injectable Mechanophore Nanoparticles for Deep-Tissue Mechanochemical Dynamic Therapy. ACS NANO 2024. [PMID: 39250826 DOI: 10.1021/acsnano.4c04090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Photodynamic therapy (PDT) and sonodynamic therapy (SDT), using nonionizing light and ultrasound to generate reactive oxygen species, offer promising localized treatments for cancers. However, the effectiveness of PDT is hampered by inadequate tissue penetration, and SDT largely relies on pyrolysis and sonoluminescence, which may cause tissue injury and imprecise targeting. To address these issues, we have proposed a mechanochemical dynamic therapy (MDT) that uses free radicals generated from mechanophore-embedded polymers under mechanical stress to produce reactive oxygen species for cancer treatment. Yet, their application in vivo is constrained by the bulk form of the polymer and the need for high ultrasound intensities for activation. In this study, we developed injectable, nanoscale mechanophore particles with enhanced ultrasound sensitivity by leveraging a core-shell structure comprising silica nanoparticles (NPs) whose interfaces are linked to polymer brushes by an azo mechanophore moiety. Upon focused ultrasound (FUS) treatment, this injectable NP generates reactive oxygen species (ROS), demonstrating promising results in both an in vitro 4T1 cell model and an in vivo mouse model of orthotopic breast cancers. This research offers an alternative therapy technique, integrating force-responsive azo mechanophores and FUS under biocompatible conditions.
Collapse
Affiliation(s)
- Jian Wang
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shensheng Zhao
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Junxi Yi
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yunyan Sun
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Megha Agrawal
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Michael L Oelze
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - King Li
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jeffrey S Moore
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yun-Sheng Chen
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
10
|
Ishaqat A, Hahmann J, Lin C, Zhang X, He C, Rath WH, Habib P, Sahnoun SEM, Rahimi K, Vinokur R, Mottaghy FM, Göstl R, Bartneck M, Herrmann A. In Vivo Polymer Mechanochemistry with Polynucleotides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403752. [PMID: 38804595 DOI: 10.1002/adma.202403752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Polymer mechanochemistry utilizes mechanical force to activate latent functionalities in macromolecules and widely relies on ultrasonication techniques. Fundamental constraints of frequency and power intensity have prohibited the application of the polymer mechanochemistry principles in a biomedical context up to now, although medical ultrasound is a clinically established modality. Here, a universal polynucleotide framework is presented that allows the binding and release of therapeutic oligonucleotides, both DNA- and RNA-based, as cargo by biocompatible medical imaging ultrasound. It is shown that the high molar mass, colloidal assembly, and a distinct mechanochemical mechanism enable the force-induced release of cargo and subsequent activation of biological function in vitro and in vivo. Thereby, this work introduces a platform for the exploration of biological questions and therapeutics development steered by mechanical force.
Collapse
Affiliation(s)
- Aman Ishaqat
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Johannes Hahmann
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Max Planck School Matter to Life, Jahnstr. 29, 69120, Heidelberg, Germany
| | - Cheng Lin
- Department of Medicine III, University Hospital Aachen, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
- Department of Rheumatology and Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 1630 Dongfang Road, Shanghai, 200127, China
| | - Xiaofeng Zhang
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Chuanjiang He
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Wolfgang H Rath
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Pardes Habib
- Department of Neurosurgery and Stanford Stroke Center, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94304, USA
| | - Sabri E M Sahnoun
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Khosrow Rahimi
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Rostislav Vinokur
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), P. Debyelaan 25, Maastricht, 6229 HX, The Netherlands
| | - Robert Göstl
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Department of Chemistry and Biology, University of Wuppertal, Gaußstraße 20, 42119, Wuppertal, Germany
| | - Matthias Bartneck
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Department of Medicine III, University Hospital Aachen, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Andreas Herrmann
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Max Planck School Matter to Life, Jahnstr. 29, 69120, Heidelberg, Germany
| |
Collapse
|
11
|
Sun Y, Neary WJ, Huang X, Kouznetsova TB, Ouchi T, Kevlishvili I, Wang K, Chen Y, Kulik HJ, Craig SL, Moore JS. A Thermally Stable SO 2-Releasing Mechanophore: Facile Activation, Single-Event Spectroscopy, and Molecular Dynamic Simulations. J Am Chem Soc 2024; 146:10943-10952. [PMID: 38581383 DOI: 10.1021/jacs.4c02139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
Polymers that release small molecules in response to mechanical force are promising candidates as next-generation on-demand delivery systems. Despite advancements in the development of mechanophores for releasing diverse payloads through careful molecular design, the availability of scaffolds capable of discharging biomedically significant cargos in substantial quantities remains scarce. In this report, we detail a nonscissile mechanophore built from an 8-thiabicyclo[3.2.1]octane 8,8-dioxide (TBO) motif that releases one equivalent of sulfur dioxide (SO2) from each repeat unit. The TBO mechanophore exhibits high thermal stability but is activated mechanochemically using solution ultrasonication in either organic solvent or aqueous media with up to 63% efficiency, equating to 206 molecules of SO2 released per 143.3 kDa chain. We quantified the mechanochemical reactivity of TBO by single-molecule force spectroscopy and resolved its single-event activation. The force-coupled rate constant for TBO opening reaches ∼9.0 s-1 at ∼1520 pN, and each reaction of a single TBO domain releases a stored length of ∼0.68 nm. We investigated the mechanism of TBO activation using ab initio steered molecular dynamic simulations and rationalized the observed stereoselectivity. These comprehensive studies of the TBO mechanophore provide a mechanically coupled mechanism of multi-SO2 release from one polymer chain, facilitating the translation of polymer mechanochemistry to potential biomedical applications.
