1
|
Longshore-Neate F, Ceravolo C, Masuga C, Tahti EF, Blount JM, Smith SN, Amacher JF. The conformation of the nSrc specificity-determining loop in the Src SH3 domain is modulated by a WX conserved sequence motif found in SH3 domains. Front Mol Biosci 2024; 11:1487276. [PMID: 39698111 PMCID: PMC11653366 DOI: 10.3389/fmolb.2024.1487276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024] Open
Abstract
Cellular signaling networks are modulated by multiple protein-protein interaction domains that coordinate extracellular inputs and processes to regulate cellular processes. Several of these domains recognize short linear motifs, or SLiMs, which are often highly conserved and are closely regulated. One such domain, the Src homology 3 (SH3) domain, typically recognizes proline-rich SLiMs and is one of the most abundant SLiM-binding domains in the human proteome. These domains are often described as quite versatile, and indeed, SH3 domains can bind ligands in opposite orientations dependent on target sequence. Furthermore, recent work has identified diverse modes of binding for SH3 domains and a wide variety of sequence motifs that are recognized by various domains. Specificity is often attributed to the RT and nSrc loops near the peptide-binding cleft in this domain family, particularly for Class I binding, which is defined as RT and nSrc loop interactions with the N-terminus of the ligand. Here, we used the Src and Abl SH3 domains as a model to further investigate the role of the RT and nSrc loops in SH3 specificity. We created chimeric domains with both the RT and nSrc loop sequences swapped between these SH3 domains, and used fluorescence anisotropy assays to test how relative binding affinities were affected for Src SH3- and Abl SH3-specific ligands. We also used Alphafold-Multimer to model our SH3:peptide complexes in combination with molecular dynamics simulations. We identified a position that contributes to the nSrc loop conformation in Src SH3, the amino acid immediately following a highly conserved Trp that creates a hydrophobic pocket critical for SH3 ligand recognition. We defined this as the WX motif, where X = Trp for Src and Cys for Abl. A broad importance of this position for modulating nSrc loop conformation in SH3 domains is suggested by analyses of previously deposited SH3 structures, multiple sequence alignment of SH3 domains in the human proteome, and our biochemical and computational data of mutant Src and Abl SH3 domains. Overall, our work uses experimental approaches and structural modeling to better understand specificity determinants in SH3 domains.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jeanine F. Amacher
- Department of Chemistry, Western Washington University, Bellingham, WA, United States
| |
Collapse
|
2
|
Timalsina B, Lee S, Kaang BK. Advances in the labelling and selective manipulation of synapses. Nat Rev Neurosci 2024; 25:668-687. [PMID: 39174832 DOI: 10.1038/s41583-024-00851-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/24/2024]
Abstract
Synapses are highly specialized neuronal structures that are essential for neurotransmission, and they are dynamically regulated throughout the lifetime. Although accumulating evidence indicates that these structures are crucial for information processing and storage in the brain, their precise roles beyond neurotransmission are yet to be fully appreciated. Genetically encoded fluorescent tools have deepened our understanding of synaptic structure and function, but developing an ideal methodology to selectively visualize, label and manipulate synapses remains challenging. Here, we provide an overview of currently available synapse labelling techniques and describe their extension to enable synapse manipulation. We categorize these approaches on the basis of their conceptual bases and target molecules, compare their advantages and limitations and propose potential modifications to improve their effectiveness. These methods have broad utility, particularly for investigating mechanisms of synaptic function and synaptopathy.
Collapse
Affiliation(s)
- Binod Timalsina
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Sangkyu Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Bong-Kiun Kaang
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, South Korea.
