1
|
Sawtarie N, Schrecengost JR, Mekkanamkulam Ananthanarayanan K, Manimaran NH, Awate SS, Dong C, Xu K, Wang Y, Robinson JA, Giebink NC, Fullerton-Shirey SK. Permanent Dipole Moment in a Quantum-Confined Two-Dimensional Metal Revealed by Electric Double Layer Gating. NANO LETTERS 2025; 25:6599-6605. [PMID: 40130592 PMCID: PMC12023022 DOI: 10.1021/acs.nanolett.5c00500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/26/2025]
Abstract
The tunable optical properties of metals through size-dependent quantum effects have attracted attention due to synthesis of chemically stable, ultrathin, and two-dimensional metals. Gate tunability, from the reduced screening of low-dimensional metals, adds an additional route for control over optical properties. Here, two-dimensional (2D) Ga is synthesized via confinement heteroepitaxy and patterned into electric-double-layer (EDL) gated transistors. 2D Ga is predicted to have an out-of-plane permanent dipole moment resulting from a non-centrosymmetric interface. Alternating current EDL gating induces a measurable change in 2D Ga reflectivity of ΔR/R ∼ 8 × 10-4. The optical response is dominated by a linear Stark shift of 1.8 meV, corresponding to a 0.4 D change in the permanent dipole moment between the ground and excited states of 2D Ga. These results are the first demonstration of 2D metal gating and the first direct evidence of a permanent dipole moment in a 2D metal.
Collapse
Affiliation(s)
- Nader Sawtarie
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jonathon R. Schrecengost
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | | | - Nithil Harris Manimaran
- Microsystems
Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Shubham Sukumar Awate
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Chengye Dong
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ke Xu
- Microsystems
Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
- School
of Physics and Astronomy, Rochester Institute
of Technology, Rochester, New York 14623, United States
| | - Yuanxi Wang
- Department
of Physics, University of North Texas, Denton, Texas 76203, United States
| | - Joshua A. Robinson
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Noel C. Giebink
- Department
of Electrical Engineering, The Pennsylvania
State University, University Park, Pennsylvania 16802, United States
- Department
of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Susan K. Fullerton-Shirey
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
2
|
Lee J, Park H, Kim S, Liu C, Li Z, Sim K. Irreproducible SEBS wrinkling based on spin evaporation enabling identifiable artificial finger pad electronics. Nat Commun 2025; 16:2225. [PMID: 40044733 PMCID: PMC11882948 DOI: 10.1038/s41467-025-57498-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/24/2025] [Indexed: 03/09/2025] Open
Abstract
Irreproducible wrinkling, characterized by randomly arranged ridges or creases on material surfaces, has significant potential for application in entity identification and anti-counterfeiting. However, active research in this field is hindered because the existing wrinkling methods face challenges in realizing discernible patterns and potential applications of submillimeter-scale wavelength wrinkles are yet to be identified. Herein, we propose a strategy to create unique and irreproducible styrene-ethylene-butylene-styrene (SEBS) wrinkles using "spin evaporation", a technique that rapidly removes the solvent by spinning. We demonstrate the realization of SEBS wrinkles with wavelengths of hundreds of micrometers with high randomness, irreproducibility, and resistance to external stimuli. Importantly, to demonstrate the potential application of the wrinkle, we suggest and fabricate a human-finger-like fully soft identifiable artificial finger pad electronics and integrate it with a soft bimodal sensing system. The artificial finger pad mimics human finger pad features such as identification, object recognition, and effective grasping. Further integration of this pad into soft robots, cephalopods, and prosthetic skin offers insightful potential for the proposed wrinkling method in various fields.