Collapse
Affiliation(s)
- Yunyan Sun
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - William J Neary
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Xiao Huang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tatiana B Kouznetsova
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Tetsu Ouchi
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Ilia Kevlishvili
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kecheng Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yingying Chen
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Material Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Heather J Kulik
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jeffrey S Moore
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Cheng J, Li L, Jin D, Zhang Y, Yu W, Yu J, Zou J, Dai Y, Zhu Y, Liu M, Zhang M, Sun Y, Liu Y, Chen X. A non-metal single atom nanozyme for cutting off the energy and reducing power of tumors. Angew Chem Int Ed Engl 2024; 63:e202319982. [PMID: 38361437 DOI: 10.1002/anie.202319982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/17/2024]
Abstract
Enzymes are considered safe and effective therapeutic tools for various diseases. With the increasing integration of biomedicine and nanotechnology, artificial nanozymes offer advanced controllability and functionality in medical design. However, several notable gaps, such as catalytic diversity, specificity and biosafety, still exist between nanozymes and their native counterparts. Here we report a non-metal single-selenium (Se)-atom nanozyme (SeSAE), which exhibits potent nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-mimetic activity. This novel single atom nanozyme provides a safe alternative to conventional metal-based catalysts and effectively cuts off the cellular energy and reduction equivalents through its distinctive catalytic function in tumors. In this study, we have demonstrated the substantial efficacy of SeSAE as an antitumor nanomedicine across diverse mouse models without discernible systemic adverse effects. The mechanism of the NADPH oxidase-like activity of the non-metal SeSAE was rationalized by density functional theory calculations. Furthermore, comprehensive elucidation of the biological functions, cell death pathways, and metabolic remodeling effects of the nanozyme was conducted, aiming to provide valuable insights into the development of single atom nanozymes with clinical translation potential.
Collapse
Affiliation(s)
- Junjie Cheng
- Department of Chemistry, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Li Li
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Duo Jin
- Department of Chemistry, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yajie Zhang
- Central Laboratory, Department of Biobank, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, China
| | - Wenxin Yu
- Department of Chemistry, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jiaji Yu
- Department of Chemistry, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Yi Dai
- College of Pharmaceutical Sciences, Anhui Xinhua University, Hefei, 230088, China
| | - Yang Zhu
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Manman Liu
- Department of Chemistry, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Miya Zhang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Yongfu Sun
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Yangzhong Liu
- Department of Chemistry, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
13
|
Hu Y, Lin Y, Craig SL. Mechanically Triggered Polymer Deconstruction through Mechanoacid Generation and Catalytic Enol Ether Hydrolysis. J Am Chem Soc 2024; 146:2876-2881. [PMID: 38265762 DOI: 10.1021/jacs.3c10153] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Polymers that amplify a transient external stimulus into changes in their morphology, physical state, or properties continue to be desirable targets for a range of applications. Here, we report a polymer comprising an acid-sensitive, hydrolytically unstable enol ether backbone onto which is embedded gem-dichlorocyclopropane (gDCC) mechanophores through a single postsynthetic modification. The gDCC mechanophore releases HCl in response to large forces of tension along the polymer backbone, and the acid subsequently catalyzes polymer deconstruction at the enol ether sites. Pulsed sonication of a 61 kDa PDHF with 77% gDCC on the backbone in THF with 100 mM H2O for 10 min triggers the subsequent degradation of the polymer to a final molecular weight of less than 3 kDa after 24 h of standing, whereas controls lacking either the gDCC or the enol ether reach final molecular weights of 38 and 27 kDa, respectively. The process of sonication, along with the presence of water and the existence of gDCC on the backbone, significantly accelerates the rate of polymer chain deconstruction. Both acid generation and the resulting triggered polymer deconstruction are translated to bulk, cross-linked polymer networks. Networks formed via thiol-ene cross-linking and subjected to unconstrained quasi-static uniaxial compression dissolve on time scales that are at least 3 times faster than controls where the mechanophore is not covalently coupled to the network. We anticipate that this concept can be extended to other acid-sensitive polymer networks for the stress-responsive deconstruction of gels and solvent-free elastomers.
