1
|
Bouwens T, Cobb SJ, Yeung CWS, Liu Y, Martins G, Pereira IA, Reisner E. Semiartificial Photoelectrochemistry for CO 2-Mediated Enantioselective Organic Synthesis. J Am Chem Soc 2025; 147:13114-13119. [PMID: 40231652 PMCID: PMC12022976 DOI: 10.1021/jacs.5c02250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/16/2025]
Abstract
Photoelectrochemical (PEC) cells are under intensive development for the synthesis of solar fuels, but CO2 reduction typically only results in simple building blocks such as HCOO-. Here, we demonstrate that CO2-converting PEC cells can drive integrated enzymatic domino catalysis to produce chiral organic molecules by using CO2/HCOO- as a sustainable redox couple. First, we establish a semiartificial electrode consisting of three enzymes co-immobilized on a high surface area electrode based on carbon felt covered by a mesoporous indium tin oxide (ITO) coating. When applying a mild cathodic potential (-0.25 V vs the reversible hydrogen electrode (RHE)), CO2 is reduced to HCOO- using a W-formate dehydrogenase (FDHNvH) from Nitratidesulfovibrio vulgaris Hildenborough, which then enables the reduction of NAD+ to NADH by an NAD+-cofactor-dependent formate dehydrogenase from Candida boidinii (FDHCB). Subsequently, an alcohol dehydrogenase (ADH) uses NADH generated from CO2/HCOO- cycling to reduce acetophenone to chiral 1-phenylethanol in good enantiomeric excess (93%) and conversion yields (38%). Depending on the specific ADH (ADHS or ADHR), either (S)- or (R)-1-phenylethanol can be synthesized at pH 6 and 20 °C. To illustrate solar energy utilization, we integrate the three nanoconfined enzymes with a PEC platform based on an integrated organic semiconductor photocathode to allow for enantioselective synthesis (at +0.8 V vs RHE) based on a solar fuel device. This proof-of-principle demonstration shows that concepts and devices from artificial photosynthesis can be readily translated to precise and sustainable biocatalysis, including the production of chiral organic molecules using light.
Collapse
Affiliation(s)
- Tessel Bouwens
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Samuel J. Cobb
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Celine W. S. Yeung
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Yongpeng Liu
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Guilherme Martins
- Instituto
de Tecnologia Química e Biológica António Xavier
(ITQB NOVA), Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Inês A.
C. Pereira
- Instituto
de Tecnologia Química e Biológica António Xavier
(ITQB NOVA), Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Erwin Reisner
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| |
Collapse
|
2
|
Rahaman M, Pulignani C, Miller M, Bhattacharjee S, Bin Mohamad Annuar A, Manuel RR, Pereira IA, Reisner E. Solar-Driven Paired CO 2 Reduction-Alcohol Oxidation Using Semiartificial Suspension, Photocatalyst Sheet, and Photoelectrochemical Devices. J Am Chem Soc 2025; 147:8168-8177. [PMID: 40020032 PMCID: PMC11912307 DOI: 10.1021/jacs.4c10519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/25/2025] [Accepted: 02/14/2025] [Indexed: 03/04/2025]
Abstract
Fuel-forming enzymes can display excellent performance, achieving high rates of catalysis with unity selectivity at minimal overpotentials, but they are generally considered to be fragile and difficult to handle in combination with synthetic semiconductors in light-driven chemical synthesis. Here, we demonstrate a biohybrid platform that is assembled from cyanamide-functionalized carbon nitride (CNX) as a scalable and inexpensive photosensitizer that selectively photo-oxidizes 4-methyl benzyl alcohol (MBA) to its aldehyde (MBAld), indium tin oxide (ITO) nanoparticles as electron conduit and biocatalyst support material, and the enzyme formate dehydrogenase (FDH) for selective CO2-to-formate reduction. This integrated semiartificial multicomponent system can be assembled and used in several configurations to drive bias-free operation, including (i) a photocatalytic suspension, (ii) a photocatalyst sheet, and (iii) a photoelectrochemical cell. The unprecedented adaptability and robustness of the assembled biohybrid systems motivated us to select the best performing and scalable system in practical solar chemical production by deploying a 50 cm2 CNX-ITO|FDH photosheet device for 3 days under natural sunlight to produce 41 (mmol formate) m-2 and 35 (mmol aldehyde) m-2. We have therefore demonstrated that CNX-ITO|FDH provides a robust and versatile platform that enables solar chemical synthesis for several days in outdoor operation using natural sunlight.
Collapse
Affiliation(s)
- Motiar Rahaman
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Carolina Pulignani
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Melanie Miller
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Subhajit Bhattacharjee
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | | | - Rita R. Manuel
- Instituto
de Tecnologia Química e Biológica António Xavier
(ITQB NOVA), Universidade NOVA de Lisboa, Oeiras 2780-157, Portugal
| | - Inês A.
