1
|
Rêgo A, Baur J, Girard-Tercieux C, de la Paz Celorio-Mancera M, Stelkens R, Berger D. Repeatability of evolution and genomic predictions of temperature adaptation in seed beetles. Nat Ecol Evol 2025:10.1038/s41559-025-02716-5. [PMID: 40379980 DOI: 10.1038/s41559-025-02716-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 04/16/2025] [Indexed: 05/19/2025]
Abstract
Climate warming is threatening biodiversity by increasing temperatures beyond the optima of many ectotherms. Owing to the inherent non-linear relationship between temperature and the rate of cellular processes, such shifts towards hot temperature are predicted to impose stronger selection compared with corresponding shifts towards cold temperature. This suggests that when adaptation to warming occurs, it should be relatively rapid and predictable. Here we tested this hypothesis from the level of single-nucleotide polymorphisms to life-history traits in the beetle Callosobruchus maculatus. We conducted an evolve-and-resequence experiment on three genetic backgrounds of the beetle reared at hot or cold temperature. Indeed, we find that phenotypic evolution was faster and more repeatable at hot temperature. However, at the genomic level, adaptation to heat was less repeatable when compared across genetic backgrounds. As a result, genomic predictions of phenotypic adaptation in populations exposed to hot temperature were accurate within, but not between, backgrounds. These results seem best explained by genetic redundancy and an increased importance of epistasis during adaptation to heat, and imply that the same mechanisms that exert strong selection and increase repeatability of phenotypic evolution at hot temperature reduce repeatability at the genomic level. Thus, predictions of adaptation in key phenotypes from genomic data may become increasingly difficult as climates warm.
Collapse
Affiliation(s)
- Alexandre Rêgo
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Julian Baur
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Camille Girard-Tercieux
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- AgroParisTech, INRAE, UMR Silva, Université de Lorraine, Nancy, France
| | | | - Rike Stelkens
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - David Berger
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Mohammadi A, Campos PRA. Geometric Insights into evolutionary rescue dynamics in a two-deme model. Evolution 2025; 79:752-764. [PMID: 39932823 DOI: 10.1093/evolut/qpaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/13/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025]
Abstract
Understanding evolutionary rescue mechanisms in fragmented populations is crucial in the context of rapidly changing environments. This study employs analytical derivations and simulations within a two-deme metapopulation model using Fisher's geometric model framework. We explore the impacts of abrupt environmental changes on two subpopulations that lead to distinct phenotypic optima. We determine the probability density of distances between these optima through analytical derivations. This enables us to calculate the intersection volume of the rescue domains of two subpopulations in the phenotypic space. This approach also allows us to assess the fixation probability of mutations that concurrently rescue both subpopulations and identify the domain of one-step rescue mutations. Our findings reveal that the likelihood of joint evolutionary rescue diminishes with increasing dimensionality of the phenotypic space, posing significant challenges for species with complex trait configurations. The study underscores the importance of genetic variation due to de novo mutations, local adaptation, and migration rates. These insights enhance our understanding of the factors that govern the adaptive potential of fragmented populations in response to severe environmental disturbances.
Collapse
Affiliation(s)
- Azadeh Mohammadi
- Departamento de Física, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife-PE, Brazil
| | - Paulo R A Campos
- Departamento de Física, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife-PE, Brazil
| |
Collapse
|
3
|
Zivanovic G, Arenas C, Mestres F. Temporal and habitat adaptations in Drosophila subobscura populations: changes in chromosomal inversions. Genetica 2025; 153:16. [PMID: 40278938 PMCID: PMC12031780 DOI: 10.1007/s10709-025-00232-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025]
Abstract
In insects, chromosomal inversion polymorphism has been related with different adaptations, including global warming. Regarding this environmental change, Drosophila subobscura stands out as a useful model species due to its rich inversion polymorphism covering the whole karyotype. The main aims of this research were to analyze the differentiation of this polymorphism in Jastrebac Mt. (Serbia) depending on the different habitats (beech and oak forests) and over time. These latter changes were studied in relation to climatic variables (mean, minimum and maximum temperatures, humidity and rainfall). Microdifferentiation was observed between beech and oak forests, mainly for the A and O chromosomes. However, the changes over time turned out to be larger than those due to habitat. In Jastrebac Mt., temperatures increased over time, with this increase being significant for mean and minimum one. The Multidimensional Scaling analysis showed a relation between chromosomal inversions and temperatures (mainly minimum) in Jastrebac Mt. and other Serbian populations of D. subobscura. In beech forest of Jastrebac Mt., the Chromosomal Thermal Index increased over time from 1990 to 1994, but showing a possible stabilization in 2023. This result was observed in other studied Serbian populations. Although those are preliminary results, it might hypothesize that there may be a threshold for the action of natural selection, increasing 'warm' adaptive inversions and decreasing 'cold' ones. The possible reasons for this hypothesis are also discussed.