Collapse
Affiliation(s)
- Juyeong Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Haechan Park
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Sehyun Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Chang Liu
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Zhengwei Li
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
- Department of Biomedical Sciences, University of Houston, Houston, TX, USA
| | - Kyoseung Sim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
- X-Dynamic Research Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
| |
Collapse
|
3
|
Zhang Y, Ren H, Linghu C, Zhang J, Gao A, Su H, Miao S, Qin R, Hu B, Chen X, Deng M, Liu Y, Yang P. Stabilizing Metal Coating on Flexible Devices by Ultrathin Protein Nanofilms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412378. [PMID: 39540338 DOI: 10.1002/adma.202412378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/18/2024] [Indexed: 11/16/2024]
Abstract
The significant modulus difference between a metal coating and a polymer substrate leads to interface mismatches, seriously affecting the stability of flexible devices. Therefore, enhancing the adhesion stability of a metal layer on an inert polymer substrate to prevent delamination becomes a key challenge. Herein, an ultrathin protein nanofilm (UPN), synthesized by disulfide-bond-reducing protein aggregation, is proposed as a strong adhesive layer to enhance adhesion between polymer substrate and metal coating. Unlike traditional biopolymer adhesives with micrometer-scale thicknesses, the UPN layer is minimized to nanometer/single-molecular scale. Such UPN thereby effectively enhances the interfacial adhesive strength and reduces the cohesion contribution in the entire adhesion system by directly connecting two interfaces with a nearly single-molecular thickness. Using UPN as the adhesive layer, a multifunctional metal coating could be reliably adhered on flexible polymer substrates by ion sputtering, delivering unprecedented adhesion stability even under repetitive mechanical deformation. Applications of this design include reversible transparency control, tension-responsive encryption, reusable optical sensing, and wearable capacitive touch sensors. This work highlights UPN's potential to create strong bonding strength between flexible polymers and metal coatings, offering a biocompatible solution with high surface activity and low cohesion, facilitating the development of hybrid devices with stable metal nano-coating.
Collapse
Affiliation(s)
- Yingying Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Hao Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Changhong Linghu
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jiqing Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Aiting Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Hao Su
- College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, Yangling, Shaanxi Province, 712100, P. R. China
| | - Shuting Miao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Rongrong Qin
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Bowen Hu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiaojie Chen
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Miaoran Deng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yongchun Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
4
|
Zhang J, Wang P, Xie W, Wang H, Zhang Y, Zhou H. Cephalopod-Inspired Nanomaterials for Optical and Thermal Regulation: Mechanisms, Applications and Perspectives. ACS NANO 2024; 18:24741-24769. [PMID: 39177374 DOI: 10.1021/acsnano.4c08338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The manipulation of interactions between light and matter plays a crucial role in the evolution of organisms and a better life for humans. As a result of natural selection, precise light-regulatory systems of biology have been engineered that provide many powerful and promising bioinspired strategies. As the "king of disguise", cephalopods, which can perfectly control the propagation of light and thus achieve excellent surrounding-matching via their delicate skin structure, have made themselves an exciting source of inspiration for developing optical and thermal regulation nanomaterials. This review presents cutting-edge advancements in cephalopod-inspired optical and thermal regulation nanomaterials, highlighting the key milestones and breakthroughs achieved thus far. We begin with the underlying mechanisms of the adaptive color-changing ability of cephalopods, as well as their special hierarchical skin structure. Then, different types of bioinspired nanomaterials and devices are comprehensively summarized. Furthermore, some advanced and emerging applications of these nanomaterials and devices, including camouflage, thermal management, pixelation, medical health, sensing and wireless communication, are addressed. Finally, some remaining but significant challenges and potential directions for future work are discussed. We anticipate that this comprehensive review will promote the further development of cephalopod-inspired nanomaterials for optical and thermal regulation and trigger ideas for bioinspired design of nanomaterials in multidisciplinary applications.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
- Future Materials Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203 Shanghai, China
| | - Pan Wang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
- Future Materials Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203 Shanghai, China
| | - Weirong Xie
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
- Future Materials Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203 Shanghai, China
| | - Haoyu Wang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
- Future Materials Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203 Shanghai, China
| | - Yifan Zhang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
- Future Materials Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203 Shanghai, China
| | - Han Zhou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
- Future Materials Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203 Shanghai, China
| |
Collapse
|
5
|
Yuan W, Deng X, Wang Z, Ma T, Yan S, Gao X, Li J, Ma X, Yin J, Hu K, Zhang W, Jiang X. Photochemical Design for Diverse Controllable Patterns in Self-Wrinkling Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400849. [PMID: 38567824 DOI: 10.1002/adma.202400849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Harnessing the spontaneous surface instability of pliable substances to create intricate, well-ordered, and on-demand controlled surface patterns holds great potential for advancing applications in optical, electrical, and biological processes. However, the current limitations stem from challenges in modulating multidirectional stress fields and diverse boundary environments. Herein, this work proposes a universal strategy to achieve arbitrarily controllable wrinkle patterns via the spatiotemporal photochemical boundaries. Utilizing constraints and inductive effects of the photochemical boundaries, the multiple coupling relationship is accomplished among the light fields, stress fields, and morphology of wrinkles in photosensitive polyurethane (PSPU) film. Moreover, employing sequential light-irradiation with photomask enables the attainment of a diverse array of controllable patterns, ranging from highly ordered 2D patterns to periodic or intricate designs. The fundamental mechanics of underlying buckling and the formation of surface features are comprehensively elucidated through theoretical stimulation and finite element analysis. The results reveal the evolution laws of wrinkles under photochemical boundaries and represent a new effective toolkit for fabricating intricate and captivating patterns in single-layer films.