Collapse
Affiliation(s)
- Yixin Hu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Yangju Lin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
14
|
Zhu Y, Deng K, Zhou J, Lai C, Ma Z, Zhang H, Pan J, Shen L, Bucknor MD, Ozhinsky E, Kim S, Chen G, Ye SH, Zhang Y, Liu D, Gao C, Xu Y, Wang H, Wagner WR. Shape-recovery of implanted shape-memory devices remotely triggered via image-guided ultrasound heating. Nat Commun 2024; 15:1123. [PMID: 38321028 PMCID: PMC10847440 DOI: 10.1038/s41467-024-45437-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Shape-memory materials hold great potential to impart medical devices with functionalities useful during implantation, locomotion, drug delivery, and removal. However, their clinical translation is limited by a lack of non-invasive and precise methods to trigger and control the shape recovery, especially for devices implanted in deep tissues. In this study, the application of image-guided high-intensity focused ultrasound (HIFU) heating is tested. Magnetic resonance-guided HIFU triggered shape-recovery of a device made of polyurethane urea while monitoring its temperature by magnetic resonance thermometry. Deformation of the polyurethane urea in a live canine bladder (5 cm deep) is achieved with 8 seconds of ultrasound-guided HIFU with millimeter resolution energy focus. Tissue sections show no hyperthermic tissue injury. A conceptual application in ureteral stent shape-recovery reduces removal resistance. In conclusion, image-guided HIFU demonstrates deep energy penetration, safety and speed.
Collapse
Affiliation(s)
- Yang Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Binjiang Institute of Zhejiang University, Hangzhou, China.
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Kaicheng Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianwei Zhou
- School of Electromechanical and Energy Engineering, NingboTech University, Ningbo, Zhejiang, China
| | - Chong Lai
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zuwei Ma
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hua Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiazhen Pan
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liyin Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Matthew D Bucknor
- Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Eugene Ozhinsky
- Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Seungil Kim
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Guangjie Chen
- Department of Urology, The Children's Hospital, School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sang-Ho Ye
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yue Zhang
- San Francisco Veterans Affairs Medical Center, University of California, San Francisco, CA, USA
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yonghua Xu
- Department of Imaging and Interventional Radiology, Zhongshan-Xuhui Hospital of Fudan University/Shanghai Xuhui Central Hospital, Shanghai, China.
| | - Huanan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Rath WH, Göstl R, Herrmann A. Mechanochemical Activation of DNAzyme by Ultrasound. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306236. [PMID: 38308193 PMCID: PMC10885644 DOI: 10.1002/advs.202306236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/11/2024] [Indexed: 02/04/2024]
Abstract
Controlling the activity of DNAzymes by external triggers is an important task. Here a temporal control over DNAzyme activity through a mechanochemical pathway with the help of ultrasound (US) is demonstrated. The deactivation of the DNAzyme is achieved by hybridization to a complementary strand generated through rolling circle amplification (RCA), an enzymatic polymerization process. Due to the high molar mass of the resulting polynucleic acids, shear force can be applied on the RCA strand through inertial cavitation induced by US. This exerts mechanical force and leads to the cleavage of the base pairing between RCA strand and DNAzyme, resulting in the recovery of DNAzyme activity. This is the first time that this release mechanism is applied for the activation of catalytic nucleic acids, and it has multiple advantages over other stimuli. US has higher penetration depth into tissues compared to light, and it offers a more specific stimulus than heat, which has also limited use in biological systems due to cell damage caused by hyperthermia. This approach is envisioned to improve the control over DNAzyme activity for the development of reliable and specific sensing applications.
Collapse
Affiliation(s)
- Wolfgang H. Rath
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Robert Göstl
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Andreas Herrmann
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| |
Collapse
|
16
|
Wang W, Kevin Tang KW, Pyatnitskiy I, Liu X, Shi X, Huo D, Jeong J, Wynn T, Sangani A, Baker A, Hsieh JC, Lozano AR, Artman B, Fenno L, Buch VP, Wang H. Ultrasound-Induced Cascade Amplification in a Mechanoluminescent Nanotransducer for Enhanced Sono-Optogenetic Deep Brain Stimulation. ACS NANO 2023; 17:24936-24946. [PMID: 38096422 PMCID: PMC10932741 DOI: 10.1021/acsnano.3c06577] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Remote and genetically targeted neuromodulation in the deep brain is important for understanding and treatment of neurological diseases. Ultrasound-triggered mechanoluminescent technology offers a promising approach for achieving remote and genetically targeted brain modulation. However, its application has thus far been limited to shallow brain depths due to challenges related to low sonochemical reaction efficiency and restricted photon yields. Here we report a cascaded mechanoluminescent nanotransducer to achieve efficient light emission upon ultrasound stimulation. As a result, blue light was generated under ultrasound stimulation with a subsecond response latency. Leveraging the high energy transfer efficiency of focused ultrasound in brain tissue and the high sensitivity to ultrasound of these mechanoluminescent nanotransducers, we are able to show efficient photon delivery and activation of ChR2-expressing neurons in both the superficial motor cortex and deep ventral tegmental area after intracranial injection. Our liposome nanotransducers enable minimally invasive deep brain stimulation for behavioral control in animals via a flexible, mechanoluminescent sono-optogenetic system.