Collapse
Affiliation(s)
- Goran Zivanovic
- Department of Evolutionary Biology, Institute for Biological Research "Sinisa Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, Belgrade, 11000, Serbia
| | - Concepció Arenas
- Departament de Genètica, Microbiologia i Estadística, Secció d'Estadística, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
| | - Francesc Mestres
- Departament de Genètica, Microbiologia i Estadística, Secció de Genètica Biomèdica, Evolutiva i Desenvolupament - IRBio (Institut de Recerca per la Biodiversitat), Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain.
| |
Collapse
|
4
|
Gompert Z, Feder JL, Parchman TL, Planidin NP, Whiting FJH, Nosil P. Adaptation repeatedly uses complex structural genomic variation. Science 2025; 388:eadp3745. [PMID: 40245138 DOI: 10.1126/science.adp3745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/30/2024] [Accepted: 02/04/2025] [Indexed: 04/19/2025]
Abstract
Structural elements are widespread across genomes, but their complexity and role in repeatedly driving local adaptation remain unclear. In this work, we use phased genome assemblies to show that adaptive divergence in cryptic color pattern in a stick insect is repeatedly underlain by structural variation, but not a simple chromosomal inversion. We found that color pattern in populations of stick insects on two mountains is associated with translocations that have also been inverted. These translocations differ in size and origin on each mountain, but they overlap partially and involve some of the same gene regions. Moreover, this structural variation is subject to divergent selection and arose without introgression between species. Our results show how the origin of structural variation provides a mechanism for repeated bouts of adaptation.
Collapse
Affiliation(s)
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | | | | | | - Patrik Nosil
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
5
|
Malinsky M, Talbi M, Zhou C, Maurer N, Sacco S, Shapiro B, Peichel CL, Seehausen O, Salzburger W, Weber JN, Bolnick DI, Green RE, Durbin R. Hi-reComb: constructing recombination maps from bulk gamete Hi-C sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641907. [PMID: 40161681 PMCID: PMC11952307 DOI: 10.1101/2025.03.06.641907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Recombination is central to genetics and to evolution of sexually reproducing organisms. However, obtaining accurate estimates of recombination rates, and of how they vary along chromosomes, continues to be challenging. To advance our ability to estimate recombination rates, we present Hi-reComb, a new method and software for estimation of recombination maps from bulk gamete chromosome conformation capture sequencing (Hi-C). Simulations show that Hi-reComb produces robust, accurate recombination landscapes. With empirical data from sperm of five fish species we show the advantages of this approach, including joint assessment of recombination maps and large structural variants, map comparisons using bootstrap, and workflows with trio phasing vs. Hi-C phasing. With off-the-shelf library construction and a straightforward rapid workflow, our approach will facilitate routine recombination landscape estimation for a broad range of studies and model organisms in genetics and evolutionary biology. Hi-reComb is open-source and freely available at https://github.com/millanek/Hi-reComb.
Collapse
Affiliation(s)
- Milan Malinsky
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Department of Fish Ecology and Evolution, EAWAG, 6047 Kastanienbaum, Switzerland
| | - Marion Talbi
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Department of Fish Ecology and Evolution, EAWAG, 6047 Kastanienbaum, Switzerland
| | - Chenxi Zhou
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Nicholas Maurer
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Samuel Sacco
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Beth Shapiro
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - Ole Seehausen
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Department of Fish Ecology and Evolution, EAWAG, 6047 Kastanienbaum, Switzerland
| | - Walter Salzburger
- Department of Environmental Sciences, Zoological Institute, University of Basel, 4051 Basel, Switzerland
| | - Jesse N. Weber
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Daniel I. Bolnick
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Richard E. Green
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| |
Collapse
|
6
|
Talbi M, Turner GF, Malinsky M. Rapid evolution of recombination landscapes during the divergence of cichlid ecotypes in Lake Masoko. Evolution 2025; 79:364-379. [PMID: 39589917 DOI: 10.1093/evolut/qpae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 11/28/2024]
Abstract
Variation of recombination rate along the genome is of crucial importance to rapid adaptation and organismal diversification. Many unknowns remain regarding how and why recombination landscapes evolve in nature. Here, we reconstruct recombination maps based on linkage disequilibrium and use subsampling and simulations to derive a new measure of recombination landscape evolution: the Population Recombination Divergence Index (PRDI). Using PRDI, we show that fine-scale recombination landscapes differ substantially between two cichlid fish ecotypes of Astatotilapia calliptera that diverged only ~2,500 generations ago. Perhaps surprisingly, recombination landscape differences are not driven by divergence in terms of allele frequency (FST) and nucleotide diversity (Δ(π)): although there is some association, we observe positive PRDI in regions where FST and Δ(π) are zero. We found a stronger association between the evolution of recombination and 47 large haplotype blocks that are polymorphic in Lake Masoko, cover 21% of the genome, and appear to include multiple inversions. Among haplotype blocks, there is a strong and clear association between the degree of recombination divergence and differences between ecotypes in heterozygosity, consistent with recombination suppression in heterozygotes. Overall, our work provides a holistic view of changes in population recombination landscapes during the early stages of speciation with gene flow.
Collapse
Affiliation(s)
- Marion Talbi
- Biology Department, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, EAWAG, Kastanienbaum, Switzerland
| | - George F Turner
- School of Natural & Environmental Sciences, Bangor University, Bangor, United Kingdom
| | - Milan Malinsky
- Biology Department, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, EAWAG, Kastanienbaum, Switzerland
| |
Collapse
|
7
|
Souaiaia T, Wu HM, Hoggart C, O'Reilly PF. Sibling similarity can reveal key insights into genetic architecture. eLife 2025; 12:RP87522. [PMID: 39773384 PMCID: PMC11709432 DOI: 10.7554/elife.87522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
The use of siblings to infer the factors influencing complex traits has been a cornerstone of quantitative genetics. Here, we utilise siblings for a novel application: the inference of genetic architecture, specifically that relating to individuals with extreme trait values (e.g. in the top 1%). Inferring the genetic architecture most relevant to this group of individuals is important because they are at the greatest risk of disease and may be more likely to harbour rare variants of large effect due to natural selection. We develop a theoretical framework that derives expected distributions of sibling trait values based on an index sibling's trait value, estimated trait heritability, and null assumptions that include infinitesimal genetic effects and environmental factors that are either controlled for or have combined Gaussian effects. This framework is then used to develop statistical tests powered to distinguish between trait tails characterised by common polygenic architecture from those that include substantial enrichments of de novo or rare variant (Mendelian) architecture. We apply our tests to UK Biobank data here, although we note that they can be used to infer genetic architecture in any cohort or health registry that includes siblings and their trait values, since these tests do not use genetic data. We describe how our approach has the potential to help disentangle the genetic and environmental causes of extreme trait values, and to improve the design and power of future sequencing studies to detect rare variants.