C. Pereira
- Instituto
de Tecnologia Química e Biológica António Xavier
(ITQB NOVA), Universidade NOVA de Lisboa, Oeiras 2780-157, Portugal
| | - Erwin Reisner
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
3
|
Zhang Z, Li Z, Nan J, Ouyang J, Chen X, Wang H, Wang A. Evaluating advancements and opportunities in electro-assisted biodehalogenation of emerging halogenated contaminants. BIORESOURCE TECHNOLOGY 2025; 419:132011. [PMID: 39725360 DOI: 10.1016/j.biortech.2024.132011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/06/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Electro-assisted biodehalogenation (EASB) as a biostimulation strategy can accelerate the slow attenuation of emerging halogenated contaminants (EHCs) in anaerobic aqueous environments. A timely review is urgent to evaluate the knowledge gaps and potential opportunities, further facilitating its design and application. Till now, EASB achieves promising progress in accelerating biohalogenation rates, promoting the detoxification of EHCs to cope with unfavourable environments and mitigating greenhouse gas emissions. However, EASB of EHCs still faces several knowledge gaps. Exploring crucial microbes and deciphering insights into dehalogenase characteristics and extracellular electron transfer (EET) pathways remain the prominent task for EASB of EHCs. Moreover, microbial ecological relationships and intricate environmental factors affecting performances and applications are largely underexplored. The emergence of emerging tools holds promises for sorting the intricate changes and addressing these knowledge gaps. Judicious use of emerging tools will rejuvenate EASB strategy, from EET to scale-up, to purposefully and effectively address cascading EHCs.
Collapse
Affiliation(s)
- Zimeng Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jia Ouyang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xueqi Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hongcheng Wang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
4
|
Webb S, Veliju A, Maroni P, Apfel UP, Happe T, Milton RD. Mesoporous Electrodes Enhance the Electrocatalytic Performance of [FeFe]-Hydrogenase. Angew Chem Int Ed Engl 2025; 64:e202416658. [PMID: 39530332 DOI: 10.1002/anie.202416658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The metalloenzyme [FeFe]-hydrogenase is of interest to future biotechnologies targeting the production of "green" hydrogen (H2). We recently developed a simple two-step functionalized procedure to immobilize the [FeFe]-hydrogenase from Clostridium pasteurianum ("CpI") on mesoporous indium tin oxide (ITO) electrodes to achieve elevated H2 production with high operational stability and current densities of 8 mA cm-2. Here, we use a combination of atomic force microscopy (AFM), scanning electron microscopy (SEM) and electrochemical quartz crystal microbalance (EQCM) to understand how mesoporous ITO stabilizes and activates CpI for electroenzymatic H2 production. Examination of the topography and morphology of the mesoporous ITO surface revealed a hierarchical morphology containing cavities and well-defined nanoparticle agglomerates. Any potential effect of mesoporosity was investigated by comparing the stability and electroenzymatic activity of CpI on mesoporous 'nanoITO' and planar ITO, where we determined that CpI has a higher turnover frequency and adsorbs with greater stability (with respect to electroenzymatic activity over time) to nanoITO surfaces.
Collapse
Affiliation(s)
- Sophie Webb
- Department of Inorganic and Analytical Chemistry, University of Geneva, Faculty of Sciences, Quai Ernest-Ansermet 30, 1211, Geneva 4, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Switzerland
| | - Astrit Veliju
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, Germany
| | - Plinio Maroni
- Department of Inorganic and Analytical Chemistry, University of Geneva, Faculty of Sciences, Quai Ernest-Ansermet 30, 1211, Geneva 4, Switzerland
| | - Ulf-Peter Apfel
- Inorganic Chemistry 1, Ruhr University Bochum, Germany
- Department of Electrosynthesis, Fraunhofer UMSICHT, Oberhausen, Germany
| | - Thomas Happe
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, Germany
| | - Ross D Milton
- Department of Inorganic and Analytical Chemistry, University of Geneva, Faculty of Sciences, Quai Ernest-Ansermet 30, 1211, Geneva 4, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Switzerland
| |
Collapse
|
5
|
Liu W, Zhang K, Liu J, Wang Y, Zhang M, Cui H, Sun J, Zhang L. Bioelectrocatalytic carbon dioxide reduction by an engineered formate dehydrogenase from Thermoanaerobacter kivui. Nat Commun 2024; 15:9962. [PMID: 39551789 PMCID: PMC11570645 DOI: 10.1038/s41467-024-53946-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/29/2024] [Indexed: 11/19/2024] Open
Abstract
Electrocatalytic carbon dioxide (CO2) reduction by CO2 reductases is a promising approach for biomanufacturing. Among all known biological or chemical catalysts, hydrogen-dependent carbon dioxide reductase from Thermoanaerobacter kivui (TkHDCR) possesses the highest activity toward CO2 reduction. Herein, we engineer TkHDCR to generate an electro-responsive carbon dioxide reductase considering the safety and convenience. To achieve this purpose, a recombinant Escherichia coli TkHDCR overexpression system is established. The formate dehydrogenase is obtained via subunit truncation and rational design, which enables direct electron transfer (DET)-type bioelectrocatalysis with a near-zero overpotential. By applying a constant voltage of -500 mV (vs. SHE) to a mediated electrolytic cell, 22.8 ± 1.6 mM formate is synthesized in 16 h with an average production rate of 7.1 ± 0.5 μmol h-1cm-2, a Faradaic efficiency of 98.9% and a half-cell energy efficiency of 94.4%. This study provides an enzyme candidate for high efficient CO2 reduction and opens up a way to develop paradigm for CO2-based bio-manufacturing.
