1
|
Luu TV, Thees A, Ganieva U, Dambaeva S, Kwak-Kim J. Decreased membrane-bound suppressor of tumorigenicity 2 (ST2) but not soluble ST2 was associated with women with recurrent pregnancy loss and recurrent implantation failure compared to controls. J Reprod Immunol 2025; 170:104619. [PMID: 40540774 DOI: 10.1016/j.jri.2025.104619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 06/10/2025] [Accepted: 06/13/2025] [Indexed: 06/22/2025]
Abstract
Increased infiltration of immune effectors, including mast cells and natural killer cells in the mid-luteal endometrium was reported in women with recurrent pregnancy loss and repeated implantation failure. Interleukin-33 plays an important role in the cellular activation of mast cells and natural killer cells. This study investigated the endometrial IL-33/ST2 axis and its role in mast cell activation in women with RPL and RIF during the mid-luteal phase. Gene expression of ST2 was significantly decreased in RPL and RIF patients compared to normal fertile controls (Mean ± SE, 0.46 ± 0.08, 0.44 ± 0.09, 1.25 ± 0.46, P < 0.007). No differences were found in ST2/IL-33 mRNA expression ratios, IL-33, and TPSAB1 mRNA expression. Western blot analysis revealed a decreased amount of membrane-bound ST2 in RPL and RIF in the endometrium compared to controls (0.09 ± 0.02, 0.12 ± 0.08, 0.28 ± 0.07, P < 0.05). No difference was found in soluble ST2 levels. Evaluation of the ST2/IL-33 protein ratios showed no significance between groups. No differences were found in IL-33 or tryptase protein levels. A correlation analysis was performed between mRNA expression levels of IL-33, ST2, and TPSAB1 in relation to genes associated with decidualization; IL-33 was correlated with CD3E, GZMB, NCAM1, PRF1, RORC, SGK1, and TGFB1 in the RPL group and associated with CDKN2A, IL18, SLC2A1, and VEGFA in controls. Decreased amount of membrane-bound ST2 may lead to the decreased physiologic activity of IL-33 on immune cells within patients with RPL and RIF; this may lead to alterations in uNK cells contributing to immune dysregulation in the endometrium.
Collapse
Affiliation(s)
- Thanh Vinh Luu
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL 60061, USA
| | - Amy Thees
- Clinical Immunology Laboratory, Center for Cancer Cell Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Umida Ganieva
- Clinical Immunology Laboratory, Center for Cancer Cell Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Svetlana Dambaeva
- Clinical Immunology Laboratory, Center for Cancer Cell Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Joanne Kwak-Kim
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL 60061, USA.
| |
Collapse
|
2
|
He L, Zheng S, Zhan F, Lin N. The role of necroptosis in pathological pregnancies: Mechanisms and therapeutic opportunities. J Reprod Immunol 2025; 169:104460. [PMID: 40023097 DOI: 10.1016/j.jri.2025.104460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/02/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Necroptosis, a distinctive form of programmed cell death differs mechanistically from apoptosis pyroptosis, and autophagy, is characterized by the activation of receptor-interacting protein kinases (RIPK1/RIPK3) and their downstream effector, mixed lineage kinase domain-like protein (MLKL). This programmed cell death pathway serves as a crucial mediator of inflammatory responses and has been implicated in the pathogenesis of diverse pathological conditions. Recent evidence has implicated dysregulated necroptosis in the pathogenesis of severe pregnancy complications, including preeclampsia (PE), fetal growth restriction (FGR), recurrent spontaneous abortion (RSA), and gestational diabetes mellitus (GDM). In these disorders, necroptosis promotes placental dysfunction through multiple interconnected mechanisms: amplification of pro-inflammatory cytokine cascades, aberrant immune activation, disruption of plasma membrane integrity, and subsequent tissue injury.These pregnancy-related pathologies consistently demonstrate elevated necroptotic signatures, correlating with adverse maternal-fetal outcomes. This comprehensive review synthesizes current understanding of the molecular mechanisms underlying necroptosis, with particular emphasis on its pivotal role in the etiopathogenesis of pregnancy-related disorders. Furthermore, we critically evaluate the therapeutic potential of targeting the necroptotic signaling axis, providing novel perspectives for developing targeted interventions to improve clinical outcomes in complicated pregnancies.
Collapse
Affiliation(s)
- Lidan He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, China; College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350122, China.
| | - Shan Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, China; College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350122, China
| | - Feng Zhan
- College of Engineering, Fujian Jiangxia University, Fuzhou 350108, China; School of Electronic Information Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi 030024, China
| | - Na Lin
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350122, China; Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Fuzhou 350122, China.
| |
Collapse
|
3
|
Ye Y, Ji X, Xu P, Peng L, Wang L, Liu S, Cheng Y, Dong X. CD163 + M2-like monocytes increase in pregnant women with first-attempted frozen embryo transfer. J Reprod Immunol 2025; 170:104540. [PMID: 40403513 DOI: 10.1016/j.jri.2025.104540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 05/10/2025] [Accepted: 05/14/2025] [Indexed: 05/24/2025]
Abstract
Macrophages play a vital role in endometrial receptivity and embryo implantation. However, it remains unclear if macrophages in peripheral blood is associated with pregnancy outcomes of frozen embryo transfer during implantation window. 50 patients preparing for the first time of frozen embryo transfer (FET) and 17 patients with recurrent implantation failure (RIF) from December 2022 to March 2023 were included in our present study. The percentages of peripheral macrophages and other immune cells (B-cell, T-cell, NK cell) were evaluated by flow cytometry. The concentrations of cytokines were verified with an IMMULITE 1000 Immunoassay System. FET patients were categorized into pregnant and nonpregnant groups according to clinical outcomes, respectively. The proportion of peripheral CD68+CD163+ M2 macrophages was increased in pregnant women than in nonpregnant women among the first time of FET patients. CD4+ T helper cells were positively correlated with M2-like macrophages in these women. The pregnancy rate of women with higher peripheral CD163 + M2-like monocytes increased compared with women with lower peripheral CD163 + M2-like monocytes in an independent cohort according to the cutoff value of CD163 + M2-like monocytes in ROC curve. Our findings revealed that peripheral CD163+ M2 macrophages in implantation window were associated with pregnancy outcomes. This indicated that the importance of peripheral M2 macrophages at the implantation site for pregnancy success.
Collapse
Affiliation(s)
- Yao Ye
- Reproductive Medicine Center, Zhongshan Hospital, Fudan Universtiy, Shanghai 200032, China
| | - Xiaowei Ji
- Reproductive Medicine Center, Zhongshan Hospital, Fudan Universtiy, Shanghai 200032, China
| | - Pengcheng Xu
- Department of Clinical Laboratory, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lin Peng
- Department of Thyroid and breast Surgery, North Sichuan Medical College, Nanchong 637000, China
| | - Lin Wang
- Reproductive Medicine Center, Zhongshan Hospital, Fudan Universtiy, Shanghai 200032, China
| | - Suying Liu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan Universtiy, Shanghai 200032, China
| | - Yunfeng Cheng
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Xi Dong
- Reproductive Medicine Center, Zhongshan Hospital, Fudan Universtiy, Shanghai 200032, China.
| |
Collapse
|
4
|
Sun Y, Shen C, Li J, Kang W, Li X, Fan W. Inflammatory Indices in First Trimester as Predictors of Gestational Diabetes Mellitus and Adverse Pregnancy Outcomes. Am J Reprod Immunol 2025; 93:e70070. [PMID: 40244376 DOI: 10.1111/aji.70070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/18/2024] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
OBJECTIVES To explore the association between systemic inflammatory markers (systemic inflammation response index [SIRI], systemic immune inflammation index [SII], interleukin [IL]-33, and soluble tumorigenicity 2 [sST2]) and gestational diabetes mellitus (GDM), as well as adverse pregnancy outcomes (APOs), and to assess the impact of glycemic control on these relationships. METHODS A total of 777 participants were included, comprising 476 women with GDM and 301 without. Clinical characteristics, inflammatory markers, and pregnancy outcomes were analyzed. Logistic regression was employed to assess the risk of GDM and APOs associated with elevated inflammatory indices and glycemic control. Diagnostic performance was evaluated using receiver operating characteristic (ROC) curves. RESULTS Women with GDM exhibited significantly higher levels of SII, SIRI, IL-33, and sST2. Multivariate logistic regression demonstrated that SII, SIRI, IL-33, and sST2 were independent predictors of GDM. Moreover, the highest tertiles of SII, SIRI, and IL-33 were strongly associated with APO risk. ROC analysis revealed that SII had the highest predictive value for GDM (AUC 0.763), while IL-33 had the greatest predictive accuracy for APOs (AUC 0.669). Effective glycemic control was associated with reduced inflammatory marker levels (SII, aOR 3.9; SIRI, aOR 3.7; IL-33, aOR 2.4) and a decreased risk of APOs and large-for-gestational-age (LGA) infants in women with GDM. CONCLUSIONS Elevated SII, SIRI, IL-33, and sST2 are significant predictors of GDM and APOs, with SII being the most robust predictor of GDM and IL-33 for APOs. Glycemic control reduces inflammation and may improve pregnancy outcomes in women with GDM.