Collapse
Affiliation(s)
- Tade Souaiaia
- Department of Cellular Biology, SUNY Downstate Health SciencesBrooklynUnited States
| | - Hei Man Wu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount SinaiNew YorkUnited States
| | - Clive Hoggart
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount SinaiNew YorkUnited States
| | - Paul F O'Reilly
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount SinaiNew YorkUnited States
| |
Collapse
|
8
|
Patel M, Arvid Ågren J. Calculating Relatedness: A Pedigree of Definitions. Cold Spring Harb Perspect Biol 2025; 17:a041667. [PMID: 39433392 PMCID: PMC11694744 DOI: 10.1101/cshperspect.a041667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Biology can be viewed from both an organismal and a genic perspective. A good example is W.D. Hamilton's work on inclusive fitness and kin selection, which puts relatedness at the heart of our understanding of social behavior. Relatedness mediates how much an actor should value a specific behavior's effect on a relative compared to the cost incurred to itself. Despite its key explanatory role, relatedness is also a concept marred with misunderstanding. Part of the problem has been that the term has been used in different ways by different people. To help address this, we survey the history of how relatedness has been formally modeled, paying particular attention to how it is conceptualized from both a gene-centric and an organism-centric point of view.
Collapse
Affiliation(s)
- Matishalin Patel
- Centre for Data Science, AI and Modelling, University of Hull, Hull HU6 7RX, United Kingdom
| | - J Arvid Ågren
- Department of Evolutionary Biology, Uppsala University, Uppsala 75236, Sweden
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| |
Collapse
|
9
|
Tsuboi M, Sztepanacz J, De Lisle S, Voje KL, Grabowski M, Hopkins MJ, Porto A, Balk M, Pontarp M, Rossoni D, Hildesheim LS, Horta-Lacueva QJB, Hohmann N, Holstad A, Lürig M, Milocco L, Nilén S, Passarotto A, Svensson EI, Villegas C, Winslott E, Liow LH, Hunt G, Love AC, Houle D. The paradox of predictability provides a bridge between micro- and macroevolution. J Evol Biol 2024; 37:1413-1432. [PMID: 39208440 DOI: 10.1093/jeb/voae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
The relationship between the evolutionary dynamics observed in contemporary populations (microevolution) and evolution on timescales of millions of years (macroevolution) has been a topic of considerable debate. Historically, this debate centers on inconsistencies between microevolutionary processes and macroevolutionary patterns. Here, we characterize a striking exception: emerging evidence indicates that standing variation in contemporary populations and macroevolutionary rates of phenotypic divergence is often positively correlated. This apparent consistency between micro- and macroevolution is paradoxical because it contradicts our previous understanding of phenotypic evolution and is so far unexplained. Here, we explore the prospects for bridging evolutionary timescales through an examination of this "paradox of predictability." We begin by explaining why the divergence-variance correlation is a paradox, followed by data analysis to show that the correlation is a general phenomenon across a broad range of temporal scales, from a few generations to tens of millions of years. Then we review complementary approaches from quantitative genetics, comparative morphology, evo-devo, and paleontology to argue that they can help to address the paradox from the shared vantage point of recent work on evolvability. In conclusion, we recommend a methodological orientation that combines different kinds of short-term and long-term data using multiple analytical frameworks in an interdisciplinary research program. Such a program will increase our general understanding of how evolution works within and across timescales.