Collapse
Affiliation(s)
- Wenliang Wang
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kai Wing Kevin Tang
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ilya Pyatnitskiy
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Xiangping Liu
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Xi Shi
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - David Huo
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jinmo Jeong
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Thomas Wynn
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Arjun Sangani
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrew Baker
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ju-Chun Hsieh
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Anakaren Romero Lozano
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Brinkley Artman
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lief Fenno
- Department of Psychiatry & Behavioral Science, The University of Texas at Austin Dell Medical School, Austin, Texas 78712, United States
| | - Vivek P Buch
- Department of Neurosurgery, Stanford University, Stanford, California 94304, United States
| | - Huiliang Wang
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
17
|
Shi Z, Hu Y, Li X. Polymer mechanochemistry in drug delivery: From controlled release to precise activation. J Control Release 2023; 365:S0168-3659(23)00703-4. [PMID: 39491171 DOI: 10.1016/j.jconrel.2023.10.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/08/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Controlled drug delivery systems that can respond to mechanical force offer a unique solution for on-demand activation and release under physiological conditions. Compression, tension, and shear forces encompass the most commonly utilized mechanical stimuli for controlled drug activation and release. While compression and tension forces have been extensively explored for designing mechanoresponsive drug release systems through object deformation, ultrasound (US) holds advantages in achieving spatiotemporally controlled drug release from micro-/nanocarriers such as microbubbles, liposomes, and micelles. Unlike light-based methods, the US bypasses drawbacks such as phototoxicity and limited tissue penetration. Conventional US-triggered drug release primarily relies on heat-induced phase transitions or chemical transformations in the nano-/micro-scale range. In contrast, the cutting-edge approach of "Sonopharmacology" leverages polymer mechanochemistry, where US-induced shear force activates latent sites containing active pharmaceutical ingredients incorporated into polymer chains more readily than other bonds within the polymeric structure. This article provides a brief overview of controlled drug release systems based on compression and tension, followed by recent significant studies on drug activation using the synergistic effects of US and polymer mechanochemistry. The remaining challenges and potential future directions in this subfield are also discussed. PROGRESS AND POTENTIAL: The precise spatiotemporal control of drug activity using exogenous signals holds great promise for achieving precise disease treatment with minimal side effects. Ultrasound, known for its safety, has found widespread application in clinical settings and offers adjustable tissue penetration depth and drug release control. However, challenges persist in achieving precise control over drug activity using ultrasound. In recent years, ultrasound-induced drug release utilizing the principle of polymer mechanochemistry (Sonopharmacology) has made significant progress and demonstrated its potential in achieving precise drug activation and release. These systems enable drug release at the sub-molecular level, allowing for selective control over drug activation. Sonopharmacology offers a unique advantage by integrating both chemical and biomedical perspectives, positioning it as a promising field with broad implications in polymer chemistry, nanoscience and technology, and pharmaceutics. This review article aims to examine recent advancements in ultrasound-triggered drug activation systems based on polymeric materials and with an focus on polymer mechanochemistry, identify remaining challenges, and propose potential perspectives in this rapidly evolving field. By providing a comprehensive understanding of the progress and potential of sonopharmacology, this article aims to guide future research and inspire the development of innovative drug delivery systems that offer enhanced selectivity and improved therapeutic outcomes.
Collapse
Affiliation(s)
- Zhiyuan Shi
- School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, China.
| | - Yong Hu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 201804 Shanghai, China.
| | - Xin Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 201804 Shanghai, China.
| |
Collapse
|
18
|
Li Z, Wang Z, Wang C, Li W, Fan W, Zhao R, Feng H, Peng D, Huang W. Mechanoluminescent Materials Enable Mechanochemically Controlled Atom Transfer Radical Polymerization and Polymer Mechanotransduction. RESEARCH (WASHINGTON, D.C.) 2023; 6:0243. [PMID: 37795336 PMCID: PMC10546606 DOI: 10.34133/research.0243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/13/2023] [Indexed: 10/06/2023]
Abstract
Organic mechanophores have been widely adopted for polymer mechanotransduction. However, most examples of polymer mechanotransduction inevitably experience macromolecular chain rupture, and few of them mimic mussel's mechanochemical regeneration, a mechanically mediated process from functional units to functional materials in a controlled manner. In this paper, inorganic mechanoluminescent (ML) materials composed of CaZnOS-ZnS-SrZnOS: Mn2+ were used as a mechanotransducer since it features both piezoelectricity and mechanolunimescence. The utilization of ML materials in polymerization enables both mechanochemically controlled radical polymerization and the synthesis of ML polymer composites. This procedure features a mechanochemically controlled manner for the design and synthesis of diverse mechanoresponsive polymer composites.