Collapse
Affiliation(s)
- Wenqiang Yuan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinlu Deng
- School of Mechanical Engineering, State Key Laboratory of Mechanical Systems and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zehong Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tianjiao Ma
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuzhen Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaxin Gao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jin Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaodong Ma
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Yin
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kaiming Hu
- School of Mechanical Engineering, State Key Laboratory of Mechanical Systems and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenming Zhang
- School of Mechanical Engineering, State Key Laboratory of Mechanical Systems and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuesong Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
6
|
Wang Q, Yu S, Ye Q, Yang B, Zhang Y, Wang X, Li L. Controlled Preparation of Highly Stretchable, Crack-Free Wrinkled Surfaces with Tunable Wetting and Optical Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2102-2110. [PMID: 38227966 DOI: 10.1021/acs.langmuir.3c02920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Constructing wrinkles by utilizing strain-driven surface instability in film-substrate systems is a general method to prepare micronano structures, which have a wide range of applications in smart surfaces and devices such as flexible electronics, reversible wetting, friction, and optics. However, cracks generated during the preparation and use process significantly affect the uniformity of wrinkled surfaces and degrade the functional properties of the film devices. The realization of crack-free wrinkles with high stretchability in hard film systems is still a great challenge. Here, we report on a facile technique for controllable preparation of large-area, highly stretchable, crack-free wrinkled surfaces by ultraviolet ozone (UVO) treatment of Ecoflex. The thickness dependence of the wrinkles and the in situ wrinkling process during mechanical loading are investigated. The wrinkles including striped, labyrinth-like, herringbone, and transitional structures are controllable by changing strain mode (uniaxial or biaxial), loading history (simultaneous or sequential), strain anisotropy, and gradient loading. The wrinkled surfaces obtained using UVO-treated Ecoflex have tunable wetting and optical properties and can maintain excellent mechanical stability under large strains. This study provides a facile method for the preparation of large-area, crack-free wrinkles, which is simple, fast, low-cost, and robust. The resulting wrinkled surfaces remain stable under high stretching, which is beneficial for many practical applications, especially in the cases of large strains.
Collapse
Affiliation(s)
- Qiaofan Wang
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Senjiang Yu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Qianqian Ye
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Bo Yang
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Yongju Zhang
- College of Mechanical Engineering, Taizhou University, Jiaojiang 318000, P. R. China
| | - Xin Wang
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Lingwei Li
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| |
Collapse
|
7
|
Wang HQ, Tang Y, Huang ZY, Wang FZ, Qiu PF, Zhang X, Li CH, Li Q. A Dual-Responsive Liquid Crystal Elastomer for Multi-Level Encryption and Transient Information Display. Angew Chem Int Ed Engl 2023; 62:e202313728. [PMID: 37818673 DOI: 10.1002/anie.202313728] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/12/2023]
Abstract
Information security has gained increasing attention in the past decade, leading to the development of advanced materials for anti-counterfeiting, encryption and instantaneous information display. However, it remains challenging to achieve high information security with simple encryption procedures and low-energy stimuli. Herein, a series of strain/temperature-responsive liquid crystal elastomers (LCEs) are developed to achieve dual-modal, multi-level information encryption and real-time, rewritable transient information display. The as-prepared polydomain LCEs can change from an opaque state to a transparent state under strain or temperature stimuli, with the transition strains or temperatures highly dependent on the concentration of long-chain flexible spacers. Information encrypted by different LCE inks can be decrypted under specific strains or temperatures, leading to multi-level protection of information security. Furthermore, with the combination of the phase transition of polydomain LCEs and the photothermal effect of multi-walled carbon nanotubes (MWCNTs), we achieved a repeatable transient information display by using near-infrared (NIR) light as a pen for writing. This study provides new insight into the development of advanced encryption materials with versatility and high security for broad applications.