Collapse
Affiliation(s)
- Yu Sun
- Department of Obstetrics, Kunming City Maternal and Child Health Hospital, Kunming, Yunnan, China
| | - Cuihua Shen
- Department of Obstetrics, Kunming City Maternal and Child Health Hospital, Kunming, Yunnan, China
| | - Jia Li
- Department of Obstetrics, Kunming City Maternal and Child Health Hospital, Kunming, Yunnan, China
| | - Wei Kang
- Department of Obstetrics, Kunming City Maternal and Child Health Hospital, Kunming, Yunnan, China
| | - Xin Li
- Department of Obstetrics, Kunming City Maternal and Child Health Hospital, Kunming, Yunnan, China
| | - Wei Fan
- Department of Obstetrics, Kunming City Maternal and Child Health Hospital, Kunming, Yunnan, China
| |
Collapse
|
5
|
Zhu C, Zhu B, Xu S, Li L, Song Y, Tang C. ARID1A: Multiple functions in human pregnancy. J Reprod Immunol 2025; 168:104448. [PMID: 39908786 DOI: 10.1016/j.jri.2025.104448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/05/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
AT-rich interacting domain containing respectively protein 1 A (ARID1A), a key member of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex, has been shown to play an important role in various physiological processes and diseases including female reproductive tumors, such as ovarian cancer and breast cancer. In addition to the studies regarding ARID1A expression and function in cancer, recent findings elucidate its important role in maintaining normal tissue homeostasis and cell differentiation by controlling chromatin remodeling and transcription factors recruitment. In the context of human pregnancy, ARID1A has been implicated in several pregnancy-related complications, including gestational diabetes, preeclampsia, and intrauterine growth restriction. This review examines the current research on the role of ARID1A in pregnancy, highlighting its potential as a biomarker and therapeutic target for these complications. Understanding the involvement of ARID1A in placental function and pregnancy-related disorders may provide valuable insights for the development of novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Chongying Zhu
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China; The Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Bingquan Zhu
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Shouying Xu
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Lin Li
- Department of Urology, Third Affiliated Hospital, Naval Medical University, Shanghai, 201805, China
| | - Yanhua Song
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Chao Tang
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China.
| |
Collapse
|
6
|
Mascharak S, Griffin M, Talbott HE, Guo JL, Parker J, Morgan AG, Valencia C, Kuhnert MM, Li DJ, Liang NE, Kratofil RM, Daccache JA, Sidhu I, Davitt MF, Guardino N, Lu JM, Abbas DB, Deleon NMD, Lavin CV, Adem S, Khan A, Chen K, Henn D, Spielman A, Cotterell A, Akras D, Downer M, Tevlin R, Lorenz HP, Gurtner GC, Januszyk M, Naik S, Wan DC, Longaker MT. Inhibiting mechanotransduction prevents scarring and yields regeneration in a large animal model. Sci Transl Med 2025; 17:eadt6387. [PMID: 39970235 DOI: 10.1126/scitranslmed.adt6387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/29/2025] [Indexed: 02/21/2025]
Abstract
Modulating mechanotransduction by inhibiting yes-associated protein (YAP) in mice yields wound regeneration without scarring. However, rodents are loose-skinned and fail to recapitulate key aspects of human wound repair. We sought to elucidate the effects of YAP inhibition in red Duroc pig wounds, the most human-like model of scarring. We show that one-time treatment with verteporfin, a YAP inhibitor, immediately after wounding is sufficient to prevent scarring and to drive wound regeneration in pigs. By performing single-cell RNA sequencing (scRNA-seq) on porcine wounds in conjunction with spatial proteomic analysis, we found perturbations in fibroblast dynamics with verteporfin treatment and the presence of putative pro-regenerative/profibrotic fibroblasts enriched in regenerating/scarring pig wounds, respectively. We also identified differences in enriched myeloid cell subpopulations after treatment and linked this observation to increased elaboration of interleukin-33 (IL-33) in regenerating wounds. Finally, we validated our findings in a xenograft wound model containing human neonatal foreskin engrafted onto nude mice and used scRNA-seq of human wound cells to draw parallels with fibroblast subpopulation dynamics in porcine wounds. Collectively, our findings provide support for the clinical translation of local mechanotransduction inhibitors to prevent human skin scarring, and they clarify a YAP/IL-33 signaling axis in large animal wound regeneration.
Collapse
Affiliation(s)
- Shamik Mascharak
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle Griffin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Heather E Talbott
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jason L Guo
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jennifer Parker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Annah Grace Morgan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caleb Valencia
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maxwell Michael Kuhnert
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dayan J Li
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Norah E Liang
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rachel M Kratofil
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joseph A Daccache
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ikjot Sidhu
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Applied Bioinformatics Laboratories, NYU Langone Health, New York, NY 10016, USA
| | - Michael F Davitt
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicholas Guardino
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John M Lu
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Darren B Abbas
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nestor M D Deleon
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christopher V Lavin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sandeep Adem
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anum Khan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kellen Chen
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dominic Henn
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amanda Spielman
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Asha Cotterell
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Deena Akras
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mauricio Downer
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruth Tevlin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - H Peter Lorenz
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Geoffrey C Gurtner
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Januszyk
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shruti Naik
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Ronald O. Perelman Department of Dermatology, NYU Langone Health, New York, NY 10016, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Derrick C Wan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael T Longaker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Llorca T, Ruiz-Magaña MJ, Abadía AC, Ruiz-Ruiz C, Olivares EG. Decidual stromal cells: fibroblasts specialized in immunoregulation during pregnancy. Trends Immunol 2025; 46:138-152. [PMID: 39947975 DOI: 10.1016/j.it.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/10/2024] [Accepted: 12/30/2024] [Indexed: 02/20/2025]
Abstract
Decidual stromal cells (DSCs) are involved in immunoregulatory mechanisms that prevent fetal rejection by the mammalian maternal immune system. Recent studies using single-cell RNA sequencing demonstrated the existence of different types of human and mouse DSCs, highlighting corresponding differentiation (decidualization) pathways, and suggesting their involvement in the immune response during normal and pathological pregnancy. DSCs may be considered tissue-specialized fibroblasts because both DSCs and fibroblasts share phenotypic and functional similarities in immunologically challenged tissues, especially in terms of their immune functions. Indeed, fibroblasts can setup, support, and suppress immune responses and these functions are also performed by DSCs. Moreover, fibroblasts and DSCs can induce ectopic foci as tertiary lymphoid structures (TLSs), and endometriosis, respectively. Thus, understanding DSC immunoregulatory functions is of timely relevance.
Collapse
Affiliation(s)
- Tatiana Llorca
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain
| | - María José Ruiz-Magaña
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain; Departamento de Biología Celular, Universidad de Granada, Granada, Spain.
| | - Ana C Abadía
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain; Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
| | - Carmen Ruiz-Ruiz
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain; Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
| | - Enrique G Olivares
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain; Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain.
| |
Collapse
|
8
|
Edmondson E, Kimura T, Hwang E, Kim M, Warner A, Zhu Y, Zhao L, Yu Y, Zhu X, Hernandez M, Kedei N, Cheng SY. TRα1 mutant suppresses KLF9 to cause endometrial metaplasia with ectopic IL-33 expression leading to uterine fibrosis and infertility. Sci Rep 2025; 15:3892. [PMID: 39890871 PMCID: PMC11785771 DOI: 10.1038/s41598-025-86848-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 01/14/2025] [Indexed: 02/03/2025] Open
Abstract
Thyroid hormone receptors (TRs) mediate the genomic actions of thyroid hormone. Mutations of THRA gene cause a human disease known as resistance to thyroid hormone (RTHα). We created a mouse model expressing a dominant negative mutated TRα1 (Thra1PV/+ mice) that exhibits growth retardation, bone abnormalities, constipation, and anemia, as found in RTHα patients. In addition, female Thra1PV/+ mice exhibit decreased fertility. In the present study, we aimed to characterize the molecular events leading to infertility. Histologically, there was progressive uterine atrophy in Thra1PV/+ mutant mice, characterized by squamous metaplasia of the endometrial mucosa and endometrial fibrosis. RNA-seq analysis of laser-captured micro-dissected endometrium and spatial transcriptomics revealed a key role for Krüppel-like factor (Klf9), a directly-regulated TR target gene, in normal endometrial differentiation. Klf9 was suppressed in the endometrium of mice harboring mutated TRα1 and pathway analysis revealed that deficient Klf9 signaling was associated with squamous differentiation, consistent with the endometrial metaplasia observed histologically. Further, we showed that this metaplastic endometrial mucosa was the source of ectopic IL-33, which was associated with increased T-cell infiltrates, destruction of glands, and endometrial fibrosis. Our studies provide new insights to understand uterine epithelial morphogenesis and how thyroid dysfunction could lead to female infertility.
Collapse
Affiliation(s)
- Elijah Edmondson
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Takahito Kimura
- National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Eunmi Hwang
- National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Minjun Kim
- National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Andrew Warner
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Yuelin Zhu
- National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Li Zhao
- National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Yanlin Yu
- National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Xuguang Zhu
- National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Maria Hernandez
- National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Noemi Kedei
- National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Sheue-Yann Cheng
- National Cancer Institute, National Institutes of Health, Bethesda, USA.