Collapse
Affiliation(s)
| | - Jacqueline Sztepanacz
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Stephen De Lisle
- Department of Biology, Lund University, Lund, Sweden
- Department of Environmental and Life Sciences, Karlstad University, Karlstad, Sweden
| | - Kjetil L Voje
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Mark Grabowski
- Research Centre for Evolutionary Anthropology and Palaeoecology, School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Melanie J Hopkins
- Division of Paleontology (Invertebrates), American Museum of Natural History, New York, United States
| | - Arthur Porto
- Florida Museum of Natural History, University of Florida, Gainesville, United States
| | - Meghan Balk
- Natural History Museum, University of Oslo, Oslo, Norway
| | | | - Daniela Rossoni
- Department of Biological Science, Florida State University, Tallahassee, United States
| | | | | | - Niklas Hohmann
- Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands
- Faculty of Biology, Institute of Evolutionary Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Agnes Holstad
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Moritz Lürig
- Department of Biology, Lund University, Lund, Sweden
| | | | - Sofie Nilén
- Department of Biology, Lund University, Lund, Sweden
| | - Arianna Passarotto
- Department of Biology, Lund University, Lund, Sweden
- Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | | - Cristina Villegas
- Centro de Filosofia das Ciências, Departamento de História e Filosofia Ciências, Universidade de Lisboa, Lisboa, Portugal
| | | | - Lee Hsiang Liow
- Natural History Museum, University of Oslo, Oslo, Norway
- Department of Geosciences, Centre for Planetary Habitability, University of Oslo, Oslo, Norway
| | - Gene Hunt
- Department of Paleobiology, Smithsonian Institution, National Museum of Natural History, Washington, United States
| | - Alan C Love
- Department of Philosophy, Minnesota Center for Philosophy of Science, University of Minnesota, Minneapolis, United States
| | - David Houle
- Department of Biological Science, Florida State University, Tallahassee, United States
| |
Collapse
|
10
|
Griffiths JS, Sasaki M, Neylan IP, Kelly MW. The Potential for Experimental Evolution to Uncover Trade-Offs Associated With Anthropogenic and Climate Change Adaptation. GLOBAL CHANGE BIOLOGY 2024; 30:e17584. [PMID: 39582252 DOI: 10.1111/gcb.17584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024]
Abstract
Evolutionary responses to climate change may incur trade-offs due to energetic constraints and mechanistic limitations, which are both influenced by environmental context. Adaptation to one stressor may result in life history trade-offs, canalization of phenotypic plasticity, and the inability to tolerate other stressors, among other potential costs. While trade-offs incurred during adaptation are difficult to detect in natural populations, experimental evolution can provide important insights by measuring correlated responses to selection as populations adapt to changing environments. However, studies testing for trade-offs have generally lagged behind the growth in the use of experimental evolution in climate change studies. We argue that the important insights generated by the few studies that have tested for trade-offs make a strong case for including these types of measurements in future studies of climate adaptation. For example, there is emerging consensus from experimental evolution studies that tolerance and tolerance plasticity trade-offs are an often-observed outcome of adaptation to anthropogenic change. In recent years, these types of studies have been strengthened by the use of sequencing of experimental populations, which provides promising new avenues for understanding the molecular mechanisms underlying observed phenotypic trade-offs.
Collapse
Affiliation(s)
- Joanna S Griffiths
- Department of Environmental Toxicology, University of California Davis, Davis, California, USA
| | - Matthew Sasaki
- Department of Biology, University of Vermont, Burlington, Vermont, USA
| | - Isabelle P Neylan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Morgan W Kelly
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
11
|
Berger F. Meiosis as a mechanism for epigenetic reprogramming and cellular rejuvenation. Development 2024; 151:dev203046. [PMID: 39399899 DOI: 10.1242/dev.203046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Meiosis is a hallmark of sexual reproduction because it represents the transition from one life cycle to the next and, in animals, meiosis produces gametes. Why meiosis evolved has been debated and most studies have focused on recombination of the parental alleles as the main function of meiosis. However, 40 years ago, Robin Holliday proposed that an essential function of meiosis is to oppose the consequence of successive mitoses that cause cellular aging. Cellular aging results from accumulated defective organelles and proteins and modifications of chromatin in the form of DNA methylation and histone modifications referred to collectively as epigenetic marks. Here, recent findings supporting the hypothesis that meiosis opposes cellular aging are reviewed and placed in the context of the diversity of the life cycles of eukaryotes, including animals, yeast, flowering plants and the bryophyte Marchantia.
Collapse
Affiliation(s)
- Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
12
|
Thompson KA, Brandvain Y, Coughlan JM, Delmore KE, Justen H, Linnen CR, Ortiz-Barrientos D, Rushworth CA, Schneemann H, Schumer M, Stelkens R. The Ecology of Hybrid Incompatibilities. Cold Spring Harb Perspect Biol 2024; 16:a041440. [PMID: 38151331 PMCID: PMC11368197 DOI: 10.1101/cshperspect.a041440] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Ecologically mediated selection against hybrids, caused by hybrid phenotypes fitting poorly into available niches, is typically viewed as distinct from selection caused by epistatic Dobzhansky-Muller hybrid incompatibilities. Here, we show how selection against transgressive phenotypes in hybrids manifests as incompatibility. After outlining our logic, we summarize current approaches for studying ecology-based selection on hybrids. We then quantitatively review QTL-mapping studies and find traits differing between parent taxa are typically polygenic. Next, we describe how verbal models of selection on hybrids translate to phenotypic and genetic fitness landscapes, highlighting emerging approaches for detecting polygenic incompatibilities. Finally, in a synthesis of published data, we report that trait transgression-and thus possibly extrinsic hybrid incompatibility in hybrids-escalates with the phenotypic divergence between parents. We discuss conceptual implications and conclude that studying the ecological basis of hybrid incompatibility will facilitate new discoveries about mechanisms of speciation.