Collapse
Affiliation(s)
- Weisong Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 west 7th Avenue, Tianjin Airport Economic Area, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Kuncheng Zhang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 west 7th Avenue, Tianjin Airport Economic Area, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jiang Liu
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yuanming Wang
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Meng Zhang
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, 9, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin, China
| | - Huijuan Cui
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 west 7th Avenue, Tianjin Airport Economic Area, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Junsong Sun
- University of Chinese Academy of Sciences, Beijing, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Lingling Zhang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 west 7th Avenue, Tianjin Airport Economic Area, Tianjin, China.
- University of Chinese Academy of Sciences, Beijing, China.
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| |
Collapse
|
6
|
Haake M, Aldakov D, Pérard J, Veronesi G, Tapia AA, Reuillard B, Artero V. Impact of the Surface Microenvironment on the Redox Properties of a Co-Based Molecular Cathode for Selective Aqueous Electrochemical CO 2-to-CO Reduction. J Am Chem Soc 2024; 146:15345-15355. [PMID: 38767986 DOI: 10.1021/jacs.4c03089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Electrode-confined molecular catalysts are promising systems to enable the efficient conversion of CO2 to useful products. Here, we describe the development of an original molecular cathode for CO2 reduction to CO based on the noncovalent integration of a tetraazamacrocyclic Co complex to a carbon nanotube-based matrix. Aqueous electrochemical characterization of the modified electrode allowed for clear observation of a change of redox behavior of the Co center as surface concentration was tuned, highlighting the impact of the catalyst microenvironment on its redox properties. The molecular cathode enabled efficient CO2-to-CO conversion in fully aqueous conditions, giving rise to a turnover number (TONCO) of up to 20 × 103 after 2 h of constant electrolysis at a mild overpotential (η = 450 mV) and with a faradaic efficiency for CO of about 95%. Post operando measurements using electrochemical techniques, inductively coupled plasma, X-ray photoelectron spectroscopy and X-ray absorption spectroscopy characterization of the films demonstrated that the catalysis remained of molecular nature, making this Co-based electrode a new promising alternative for molecular electrocatalytic conversion of CO2-to-CO in fully aqueous media.
Collapse
Affiliation(s)
- Matthieu Haake
- Université Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 Rue des Martyrs, Grenoble Cedex F-38054, France
| | - Dmitry Aldakov
- Université Grenoble Alpes, CNRS, CEA, Grenoble INP, IRIG, SyMMES, Grenoble 38000, France
| | - Julien Pérard
- Université Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 Rue des Martyrs, Grenoble Cedex F-38054, France
| | - Giulia Veronesi
- Université Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 Rue des Martyrs, Grenoble Cedex F-38054, France
| | - Antonio Aguilar Tapia
- Institut de Chimie Moléculaire de Grenoble, UAR2607 CNRS Université Grenoble Alpes, Grenoble F-38000, France
| | - Bertrand Reuillard
- Université Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 Rue des Martyrs, Grenoble Cedex F-38054, France
| | - Vincent Artero
- Université Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 Rue des Martyrs, Grenoble Cedex F-38054, France
| |
Collapse
|
7
|
Dong LY, Wang JS, Li TY, Wu T, Hu X, Wu YT, Zhu MY, Hao GP, Lu AH. Boundary-Rich Carbon-Based Electrocatalysts with Manganese(II)-Coordinated Active Environment for Selective Synthesis of Hydrogen Peroxide. Angew Chem Int Ed Engl 2024; 63:e202317660. [PMID: 38298160 DOI: 10.1002/anie.202317660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/02/2024]
Abstract
Coordinated manganese (Mn) electrocatalysts owing to their electronic structure flexibility, non-toxic and earth abundant features are promising for electrocatalytic reactions. However, achieving selective hydrogen peroxide (H2 O2 ) production through two electron oxygen reduction (2e-ORR) is a challenge on Mn-centered catalysts. Targeting this goal, we report on the creation of a secondary Mn(II)-coordinated active environment with reactant enrichment effect on boundary-rich porous carbon-based electrocatalysts, which facilitates the selective and rapid synthesis of H2 O2 through 2e-ORR. The catalysts exhibit nearly 100 % Faradaic efficiency and H2 O2 productivity up to 15.1 mol gcat -1 h-1 at 0.1 V versus reversible hydrogen electrode, representing the record high activity for Mn-based electrocatalyst in H2 O2 electrosynthesis. Mechanistic studies reveal that the epoxide and hydroxyl groups surrounding Mn(II) centers improve spin state by modifying electronic properties and charge transfer, thus tailoring the adsorption strength of *OOH intermediate. Multiscale simulations reveal that the high-curvature boundaries facilitate oxygen (O2 ) adsorption and result in local O2 enrichment due to the enhanced interaction between carbon surface and O2 . These merits together ensure the efficient formation of H2 O2 with high local concentration, which can directly boost the tandem reaction of hydrolysis of benzonitrile to benzamide with nearly 100 % conversion rate and exclusive benzamide selectivity.