- Gene Regulation Section, Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, 37 Convent Dr, Room 5128, Bethesda, MD, 20892-4264, USA.
| |
Collapse
|
9
|
Moldovan GE, Massri N, Vegter EL, Pauneto-Delgado IN, Burns GW, Joshi N, Gu B, Arora R, Fazleabas AT. YAP1 and WWTR1 are required for murine pregnancy initiation. Reproduction 2025; 169:e240355. [PMID: 39503541 PMCID: PMC11874952 DOI: 10.1530/rep-24-0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/05/2024] [Indexed: 01/03/2025]
Abstract
In brief The HIPPO signaling effectors YAP1 and WWTR1 are required for murine pregnancy initiation, and mutation of these factors compromises the decidualization response and overall pregnancy success. Abstract Endometrial stromal cell decidualization is required for pregnancy success. Although this process is integral to fertility, many of the intricate molecular mechanisms contributing to decidualization remain undefined. One pathway that has been implicated in endometrial stromal cell decidualization in humans in vitro is the HIPPO signaling pathway. Two previously conducted studies showed that the effectors of the HIPPO signaling pathway YAP1 and WWTR1 are required for decidualization of primary endometrial stromal cells in vitro. To investigate the in vivo role of YAP1 and WWTR1 in decidualization and pregnancy initiation, we generated progesterone receptor Cre-mediated mutation of a combination of Yap1 and Wwtr1 alleles. Female Yap1 and Wwtr1 triple allele mutants exhibited subfertility, a compromised decidualization response, decreased endometrial receptivity, delayed embryonic development and a unique transcriptional profile at 7.5 days post-coitus (dpc). Bulk mRNA sequencing revealed aberrant maternal remodeling evidenced by significant alterations in extracellular matrix-encoding genes at 7.5 dpc in mutant dams and enrichment for terms associated with fertility-compromising diseases such as pre-eclampsia and endometriosis. In addition, differentially expressed genes overlapped directionally with estrogen receptor- and epidermal growth factor receptor-regulated genes as identified by microarray. Our results indicate that Yap1 and Wwtr1 are necessary for successful mammalian pregnancy initiation.
Collapse
|
10
|
Khashei Varnamkhasti K, Khashei Varnamkhasti S, Bahraini N, Davoodi M, Sadeghian M, Khavanin M, Naeimi R, Naeimi S. Multi-locus high-risk alleles association from interleukin's genes with female infertility and certain comorbidities. BMC Res Notes 2024; 17:344. [PMID: 39580416 PMCID: PMC11585211 DOI: 10.1186/s13104-024-06988-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/28/2024] [Indexed: 11/25/2024] Open
Abstract
Objective There is evidence that cytokine genes' single nucleotide polymorphisms could be the reasons behind female infertility. This study aimed to identify the role for Interleukin33 rs1048274 (G > A) and rs16924243 (T > C), Interleukin22 rs1397852121 (C > T), rs1295978671 (C > T) and rs2227483 (A > T), Interleukin17A rs2275913 (G > A,C) and Interleukin17F rs763780 (T > C), Interleukin13 1512 (A > C) and IL13 2044 (G > A), and Interleukin4 rs2243250 (C > T) and rs2070874 (C > T) gene polymorphisms in female infertility to gain a richly more detailed understanding of its genetic predisposition. Five distinct groups, each comprising 200 infertile women and 200 age-matched fertile controls, were recruited to each Interleukins (33, 22, 17, 13 and 4) in this case-control study and were genotyped by using an amplification refractory mutation system. Statistical analysis is conducted by SPSS software V. 22 and using Chi-square (χ2) and logistic regression tests. Strength of association was estimated by multiple-comparison correction, population structure test and Haplotype analysis. The study was approved by the Academic Ethics Committee and each enrolled patient signed an informed consent.Results Our statistical results revealed risk alleles in all of the substitution lines for women infertility. Current findings provided evidence that in the presence of Interleukin33 Ap-value rs1048274 = 0.002 and Cp-value rs16924243 < 0.0001, Interleukin 22Tp-value rs1397852121 < 0.0001 and Tp-value rs2227483 = 0.000, Interleukin17A Ap-value rs2275913 = 0.003 and Interleukin17F Cp-value rs763780 = 0.000 and Interleukin13 Cp-value 1512 = 0.000 and Ap-value 2044 = 0.003, Interleukin4 Tp-value rs2243250 = 0.001 and Tp-value rs2070874 = 0.009 risk alleles, risk genotype also were significantly associated with increased chances of developing infertility. The relationship between risk genotypes and several well-established infertility risk factors including, polycystic ovary syndrome, premature ovarian failure, oophorectomy, diminished ovarian reserve, endometriosis, uterine fibroids, ovarian cysts, uterine polyps, fallopian tube blockage and thyroid dysfunction, also exhibited. This study suggests the significant role of interleukin gene polymorphisms in human reproductive success.
Collapse
Affiliation(s)
- Khalil Khashei Varnamkhasti
- Department of Medical Laboratory Sciences, Faculty of Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Samire Khashei Varnamkhasti
- Department of Medical Laboratory Sciences, Faculty of Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Najmeh Bahraini
- Department of Genetics, College of Science, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Mohaddeseh Davoodi
- Department of Genetics, College of Science, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Mahsa Sadeghian
- Department of Genetics, College of Science, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Massomeh Khavanin
- Department of Genetics, College of Science, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Raana Naeimi
- Department of Genetics, College of Science, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Sirous Naeimi
- Department of Biology, Zand Institute of Higher Education, Shiraz, Iran.
| |
Collapse
|
11
|
Hamamah S, Barry F, Vannier S, Anahory T, Haahtela T, Antó JM, Chapron C, Ayoubi JM, Czarlewski W, Bousquet J. Infertility, IL-17, IL-33 and Microbiome Cross-Talk: The Extended ARIA-MeDALL Hypothesis. Int J Mol Sci 2024; 25:11981. [PMID: 39596052 PMCID: PMC11594021 DOI: 10.3390/ijms252211981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Infertility, defined as the inability to obtain pregnancy after 12 months of regular unprotected sexual intercourse, has increased in prevalence over the past decades, similarly to chronic, allergic, autoimmune, or neurodegenerative diseases. A recent ARIA-MeDALL hypothesis has proposed that all these diseases are linked to dysbiosis and to some cytokines such as interleukin 17 (IL-17) and interleukin 33 (IL-33). Our paper suggests that endometriosis, a leading cause of infertility, is linked to endometrial dysbiosis and two key cytokines, IL-17 and IL-33, which interact with intestinal dysbiosis. Intestinal dysbiosis contributes to elevated estrogen levels, a primary factor in endometriosis. Estrogens strongly activate IL-17 and IL-33, supporting the existence of a gut-endometrial axis as a significant contributor to infertility.
Collapse
Affiliation(s)
- Samir Hamamah
- Biologie de la Reproduction, Hôpital Arnaud de Villeneuve, 34295 Montpellier, France; (F.B.); (T.A.)
- INSERM DEFE, Université de Montpellier, 34090 Montpellier, France
| | - Fatima Barry
- Biologie de la Reproduction, Hôpital Arnaud de Villeneuve, 34295 Montpellier, France; (F.B.); (T.A.)
- INSERM DEFE, Université de Montpellier, 34090 Montpellier, France
| | - Sarah Vannier
- Gynécologie Médicale, Hôpital Arnaud de Villeneuve, 34295 Montpellier, France;
| | - Tal Anahory
- Biologie de la Reproduction, Hôpital Arnaud de Villeneuve, 34295 Montpellier, France; (F.B.); (T.A.)
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, 00250 Helsinki, Finland;
| | - Josep M. Antó
- ISGlobal, Barcelona Institute for Global Health, 08036 Barcelona, Spain;
- IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
- Departamento de Ciencias Experimentales y de la Salud, Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Charles Chapron
- Service de Gynécologie-Obs., Hôpital Cochin, 75014 Paris, France;
| | - Jean-Marc Ayoubi
- Gynécologie et médecine de la Reproduction, Hôpital Foch, 92150 Suresnes, France;
| | | | - Jean Bousquet
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany;
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany
| |
Collapse
|
12
|
Wang X, Shields CA, Thompson D, McKay J, Wilson R, Robbins MK, Glenn H, Fontenot M, Williams JM, Cornelius DC. IL-33 Signaling Inhibition Leads to a Preeclampsia-Like Phenotype in Pregnant Rats. Am J Reprod Immunol 2024; 92:e13895. [PMID: 39001587 PMCID: PMC11250770 DOI: 10.1111/aji.13895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/17/2024] [Accepted: 06/12/2024] [Indexed: 07/18/2024] Open
Abstract
PROBLEM Preeclampsia (PE) is a hypertensive pregnancy disorder that is a leading cause of maternal and fetal morbidity and mortality characterized by maternal vascular dysfunction, oxidative stress, chronic immune activation, and excessive inflammation. No cure exists beyond delivery of the fetal-placental unit and the mechanisms driving pathophysiology are not fully understood. However, aberrant immune responses have been extensively characterized in clinical studies and shown to mediate PE pathophysiology in animal studies. One pathway that may mediate aberrant immune responses in PE is deficiencies in the IL-33 signaling pathway. In this study, we aim to investigate the impact of IL-33 signaling inhibition on cNK, TH17, and TReg populations, vascular function, and maternal blood pressure during pregnancy. METHOD OF STUDY In this study, IL-33 signaling was inhibited using two different methods: intraperitoneal administration of recombinant ST2 (which acts as a decoy receptor for IL-33) and administration of a specific IL-33 neutralizing antibody. Maternal blood pressure, uterine artery resistance index, renal and placental oxidative stress, cNK, TH17, and TReg populations, various cytokines, and pre-proendothelin-1 levels were measured. RESULTS IL-33 signaling inhibition increased maternal blood pressure, uterine artery resistance, placental and renal oxidative stress. IL-33 signaling inhibition also increased placental cNK and TH17 and renal TH17 cells while decreasing placental TReg populations. IL-33 neutralization increased circulating cNK and TH17s and decreased circulating TRegs in addition to increasing pre-proendothelin-1 levels. CONCLUSIONS Data presented in this study demonstrate a role for IL-33 signaling in controlling vascular function and maternal blood pressure during pregnancy possibly by mediating innate and adaptive immune inflammatory responses, identifying the IL-33 signaling pathway as a potential therapeutic target for managing preeclampsia.