Collapse
Affiliation(s)
- Hong-Qin Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210023, Nanjing, China
| | - Yuqi Tang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China
| | - Zi-Yang Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210023, Nanjing, China
| | - Fang-Zhou Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210023, Nanjing, China
| | - Peng-Fei Qiu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210023, Nanjing, China
| | - Xinfang Zhang
- Materials Science Graduate Program, Kent State University, 44242, Kent, Ohio, USA
| | - Cheng-Hui Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210023, Nanjing, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China
- Materials Science Graduate Program, Kent State University, 44242, Kent, Ohio, USA
| |
Collapse
|
8
|
Hou Z, Zeng S, Shen K, Healey PR, Schipper HJ, Zhang L, Zhang M, Jones MD, Sun L. Interactive deformable electroluminescent devices enabled by an adaptable hydrogel system with optical/photothermal/mechanical tunability. MATERIALS HORIZONS 2023; 10:5931-5941. [PMID: 37873969 DOI: 10.1039/d3mh01412f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Deformable electroluminescent devices (DELDs) with mechanical adaptability are promising for new applications in smart soft electronics. However, current DELDs still present some limitations, including having stimuli-insensitive electroluminescence (EL), untunable mechanical properties, and a lack of versatile stimuli response properties. Herein, a facile approach for fabricating in situ interactive and multi-stimuli responsive DELDs with optical/photothermal/mechanical tunability was proposed. A polyvinyl alcohol (PVA)/polydopamine (PDA)/graphene oxide (GO) adaptable hydrogel exhibiting optical/photothermal/mechanical tunability was used as the top ionic conductor (TIC). The TIC can transform from a viscoelastic state to an elastic state via a special freezing-salting out-rehydration (FSR) process. Meanwhile, it endows the DELDs with a photothermal response and thickness-dependent light shielding properties, allowing them to dynamically demonstrate "on" or "off" or "gradually change" EL response to various mechanical/photothermal stimuli. Thereafter, the DELDs with a viscoelastic TIC can be utilized as pressure-responsive EL devices and laser-engravable EL devices. The DELDs with an elastic TIC can withstand both linear and out-of-plane deformation, enabling the designs of various interactive EL devices/sensors to monitor linear sliders, human finger bending, and pneumatically controllable bulging. This work offers new opportunities for developing next-generation EL-responsive devices with widespread application based on adaptable hydrogel systems.
Collapse
Affiliation(s)
- Zaili Hou
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA.
| | - Songshan Zeng
- Macao Institute of Materials Science and Engineering, Zhuhai MUST Science and Technology Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, 999078, Macao, China.
| | - Kuangyu Shen
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA.
| | - Patrick R Healey
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA.
| | - Holly J Schipper
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA.
| | - Luqi Zhang
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Miranda Zhang
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Michael D Jones
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Luyi Sun
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA.