Collapse
Affiliation(s)
- Zexuan Li
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zhenhua Wang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Chen Wang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Wenxi Li
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Wenru Fan
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Ruoqing Zhao
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Haoyang Feng
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Dengfeng Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
19
|
Yao Y, McFadden ME, Luo SM, Barber RW, Kang E, Bar-Zion A, Smith CAB, Jin Z, Legendre M, Ling B, Malounda D, Torres A, Hamza T, Edwards CER, Shapiro MG, Robb MJ. Remote control of mechanochemical reactions under physiological conditions using biocompatible focused ultrasound. Proc Natl Acad Sci U S A 2023; 120:e2309822120. [PMID: 37725651 PMCID: PMC10523651 DOI: 10.1073/pnas.2309822120] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/01/2023] [Indexed: 09/21/2023] Open
Abstract
External control of chemical reactions in biological settings with spatial and temporal precision is a grand challenge for noninvasive diagnostic and therapeutic applications. While light is a conventional stimulus for remote chemical activation, its penetration is severely attenuated in tissues, which limits biological applicability. On the other hand, ultrasound is a biocompatible remote energy source that is highly penetrant and offers a wide range of functional tunability. Coupling ultrasound to the activation of specific chemical reactions under physiological conditions, however, remains a challenge. Here, we describe a synergistic platform that couples the selective mechanochemical activation of mechanophore-functionalized polymers with biocompatible focused ultrasound (FUS) by leveraging pressure-sensitive gas vesicles (GVs) as acousto-mechanical transducers. The power of this approach is illustrated through the mechanically triggered release of covalently bound fluorogenic and therapeutic cargo molecules from polymers containing a masked 2-furylcarbinol mechanophore. Molecular release occurs selectively in the presence of GVs upon exposure to FUS under physiological conditions. These results showcase the viability of this system for enabling remote control of specific mechanochemical reactions with spatiotemporal precision in biologically relevant settings and demonstrate the translational potential of polymer mechanochemistry.
Collapse
Affiliation(s)
- Yuxing Yao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Molly E. McFadden
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Stella M. Luo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Ross W. Barber
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Elin Kang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Avinoam Bar-Zion
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Cameron A. B. Smith
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Zhiyang Jin
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA91125
| | - Mark Legendre
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Bill Ling
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Dina Malounda
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Andrea Torres
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Tiba Hamza
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Chelsea E. R. Edwards
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Mikhail G. Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA91125
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA91125
- HHMI, Pasadena, CA91125
| | - Maxwell J. Robb
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
20
|
Honda S, Oka M, Fuke K, Khuri-Yakub PT, Pai CN. Acoustodynamic Covalent Materials Engineering for the Remote Control of Physical Properties Inside Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304104. [PMID: 37341986 DOI: 10.1002/adma.202304104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/19/2023] [Indexed: 06/22/2023]
Abstract
Advances in vat photopolymerization (VP) 3D printing (3DP) technology enable the production of highly precise 3D objects. However, it is a major challenge to create dynamic functionalities and to manipulate the physical properties of the inherently insoluble and infusible cross-linked material generated from VP-3DP without reproduction. The fabrication of light- and high-intensity focused ultrasound (HIFU)-responsive cross-linked polymeric materials linked with hexaarylbiimidazole (HABI) in polymer chains based on VP-3DP is reported here. Although the photochemistry of HABI produces triphenylimidazolyl radicals (TPIRs) during the process of VP-3DP, the orthogonality of the photochemistry of HABI and photopolymerization enables the introduction of reversible cross-links derived from HABIs in the resulting 3D-printed objects. While photostimulation cleaves a covalent bond between two imidazoles in HABI to generate TPIRs only near the surface of the 3D-printed objects, HIFU triggers cleavage in the interior of materials. In addition, HIFU travels beyond an obstacle to induce a response of HABI-embedded cross-linked polymers, which cannot be attainable with photostimulation. The present system would be beneficial for tuning the physical properties and recycling of various polymeric materials, but it will also open the door for pinpoint modification, healing, and reshaping of materials when coupled to various dynamic covalent materials.
Collapse
Affiliation(s)
- Satoshi Honda
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Minami Oka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Kazuki Fuke
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Pierre T Khuri-Yakub
- E. L. Ginzton Laboratory, Stanford University, 348 Via Pueblo Mall, Stanford, CA, 94305, USA
| | - Chi Nan Pai
- Department of Mechatronics and Mechanical Systems Engineering, Polytechnic School of the University of Sao Paulo, Avenida Professor Mello Moraes 2231, Sao Paulo, 05508-030, Brazil
| |
Collapse
|
21
|
García de la Concepción J, Flores-Jiménez M, Cuccia LA, Light ME, Viedma C, Cintas P. Revisiting Homochiral versus Heterochiral Interactions through a Long Detective Story of a Useful Azobis-Nitrile and Puzzling Racemate. CRYSTAL GROWTH & DESIGN 2023; 23:5719-5733. [PMID: 37547876 PMCID: PMC10402293 DOI: 10.1021/acs.cgd.3c00372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/08/2023] [Indexed: 08/08/2023]
Abstract
This paper documents and reinvestigates the solid-state and crystal structures of 4,4'-azobis-4-cyanopentanoic acid (ACPA), a water-soluble azobis-nitrile of immense utility as a radical initiator in living polymerizations and a labile mechanophore that can be embedded within long polymer chains to undergo selective scission under mechanical activation. Surprisingly, for such applications, both the commercially available reagent and their derivatives are used as "single initiators" when this azonitrile is actually a mixture of stereoisomers. Although the racemate and meso compounds were identified more than half a century ago and their enantiomers were separated by classical resolution, there have been confusing narratives dealing with their characterization, the existence of a conglomeratic phase, and fractional crystallization. Our results report on the X-ray crystal structures of all stereoisomers for the first time, along with further details on enantiodiscrimination and the always intriguing arguments accounting for the stability of homochiral versus heterochiral crystal aggregates. To this end, metadynamic (MTD) simulations on stereoisomer molecular aggregates were performed to capture the incipient nucleation events at the picosecond time scale. This analysis sheds light on the driving homochiral aggregation of ACPA enantiomers.