Collapse
Affiliation(s)
- Xi Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Corbin A Shields
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Deanna Thompson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Jie McKay
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Rachel Wilson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Marcus K Robbins
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Hannah Glenn
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Molly Fontenot
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Jan M Williams
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Denise C Cornelius
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
13
|
Li Y, Sang Y, Chang Y, Xu C, Lin Y, Zhang Y, Chiu PCN, Yeung WSB, Zhou H, Dong N, Xu L, Chen J, Zhao W, Liu L, Yu D, Zang X, Ye J, Yang J, Wu Q, Li D, Wu L, Du M. A Galectin-9-Driven CD11c high Decidual Macrophage Subset Suppresses Uterine Vascular Remodeling in Preeclampsia. Circulation 2024; 149:1670-1688. [PMID: 38314577 DOI: 10.1161/circulationaha.123.064391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND Preeclampsia is a serious disease of pregnancy that lacks early diagnosis methods or effective treatment, except delivery. Dysregulated uterine immune cells and spiral arteries are implicated in preeclampsia, but the mechanistic link remains unclear. METHODS Single-cell RNA sequencing and spatial transcriptomics were used to identify immune cell subsets associated with preeclampsia. Cell-based studies and animal models including conditional knockout mice and a new preeclampsia mouse model induced by recombinant mouse galectin-9 were applied to validate the pathogenic role of a CD11chigh subpopulation of decidual macrophages (dMφ) and to determine its underlying regulatory mechanisms in preeclampsia. A retrospective preeclampsia cohort study was performed to determine the value of circulating galectin-9 in predicting preeclampsia. RESULTS We discovered a distinct CD11chigh dMφ subset that inhibits spiral artery remodeling in preeclampsia. The proinflammatory CD11chigh dMφ exhibits perivascular enrichment in the decidua from patients with preeclampsia. We also showed that trophoblast-derived galectin-9 activates CD11chigh dMφ by means of CD44 binding to suppress spiral artery remodeling. In 3 independent preeclampsia mouse models, placental and plasma galectin-9 levels were elevated. Galectin-9 administration in mice induces preeclampsia-like phenotypes with increased CD11chigh dMφ and defective spiral arteries, whereas galectin-9 blockade or macrophage-specific CD44 deletion prevents such phenotypes. In pregnant women, increased circulating galectin-9 levels in the first trimester and at 16 to 20 gestational weeks can predict subsequent preeclampsia onset. CONCLUSIONS These findings highlight a key role of a distinct perivascular inflammatory CD11chigh dMφ subpopulation in the pathogenesis of preeclampsia. CD11chigh dMφ activated by increased galectin-9 from trophoblasts suppresses uterine spiral artery remodeling, contributing to preeclampsia. Increased circulating galectin-9 may be a biomarker for preeclampsia prediction and intervention.
Collapse
Affiliation(s)
- Yanhong Li
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
- Department of Obstetrics, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Clinical Institute of Shantou University Medical College), Shenzhen, Guangdong, China (Y. Li, Y. Lin, W.Z., J. Yang, M.D.)
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University Shanghai, China (Y. Li, M.D.)
| | - Yifei Sang
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Yunjian Chang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China (Y.C., Y.Z., H.Z., L.W.)
| | - Chunfang Xu
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Yikong Lin
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Yao Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China (Y.C., Y.Z., H.Z., L.W.)
| | - Philip C N Chiu
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, China (P.C.N.C., W.S.B.Y.)
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China (P.C.N.C., W.S.B.Y.)
| | - William S B Yeung
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, China (P.C.N.C., W.S.B.Y.)
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China (P.C.N.C., W.S.B.Y.)
| | - Haisheng Zhou
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China (Y.C., Y.Z., H.Z., L.W.)
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China (N.D., Q.W.)
| | - Ling Xu
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Jiajia Chen
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Weijie Zhao
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
- Department of Obstetrics, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Clinical Institute of Shantou University Medical College), Shenzhen, Guangdong, China (Y. Li, Y. Lin, W.Z., J. Yang, M.D.)
| | - Lu Liu
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Di Yu
- The University of Queensland Diamantina Institute (D.Y.), Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre (D.Y.), Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY (X.Z.)
| | - Jiangfeng Ye
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore City, Singapore (J. Ye)
| | - Jinying Yang
- Department of Obstetrics, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Clinical Institute of Shantou University Medical College), Shenzhen, Guangdong, China (Y. Li, Y. Lin, W.Z., J. Yang, M.D.)
| | - Qingyu Wu
- Cyrus Tang Hematology Center, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China (N.D., Q.W.)
| | - Dajin Li
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Ligang Wu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China (Y.C., Y.Z., H.Z., L.W.)
| | - Meirong Du
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
- Department of Obstetrics, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Clinical Institute of Shantou University Medical College), Shenzhen, Guangdong, China (Y. Li, Y. Lin, W.Z., J. Yang, M.D.)
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University Shanghai, China (Y. Li, M.D.)
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau SAR, China (M.D.)
| |
Collapse
|
14
|
Silva ZM, Toledo DNM, Pio S, Machado BAA, dos Santos PV, Hó FG, Medina YN, Cordeiro PHDM, Perucci LO, Pinto KMDC, Talvani A. Neuroserpin, IL-33 and IL-17A as potential markers of mild symptoms of depressive syndrome in Toxoplasma gondii-infected pregnant women. Front Immunol 2024; 15:1394456. [PMID: 38835777 PMCID: PMC11148649 DOI: 10.3389/fimmu.2024.1394456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/29/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction Depressive syndrome (DS) is a common complication during pregnancy and the postpartum period, and is triggered by multiple organic/genetic and environmental factors. Clinical and biochemical follow-up is essential for the early diagnosis and prognosis of DS. The protozoan Toxoplasma gondii causes infectious damage to the fetus during parasite primary-infection. However, in long-term infections, pregnant women develop immune protection to protect the fetus, although they remain susceptible to pathological or inflammatory effects induced by T. gondii. This study aimed to investigate plasma inflammatory biomarkers in pregnant women seropositive and seronegative for T. gondii, with diagnoses of minor and moderate/severe DS. Methods Pregnant women (n=45; age=18-39 years) were recruited during prenatal care at health centers in Ouro Preto, Minas Gerais, Brazil. Participants were asked to complete a socio-demographic questionnaire to be submitted to well-standardized DS scale calculators (Beck Depression Inventory Questionnaire, Edinburgh Postnatal Depression Scale, and Major Depressive Episode Module). Additionally, 4 mL of blood was collected for plasma neuroserpin, CCL2, IL-17A, and IL-33 analysis. Results Pregnant volunteers with chronic T. gondii contact were all IgG+ (44%; n=21) and exhibited increased plasma IL-33, IL-17A, and neuroserpin levels, but not CCL2, compared to uninfected pregnant women. Using Beck's depression inventory, we observed an increase in plasma IL-17A and IL-33 in women with T. gondii infeCction diagnosed with mild DS, whereas neuroserpin was associated with minor and moderate/severe DS. Discussion Our data suggest a close relationship between DS in pregnant women with chronic T. gondii infection and neurological conditions, which may be partially mediated by plasma neuroserpin, IL-33, and IL-17A levels.