Collapse
Affiliation(s)
- Ken A Thompson
- Department of Biology, Stanford University, Stanford, California 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Yaniv Brandvain
- Department of Plant and Microbial Biology, University of Minnesota - Twin Cities, St Paul, Minnesota 55108, USA
| | - Jenn M Coughlan
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Kira E Delmore
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Hannah Justen
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Catherine R Linnen
- Department of Biology, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences, The University of Queensland, Centre of Excellence for Plant Success in Nature and Agriculture, St Lucia, Queensland 4072, Australia
| | - Catherine A Rushworth
- Department of Biology and Ecology Center, Utah State University, Logan, Utah 84322, USA
| | - Hilde Schneemann
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Molly Schumer
- Department of Biology, Stanford University, Stanford, California 94305, USA
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca," A.C., Calnali 43240, Mexico
- Hanna H. Gray Fellow, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Rike Stelkens
- Division of Population Genetics, Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
13
|
De Lisle SP, Bolnick DI, Stuart YE. Predictable and Divergent Change in the Multivariate P Matrix during Parallel Adaptation. Am Nat 2024; 204:15-29. [PMID: 38857340 DOI: 10.1086/730261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
AbstractAdaptation to replicated environmental conditions can be remarkably predictable, suggesting that parallel evolution may be a common feature of adaptive radiation. An open question, however, is how phenotypic variation itself evolves during repeated adaptation. Here, we use a dataset of morphological measurements from 35 populations of threespine stickleback, consisting of 16 parapatric lake-stream pairs and three marine populations, to understand how phenotypic variation has evolved during transitions from marine to freshwater environments and during subsequent diversification across the lake-stream boundary. We find statistical support for divergent phenotypic covariance (P) across populations, with most diversification of P occurring among freshwater populations. Despite a close correspondence between within-population phenotypic variation and among-population divergence, we find that variation in P is unrelated to total variation in population means across the set of populations. For lake-stream pairs, we find that theoretical predictions for microevolutionary change can explain more than 30% of divergence in P matrices across the habitat boundary. Together, our results indicate that divergence in variance structure occurs primarily in dimensions of trait space with low phenotypic integration, correlated with disparate lake and stream environments. Our findings illustrate how conserved and divergent features of multivariate variation can underlie adaptive radiation.
Collapse
|
14
|
Barton N. Limits to species' range: the tension between local and global adaptation. J Evol Biol 2024; 37:605-615. [PMID: 38683160 DOI: 10.1093/jeb/voae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/02/2024] [Accepted: 05/08/2024] [Indexed: 05/01/2024]
Abstract
We know that heritable variation is abundant, and that selection causes all but the smallest populations to rapidly shift beyond their original trait distribution. So then, what limits the range of a species? There are physical constraints and also population genetic limits to the effectiveness of selection, ultimately set by population size. Global adaptation, where the same genotype is favoured over the whole range, is most efficient when based on a multitude of weakly selected alleles and is effective even when local demes are small, provided that there is some gene flow. In contrast, local adaptation is sensitive to gene flow and may require alleles with substantial effect. How can populations combine the advantages of large effective size with the ability to specialise into local niches? To what extent does reproductive isolation help resolve this tension? I address these questions using eco-evolutionary models of polygenic adaptation, contrasting discrete demes with continuousspace.
Collapse
Affiliation(s)
- Nicholas Barton
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
15
|
Hoedjes KM, Grath S, Posnien N, Ritchie MG, Schlötterer C, Abbott JK, Almudi I, Coronado-Zamora M, Durmaz Mitchell E, Flatt T, Fricke C, Glaser-Schmitt A, González J, Holman L, Kankare M, Lenhart B, Orengo DJ, Snook RR, Yılmaz VM, Yusuf L. From whole bodies to single cells: A guide to transcriptomic approaches for ecology and evolutionary biology. Mol Ecol 2024:e17382. [PMID: 38856653 DOI: 10.1111/mec.17382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024]
Abstract
RNA sequencing (RNAseq) methodology has experienced a burst of technological developments in the last decade, which has opened up opportunities for studying the mechanisms of adaptation to environmental factors at both the organismal and cellular level. Selecting the most suitable experimental approach for specific research questions and model systems can, however, be a challenge and researchers in ecology and evolution are commonly faced with the choice of whether to study gene expression variation in whole bodies, specific tissues, and/or single cells. A wide range of sometimes polarised opinions exists over which approach is best. Here, we highlight the advantages and disadvantages of each of these approaches to provide a guide to help researchers make informed decisions and maximise the power of their study. Using illustrative examples of various ecological and evolutionary research questions, we guide the readers through the different RNAseq approaches and help them identify the most suitable design for their own projects.
Collapse
Affiliation(s)
- Katja M Hoedjes
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sonja Grath
- Division of Evolutionary Biology, LMU Munich, Planegg-Martinsried, Germany
| | - Nico Posnien
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Michael G Ritchie
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
| | | | | | - Isabel Almudi
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | | | - Esra Durmaz Mitchell
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Claudia Fricke
- Institute for Zoology/Animal Ecology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Josefa González
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain
| | - Luke Holman
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | - Maaria Kankare
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Benedict Lenhart
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Dorcas J Orengo
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Vera M Yılmaz
- Division of Evolutionary Biology, LMU Munich, Planegg-Martinsried, Germany
| | - Leeban Yusuf
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
| |
Collapse
|
16
|
De Loof A. The mega-evolution of life with its three memory systems depends on sender-receiver communication and problem-solving. A narrative review. J Physiol 2024; 602:2417-2431. [PMID: 37721172 DOI: 10.1113/jp284412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023] Open
Abstract
It should be the ultimate goal of any theory of evolution to delineate the contours of an integrative system to answer the question: How does life (in all its complexity) evolve (which can be called mega-evolution)? But how to plausibly define 'life'? My answer (1994-2023) is: 'life' sounds like a noun, but denotes an activity, and thus is a verb. Life (L) denotes nothing else than the total sum (∑) of all acts of communication (transfer of information) (C) executed by any type of senders-receivers at all their levels (up to at least 15) of compartmental organization: L = ∑C. The 'communicating compartment' is better suited to serve as the universal unit of structure, function and evolution than the cell, the smallest such unit. By paying as much importance to communication activity as to the Central Dogma of molecular biology, a wealth of new insights unfold. The major ones are as follows. (1) Living compartments have not only a genetic memory (DNA), but also a still enigmatic cognitive and an electrical memory system (and thus a triple memory system). (2) Complex compartments can have up to three types of progeny: genetic descendants/children, pupils/learners and electricians. (3) Of particular importance to adaptation, any act of communication is a problem-solving act because all messages need to be decoded. Hence through problem-solving that precedes selection, life itself is the driving force of its own evolution (a very clever but counterintuitive and unexpected logical deduction). Perhaps, this is the 'vital force' philosopher and Nobel laureate (in 1927) Henri Bergson searched for but did not find.