| |
Collapse
|
3
|
Douglas JT, Johnson DK, Roy A, Park T. Use of phosphotyrosine-containing peptides to target SH2 domains: Antagonist peptides of the Crk/CrkL-p130Cas axis. Methods Enzymol 2024; 698:301-342. [PMID: 38886037 PMCID: PMC11542726 DOI: 10.1016/bs.mie.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Protein-protein interactions between SH2 domains and segments of proteins that include a post-translationally phosphorylated tyrosine residue (pY) underpin numerous signal transduction cascades that allow cells to respond to their environment. Dysregulation of the writing, erasing, and reading of these posttranslational modifications is a hallmark of human disease, notably cancer. Elucidating the precise role of the SH2 domain-containing adaptor proteins Crk and CrkL in tumor cell migration and invasion is challenging because there are no specific and potent antagonists available. Crk and CrkL SH2s interact with a region of the docking protein p130Cas containing 15 potential pY-containing tetrapeptide motifs. This chapter summarizes recent efforts toward peptide antagonists for this Crk/CrkL-p130Cas interaction. We describe our protocol for recombinant expression and purification of Crk and CrkL SH2s for functional assays and our procedure to determine the consensus binding motif from the p130Cas sequence. To develop a more potent antagonist, we employ methods often associated with structure-based drug design. Computational docking using Rosetta FlexPepDock, which accounts for peptides having a greater number of conformational degrees of freedom than small organic molecules that typically constitute libraries, provides quantitative docking metrics to prioritize candidate peptides for experimental testing. A battery of biophysical assays, including fluorescence polarization, differential scanning fluorimetry and saturation transfer difference nuclear magnetic resonance spectroscopy, were employed to assess the candidates. In parallel, GST pulldown competition assays characterized protein-protein binding in vitro. Taken together, our methodology yields peptide antagonists of the Crk/CrkL-p130Cas axis that will be used to validate targets, assess druggability, foster in vitro assay development, and potentially serve as lead compounds for therapeutic intervention.
Collapse
Affiliation(s)
- Justin T. Douglas
- Nuclear Magnetic Resonance Core Lab, University of Kansas, Lawrence, KS 66047, USA
| | - David K. Johnson
- Computational Chemical Biology Core Lab, NIH COBRE in Chemical Biology of Infectious Disease, University of Kansas, Lawrence, Kansas 66047, USA
| | - Anuradha Roy
- High Throughput Screening Laboratory, University of Kansas, Lawrence, KS 66047, USA
| | - Taeju Park
- Department of Pediatrics, Children’s Mercy Kansas City and University of Missouri Kansas City School of Medicine, Kansas City, MO 64108, USA
| |
Collapse
|
4
|
Kharouf N, Flanagan TW, Alamodi AA, Al Hmada Y, Hassan SY, Shalaby H, Santourlidis S, Hassan SL, Haikel Y, Megahed M, Brodell RT, Hassan M. CD133-Dependent Activation of Phosphoinositide 3-Kinase /AKT/Mammalian Target of Rapamycin Signaling in Melanoma Progression and Drug Resistance. Cells 2024; 13:240. [PMID: 38334632 PMCID: PMC10854812 DOI: 10.3390/cells13030240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Melanoma frequently harbors genetic alterations in key molecules leading to the aberrant activation of PI3K and its downstream pathways. Although the role of PI3K/AKT/mTOR in melanoma progression and drug resistance is well documented, targeting the PI3K/AKT/mTOR pathway showed less efficiency in clinical trials than might have been expected, since the suppression of the PI3K/mTOR signaling pathway-induced feedback loops is mostly associated with the activation of compensatory pathways such as MAPK/MEK/ERK. Consequently, the development of intrinsic and acquired resistance can occur. As a solid tumor, melanoma is notorious for its heterogeneity. This can be expressed in the form of genetically divergent subpopulations including a small fraction of cancer stem-like cells (CSCs) and non-cancer stem cells (non-CSCs) that make the most of the tumor mass. Like other CSCs, melanoma stem-like cells (MSCs) are characterized by their unique cell surface proteins/stemness markers and aberrant signaling pathways. In addition to its function as a robust marker for stemness properties, CD133 is crucial for the maintenance of stemness properties and drug resistance. Herein, the role of CD133-dependent activation of PI3K/mTOR in the regulation of melanoma progression, drug resistance, and recurrence is reviewed.