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
9
|
Aldabagh DJ, Alzubadi TL, Alhuwaizi AF. Tribology of Coated 316L SS by Various Nanoparticles. Int J Biomater 2023; 2023:6676473. [PMID: 37649637 PMCID: PMC10465258 DOI: 10.1155/2023/6676473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/22/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023] Open
Abstract
Background Nanocoating of biomedical materials may be considered the most essential developing field recently, primarily directed at improving their tribological behaviors that enhance their performance and durability. In orthodontics, as in many medical fields, friction reduction (by nanocoatings) among different orthodontic components is considered a substantial milestone in the development of biomedical technology that reduces orthodontic treatment time. The objective of the current research was to explore the tribological behavior, namely, friction of nanocoated thin layer by tantalum (Ta), niobium (Nb), and vanadium (V) manufactured using plasma sputtering at 1, 2, and 3 hours on substrates made of 316L stainless steel (SS), which is thought to be one of the most popular alloys for stainless steel orthodontic archwires. The friction of coated 316L SS archwires coated with Ta, Nb, and V plasma sputtering is hardly mentioned in the literature as of yet. Results An oscillating pin-on-plate tribological test using a computerized tribometer was performed by applying a load of 1 N for 20 minutes under the dry condition at room temperature (25°C) to understand their role in the tribological behavior of the bulk material. Ta and Nb were found to reduce the friction of their SS substrate significantly (45 and 55%, respectively), while V was found to deteriorate the friction of its substrate. Moreover, sputtering time had no substantial role in the friction reduction of coatings. Conclusions Nanocoating of 316L SS bulk material by Nb and Ta with a 1-hour plasma sputtering time can enhance dramatically its tribological behavior. Higher coating hardness, smaller nanoparticle size, intermediate surface coating roughness, and lower surface binding energy of the coatings may play a vital role in friction reduction of the coated 316L SS corresponding to SS orthodontic archwires, predicting to enhance orthodontic treatment.
Collapse
Affiliation(s)
- Dhiaa J. Aldabagh
- Department of Orthodontics, College of Dentistry, University of Baghdad, Baghdad 00964, Iraq
| | - Thair L. Alzubadi
- Department of Prosthodontics Dental Techniques, Al-Esraa University College, Baghdad 00964, Iraq
| | - Akram F. Alhuwaizi
- Department of Orthodontics, College of Dentistry, University of Baghdad, Baghdad 00964, Iraq
| |
Collapse
|
10
|
Liu Z, Jiang Q, Bisoyi HK, Zhu G, Nie ZZ, Jiang K, Yang H, Li Q. Multifunctional Ionic Conductive Anisotropic Elastomers with Self-Wrinkling Microstructures by In Situ Phase Separation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37267423 DOI: 10.1021/acsami.3c04187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Multifunctional flexible sensors are the development trend of wearable electronic devices in the future. As the core of flexible sensors, the key is to construct a stable multifunctional integrated conductive elastomer. Here, ionic conductive elastomers (ICEs) with self-wrinkling microstructures are designed and prepared by in situ phase separation induced by a one-step polymerization reaction. The ICEs are composed of ionic liquids as ionic conductors doped into liquid crystal elastomers. The doped ionic liquids cluster into small droplets and in situ induce the formation of wrinkle structures on the upper surface of the films. The prepared ICEs exhibit mechanochromism, conductivity, large tensile strain, low hysteresis, high cycle stability, and sensitivity during the tension-release process, which achieve dual-mode outputs of optical and electrical signals for information transmission and sensors.
Collapse
Affiliation(s)
- Zhiyang Liu
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Qi Jiang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University, Kent, Ohio 44242, United States
| | - Guanqun Zhu
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Zhen-Zhou Nie
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Kun Jiang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Hong Yang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
11
|
Gu W, Zhou P, Zhang W, Luo Z, Chen L. Pencil-Drawn Generator Built-in Actuator for Integrated Self-Powered/Visual Dual-Mode Sensing Functions and Rewritable Display. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206467. [PMID: 36627147 PMCID: PMC9982543 DOI: 10.1002/advs.202206467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Multifunctionality is important to the development of next-generation actuators and intelligent robots. However, current multi-functional actuating systems are achieved based on the integration of diverse functional units with complex design, especially lacking in multi-mode sensing and displaying functions. Herein, a light-driven actuator integrated with self-powered/visual dual-mode sensing functions and rewritable display function is proposed. The actuator demonstrates a bending curvature of 0.93 cm-1 under near-infrared light irradiation. Meanwhile, by embedding a pencil-drawn graphite generator and thermochromic materials, the actuator also provides two independent sensing functions. First, owing to the photo-thermoelectric effect of graphite, the actuator spontaneously outputs a self-powered voltage (Seebeck coefficient: 23 µV K-1 ), which can reflect the deformation trend of actuator. Second, color changes occur on the actuator during deformation, which provide a visual sensing due to the thermochromic property. Furthermore, the actuator can be utilized as a rewritable display, owing to the integrated color-memorizing component. Intelligent robots, switches, and smart homes are further demonstrated as applications. All of them can spontaneously provide self-powered and visual sensing signals to demonstrate the working states of actuating systems, accompanied by rewritable displays on the actuators. This study will open a new direction for self-powered devices, multi-functional actuators, and intelligent robots.