Collapse
Affiliation(s)
- Arnold De Loof
- Department of Biology of the KU Leuven, Functional Genomics and Proteomics Group, Leuven, Belgium
| |
Collapse
|
17
|
McFarlane SE, Jahner JP, Lindtke D, Buerkle CA, Mandeville EG. Selection leads to remarkable variability in the outcomes of hybridisation across replicate hybrid zones. Mol Ecol 2024; 33:e17359. [PMID: 38699787 DOI: 10.1111/mec.17359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024]
Abstract
Hybrid zones have been viewed as an opportunity to see speciation in action. When hybrid zones are replicated, it is assumed that if the same genetic incompatibilities are maintaining reproductive isolation across all instances of secondary contact, those incompatibilities should be identifiable by consistent patterns in the genome. In contrast, changes in allele frequencies due to genetic drift should be idiosyncratic for each hybrid zone. To test this assumption, we simulated 20 replicates of each of 12 hybrid zone scenarios with varied genetic incompatibilities, rates of migration, selection and different starting population size ratios of parental species. We found remarkable variability in the outcomes of hybridisation in replicate hybrid zones, particularly with Bateson-Dobzhansky-Muller incompatibilities and strong selection. We found substantial differences among replicates in the overall genomic composition of individuals, including admixture proportions, inter-specific ancestry complement and number of ancestry junctions. Additionally, we found substantial variation in genomic clines among replicates at focal loci, regardless of locus-specific selection. We conclude that processes other than selection are responsible for some consistent outcomes of hybridisation, whereas selection on incompatibilities can lead to genomically widespread and highly variable outcomes. We highlight the challenge of mapping between pattern and process in hybrid zones and call attention to how selection against incompatibilities will commonly lead to variable outcomes. We hope that this study informs future research on replicate hybrid zones and encourages further development of statistical techniques, theoretical models and exploration of additional axes of variation to understand reproductive isolation.
Collapse
Affiliation(s)
- S Eryn McFarlane
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Joshua P Jahner
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
| | | | - C Alex Buerkle
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
| | - Elizabeth G Mandeville
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- Biology Department, Northern Michigan University, Marquette, Michigan, USA
| |
Collapse
|
18
|
Busoms S, Fischer S, Yant L. Chasing the mechanisms of ecologically adaptive salinity tolerance. PLANT COMMUNICATIONS 2023; 4:100571. [PMID: 36883005 PMCID: PMC10721451 DOI: 10.1016/j.xplc.2023.100571] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/12/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Plants adapted to challenging environments offer fascinating models of evolutionary change. Importantly, they also give information to meet our pressing need to develop resilient, low-input crops. With mounting environmental fluctuation-including temperature, rainfall, and soil salinity and degradation-this is more urgent than ever. Happily, solutions are hiding in plain sight: the adaptive mechanisms from natural adapted populations, once understood, can then be leveraged. Much recent insight has come from the study of salinity, a widespread factor limiting productivity, with estimates of 20% of all cultivated lands affected. This is an expanding problem, given increasing climate volatility, rising sea levels, and poor irrigation practices. We therefore highlight recent benchmark studies of ecologically adaptive salt tolerance in plants, assessing macro- and microevolutionary mechanisms, and the recently recognized role of ploidy and the microbiome on salinity adaptation. We synthesize insight specifically on naturally evolved adaptive salt-tolerance mechanisms, as these works move substantially beyond traditional mutant or knockout studies, to show how evolution can nimbly "tweak" plant physiology to optimize function. We then point to future directions to advance this field that intersect evolutionary biology, abiotic-stress tolerance, breeding, and molecular plant physiology.
Collapse
Affiliation(s)
- Silvia Busoms
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, Bellaterra, Barcelona E-08193, Spain
| | - Sina Fischer
- Future Food Beacon of Excellence, University of Nottingham, Nottingham NG7 2RD, UK; School of Biosciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Levi Yant
- Future Food Beacon of Excellence, University of Nottingham, Nottingham NG7 2RD, UK; School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
19
|
Babik W, Dudek K, Marszałek M, Palomar G, Antunes B, Sniegula S. The genomic response to urbanization in the damselfly Ischnura elegans. Evol Appl 2023; 16:1805-1818. [PMID: 38029064 PMCID: PMC10681423 DOI: 10.1111/eva.13603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/19/2023] [Indexed: 12/01/2023] Open
Abstract
The complex and rapid environmental changes brought about by urbanization pose significant challenges to organisms. The multifaceted effects of urbanization often make it difficult to define and pinpoint the very nature of adaptive urban phenotypes. In such situations, scanning genomes for regions differentiated between urban and non-urban populations may be an attractive approach. Here, we investigated the genomic signatures of adaptation to urbanization in the damselfly Ischnura elegans sampled from 31 rural and urban localities in three geographic regions: southern and northern Poland, and southern Sweden. Genome-wide variation was assessed using more than 370,000 single nucleotide polymorphisms (SNPs) genotyped by ddRADseq. Associations between SNPs and the level of urbanization were tested using two genetic environment association methods: Latent Factors Mixed Models and BayPass. While we found numerous candidate SNPs and a highly significant overlap between candidates identified by the two methods within the geographic regions, there was a distinctive lack of repeatability between the geographic regions both at the level of individual SNPs and of genomic regions. However, we found "synapse organization" at the top of the functional categories enriched among the genes located in the proximity of the candidate urbanization SNPs. Interestingly, the overall significance of "synapse organization" was built up by the accretion of different genes associated with candidate SNPs in different geographic regions. This finding is consistent with the highly polygenic nature of adaptation, where the response may be achieved through a subtle adjustment of allele frequencies in different genes that contribute to adaptive phenotypes. Taken together, our results point to a polygenic adaptive response in the nervous system, specifically implicating genes involved in synapse organization, which mirrors the findings from several genomic and behavioral studies of adaptation to urbanization in other taxa.