Collapse
Affiliation(s)
- Zolder Marinho Silva
- Laboratório de Imunobiologia da Inflamação, Departamento de Ciências Biológicas/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Programa de Pós-Graduação em Saúde e Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Débora Nonato Miranda Toledo
- Laboratório de Imunobiologia da Inflamação, Departamento de Ciências Biológicas/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Programa de Pós-Graduação em Saúde e Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Sirlaine Pio
- Laboratório de Imunobiologia da Inflamação, Departamento de Ciências Biológicas/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Programa de Pós-Graduação em Saúde e Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Bianca Alves Almeida Machado
- Laboratório de Imunobiologia da Inflamação, Departamento de Ciências Biológicas/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Programa de Pós-Graduação em Evolução Crustal e Recursos Naturais, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Escola de Medicina, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Priscilla Vilela dos Santos
- Laboratório de Imunobiologia da Inflamação, Departamento de Ciências Biológicas/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Programa de Pós-Graduação em Saúde e Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Flávia Galvão Hó
- Laboratório de Imunobiologia da Inflamação, Departamento de Ciências Biológicas/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Escola de Medicina, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Yasmim Nogueira Medina
- Laboratório de Imunobiologia da Inflamação, Departamento de Ciências Biológicas/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Escola de Medicina, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Paulo Henrique de Miranda Cordeiro
- Laboratório de Imunobiologia da Inflamação, Departamento de Ciências Biológicas/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Escola de Medicina, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Luiza Oliveira Perucci
- Laboratório de Imunobiologia da Inflamação, Departamento de Ciências Biológicas/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Department of Obstetrics Gynecology and Reproductive Sciences, California University, San Diego, CA, United States
| | - Kelerson Mauro de Castro Pinto
- Laboratório de Imunobiologia da Inflamação, Departamento de Ciências Biológicas/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Escola de Educação Física, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - André Talvani
- Laboratório de Imunobiologia da Inflamação, Departamento de Ciências Biológicas/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Programa de Pós-Graduação em Saúde e Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Programa de Pós-Graduação em Infectologia e Medicina Tropical, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
15
|
Jiang X, Li L. Decidual macrophage: a reversible role in immunotolerance between mother and fetus during pregnancy. Arch Gynecol Obstet 2024; 309:1735-1744. [PMID: 38329548 DOI: 10.1007/s00404-023-07364-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/17/2023] [Indexed: 02/09/2024]
Abstract
The tolerance of the semi-allogeneic fetus by the maternal immune system is an eternal topic of reproductive immunology for ensuring a satisfactory outcome. The maternal-fetal interface serves as a direct portal for communication between the fetus and the mother. It is composed of placental villi trophoblast cells, decidual immune cells, and stromal cells. Decidual immune cells engage in maintaining the homeostasis of the maternal-fetal interface microenvironment. Furthermore, growing evidence has shown that decidual macrophages play a crucial role in maternal-fetal tolerance during pregnancy. As the second largest cell population among decidual immune cells, decidual macrophages are divided into two subtypes: classically activated macrophages (M1) and alternatively activated macrophages (M2). M2 polarization is critical for placentation and embryonic development. Cytokines, exosomes, and metabolites regulate the polarization of decidual macrophages, and thereby modulate maternal-fetal immunotolerance. Explore the initial relationship between decidual macrophages polarization and maternal-fetal immunotolerance will help diagnose and treat the relevant pregnancy diseases, reverse the undesirable outcomes of mothers and infants.
Collapse
Affiliation(s)
- Xiaotong Jiang
- Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Lei Li
- Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
- Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China, No. 324, Jingwu Weiqi Road, Huaiyin District, 250021.
- The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan, China, No. 6699, Qingdao Road, Huaiyin District, 250117.
| |
Collapse
|
16
|
Wang X, Shields C, Tardo G, Peacock G, Hester E, Anderson M, Williams JM, Cornelius DC. IL-33 supplementation improves uterine artery resistance and maternal hypertension in response to placental ischemia. Am J Physiol Heart Circ Physiol 2024; 326:H1006-H1016. [PMID: 38363211 PMCID: PMC11279736 DOI: 10.1152/ajpheart.00045.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
Preeclampsia (PE), a leading cause of maternal/fetal morbidity and mortality, is a hypertensive pregnancy disorder with end-organ damage that manifests after 20 wk of gestation. PE is characterized by chronic immune activation and endothelial dysfunction. Clinical studies report reduced IL-33 signaling in PE. We use the Reduced Uterine Perfusion Pressure (RUPP) rat model, which mimics many PE characteristics including reduced IL-33, to identify mechanisms mediating PE pathophysiology. We hypothesized that IL-33 supplementation would improve blood pressure (BP), inflammation, and oxidative stress (ROS) during placental ischemia. We implanted intraperitoneal mini-osmotic pumps infusing recombinant rat IL-33 (1 µg/kg/day) into normal pregnant (NP) and RUPP rats from gestation day 14 to 19. We found that IL-33 supplementation in RUPP rats reduces maternal blood pressure and improves the uterine artery resistance index (UARI). In addition to physiological improvements, we found decreased circulating and placental cytolytic Natural Killer cells (cNKs) and decreased circulating, placental, and renal TH17s in IL-33-treated RUPP rats. cNK cell cytotoxic activity also decreased in IL-33-supplemented RUPP rats. Furthermore, renal ROS and placental preproendothelin-1 (PPET-1) decreased in RUPP rats treated with IL-33. These findings demonstrate a role for IL-33 in controlling vascular function and maternal BP during pregnancy by decreasing inflammation, renal ROS, and PPET-1 expression. These data suggest that IL-33 may have therapeutic potential in managing PE.NEW & NOTEWORTHY Though decreased IL-33 signaling has been clinically associated with PE, the mechanisms linking this signaling pathway to overall disease pathophysiology are not well understood. This study provides compelling evidence that mechanistically links reduced IL-33 with the inflammatory response and vascular dysfunction observed in response to placental ischemia, such as in PE. Data presented in this study submit the IL-33 signaling pathway as a possible therapeutic target for the treatment of PE.
Collapse
Affiliation(s)
- Xi Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Corbin Shields
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Geilda Tardo
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Greg Peacock
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Emily Hester
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Marissa Anderson
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Jan M Williams
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Denise C Cornelius
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi, United States
| |
Collapse
|
17
|
Ali Khazaei H, Farzaneh F, Sarhadi S, Dehghan Haghighi J, Forghani F, Sheikhi V, Khazaei B, Asadollahi L. Comparison of serum levels of interleukin 33 in combination with serum levels of C-reactive protein, Immunoglobulin G, Immunoglobulin A, and Immunoglobulin M in recurrent pregnancy loss: A case-control study. Int J Reprod Biomed 2024; 22:317-322. [PMID: 39035635 PMCID: PMC11255461 DOI: 10.18502/ijrm.v22i4.16392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/19/2023] [Accepted: 08/12/2023] [Indexed: 07/23/2024] Open
Abstract
Background One of the critical cases of recurrent pregnancy loss is immunological factors, whereas obtaining effective prevention or treatment is necessary for cognition of reasons. Objective In this study, we tried to evaluate some immunological factors related to recurrent pregnancy loss. Materials and Methods This case-control study was conducted on 66 women at the age of 18-35 yr who were referred to the Clinic of Gynecology and Obstetrics, Ali Ibn Abi Taleb hospital, Zahedan, Iran, from August-December 2019. Interleukin 33 (IL-33) serum levels were measured using enzyme-linked immunosorbent assay. Immunoglobulin G, Immunoglobulin A, Immunoglobulin M (IgM), and C-reactive protein levels were measured by serology and hematology methods. Results The mean age of total participants was 30.8 ± 3.80 yr. The mean serum IL-33 in the case group was 318.5 ± 254.1 pg/ml and was lower than the control group (354.2 ± 259.9 pg/ml), which was not statistically significant (p = 0.52). The level of C-reactive protein in the case and control was not significantly different (p = 0.27), and Immunoglobulin A and Immunoglobulin G in the case and control were also not significantly different (p = 0.46, and p = 0.16, respectively), but there were significant differences (p = 0.003) between the level of the IgM in the case and control groups. Conclusion No statistically significant difference was observed in the IL-33 serum level, for at least 4-6 months after the last abortion in the case group and the final live birth in the control group. In contrast, serum levels of IgM were statistically significant. Finally, the need for more studies is felt according to the different results of the previous studies in this field.
Collapse
Affiliation(s)
- Hossein Ali Khazaei
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Farahnaz Farzaneh
- Department of Obstetrics and Gynecology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saeedeh Sarhadi
- Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Community Medicine, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Javid Dehghan Haghighi
- Department of Community Medicine, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Forough Forghani
- Department of Obstetrics and Gynecology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Vahid Sheikhi
- Department of Pediatrics, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Bahman Khazaei
- School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Lida Asadollahi
- School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
18
|
He PY, Wu MY, Zheng LY, Duan Y, Fan Q, Zhu XM, Yao YM. Interleukin-33/serum stimulation-2 pathway: Regulatory mechanisms and emerging implications in immune and inflammatory diseases. Cytokine Growth Factor Rev 2024; 76:112-126. [PMID: 38155038 DOI: 10.1016/j.cytogfr.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
Interleukin (IL)- 33, a nuclear factor and pleiotropic cytokine of the IL-1 family, is gaining attention owing to its important role in chronic inflammatory and autoimmune diseases. This review extends our knowledge of the effects exerted by IL-33 on target cells by binding to its specific receptor serum stimulation-2 (ST2). Depending on the tissue context, IL-33 performs multiple functions encompassing host defence, immune response, initiation and amplification of inflammation, tissue repair, and homeostasis. The levels and activity of IL-33 in the body are controlled by complex IL-33-targeting regulatory pathways. The unique temporal and spatial expression patterns of IL-33 are associated with host homeostasis and the development of immune and inflammatory disorders. Therefore, understanding the origin, function, and processes of IL-33 under various conditions is crucial. This review summarises the regulatory mechanisms underlying the IL-33/ST2 signalling axis and its potential role and clinical significance in immune and inflammatory diseases, and discusses the current complex and conflicting findings related to IL-33 in host responses.