Collapse
Affiliation(s)
- Wansong Gu
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy MaterialsCollege of Physics and EnergyFujian Normal UniversityFuzhou350117P. R. China
- Fujian Provincial Collaborative Innovation Center for Advanced High‐Field Superconducting Materials and EngineeringFuzhou350117P. R. China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy StorageFuzhou350117P. R. China
| | - Peidi Zhou
- Institute of Smart Marine and EngineeringFujian University of TechnologyFuzhou350108P. R. China
| | - Wei Zhang
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy MaterialsCollege of Physics and EnergyFujian Normal UniversityFuzhou350117P. R. China
- Fujian Provincial Collaborative Innovation Center for Advanced High‐Field Superconducting Materials and EngineeringFuzhou350117P. R. China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy StorageFuzhou350117P. R. China
| | - Zhiling Luo
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy MaterialsCollege of Physics and EnergyFujian Normal UniversityFuzhou350117P. R. China
- Fujian Provincial Collaborative Innovation Center for Advanced High‐Field Superconducting Materials and EngineeringFuzhou350117P. R. China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy StorageFuzhou350117P. R. China
| | - Luzhuo Chen
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy MaterialsCollege of Physics and EnergyFujian Normal UniversityFuzhou350117P. R. China
- Fujian Provincial Collaborative Innovation Center for Advanced High‐Field Superconducting Materials and EngineeringFuzhou350117P. R. China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy StorageFuzhou350117P. R. China
| |
Collapse
|
12
|
Surface Characterization of Stainless Steel 316L Coated with Various Nanoparticle Types. Int J Biomater 2023; 2023:3997281. [PMID: 36744019 PMCID: PMC9891840 DOI: 10.1155/2023/3997281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/09/2022] [Accepted: 12/29/2022] [Indexed: 01/26/2023] Open
Abstract
Background Material tribology has widely expanded in scope and depth and is extended from the mechanical field to the biomedical field. The present study aimed to characterize the nanocoating of highly pure (99.9%) niobium (Nb), tantalum (Ta), and vanadium (V) deposited on 316L stainless steel (SS) substrates which considered the most widely used alloys in the manufacturing of SS orthodontic components. To date, the coating of SS orthodontic archwires with Nb, Ta, and V using a plasma sputtering method has never been reported. Nanodeposition was performed using a DC plasma sputtering system with three different sputtering times (1, 2, and 3 hours). Results Structural and elemental analyses were conducted on the deposited coatings using XRD, FESEM, and EDS showing a unique phase of coating metals over their substrates with obvious homogeneous even deposition. A highly significant positive correlation was found between sputtering time and thickness of the achieved coatings. AFM revealed a reduction in the surface roughness of 316L SS substrates sputtered with all coating materials, significantly seen in V coatings. Conclusions Sputtering time and coating material play a significant role in terms of microstructure and topography of the achieved coatings being the best in the Ta group; moreover, surface roughness was significantly improved by V coatings. Likewise, it is found to be sputtering time independent for all used coatings.
Collapse
|
13
|
Chen S, Hu K, Yan S, Ma T, Deng X, Zhang W, Yin J, Jiang X. Dynamic metal patterns of wrinkles based on photosensitive layers. Sci Bull (Beijing) 2022; 67:2186-2195. [DOI: 10.1016/j.scib.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/24/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022]
|