Collapse
Affiliation(s)
- W. Babik
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - K. Dudek
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - M. Marszałek
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - G. Palomar
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
- Department of Genetics, Physiology and Microbiology, Faculty of Biological SciencesComplutense University of MadridMadridSpain
| | - B. Antunes
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - S. Sniegula
- Department of Ecosystem Conservation, Institute of Nature ConservationPolish Academy of SciencesKrakówPoland
| |
Collapse
|
20
|
Arnqvist G, Rowe L. Ecology, the pace-of-life, epistatic selection and the maintenance of genetic variation in life-history genes. Mol Ecol 2023; 32:4713-4724. [PMID: 37386734 DOI: 10.1111/mec.17062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Evolutionary genetics has long struggled with understanding how functional genes under selection remain polymorphic in natural populations. Taking as a starting point that natural selection is ultimately a manifestation of ecological processes, we spotlight an underemphasized and potentially ubiquitous ecological effect that may have fundamental effects on the maintenance of genetic variation. Negative frequency dependency is a well-established emergent property of density dependence in ecology, because the relative profitability of different modes of exploiting or utilizing limiting resources tends to be inversely proportional to their frequency in a population. We suggest that this may often generate negative frequency-dependent selection (NFDS) on major effect loci that affect rate-dependent physiological processes, such as metabolic rate, that are phenotypically manifested as polymorphism in pace-of-life syndromes. When such a locus under NFDS shows stable intermediate frequency polymorphism, this should generate epistatic selection potentially involving large numbers of loci with more minor effects on life-history (LH) traits. When alternative alleles at such loci show sign epistasis with a major effect locus, this associative NFDS will promote the maintenance of polygenic variation in LH genes. We provide examples of the kind of major effect loci that could be involved and suggest empirical avenues that may better inform us on the importance and reach of this process.
Collapse
Affiliation(s)
- Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Locke Rowe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Swedish Collegium of Advanced Study, Uppsala, Sweden
| |
Collapse
|
21
|
Rybnikov SR, Frenkel Z, Hübner S, Weissman DB, Korol AB. Modeling the evolution of recombination plasticity: A prospective review. Bioessays 2023; 45:e2200237. [PMID: 37246937 DOI: 10.1002/bies.202200237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/30/2023]
Abstract
Meiotic recombination is one of the main sources of genetic variation, a fundamental factor in the evolutionary adaptation of sexual eukaryotes. Yet, the role of variation in recombination rate and other recombination features remains underexplored. In this review, we focus on the sensitivity of recombination rates to different extrinsic and intrinsic factors. We briefly present the empirical evidence for recombination plasticity in response to environmental perturbations and/or poor genetic background and discuss theoretical models developed to explain how such plasticity could have evolved and how it can affect important population characteristics. We highlight a gap between the evidence, which comes mostly from experiments with diploids, and theory, which typically assumes haploid selection. Finally, we formulate open questions whose solving would help to outline conditions favoring recombination plasticity. This will contribute to answering the long-standing question of why sexual recombination exists despite its costs, since plastic recombination may be evolutionary advantageous even in selection regimes rejecting any non-zero constant recombination.
Collapse
Affiliation(s)
- Sviatoslav R Rybnikov
- Institute of Evolution, University of Haifa, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Zeev Frenkel
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Sariel Hübner
- Galilee Research Institute (MIGAL), Tel-Hai College, Kiryat Shmona, Israel
| | | | - Abraham B Korol
- Institute of Evolution, University of Haifa, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| |
Collapse
|
22
|
Fuhrmann N, Prakash C, Kaiser TS. Polygenic adaptation from standing genetic variation allows rapid ecotype formation. eLife 2023; 12:e82824. [PMID: 36852484 PMCID: PMC9977305 DOI: 10.7554/elife.82824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/07/2023] [Indexed: 03/01/2023] Open
Abstract
Adaptive ecotype formation can be the first step to speciation, but the genetic underpinnings of this process are poorly understood. Marine midges of the genus Clunio (Diptera) have recolonized Northern European shore areas after the last glaciation. In response to local tide conditions they have formed different ecotypes with respect to timing of adult emergence, oviposition behavior and larval habitat. Genomic analysis confirms the recent establishment of these ecotypes, reflected in massive haplotype sharing between ecotypes, irrespective of whether there is ongoing gene flow or geographic isolation. QTL mapping and genome screens reveal patterns of polygenic adaptation from standing genetic variation. Ecotype-associated loci prominently include circadian clock genes, as well as genes affecting sensory perception and nervous system development, hinting to a central role of these processes in ecotype formation. Our data show that adaptive ecotype formation can occur rapidly, with ongoing gene flow and largely based on a re-assortment of existing alleles.