Collapse
Affiliation(s)
- Peng-Yi He
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; School of Medicine, Nankai University, Tianjin 300071, China
| | - Meng-Yao Wu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Li-Yu Zheng
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Yu Duan
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qi Fan
- Emergency Medicine Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Xiao-Mei Zhu
- Tissue Repair and Regeneration Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100048, China.
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
19
|
Wu Y, Teh YC, Chong SZ. Going Full TeRM: The Seminal Role of Tissue-Resident Macrophages in Organ Remodeling during Pregnancy and Lactation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:513-521. [PMID: 38315948 DOI: 10.4049/jimmunol.2300560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/23/2023] [Indexed: 02/07/2024]
Abstract
During pregnancy and lactation, the uterus and mammary glands undergo remarkable structural changes to perform their critical reproductive functions before reverting to their original dormant state upon childbirth and weaning, respectively. Underlying this incredible plasticity are complex remodeling processes that rely on coordinated decisions at both the cellular and tissue-subunit levels. With their exceptional versatility, tissue-resident macrophages play a variety of supporting roles in these organs during each stage of development, ranging from maintaining immune homeostasis to facilitating tissue remodeling, although much remains to be discovered about the identity and regulation of individual macrophage subsets. In this study, we review the increasingly appreciated contributions of these immune cells to the reproductive process and speculate on future lines of inquiry. Deepening our understanding of their interactions with the parenchymal or stromal populations in their respective niches may reveal new strategies to ameliorate complications in pregnancy and breastfeeding, thereby improving maternal health and well-being.
Collapse
Affiliation(s)
- Yixuan Wu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ye Chean Teh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Shu Zhen Chong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| |
Collapse
|
20
|
Yang J, Li L, Wang L, Chen R, Yang X, Wu J, Feng G, Ding J, Diao L, Chen J, Yang J. Trophoblast-derived miR-410-5p induces M2 macrophage polarization and mediates immunotolerance at the fetal-maternal interface by targeting the STAT1 signaling pathway. J Transl Med 2024; 22:19. [PMID: 38178171 PMCID: PMC10768263 DOI: 10.1186/s12967-023-04831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Macrophages phenotypic deviation and immune imbalance play vital roles in pregnancy-associated diseases such as spontaneous miscarriage. Trophoblasts regulate phenotypic changes in macrophages, however, their underlying mechanism during pregnancy remains unclear. Therefore, this study aimed to elucidate the potential function of trophoblast-derived miRNAs (miR-410-5p) in macrophage polarization during pregnancy. METHODS Patient decidual macrophage tissue samples in spontaneous abortion group and normal pregnancy group (those who had induced abortion for non-medical reasons) were collected at the Reproductive Medicine Center of Renmin Hospital of Wuhan University from April to December 2021. Furthermore, placental villi and decidua tissue samples were collected from patients who had experienced a spontaneous miscarriage and normal pregnant women for validation and subsequent experiments at the Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), from March 2021 to September 2022. As an animal model, 36 female mice were randomly divided into six groups as follows: naive-control, lipopolysaccharide-model, agomir-negative control prevention, agomir-410-5p prevention, agomir-negative control treatment, and agomir-410-5p treatment groups. We analyzed the miR-410-5p expression in abortion tissue and plasma samples; and supplemented miR-410-5p to evaluate embryonic absorption in vivo. The main source of miR-410-5p at the maternal-fetal interface was analyzed, and the possible target gene, signal transducer and activator of transcription (STAT) 1, of miR-410-5p was predicted. The effect of miR-410-5p and STAT1 regulation on macrophage phenotype, oxidative metabolism, and mitochondrial membrane potential was analyzed in vitro. RESULTS MiR-410-5p levels were lower in the spontaneous abortion group compared with the normal pregnancy group, and plasma miR-410-5p levels could predict pregnancy and spontaneous abortion. Prophylactic supplementation of miR-410-5p in pregnant mice reduced lipopolysaccharide-mediated embryonic absorption and downregulated the decidual macrophage pro-inflammatory phenotype. MiR-410-5p were mainly distributed in villi, and trophoblasts secreted exosomes-miR-410-5p at the maternal-fetal interface. After macrophages captured exosomes, the cells shifted to the tolerance phenotype. STAT1 was a potential target gene of miR-410-5p. MiR-410-5p bound to STAT1 mRNA, and inhibited the expression of STAT1 protein. STAT1 can drive macrophages to mature to a pro-inflammatory phenotype. MiR-410-5p competitive silencing of STAT1 can avoid macrophage immune disorders. CONCLUSION MiR-410-5p promotes M2 macrophage polarization by inhibiting STAT1, thus ensuring a healthy pregnancy. These findings are of great significance for diagnosing and preventing spontaneous miscarriage, providing a new perspective for further research in this field.
Collapse
Affiliation(s)
- Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, Hubei, People's Republic of China
- Department of Gynecology, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, People's Republic of China
| | - Longfei Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518045, Guangdong, People's Republic of China.
| | - Linlin Wang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518045, Guangdong, People's Republic of China
| | - Ruizhi Chen
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518045, Guangdong, People's Republic of China
| | - Xiaobing Yang
- Department of Clinical Laboratory, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518045, Guangdong, People's Republic of China
| | - Juanhua Wu
- Department of Gynecology, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518045, Guangdong, People's Republic of China
| | - Gang Feng
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518045, Guangdong, People's Republic of China
| | - Jinli Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, Hubei, People's Republic of China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518045, Guangdong, People's Republic of China
| | - Jiao Chen
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, Hubei, People's Republic of China.
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, Hubei, People's Republic of China.
| |
Collapse
|
21
|
Negishi Y, Morita R. Inflammatory responses in early pregnancy: Physiological and pathological perspectives. Reprod Med Biol 2024; 23:e12619. [PMID: 39677327 PMCID: PMC11646355 DOI: 10.1002/rmb2.12619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024] Open
Abstract
Background Several conditions such as infertility, repeated implantation failure, and recurrent pregnancy loss can pose challenges in early pregnancy. These issues can be caused by the abnormal inflammatory response with various factors, including exogenous and endogenous agents, and pathogenic and nonpathogenic agents. In addition, they can be exacerbated by maternal immune response to the abovementioned factors. Methods This review aimed to assess the detrimental inflammatory effects of chronic endometritis, endometrial microbiota disturbance, and maternal immune system abnormalities on early pregnancy. Further, essential details such as ovulation, implantation, trophoblast invasion, and placental formation, were examined, thereby highlighting the beneficial roles of inflammation. Main Findings Excessive inflammation was associated with various early pregnancy disorders. Meanwhile, a lack of appropriate inflammation could also contribute to the development of different early pregnancy complications. Conclusion Excessive inflammation and insufficient inflammation can possibly lead to abnormal conditions in early pregnancy, and appropriate inflammation is required for a successful pregnancy.
Collapse
Affiliation(s)
- Yasuyuki Negishi
- Department of Microbiology and ImmunologyNippon Medical SchoolTokyoJapan
- Department of Obstetrics and GynecologyNippon Medical SchoolTokyoJapan
| | - Rimpei Morita
- Department of Microbiology and ImmunologyNippon Medical SchoolTokyoJapan
| |
Collapse
|
22
|
Parks SE, Geng T, Monsivais D. Endometrial TGFβ signaling fosters early pregnancy development by remodeling the fetomaternal interface. Am J Reprod Immunol 2023; 90:e13789. [PMID: 38009061 PMCID: PMC10683870 DOI: 10.1111/aji.13789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 11/28/2023] Open
Abstract
The endometrium is a unique and highly regenerative tissue with crucial roles during the reproductive lifespan of a woman. As the first site of contact between mother and embryo, the endometrium, and its critical processes of decidualization and immune cell recruitment, play a leading role in the establishment of pregnancy, embryonic development, and reproductive capacity. These integral processes are achieved by the concerted actions of steroid hormones and a myriad of growth factor signaling pathways. This review focuses on the roles of the transforming growth factor β (TGFβ) pathway in the endometrium during the earliest stages of pregnancy through the lens of immune cell regulation and function. We discuss how key ligands in the TGFβ family signal through downstream SMAD transcription factors and ultimately remodel the endometrium into a state suitable for embryo implantation and development. We also focus on the key roles of the TGFβ signaling pathway in recruiting uterine natural killer cells and their collective remodeling of the decidua and spiral arteries. By providing key details about immune cell populations and TGFβ signaling within the endometrium, it is our goal to shed light on the intricate remodeling that is required to achieve a successful pregnancy.