Collapse
Affiliation(s)
- Ling-Yu Dong
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, P. R. China
| | - Jing-Song Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, P. R. China
| | - Tian-Yi Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, P. R. China
| | - Tao Wu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, P. R. China
| | - Xu Hu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, P. R. China
| | - Yu-Tai Wu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, P. R. China
| | - Min-Yi Zhu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, P. R. China
| | - Guang-Ping Hao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, P. R. China
| | - An-Hui Lu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, P. R. China
| |
Collapse
|
8
|
Valli D, Ooi SA, Scattolini G, Chaudhary H, Tietze AA, Maj M. Improving cryo-EM grids for amyloid fibrils using interface-active solutions and spectator proteins. Biophys J 2024; 123:718-729. [PMID: 38368506 PMCID: PMC10995402 DOI: 10.1016/j.bpj.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/28/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024] Open
Abstract
Preparation of cryoelectron microscopy (cryo-EM) grids for imaging of amyloid fibrils is notoriously challenging. The human islet amyloid polypeptide (hIAPP) serves as a notable example, as the majority of reported structures have relied on the use of nonphysiological pH buffers, N-terminal tags, and seeding. This highlights the need for more efficient, reproducible methodologies that can elucidate amyloid fibril structures formed under diverse conditions. In this work, we demonstrate that the distribution of fibrils on cryo-EM grids is predominantly determined by the solution composition, which is critical for the stability of thin vitreous ice films. We discover that, among physiological pH buffers, HEPES uniquely enhances the distribution of fibrils on cryo-EM grids and improves the stability of ice layers. This improvement is attributed to direct interactions between HEPES molecules and hIAPP, effectively minimizing the tendency of hIAPP to form dense clusters in solutions and preventing ice nucleation. Furthermore, we provide additional support for the idea that denatured protein monolayers forming at the interface are also capable of eliciting a surfactant-like effect, leading to improved particle coverage. This phenomenon is illustrated by the addition of nonamyloidogenic rat IAPP (rIAPP) to a solution of preaggregated hIAPP just before the freezing process. The resultant grids, supplemented with this "spectator protein", exhibit notably enhanced coverage and improved ice quality. Unlike conventional surfactants, rIAPP is additionally capable of disentangling the dense clusters formed by hIAPP. By applying the proposed strategies, we have resolved the structure of the dominant hIAPP polymorph, formed in vitro at pH 7.4, to a final resolution of 4 Å. The advances in grid preparation presented in this work hold significant promise for enabling structural determination of amyloid proteins which are particularly resistant to conventional grid preparation techniques.
Collapse
Affiliation(s)
- Dylan Valli
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Saik Ann Ooi
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Giorgio Scattolini
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Himanshu Chaudhary
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Alesia A Tietze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Michał Maj
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
9
|
Judge A, Sankaran B, Hu L, Palaniappan M, Birgy A, Prasad BVV, Palzkill T. Network of epistatic interactions in an enzyme active site revealed by large-scale deep mutational scanning. Proc Natl Acad Sci U S A 2024; 121:e2313513121. [PMID: 38483989 PMCID: PMC10962969 DOI: 10.1073/pnas.2313513121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
Cooperative interactions between amino acids are critical for protein function. A genetic reflection of cooperativity is epistasis, which is when a change in the amino acid at one position changes the sequence requirements at another position. To assess epistasis within an enzyme active site, we utilized CTX-M β-lactamase as a model system. CTX-M hydrolyzes β-lactam antibiotics to provide antibiotic resistance, allowing a simple functional selection for rapid sorting of modified enzymes. We created all pairwise mutations across 17 active site positions in the β-lactamase enzyme and quantitated the function of variants against two β-lactam antibiotics using next-generation sequencing. Context-dependent sequence requirements were determined by comparing the antibiotic resistance function of double mutations across the CTX-M active site to their predicted function based on the constituent single mutations, revealing both positive epistasis (synergistic interactions) and negative epistasis (antagonistic interactions) between amino acid substitutions. The resulting trends demonstrate that positive epistasis is present throughout the active site, that epistasis between residues is mediated through substrate interactions, and that residues more tolerant to substitutions serve as generic compensators which are responsible for many cases of positive epistasis. Additionally, we show that a key catalytic residue (Glu166) is amenable to compensatory mutations, and we characterize one such double mutant (E166Y/N170G) that acts by an altered catalytic mechanism. These findings shed light on the unique biochemical factors that drive epistasis within an enzyme active site and will inform enzyme engineering efforts by bridging the gap between amino acid sequence and catalytic function.