Collapse
Affiliation(s)
- Juan García de la Concepción
- Department
of Organic and Inorganic Chemistry, Faculty of Sciences, and IACYS-Green
Chemistry and Sustainable Development Unit, University of Extremadura, E-06006 Badajoz, Spain
| | - Mirian Flores-Jiménez
- Department
of Organic and Inorganic Chemistry, Faculty of Sciences, and IACYS-Green
Chemistry and Sustainable Development Unit, University of Extremadura, E-06006 Badajoz, Spain
| | - Louis A. Cuccia
- Department
of Chemistry and Biochemistry, Concordia
University, 7141 Sherbrooke
Street West, H4B 1R6 Montreal, Canada
| | - Mark E. Light
- Department
of Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Cristóbal Viedma
- Department
of Crystallography and Mineralogy, University
Complutense, 28040 Madrid, Spain
| | - Pedro Cintas
- Department
of Organic and Inorganic Chemistry, Faculty of Sciences, and IACYS-Green
Chemistry and Sustainable Development Unit, University of Extremadura, E-06006 Badajoz, Spain
| |
Collapse
|
22
|
Fumadó Navarro J, Lomora M. Mechanoresponsive Drug Delivery Systems for Vascular Diseases. Macromol Biosci 2023; 23:e2200466. [PMID: 36670512 DOI: 10.1002/mabi.202200466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Mechanoresponsive drug delivery systems (DDS) have emerged as promising candidates to improve the current effectiveness and lower the side effects typically associated with direct drug administration in the context of vascular diseases. Despite tremendous research efforts to date, designing drug delivery systems able to respond to mechanical stimuli to potentially treat these diseases is still in its infancy. By understanding relevant biological forces emerging in healthy and pathological vascular endothelium, it is believed that better-informed design strategies can be deduced for the fabrication of simple-to-complex macromolecular assemblies capable of sensing mechanical forces. These responsive systems are discussed through insights into essential parameter design (composition, size, shape, and aggregation state) , as well as their functionalization with (macro)molecules that are intrinsically mechanoresponsive (e.g., mechanosensitive ion channels and mechanophores). Mechanical forces, including the pathological shear stress and exogenous stimuli (e.g., ultrasound, magnetic fields), used for the activation of mechanoresponsive DDS are also introduced, followed by in vitro and in vivo experimental models used to investigate and validate such novel therapies. Overall, this review aims to propose a fresh perspective through identified challenges and proposed solutions that could be of benefit for the further development of this exciting field.
Collapse
Affiliation(s)
- Josep Fumadó Navarro
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Upper Newcastle, Galway, H91 W2TY, Ireland
| | - Mihai Lomora
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Upper Newcastle, Galway, H91 W2TY, Ireland
| |
Collapse
|
23
|
Zhuang F, Xiang H, Huang B, Chen Y. Ultrasound-Triggered Cascade Amplification of Nanotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303158. [PMID: 37222084 DOI: 10.1002/adma.202303158] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/14/2023] [Indexed: 05/25/2023]
Abstract
Ultrasound (US)-triggered cascade amplification of nanotherapies has attracted considerable attention as an effective strategy for cancer treatment. With the remarkable advances in materials chemistry and nanotechnology, a large number of well-designed nanosystems have emerged that incorporate presupposed cascade amplification processes and can be activated to trigger therapies such as chemotherapy, immunotherapy, and ferroptosis, under exogenous US stimulation or specific substances generated by US actuation, to maximize antitumor efficacy and minimize detrimental effects. Therefore, summarizing the corresponding nanotherapies and applications based on US-triggered cascade amplification is essential. This review comprehensively summarizes and highlights the recent advances in the design of intelligent modalities, consisting of unique components, distinctive properties, and specific cascade processes. These ingenious strategies confer unparalleled potential to nanotherapies based on ultrasound-triggered cascade amplification and provide superior controllability, thus overcoming the unmet requirements of precision medicine and personalized treatment. Finally, the challenges and prospects of this emerging strategy are discussed and it is expected to encourage more innovative ideas and promote their further development.