Collapse
Affiliation(s)
- Sydney E. Parks
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ting Geng
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diana Monsivais
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
23
|
Salamon D, Ujvari D, Hellberg A, Hirschberg AL. DHT and Insulin Upregulate Secretion of the Soluble Decoy Receptor of IL-33 From Decidualized Endometrial Stromal Cells. Endocrinology 2023; 165:bqad174. [PMID: 37972259 PMCID: PMC10681354 DOI: 10.1210/endocr/bqad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/17/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Interleukin 33 (IL-33) signaling regulates most of the key processes of pregnancy, including decidualization, trophoblast proliferation and invasion, vascular remodeling, and placental growth. Accordingly, dysregulation of IL-33, its membrane-bound receptor (ST2L, transducer of IL-33 signaling), and its soluble decoy receptor (sST2, inhibitor of IL-33 signaling) has been linked to a wide range of adverse pregnancy outcomes that are common in women with obesity and polycystic ovary syndrome, that is, conditions associated with hyperandrogenism, insulin resistance, and compensatory hyperinsulinemia. To reveal if androgens and insulin might modulate uteroplacental IL-33 signaling, we investigated the effect of dihydrotestosterone (DHT) and/or insulin on the expression of ST2L and sST2 (along with the activity of their promoter regions), IL-33 and sIL1RAP (heterodimerization partner of sST2), during in vitro decidualization of endometrial stromal cells from 9 healthy women. DHT and insulin markedly upregulated sST2 secretion, in addition to the upregulation of its messenger RNA (mRNA) expression, while the proximal ST2 promoter, from which the sST2 transcript originates, was upregulated by insulin, and in a synergistic manner by DHT and insulin combination treatment. On the other hand, sIL1RAP was slightly downregulated by insulin and IL-33 mRNA expression was not affected by any of the hormones, while ST2L mRNA expression and transcription from its promoter region (distal ST2 promoter) could not be detected or showed a negligibly low level. We hypothesize that high levels of androgens and insulin might lead to subfertility and pregnancy complications, at least partially, through the sST2-dependent downregulation of uteroplacental IL-33 signaling.
Collapse
Affiliation(s)
- Daniel Salamon
- Department of Women's and Children's Health, Karolinska Institute, SE-171 64 Stockholm, Sweden
| | - Dorina Ujvari
- Department of Women's and Children's Health, Karolinska Institute, SE-171 64 Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, National Pandemic Centre, Centre for Translational Microbiome Research, Karolinska Institute, SE-171 64 Stockholm, Sweden
| | - Anton Hellberg
- Department of Women's and Children's Health, Karolinska Institute, SE-171 64 Stockholm, Sweden
| | - Angelica Lindén Hirschberg
- Department of Women's and Children's Health, Karolinska Institute, SE-171 64 Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
24
|
Xu C, Wang A, Ebraham L, Sullivan L, Tasker C, Pizutelli V, Couret J, Hernandez C, Kolli P, Deb PQ, Fritzky L, Subbian S, Gao N, Lo Y, Salvatore M, Rivera A, Lemenze A, Fitzgerald-Bocarsly P, Tyagi S, Lu W, Beaulieu A, Chang TL. Interferon ɛ restricts Zika virus infection in the female reproductive tract. PNAS NEXUS 2023; 2:pgad350. [PMID: 37954158 PMCID: PMC10639110 DOI: 10.1093/pnasnexus/pgad350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023]
Abstract
Interferon ɛ (IFNɛ) is a unique type I IFN that has been implicated in host defense against sexually transmitted infections. Zika virus (ZIKV), an emerging pathogen, can infect the female reproductive tract (FRT) and cause devastating diseases, particularly in pregnant women. How IFNɛ contributes to protection against ZIKV infection in vivo is unknown. In this study, we show that IFNɛ plays a critical role in host protection against vaginal ZIKV infection in mice. We found that IFNɛ was expressed not only by epithelial cells in the FRT but also by immune and stromal cells at baseline or after exposure to viruses or specific Toll-like receptor (TLR) agonists. IFNɛ-deficient mice exhibited abnormalities in the epithelial border and underlying tissue in the cervicovaginal tract, and these defects were associated with increased susceptibility to vaginal but not subcutaneous ZIKV infection. IFNɛ deficiency resulted in an increase in magnitude, duration, and depth of ZIKV infection in the FRT. Critically, intravaginal administration of recombinant IFNɛ protected Ifnɛ-/- mice and highly susceptible Ifnar1-/- mice against vaginal ZIKV infection, indicating that IFNɛ was sufficient to provide protection even in the absence of signals from other type I IFNs and in an IFNAR1-independent manner. Our findings reveal a potentially critical role for IFNɛ in mediating protection against the transmission of ZIKV in the context of sexual contact.
Collapse
Affiliation(s)
- Chuan Xu
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Annie Wang
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Laith Ebraham
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Liam Sullivan
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Carley Tasker
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Vanessa Pizutelli
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Jennifer Couret
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Cyril Hernandez
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Priyanka Kolli
- Graduate School of Biological Sciences, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Pratik Q Deb
- Department of Pathology and Laboratory Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Luke Fritzky
- Department of Pathology and Laboratory Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Selvakumar Subbian
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Nan Gao
- Department of Cell Biology, Rutgers, School of Art and Science-Newark, Newark, NJ 07103, USA
| | - Yungtai Lo
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mirella Salvatore
- Departmentof Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Amariliz Rivera
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Alexander Lemenze
- Department of Pathology and Laboratory Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | | | - Sanjay Tyagi
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Wuyuan Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, and Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai 200032, China
| | - Aimee Beaulieu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Theresa L Chang
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
25
|
Oh Y, Quiroz E, Wang T, Medina-Laver Y, Redecke SM, Dominguez F, Lydon JP, DeMayo FJ, Wu SP. The NR2F2-HAND2 signaling axis regulates progesterone actions in the uterus at early pregnancy. Front Endocrinol (Lausanne) 2023; 14:1229033. [PMID: 37664846 PMCID: PMC10473531 DOI: 10.3389/fendo.2023.1229033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Endometrial function is dependent on a tight crosstalk between the epithelial and stromal cells of the endometrium. This communication is critical to ensure a fertile uterus and relies on progesterone and estrogen signaling to prepare a receptive uterus for embryo implantation in early pregnancy. One of the key mediators of this crosstalk is the orphan nuclear receptor NR2F2, which regulates uterine epithelial receptivity and stromal cell differentiation. In order to determine the molecular mechanism regulated by NR2F2, RNAseq analysis was conducted on the uterus of PgrCre;Nr2f2f/f mice at Day 3.5 of pregnancy. This transcriptomic analysis demonstrated Nr2f2 ablation in Pgr-expressing cells leads to a reduction of Hand2 expression, increased levels of Hand2 downstream effectors Fgf1 and Fgf18, and a transcriptome manifesting suppressed progesterone signaling with an altered immune baseline. ChIPseq analysis conducted on the Day 3.5 pregnant mouse uterus for NR2F2 demonstrated the majority of NR2F2 occupies genomic regions that have H3K27ac and H3K4me1 histone modifications, including the loci of major uterine transcription regulators Hand2, Egr1, and Zbtb16. Furthermore, functional analysis of an NR2F2 occupying site that is conserved between human and mouse was capable to enhance endogenous HAND2 mRNA expression with the CRISPR activator in human endometrial stroma cells. These data establish the NR2F2 dependent regulation of Hand2 in the stroma and identify a cis-acting element for this action. In summary, our findings reveal a role of the NR2F2-HAND2 regulatory axis that determines the uterine transcriptomic pattern in preparation for the endometrial receptivity.
Collapse
Affiliation(s)
- Yeongseok Oh
- Reproductive and Development Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Elvis Quiroz
- Reproductive and Development Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Tianyuan Wang
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Yassmin Medina-Laver
- Reproductive and Development Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Skylar Montague Redecke
- Reproductive and Development Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Francisco Dominguez
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Francesco J. DeMayo
- Reproductive and Development Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - San-Pin Wu
- Reproductive and Development Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| |
Collapse
|
26
|
Zhang L, Wang S, Ma Y, Song Y, Li D, Liang X, Hao Y, Jiang M, Lv J, Du H. Shoutai Wan regulates glycolysis imbalance at the maternal-fetal interface in threatened abortion mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116502. [PMID: 37068718 DOI: 10.1016/j.jep.2023.116502] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Threatened abortion is a common disease among women of childbearing age. Its high incidence rate and unclear etiology, seriously threaten women's physical and mental health. Shoutai Wan (STW) is a traditional Chinese medicine decoction for treating abortion. It has a long history of treating threatened abortion by tonifying the kidney and calming the fetus. However, the mechanism of STW remains unclear. AIM OF STUDY To study the mechanism and potential benefit of STW in pregnant mice with hydrocortisone and mifepristone-induced threatened abortion. MATERIALS AND METHODS The STW compounds were identified using gas chromatography-mass spectrometry analysis. STW-H, STW-M, or STW-L was separately given 3 mg/ml, 1.5 mg/ml and 0.75 mg/ml STW in the morning, and 2 mg/ml hydrocortisone in the afternoon from gestation day (D) 1-9 and once with 0.4 mg/kg mifepristone on D10. Didroxyprogesterone (0.1 mg/ml) and equal dose pure water were used to replace STW in didroxyprogesterone (DYD) group and model group respectively. The control group used pure water to replace STW, hydrocortisone, and mifepristone. We performed morphological and histological analyses of the maternal-fetal interface on day 10. RESULTS The embryo loss rate in the STW-H and DYD groups was lower than that in the model group. Hematoxylin and eosin (HE) staining suggested that the morphology of maternal-fetal interface was improved in the STW-H and DYD groups. Immunohistochemical (IHC), Quantitative Reverse Transcription Polymerase Chain Reactionstaining (qRT-PCR), and Western blot (WB) results indicated that HIF-1α expression in the maternal-fetal interface of the STW-H and DYD groups was higher than that in model group. The activities of HK, PKM, LDH and the concentration of lactic acid in the STW-H and DYD groups were higher than those in model group. Furthermore, the protein and mRNA levels of HK2, PKM2, LDHA, MCT4, and GPR81 were higher in the STW-H and DYD groups than those in the model group. CONCLUSIONS STW can reduce the pregnancy loss rate by regulating the glycolysis balance at the maternal-fetal interface of kidney deficiency threatened abortion model mice.