Collapse
Affiliation(s)
- Nico Fuhrmann
- Max Planck Institute for Evolutionary BiologyPlönGermany
| | - Celine Prakash
- Max Planck Institute for Evolutionary BiologyPlönGermany
| | | |
Collapse
|
23
|
Hoedjes KM, Kostic H, Flatt T, Keller L. A Single Nucleotide Variant in the PPARγ-homolog Eip75B Affects Fecundity in Drosophila. Mol Biol Evol 2023; 40:7005670. [PMID: 36703226 PMCID: PMC9922802 DOI: 10.1093/molbev/msad018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Single nucleotide polymorphisms are the most common type of genetic variation, but how these variants contribute to the adaptation of complex phenotypes is largely unknown. Experimental evolution and genome-wide association studies have demonstrated that variation in the PPARγ-homolog Eip75B has associated with longevity and life-history differences in the fruit fly Drosophila melanogaster. Using RNAi knockdown, we first demonstrate that reduced expression of Eip75B in adult flies affects lifespan, egg-laying rate, and egg volume. We then tested the effects of a naturally occurring SNP within a cis-regulatory domain of Eip75B by applying two complementary approaches: a Mendelian randomization approach using lines of the Drosophila Genetic Reference Panel, and allelic replacement using precise CRISPR/Cas9-induced genome editing. Our experiments reveal that this natural polymorphism has a significant pleiotropic effect on fecundity and egg-to-adult viability, but not on longevity or other life-history traits. Our results provide a rare functional validation at the nucleotide level and identify a natural allelic variant affecting fitness and life-history adaptation.
Collapse
Affiliation(s)
| | - Hristina Kostic
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
24
|
Johnston SE, Chen N, Josephs EB. Taking quantitative genomics into the wild. Proc Biol Sci 2022; 289:20221930. [PMID: 36541172 PMCID: PMC9768650 DOI: 10.1098/rspb.2022.1930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
We organized this special issue to highlight new work and review recent advances at the cutting edge of 'wild quantitative genomics'. In this editorial, we will present some history of wild quantitative genetic and genomic studies, before discussing the main themes in the papers published in this special issue and highlighting the future outlook of this dynamic field.
Collapse
Affiliation(s)
- Susan E. Johnston
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, Edinburgh EH9 3FL, UK
| | - Nancy Chen
- Department of Biology, University of Rochester, Rochester, 14627, NY, USA
| | - Emily B. Josephs
- Department of Plant Biology and Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, 48824, MI, USA
| |
Collapse
|
25
|
Kreiner JM, Latorre SM, Burbano HA, Stinchcombe JR, Otto SP, Weigel D, Wright SI. Rapid weed adaptation and range expansion in response to agriculture over the past two centuries. Science 2022; 378:1079-1085. [PMID: 36480621 DOI: 10.1126/science.abo7293] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
North America has experienced a massive increase in cropland use since 1800, accompanied more recently by the intensification of agricultural practices. Through genome analysis of present-day and historical samples spanning environments over the past two centuries, we studied the effect of these changes in farming on the extent and tempo of evolution across the native range of the common waterhemp (Amaranthus tuberculatus), a now pervasive agricultural weed. Modern agriculture has imposed strengths of selection rarely observed in the wild, with notable shifts in allele frequency trajectories since agricultural intensification in the 1960s. An evolutionary response to this extreme selection was facilitated by a concurrent human-mediated range shift. By reshaping genome-wide diversity across the landscape, agriculture has driven the success of this weed in the 21st century.
Collapse
Affiliation(s)
- Julia M Kreiner
- Department of Botany, University of British Columbia, Vancouver, BC, Canada.,Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Sergio M Latorre
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK.,Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Hernán A Burbano
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK.,Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Sarah P Otto
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
26
|
Buggs RJA. The challenge of demonstrating contemporary natural selection on polygenic quantitative traits in the wild. Mol Ecol 2022; 31:6383-6386. [PMID: 36325827 PMCID: PMC10099554 DOI: 10.1111/mec.16761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
In a From the Cover article in this issue of Molecular Ecology, Ashraf et al. (2022) apply genomic prediction methods, devised by breeders to inform artificial selection, to understand the genetic component of variation in highly polygenic quantitative traits in Soay sheep (Figure 1). These methods have allowed them to investigate the effects of contemporary natural selection on genetic variation underlying these traits in the wild (Hunter et al., 2022). Genomic prediction approaches promise to enhance our understanding of the evolution of highly polygenic quantitative traits in the wild and may allow us to document concrete examples of their natural selection in real time in systems that would otherwise be intractable.
Collapse
Affiliation(s)
- Richard J A Buggs
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.,Royal Botanic Gardens, Kew, Richmond-upon-Thames, UK
| |
Collapse
|
27
|
Stenseth NC, Andersson L, Hoekstra HE. Gregor Johann Mendel and the development of modern evolutionary biology. Proc Natl Acad Sci U S A 2022; 119:e2201327119. [PMID: 35858454 PMCID: PMC9335310 DOI: 10.1073/pnas.2201327119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Nils Chr. Stenseth
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843
| | - Hopi E. Hoekstra
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA 02138
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
- HHMI, Harvard University, Cambridge, MA 02138
| |
Collapse
|