Collapse
Affiliation(s)
- Allison Judge
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
| | - Banumathi Sankaran
- Department of Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
| | - Murugesan Palaniappan
- Department of Pathology and Immunology, Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
| | - André Birgy
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
- Infections, Antimicrobials, Modelling, Evolution, UMR 1137, French Insitute for Medical Research (INSERM), Faculty of Health, Université Paris Cité, Paris75006, France
| | - B. V. Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
| | - Timothy Palzkill
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
| |
Collapse
|
10
|
Cobb SJ, Rodríguez‐Jiménez S, Reisner E. Connecting Biological and Synthetic Approaches for Electrocatalytic CO 2 Reduction. Angew Chem Int Ed Engl 2024; 63:e202310547. [PMID: 37983571 PMCID: PMC11497245 DOI: 10.1002/anie.202310547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Electrocatalytic CO2 reduction has developed into a broad field, spanning fundamental studies of enzymatic 'model' catalysts to synthetic molecular catalysts and heterogeneous gas diffusion electrodes producing commercially relevant quantities of product. This diversification has resulted in apparent differences and a disconnect between seemingly related approaches when using different types of catalysts. Enzymes possess discrete and well understood active sites that can perform reactions with high selectivity and activities at their thermodynamic limit. Synthetic small molecule catalysts can be designed with desired active site composition but do not yet display enzyme-like performance. These properties of the biological and small molecule catalysts contrast with heterogeneous materials, which can contain multiple, often poorly understood active sites with distinct reactivity and therefore introducing significant complexity in understanding their activities. As these systems are being better understood and the continuously improving performance of their heterogeneous active sites closes the gap with enzymatic activity, this performance difference between heterogeneous and enzymatic systems begins to close. This convergence removes the barriers between using different types of catalysts and future challenges can be addressed without multiple efforts as a unified picture for the biological-synthetic catalyst spectrum emerges.
Collapse
Affiliation(s)
- Samuel J. Cobb
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | | | - Erwin Reisner
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
11
|
Boucher DG, Carroll E, Nguyen ZA, Jadhav RG, Simoska O, Beaver K, Minteer SD. Bioelectrocatalytic Synthesis: Concepts and Applications. Angew Chem Int Ed Engl 2023; 62:e202307780. [PMID: 37428529 DOI: 10.1002/anie.202307780] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/11/2023]
Abstract
Bioelectrocatalytic synthesis is the conversion of electrical energy into value-added products using biocatalysts. These methods merge the specificity and selectivity of biocatalysis and energy-related electrocatalysis to address challenges in the sustainable synthesis of pharmaceuticals, commodity chemicals, fuels, feedstocks and fertilizers. However, the specialized experimental setups and domain knowledge for bioelectrocatalysis pose a significant barrier to adoption. This review introduces key concepts of bioelectrosynthetic systems. We provide a tutorial on the methods of biocatalyst utilization, the setup of bioelectrosynthetic cells, and the analytical methods for assessing bioelectrocatalysts. Key applications of bioelectrosynthesis in ammonia production and small-molecule synthesis are outlined for both enzymatic and microbial systems. This review serves as a necessary introduction and resource for the non-specialist interested in bioelectrosynthetic research.
Collapse
Affiliation(s)
- Dylan G Boucher
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Emily Carroll
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Zachary A Nguyen
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Rohit G Jadhav
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Olja Simoska
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Kevin Beaver
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
12
|
Saska V, Contaldo U, Mazurenko I, de Poulpiquet A, Lojou E. High electrolyte concentration effect on enzymatic oxygen reduction. Bioelectrochemistry 2023; 153:108503. [PMID: 37429114 DOI: 10.1016/j.bioelechem.2023.108503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
The nature, the composition and the concentration of electrolytes is essential for electrocatalysis involving redox enzymes. Here, we discuss the effect of various electrolyte compositions with increasing ionic strengths on the stability and activity towards O2 reduction of the bilirubin oxidase from Myrothecium verrucaria (Mv BOD). Different salts, Na2SO4, (NH4)2SO4, NaCl, NaClO4, added to a phosphate buffer (PB) were evaluated with concentrations ranging from 100 mM up to 1.7 M. On functionalized carbon nanotube-modified electrodes, it was shown that the catalytic current progressively decreased with increasing salt concentrations. The process was reversible suggesting it was not related to enzyme leakage. The enzyme was then immobilized on gold electrodes modified by self-assembling of thiols. When the enzyme was simply adsorbed, the catalytic current decreased in a reversible way, thus behaving similarly as on carbon nanotubes. Enzyme mobility at the interface induced by a modification in the interactions between the protein and the electrode upon salt addition may account for this behavior. When the enzyme was covalently attached, the catalytic current increased. Enzyme compaction is proposed to be at the origin of such catalytic current increase because of shorter distances between the first copper site electron acceptor and the electrode.
Collapse
Affiliation(s)
- V Saska
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, UMR 7281, 31, chemin Joseph Aiguier, CS 70071, 13402 Marseille cedex 09, France
| | - U Contaldo
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, UMR 7281, 31, chemin Joseph Aiguier, CS 70071, 13402 Marseille cedex 09, France
| | - I Mazurenko
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, UMR 7281, 31, chemin Joseph Aiguier, CS 70071, 13402 Marseille cedex 09, France
| | - A de Poulpiquet
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, UMR 7281, 31, chemin Joseph Aiguier, CS 70071, 13402 Marseille cedex 09, France
| | - E Lojou
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, UMR 7281, 31, chemin Joseph Aiguier, CS 70071, 13402 Marseille cedex 09, France.