Collapse
Affiliation(s)
- Fan Zhuang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
- Institute of Medical Ultrasound and Engineering, Fudan University, Shanghai, 200032, P. R. China
| | - Huijing Xiang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Beijian Huang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
- Institute of Medical Ultrasound and Engineering, Fudan University, Shanghai, 200032, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
24
|
Gao C, Kwong CHT, Wang Q, Kam H, Xie B, Lee SMY, Chen G, Wang R. Conjugation of Macrophage-Mimetic Microalgae and Liposome for Antitumor Sonodynamic Immunotherapy via Hypoxia Alleviation and Autophagy Inhibition. ACS NANO 2023; 17:4034-4049. [PMID: 36739531 DOI: 10.1021/acsnano.3c00041] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Sonodynamic therapy (SDT) is a noninvasive technique for local antitumor treatment; however, its clinical application is often limited by the low tumor accumulation of SDT agents, tumor's hypoxic microenvironment, and cytoprotective effects of autophagy. To address these issues, herein we developed surface-engineered chlorella (Chl, a green algae) as a targeted drug carrier and sustainable oxygen supplier (via photosynthesis) for significantly improved SDT via hypoxia alleviation as well as autophagy inhibition of chloroquine phosphate. In this design, the macrophage membrane was coated onto Chl to form macrophage-mimetic Chl (MChl) to increase its biocompatibility and targeted tumor accumulation driven by the inflammatory-homing effects of macrophage membranes. In addition, the membrane coating on Chl allowed lipid insertion to yield β-cyclodextrin (β-CD) modified MChl (CD-MChl). Subsequently, supramolecular conjugates of MChl-NP were constructed via host-guest interactions between CD-MChl and adamantane (ADA)-modified liposome (ADA-NP), and the anchored liposome went with CD-MChl hand-in-hand to the tumor tissues for co-delivery of Chl, hematoporphyrin, and chloroquine phosphate (loaded in ADA-NP). The synergistic therapy achieved via local oxygenation, SDT, and autophagy inhibition maximally improved the therapeutic efficacy of MChl-CQ-HP-NP against melanoma. Tumor rechallenging results revealed that the changes of tumor microenvironment including hypoxia alleviation, SDT induced immunogenic cell death, and autophagy inhibition collectively induced a strong antitumor immune response and memory.
Collapse
Affiliation(s)
- Cheng Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China
| | - Cheryl H T Kwong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Qingfu Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Hiotong Kam
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Beibei Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Guosong Chen
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China
| |
Collapse
|
25
|
Watabe T, Otsuka H. Swelling-induced Mechanochromism in Multinetwork Polymers. Angew Chem Int Ed Engl 2023; 62:e202216469. [PMID: 36524463 DOI: 10.1002/anie.202216469] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
We report a novel and versatile approach to achieving swelling-induced mechanochemistry using a multinetwork (MN) strategy that enables polymer networks to repeatedly swell with monomers and solvents. The isotropic expansion of the first network (FN) provides sufficient force to drive the mechanochemical scission of a radical-based mechanophore, difluorenylsuccinonitrile (DFSN). Although prompt recombination generally occurs in such highly mobile environments, the resulting pink radicals are kinetically stabilized in the gels, probably due to limited diffusion in the extended polymer chains. Moreover, the DFSN embedded in the isotropically strained chain exhibits increased thermal reactivity, which can be reasonably explained by an entropic contribution of the FN to the dissociation. The utility of the MN polymers is demonstrated not only in terms of swelling-force-induced network modification, but also in the context of tunable reactivity of the dissociative unit through proper design of the hierarchical network architecture.
Collapse
Affiliation(s)
- Takuma Watabe
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.,Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| |
Collapse
|
26
|
Küng R, Germann A, Krüsmann M, Niggemann LP, Meisner J, Karg M, Göstl R, Schmidt BM. Mechanoresponsive Metal-Organic Cage-Crosslinked Polymer Hydrogels. Chemistry 2023; 29:e202300079. [PMID: 36715238 DOI: 10.1002/chem.202300079] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
We report the formation of metal-organic cage-crosslinked polymer hydrogels. To enable crosslinking of the cages and subsequent network formation, we used homodifunctionalized poly(ethylene glycol) (PEG) chains terminally substituted with bipyridines as ligands for the Pd6 L4 corners. The encapsulation of guest molecules into supramolecular self-assembled metal-organic cage-crosslinked hydrogels, as well as ultrasound-induced disassembly of the cages with release of their cargo, is presented in addition to their characterization by nuclear magnetic resonance (NMR) techniques, rheology, and comprehensive small-angle X-ray scattering (SAXS) experiments. The constrained geometries simulating external force (CoGEF) method and barriers using a force-modified potential energy surface (FMPES) suggest that the cage-opening mechanism starts with the dissociation of one pyridine ligand at around 0.5 nN. We show the efficient sonochemical activation of the hydrogels HG3 -6 , increasing the non-covalent guest-loading of completely unmodified drugs available for release by a factor of ten in comparison to non-crosslinked, star-shaped assemblies in solution.
Collapse
Affiliation(s)
- Robin Küng
- Institute for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Anne Germann
- Institute for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Marcel Krüsmann
- Institute for Physical Chemistry I: Colloids and Nanooptics, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Louisa P Niggemann
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Jan Meisner
- Institute for Physical Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Matthias Karg
- Institute for Physical Chemistry I: Colloids and Nanooptics, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Robert Göstl
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Bernd M Schmidt
- Institute for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| |
Collapse
|
27
|
Lloyd EM, Vakil JR, Yao Y, Sottos NR, Craig SL. Covalent Mechanochemistry and Contemporary Polymer Network Chemistry: A Marriage in the Making. J Am Chem Soc 2023; 145:751-768. [PMID: 36599076 DOI: 10.1021/jacs.2c09623] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Over the past 20 years, the field of polymer mechanochemistry has amassed a toolbox of mechanophores that translate mechanical energy into a variety of functional responses ranging from color change to small-molecule release. These productive chemical changes typically occur at the length scale of a few covalent bonds (Å) but require large energy inputs and strains on the micro-to-macro scale in order to achieve even low levels of mechanophore activation. The minimal activation hinders the translation of the available chemical responses into materials and device applications. The mechanophore activation challenge inspires core questions at yet another length scale of chemical control, namely: What are the molecular-scale features of a polymeric material that determine the extent of mechanophore activation? Further, how do we marry advances in the chemistry of polymer networks with the chemistry of mechanophores to create stress-responsive materials that are well suited for an intended application? In this Perspective, we speculate as to the potential match between covalent polymer mechanochemistry and recent advances in polymer network chemistry, specifically, topologically controlled networks and the hierarchical material responses enabled by multi-network architectures and mechanically interlocked polymers. Both fundamental and applied opportunities unique to the union of these two fields are discussed.