Collapse
Affiliation(s)
- Li Zhang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China
| | - Shuhui Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China
| | - Yucong Ma
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China
| | - Yajing Song
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China
| | - Dandan Li
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China
| | - Xiao Liang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China
| | - Yanzhi Hao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China
| | - Min Jiang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China
| | - Jingfang Lv
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China
| | - Huilan Du
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China.
| |
Collapse
|
27
|
Meng X, Chen C, Qian J, Cui L, Wang S. Energy metabolism and maternal-fetal tolerance working in decidualization. Front Immunol 2023; 14:1203719. [PMID: 37404833 PMCID: PMC10315848 DOI: 10.3389/fimmu.2023.1203719] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023] Open
Abstract
One pivotal aspect of early pregnancy is decidualization. The decidualization process includes two components: the differentiation of endometrial stromal cells to decidual stromal cells (DSCs), as well as the recruitment and education of decidual immune cells (DICs). At the maternal-fetal interface, stromal cells undergo morphological and phenotypic changes and interact with trophoblasts and DICs to provide an appropriate decidual bed and tolerogenic immune environment to maintain the survival of the semi-allogeneic fetus without causing immunological rejection. Despite classic endocrine mechanism by 17 β-estradiol and progesterone, metabolic regulations do take part in this process according to recent studies. And based on our previous research in maternal-fetal crosstalk, in this review, we elaborate mechanisms of decidualization, with a special focus on DSC profiles from aspects of metabolism and maternal-fetal tolerance to provide some new insights into endometrial decidualization in early pregnancy.
Collapse
Affiliation(s)
| | | | | | - Liyuan Cui
- *Correspondence: Songcun Wang, ; Liyuan Cui,
| | | |
Collapse
|
28
|
Xu C, Wang A, Ebraham L, Sullivan L, Tasker C, Pizutelli V, Couret J, Hernandez C, Deb PQ, Fritzky L, Subbian S, Gao N, Lo Y, Salvatore M, Rivera A, Lemenze A, Fitzgerald-Bocarsly P, Tyagi S, Lu W, Beaulieu A, Chang TL. Interferon ε restricts Zika virus infection in the female reproductive tract. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535968. [PMID: 37066223 PMCID: PMC10104157 DOI: 10.1101/2023.04.06.535968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Interferon ε (IFNε) is a unique type I IFN that has been implicated in host defense against sexually transmitted infections (STIs). Zika virus (ZIKV), an emerging pathogen, can infect the female reproductive tract (FRT) and cause devastating diseases, particularly in pregnant women. How IFNε contributes to protection against ZIKV infection in vivo is unknown. Here, we show that IFNε plays a critical role in host protection against vaginal ZIKV infection in mice. We found that IFNε was expressed not only by epithelial cells in the FRT, but also by certain immune and other cells at baseline or after exposure to viruses or specific TLR agonists. IFNε-deficient mice exhibited abnormalities in the epithelial border and underlying tissue in the cervicovaginal tract, and these defects were associated with increased susceptibility to vaginal, but not subcutaneous ZIKV infection. IFNε-deficiency resulted in an increase in magnitude, duration, and depth of ZIKV infection in the FRT. Critically, intravaginal administration of recombinant IFNε protected Ifnε-/- mice and highly susceptible Ifnar1-/- mice against vaginal ZIKV infection, indicating that IFNε was sufficient to provide protection even in the absence of signals from other type I IFNs and in an IFNAR1-independent manner. Our findings reveal a potentially critical role for IFNε in mediating protection against transmission of ZIKV in the context of sexual contact.
Collapse
Affiliation(s)
- Chuan Xu
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Annie Wang
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Laith Ebraham
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Liam Sullivan
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Carley Tasker
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Vanessa Pizutelli
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Jennifer Couret
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Cyril Hernandez
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Pratik Q. Deb
- Department of Pathology and Laboratory Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Luke Fritzky
- Department of Pathology and Laboratory Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Selvakumar Subbian
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Nan Gao
- Department of Cell Biology, Rutgers, School of Art and Science-Newark, Newark, NJ 07103, USA
| | - Yungtai Lo
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY10461
| | - Mirella Salvatore
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10065
| | - Amariliz Rivera
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Alexander Lemenze
- Department of Pathology and Laboratory Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | | | - Sanjay Tyagi
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Wuyuan Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, and Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai 200032, China
| | - Aimee Beaulieu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Theresa L. Chang
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
29
|
Siewiera J, McIntyre TI, Cautivo KM, Mahiddine K, Rideaux D, Molofsky AB, Erlebacher A. Circumvention of luteolysis reveals parturition pathways in mice dependent upon innate type 2 immunity. Immunity 2023; 56:606-619.e7. [PMID: 36750100 PMCID: PMC10023352 DOI: 10.1016/j.immuni.2023.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 05/31/2022] [Accepted: 01/09/2023] [Indexed: 02/09/2023]
Abstract
Although mice normally enter labor when their ovaries stop producing progesterone (luteolysis), parturition can also be triggered in this species through uterus-intrinsic pathways potentially analogous to the ones that trigger parturition in humans. Such pathways, however, remain largely undefined in both species. Here, we report that mice deficient in innate type 2 immunity experienced profound parturition delays when manipulated endocrinologically to circumvent luteolysis, thus obliging them to enter labor through uterus-intrinsic pathways. We found that these pathways were in part driven by the alarmin IL-33 produced by uterine interstitial fibroblasts. We also implicated important roles for uterine group 2 innate lymphoid cells, which demonstrated IL-33-dependent activation prior to labor onset, and eosinophils, which displayed evidence of elevated turnover in the prepartum uterus. These findings reveal a role for innate type 2 immunity in controlling the timing of labor onset through a cascade potentially relevant to human parturition.
Collapse
Affiliation(s)
- Johan Siewiera
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tara I McIntyre
- Biomedical Sciences Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kelly M Cautivo
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Karim Mahiddine
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Damon Rideaux
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ari B Molofsky
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Program, University of California, San Francisco, San Francisco, CA 94143, USA; Bakar ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Adrian Erlebacher
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Program, University of California, San Francisco, San Francisco, CA 94143, USA; Bakar ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA; Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
30
|
Sang Y, Li Y, Xu L, Chen J, Li D, Du M. Dysfunction of CCR1 + decidual macrophages is a potential risk factor in the occurrence of unexplained recurrent pregnancy loss. Front Immunol 2022; 13:1045532. [PMID: 36532057 PMCID: PMC9755158 DOI: 10.3389/fimmu.2022.1045532] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Recurrent pregnancy loss (RPL) puzzles 1-3% of women of childbearing age worldwide. Immunological factors account for more than 60% of cases of unexplained RPL (URPL); however, the underlying mechanism remains unclear. Here, using single-cell sequencing data and functional experiments with clinical samples, we identified a distinct population of CCR1+ decidual macrophages (dMφ) that were preferentially enriched in the decidua from normal early pregnancies but were substantially decreased in patients with URPL. Specific gene signatures endowed CCR1+ dMφ with immunosuppressive and migration-regulatory properties, which were attenuated in URPL. Additionally, CCR1+ dMφ promoted epithelial-to-mesenchymal transition (EMT) to promote trophoblast migration and invasion by activating the ERK1/2 signaling pathway. Decidual stromal cell (DSC)-derived CCL8 was the key regulator of CCR1+ dMφ as CCL8 recruited peripheral CCR1+ monocytes, induced a CCR1+ dMφ-like phenotype, and reinforced the CCR1+ dMφ-exerted modulation of trophoblasts. In patients with URPL, CCL8 expression in DSCs was decreased and trophoblast EMT was defective. Our findings revealed that CCR1+ dMφ play an important role in immune tolerance and trophoblast functions at the maternal-fetal interface. Additionally, decreased quantity and dysregulated function of CCR1+ dMφ result in URPL. In conclusion, we provide insights into the crosstalk between CCR1+ dMφ, trophoblasts, and DSCs at the maternal-fetal interface and macrophage-targeted interventions of URPL.
Collapse
Affiliation(s)
- Yifei Sang
- National Health Council (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Yanhong Li
- National Health Council (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Ling Xu
- National Health Council (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Jiajia Chen
- National Health Council (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Dajin Li
- National Health Council (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai, China,*Correspondence: Meirong Du, ; Dajin Li,
| | - Meirong Du
- National Health Council (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai, China,Department of Obstetrics and Gynecology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, Macau SAR, China,*Correspondence: Meirong Du, ; Dajin Li,
| |
Collapse
|