| |
Collapse
|
13
|
Cobb SJ, Dharani AM, Oliveira AR, Pereira IAC, Reisner E. Carboxysome-Inspired Electrocatalysis using Enzymes for the Reduction of CO 2 at Low Concentrations. Angew Chem Int Ed Engl 2023; 62:e202218782. [PMID: 37078435 DOI: 10.1002/anie.202218782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/21/2023]
Abstract
The electrolysis of dilute CO2 streams suffers from low concentrations of dissolved substrate and its rapid depletion at the electrolyte-electrocatalyst interface. These limitations require first energy-intensive CO2 capture and concentration, before electrolyzers can achieve acceptable performances. For direct electrocatalytic CO2 reduction from low-concentration sources, we introduce a strategy that mimics the carboxysome in cyanobacteria by utilizing microcompartments with nanoconfined enzymes in a porous electrode. A carbonic anhydrase accelerates CO2 hydration kinetics and minimizes substrate depletion by making all dissolved carbon available for utilization, while a highly efficient formate dehydrogenase reduces CO2 cleanly to formate; down to even atmospheric concentrations of CO2 . This bio-inspired concept demonstrates that the carboxysome provides a viable blueprint for the reduction of low-concentration CO2 streams to chemicals by using all forms of dissolved carbon.
Collapse
Affiliation(s)
- Samuel J Cobb
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Azim M Dharani
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ana Rita Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
14
|
Siritanaratkul B. Design principles for a nanoconfined enzyme cascade electrode via reaction-diffusion modelling. Phys Chem Chem Phys 2023; 25:9357-9363. [PMID: 36920789 DOI: 10.1039/d3cp00540b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The study of enzymes by direct electrochemistry has been extended to enzyme cascades, with a key development being the 'electrochemical leaf': an electroactive enzyme is immobilized within a porous electrode, providing in situ cofactor (NADP(H)) regeneration for a co-immobilized downstream enzyme. This system has been further developed to include multiple downstream enzymes, and it has become an important tool in biocatalysis, however, the local environment within the porous electrode has not been investigated in detail. Here, we constructed a 1D reaction-diffusion model, comprising the porous electrode with 2 kinds of enzymes immobilized, and an enzyme-free electrolyte diffusion layer. The modelling results show that the rate of the downstream enzyme is a key parameter, and that substrate transport within the porous electrode is not a main limiting factor. The insights obtained from this model can guide future rational design and improvement of these electrodes and immobilized enzyme cascade systems.
Collapse
Affiliation(s)
- Bhavin Siritanaratkul
- Stephenson Institute for Renewable Energy and the Department of Chemistry University of Liverpool, Liverpool, L69 7ZF, UK.
| |
Collapse
|
15
|
Klačić T, Jugl A, Pekař M, Kovačević D. High-Resolution Ultrasonic Spectroscopy: Looking at the Interpolyelectrolyte Neutralization from a Different Perspective. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Tin Klačić
- Division of Physical Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Adam Jugl
- Institute of Physical and Applied Chemistry & Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, CZ-61200 Brno, Czech Republic
| | - Miloslav Pekař
- Institute of Physical and Applied Chemistry & Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, CZ-61200 Brno, Czech Republic
| | - Davor Kovačević
- Division of Physical Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| |
Collapse
|
16
|
Liu Y, Webb S, Moreno-García P, Kulkarni A, Maroni P, Broekmann P, Milton RD. Facile Functionalization of Carbon Electrodes for Efficient Electroenzymatic Hydrogen Production. JACS AU 2023; 3:124-130. [PMID: 36711103 PMCID: PMC9875370 DOI: 10.1021/jacsau.2c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/02/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Enzymatic electrocatalysis holds promise for new biotechnological approaches to produce chemical commodities such as molecular hydrogen (H2). However, typical inhibitory limitations include low stability and/or low electrocatalytic currents (low product yields). Here we report a facile single-step electrode preparation procedure using indium-tin oxide nanoparticles on carbon electrodes. The subsequent immobilization of a model [FeFe]-hydrogenase from Clostridium pasteurianum ("CpI") on the functionalized carbon electrode permits comparatively large quantities of H2 to be produced in a stable manner. Specifically, we observe current densities of >8 mA/cm2 at -0.8 V vs the standard hydrogen electrode (SHE) by direct electron transfer (DET) from cyclic voltammetry, with an onset potential for H2 production close to its standard potential at pH 7 (approximately -0.4 V vs. SHE). Importantly, hydrogenase-modified electrodes show high stability retaining ∼92% of their electrocatalytic current after 120 h of continuous potentiostatic H2 production at -0.6 V vs. SHE; gas chromatography confirmed ∼100% Faradaic efficiency. As the bioelectrode preparation method balances simplicity, performance, and stability, it paves the way for DET on other electroenzymatic reactions as well as semiartificial photosynthesis.