Collapse
Affiliation(s)
- Evan M Lloyd
- Department of Chemistry, Duke University, Durham, North Carolina27708, United States
| | - Jafer R Vakil
- Department of Chemistry, Duke University, Durham, North Carolina27708, United States.,NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina27708, United States
| | - Yunxin Yao
- Department of Chemistry, Duke University, Durham, North Carolina27708, United States.,NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina27708, United States
| | - Nancy R Sottos
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina27708, United States.,Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois61801, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina27708, United States.,NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina27708, United States
| |
Collapse
|
28
|
Yildiz D, Göstl R, Herrmann A. Sonopharmacology: controlling pharmacotherapy and diagnosis by ultrasound-induced polymer mechanochemistry. Chem Sci 2022; 13:13708-13719. [PMID: 36544723 PMCID: PMC9709924 DOI: 10.1039/d2sc05196f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Active pharmaceutical ingredients are the most consequential and widely employed treatment in medicine although they suffer from many systematic limitations, particularly off-target activity and toxicity. To mitigate these effects, stimuli-responsive controlled delivery and release strategies for drugs are being developed. Fueled by the field of polymer mechanochemistry, recently new molecular technologies enabled the emergence of force as an unprecedented stimulus for this purpose by using ultrasound. In this research area, termed sonopharmacology, mechanophores bearing drug molecules are incorporated within biocompatible macromolecular scaffolds as preprogrammed, latent moieties. This review presents the novelties in controlling drug activation, monitoring, and release by ultrasound, while discussing the limitations and challenges for future developments.
Collapse
Affiliation(s)
- Deniz Yildiz
- DWI-Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University Worringerweg 1 52074 Aachen Germany
| | - Robert Göstl
- DWI-Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
| | - Andreas Herrmann
- DWI-Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University Worringerweg 1 52074 Aachen Germany
| |
Collapse
|
29
|
Yeingst TJ, Arrizabalaga JH, Hayes DJ. Ultrasound-Induced Drug Release from Stimuli-Responsive Hydrogels. Gels 2022; 8:554. [PMID: 36135267 PMCID: PMC9498906 DOI: 10.3390/gels8090554] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/16/2022] Open
Abstract
Stimuli-responsive hydrogel drug delivery systems are designed to release a payload when prompted by an external stimulus. These platforms have become prominent in the field of drug delivery due to their ability to provide spatial and temporal control for drug release. Among the different external triggers that have been used, ultrasound possesses several advantages: it is non-invasive, has deep tissue penetration, and can safely transmit acoustic energy to a localized area. This review summarizes the current state of understanding about ultrasound-responsive hydrogels used for drug delivery. The mechanisms of inducing payload release and activation using ultrasound are examined, along with the latest innovative formulations and hydrogel design strategies. We also report on the most recent applications leveraging ultrasound activation for both cancer treatment and tissue engineering. Finally, the future perspectives offered by ultrasound-sensitive hydrogels are discussed.
Collapse
Affiliation(s)
- Tyus J. Yeingst
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
| | - Julien H. Arrizabalaga
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
| | - Daniel J. Hayes
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
- Materials Research Institute, Millennium Science Complex, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
- The Huck Institute of the Life Sciences, Millennium Science Complex, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
| |
Collapse
|
30
|
Husic CC, Hu X, Robb MJ. Incorporation of a Tethered Alcohol Enables Efficient Mechanically Triggered Release in Aprotic Environments. ACS Macro Lett 2022; 11:948-953. [PMID: 35816562 DOI: 10.1021/acsmacrolett.2c00344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polymers that release small molecules in response to mechanical force are promising for a wide variety of applications. While offering a general platform for mechanically triggered release, previous mechanophore designs based on masked 2-furylcarbinol derivatives are limited to polar protic solvent environments for efficient release of the chemical payload. Here, we report a masked furfuryl carbonate mechanophore incorporating a tethered primary alcohol that enables efficient release of a hydroxycoumarin cargo in the absence of a protic solvent. Density functional calculations also implicate an intramolecular hydrogen bonding interaction between the tethered alcohol and the carbonyl oxygen of the carbonate that reduces the activation barrier for carbonate fragmentation leading to molecular release. This new mechanophore design expands the generality of the masked 2-furylcarbinol platform for mechanically triggered release, enabling the implementation of this strategy in a wider range of chemical environments.
Collapse
Affiliation(s)
- Corey C Husic
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Xiaoran Hu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Maxwell J Robb
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|