Collapse
Affiliation(s)
- Naji Kharouf
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | | | - Youssef Al Hmada
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Hosam Shalaby
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Robert T. Brodell
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
5
|
Tang X, Chen J, Cai J, Wang Q. N-substituting perturbation on the interaction affinity and recognition specificity between rheumatic immune-related Abl SH3 domain and its peptoid ligands. J Mol Graph Model 2023; 125:108601. [PMID: 37607432 DOI: 10.1016/j.jmgm.2023.108601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/04/2023] [Accepted: 08/13/2023] [Indexed: 08/24/2023]
Abstract
Abl is a nonreceptor tyrosine kinase involved in a variety of disease pathways such as rheumatic immune. Full-length Abl protein consists of a catalytic tyrosine kinase (TK) domain as well as two regulatory Src homology domains 2 and 3 (SH2 and SH3, respectively); the latter recognizes and binds to those natural proline-rich peptide segments containing a PxxP motif on the protein surface of its interacting partners. However, natural peptides cannot bind effectively to the modular domain in high affinity and strong selectivity due to their small size and broad specificity. Here, a synthetic proline-rich peptide p41 was used as template; its structural diversity was extended by combinationally replacing the Pro0 and Pro+3 residues with a number of N-substituted amino acids. Consequently, peptide affinity change upon the replacement was derived to create a systematic N-substituting perturbation profile, from which we identified several N-substitution combinations at the Pro0 and Pro+3 residues of p41 PxxP motif that may moderately or significantly improve the peptide binding potency to Abl; they represent potent peptoid binders of Abl SH3 domain, with affinity improved considerably relative to p41. More significantly, the designed potent peptoids were also found to exhibit a good SH3-selectivity for their cognate Abl over other noncognate nonreceptor tyrosine kinases, with S = 9.7-fold.
Collapse
Affiliation(s)
- Xiaomin Tang
- Department of Acupuncture Rehabilitation, Danyang Traditional Chinese Medicine Hospital, Zhenjiang 212399, China
| | - Jingjin Chen
- Department of Acupuncture Rehabilitation, Danyang Traditional Chinese Medicine Hospital, Zhenjiang 212399, China
| | - Jiahui Cai
- Department of Acupuncture Rehabilitation, Danyang Traditional Chinese Medicine Hospital, Zhenjiang 212399, China
| | - Qiuqin Wang
- Nursing College, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
6
|
Tiberti M, Terkelsen T, Degn K, Beltrame L, Cremers TC, da Piedade I, Di Marco M, Maiani E, Papaleo E. MutateX: an automated pipeline for in silico saturation mutagenesis of protein structures and structural ensembles. Brief Bioinform 2022; 23:6552273. [PMID: 35323860 DOI: 10.1093/bib/bbac074] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/28/2022] [Accepted: 02/16/2022] [Indexed: 12/26/2022] Open
Abstract
Mutations, which result in amino acid substitutions, influence the stability of proteins and their binding to biomolecules. A molecular understanding of the effects of protein mutations is both of biotechnological and medical relevance. Empirical free energy functions that quickly estimate the free energy change upon mutation (ΔΔG) can be exploited for systematic screenings of proteins and protein complexes. In silico saturation mutagenesis can guide the design of new experiments or rationalize the consequences of known mutations. Often software such as FoldX, while fast and reliable, lack the necessary automation features to apply them in a high-throughput manner. We introduce MutateX, a software to automate the prediction of ΔΔGs associated with the systematic mutation of each residue within a protein, or protein complex to all other possible residue types, using the FoldX energy function. MutateX also supports ΔΔG calculations over protein ensembles, upon post-translational modifications and in multimeric assemblies. At the heart of MutateX lies an automated pipeline engine that handles input preparation, parallelization and outputs publication-ready figures. We illustrate the MutateX protocol applied to different case studies. The results of the high-throughput scan provided by our tools can help in different applications, such as the analysis of disease-associated mutations, to complement experimental deep mutational scans, or assist the design of variants for industrial applications. MutateX is a collection of Python tools that relies on open-source libraries. It is available free of charge under the GNU General Public License from https://github.com/ELELAB/mutatex.