Collapse
Affiliation(s)
- Yongpeng Liu
- Department
of Inorganic and Analytical Chemistry, University
of Geneva, Faculty of Sciences, Quai Ernest-Ansermet 30, Geneva 4 1211, Switzerland
| | - Sophie Webb
- Department
of Inorganic and Analytical Chemistry, University
of Geneva, Faculty of Sciences, Quai Ernest-Ansermet 30, Geneva 4 1211, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Quai Ernest-Ansermet 30, Geneva 4 1211, Switzerland
| | - Pavel Moreno-García
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Amogh Kulkarni
- Department
of Inorganic and Analytical Chemistry, University
of Geneva, Faculty of Sciences, Quai Ernest-Ansermet 30, Geneva 4 1211, Switzerland
| | - Plinio Maroni
- Department
of Inorganic and Analytical Chemistry, University
of Geneva, Faculty of Sciences, Quai Ernest-Ansermet 30, Geneva 4 1211, Switzerland
| | - Peter Broekmann
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Ross D. Milton
- Department
of Inorganic and Analytical Chemistry, University
of Geneva, Faculty of Sciences, Quai Ernest-Ansermet 30, Geneva 4 1211, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Quai Ernest-Ansermet 30, Geneva 4 1211, Switzerland
| |
Collapse
|
17
|
Armstrong FA, Cheng B, Herold RA, Megarity CF, Siritanaratkul B. From Protein Film Electrochemistry to Nanoconfined Enzyme Cascades and the Electrochemical Leaf. Chem Rev 2022; 123:5421-5458. [PMID: 36573907 PMCID: PMC10176485 DOI: 10.1021/acs.chemrev.2c00397] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein film electrochemistry (PFE) has given unrivalled insight into the properties of redox proteins and many electron-transferring enzymes, allowing investigations of otherwise ill-defined or intractable topics such as unstable Fe-S centers and the catalytic bias of enzymes. Many enzymes have been established to be reversible electrocatalysts when attached to an electrode, and further investigations have revealed how unusual dependences of catalytic rates on electrode potential have stark similarities with electronics. A special case, the reversible electrochemistry of a photosynthetic enzyme, ferredoxin-NADP+ reductase (FNR), loaded at very high concentrations in the 3D nanopores of a conducting metal oxide layer, is leading to a new technology that brings PFE to myriad enzymes of other classes, the activities of which become controlled by the primary electron exchange. This extension is possible because FNR-based recycling of NADP(H) can be coupled to a dehydrogenase, and thence to other enzymes linked in tandem by the tight channelling of cofactors and intermediates within the nanopores of the material. The earlier interpretations of catalytic wave-shapes and various analogies with electronics are thus extended to initiate a field perhaps aptly named "cascade-tronics", in which the flow of reactions along an enzyme cascade is monitored and controlled through an electrochemical analyzer. Unlike in photosynthesis where FNR transduces electron transfer and hydride transfer through the unidirectional recycling of NADPH, the "electrochemical leaf" (e-Leaf) can be used to drive reactions in both oxidizing and reducing directions. The e-Leaf offers a natural way to study how enzymes are affected by nanoconfinement and crowding, mimicking the physical conditions under which enzyme cascades operate in living cells. The reactions of the trapped enzymes, often at very high local concentration, are thus studied electrochemically, exploiting the potential domain to control rates and direction and the current-rate analogy to derive kinetic data. Localized NADP(H) recycling is very efficient, resulting in very high cofactor turnover numbers and new opportunities for controlling and exploiting biocatalysis.
Collapse
Affiliation(s)
- Fraser A. Armstrong
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Beichen Cheng
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Ryan A. Herold
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Clare F. Megarity
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Bhavin Siritanaratkul
- Stephenson Institute for Renewable Energy and the Department of Chemistry, University of Liverpool, Liverpool L69 7ZF, United Kingdom
| |
Collapse
|
18
|
Zhang W, Huang W, Tan J, Guo Q, Wu B. Heterogeneous catalysis mediated by light, electricity and enzyme via machine learning: Paradigms, applications and prospects. CHEMOSPHERE 2022; 308:136447. [PMID: 36116627 DOI: 10.1016/j.chemosphere.2022.136447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Energy crisis and environmental pollution have become the bottleneck of human sustainable development. Therefore, there is an urgent need to develop new catalysts for energy production and environmental remediation. Due to the high cost caused by blind screening and limited valuable computing resources, the traditional experimental methods and theoretical calculations are difficult to meet with the requirements. In the past decades, computer science has made great progress, especially in the field of machine learning (ML). As a new research paradigm, ML greatly accelerates the theoretical calculation methods represented by first principal calculation and molecular dynamics, and establish the physical picture of heterogeneous catalytic processes for energy and environment. This review firstly summarized the general research paradigms of ML in the discovery of catalysts. Then, the latest progresses of ML in light-, electricity- and enzyme-mediated heterogeneous catalysis were reviewed from the perspective of catalytic performance, operating conditions and reaction mechanism. The general guidelines of ML for heterogeneous catalysis were proposed. Finally, the existing problems and future development trend of ML in heterogeneous catalysis mediated by light, electricity and enzyme were summarized. We highly expect that this review will facilitate the interaction between ML and heterogeneous catalysis, and illuminate the development prospect of heterogeneous catalysis.
Collapse
Affiliation(s)
- Wentao Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Wenguang Huang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou, 510655, People's Republic of China.
| | - Jie Tan
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou, 510655, People's Republic of China
| | - Qingwei Guo
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou, 510655, People's Republic of China
| | - Bingdang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China; Key Laboratory of Suzhou Sponge City Technology, Suzhou, 215002, People's Republic of China.
| |
Collapse
|
19
|
Man HM, Mazurenko I, Le Guenno H, Bouffier L, Lojou E, de Poulpiquet A. Local pH Modulation during Electro-Enzymatic O 2 Reduction: Characterization of the Influence of Ionic Strength by In Situ Fluorescence Microscopy. Anal Chem 2022; 94:15604-15612. [DOI: 10.1021/acs.analchem.2c02135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hiu Mun Man
- Laboratory of Bioenergetics and Protein Engineering, Mediterranean Institute of Microbiology, Aix-Marseille Univ., CNRS, UMR, 7281Marseille, France
| | - Ievgen Mazurenko
- Laboratory of Bioenergetics and Protein Engineering, Mediterranean Institute of Microbiology, Aix-Marseille Univ., CNRS, UMR, 7281Marseille, France
| | - Hugo Le Guenno
- Mediterranean Institute of Microbiology, CNRS, Microscopy Facility, FR 3479Marseille, France
| | - Laurent Bouffier
- Institute of Molecular Sciences, Univ. Bordeaux, CNRS, Bordeaux INP, UMR 5255, F-33400Talence, France
| | - Elisabeth Lojou
- Laboratory of Bioenergetics and Protein Engineering, Mediterranean Institute of Microbiology, Aix-Marseille Univ., CNRS, UMR, 7281Marseille, France
| | - Anne de Poulpiquet
- Laboratory of Bioenergetics and Protein Engineering, Mediterranean Institute of Microbiology, Aix-Marseille Univ., CNRS, UMR, 7281Marseille, France
| |
Collapse
|
20
|
Rodríguez-Jiménez S, Song H, Lam E, Wright D, Pannwitz A, Bonke SA, Baumberg JJ, Bonnet S, Hammarström L, Reisner E. Self-Assembled Liposomes Enhance Electron Transfer for Efficient Photocatalytic CO 2 Reduction. J Am Chem Soc 2022; 144:9399-9412. [PMID: 35594410 PMCID: PMC9164230 DOI: 10.1021/jacs.2c01725] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Light-driven conversion of CO2 to chemicals provides a sustainable alternative to fossil fuels, but homogeneous systems are typically limited by cross reactivity between different redox half reactions and inefficient charge separation. Herein, we present the bioinspired development of amphiphilic photosensitizer and catalyst pairs that self-assemble in lipid membranes to overcome some of these limitations and enable photocatalytic CO2 reduction in liposomes using precious metal-free catalysts. Using sodium ascorbate as a sacrificial electron source, a membrane-anchored alkylated cobalt porphyrin demonstrates higher catalytic CO production (1456 vs 312 turnovers) and selectivity (77 vs 11%) compared to its water-soluble nonalkylated counterpart. Time-resolved and steady-state spectroscopy revealed that self-assembly facilitates this performance enhancement by enabling a charge-separation state lifetime increase of up to two orders of magnitude in the dye while allowing for a ninefold faster electron transfer to the catalyst. Spectroelectrochemistry and density functional theory calculations of the alkylated Co porphyrin catalyst support a four-electron-charging mechanism that activates the catalyst prior to catalysis, together with key catalytic intermediates. Our molecular liposome system therefore benefits from membrane immobilization and provides a versatile and efficient platform for photocatalysis.
Collapse
Affiliation(s)
| | - Hongwei Song
- Department of Chemistry - Angstrom Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Erwin Lam
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Demelza Wright
- Nanophotonics Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K
| | - Andrea Pannwitz
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Shannon A Bonke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Jeremy J Baumberg
- Nanophotonics Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Leif Hammarström
- Department of Chemistry - Angstrom Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
21
|
Cobb SJ, Badiani VM, Dharani AM, Wagner A, Zacarias S, Oliveira AR, Pereira IAC, Reisner E. Fast CO 2 hydration kinetics impair heterogeneous but improve enzymatic CO 2 reduction catalysis. Nat Chem 2022; 14:417-424. [PMID: 35228690 PMCID: PMC7612589 DOI: 10.1038/s41557-021-00880-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022]
Abstract
The performance of heterogeneous catalysts for electrocatalytic CO2 reduction (CO2R) suffers from unwanted side reactions and kinetic inefficiencies at the required large overpotential. However, immobilised CO2R enzymes — such as formate dehydrogenase — can operate with high turnover and selectivity at a minimal overpotential and are therefore ‘ideal’ model catalysts. Here, through the co-immobilisation of carbonic anhydrase, we study the effect of CO2 hydration on the local environment and performance of a range of disparate CO2R systems from enzymatic (formate dehydrogenase) to heterogeneous systems. We show that the co-immobilisation of carbonic anhydrase increases the kinetics of CO2 hydration at the electrode. This benefits enzymatic CO2 reduction — despite the decrease in CO2 concentration — due to a reduction in local pH change, whereas it is detrimental to heterogeneous catalysis (on Au), because the system is unable to suppress the H2 evolution side reaction. Understanding the role of CO2 hydration kinetics within the local environment on the performance of electrocatalyst systems provides important insights for the development of next generation synthetic CO2R catalysts.
Collapse
Affiliation(s)
- Samuel J Cobb
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Vivek M Badiani
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Azim M Dharani
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Andreas Wagner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Sónia Zacarias
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Ana Rita Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|