Collapse
Affiliation(s)
- Matteo Tiberti
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Thilde Terkelsen
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Kristine Degn
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Ludovica Beltrame
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Tycho Canter Cremers
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Isabelle da Piedade
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Miriam Di Marco
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Emiliano Maiani
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Elena Papaleo
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark.,Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800, Lyngby, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Berndt S, Gurevich VV, Iverson TM. Crystal structure of the SH3 domain of human Lyn non-receptor tyrosine kinase. PLoS One 2019; 14:e0215140. [PMID: 30969999 PMCID: PMC6457566 DOI: 10.1371/journal.pone.0215140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/27/2019] [Indexed: 01/07/2023] Open
Abstract
Lyn kinase (Lck/Yes related novel protein tyrosine kinase) belongs to the family of Src-related non-receptor tyrosine kinases. Consistent with physiological roles in cell growth and proliferation, aberrant function of Lyn is associated with various forms of cancer, including leukemia, breast cancer and melanoma. Here, we determine a 1.3 Å resolution crystal structure of the polyproline-binding SH3 regulatory domain of human Lyn kinase, which adopts a five-stranded β-barrel fold. Mapping of cancer-associated point mutations onto this structure reveals that these amino acid substitutions are distributed throughout the SH3 domain and may affect Lyn kinase function distinctly.
Collapse
Affiliation(s)
- Sandra Berndt
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States of America
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States of America
| | - T. M. Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States of America
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States of America
- Vanderbilt Institute of Chemical Biology, Nashville, TN, United States of America
- Center for Structural Biology, Nashville, TN, United States of America
| |
Collapse
|
8
|
Saleh T, Rossi P, Kalodimos CG. Atomic view of the energy landscape in the allosteric regulation of Abl kinase. Nat Struct Mol Biol 2017; 24:893-901. [PMID: 28945248 PMCID: PMC5745040 DOI: 10.1038/nsmb.3470] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/18/2017] [Indexed: 12/14/2022]
Abstract
The activity of protein kinases is often regulated in an intramolecular fashion by signaling domains, which feature several phosphorylation or protein-docking sites. How kinases integrate such distinct binding and signaling events to regulate their activities is unclear, especially in quantitative terms. We used NMR spectroscopy to show how structural elements within the Abl regulatory module (RM) synergistically generate a multilayered allosteric mechanism that enables Abl kinase to function as a finely tuned switch. We dissected the structure and energetics of the regulatory mechanism to precisely measure the effects of various activating or inhibiting stimuli on Abl kinase activity. The data provide a mechanistic basis explaining genetic observations and reveal a previously unknown activator region within Abl. Our findings show that drug-resistance mutations in the Abl RM exert their allosteric effect by promoting the activated state of Abl and not by decreasing the drug affinity for the kinase.
Collapse
Affiliation(s)
- Tamjeed Saleh
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Paolo Rossi
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Charalampos G Kalodimos
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
9
|
Zeng D, Bhatt VS, Shen Q, Cho JH. Kinetic Insights into the Binding between the nSH3 Domain of CrkII and Proline-Rich Motifs in cAbl. Biophys J 2017; 111:1843-1853. [PMID: 27806266 DOI: 10.1016/j.bpj.2016.09.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/13/2016] [Accepted: 09/22/2016] [Indexed: 10/20/2022] Open
Abstract
The interaction between CrkII and cAbl is implicated in diverse cellular processes. This interaction starts with the binding of the N-terminal Src homology 3 (nSH3) domain of CrkII to the proline-rich motifs of cAbl (PRMscAbl). Despite its critical importance, the detailed binding mechanism between the nSH3 domain and PRMs remains elusive. In this study, we used nuclear magnetic resonance Carr-Purcell-Meiboom-Gill relaxation dispersion experiment to study the binding kinetics between the nSH3 domain of CrkII and PRMscAbl. Our results highlight that the nSH3 domain binds to three PRMscAbl with very high on- and off-rate constants, indicating the transient nature of the binding. To further characterize the binding transition state, we conducted the Eyring and linear free energy relationship analyses using temperature-dependent kinetic data. These data indicate that the binding transition state of the nSH3 domain and PRM is accompanied by small activation enthalpy, owing to partial desolvation of the transition state. These results also highlight the similarity between the transition and free states, in terms of structure and energetics. Although the binding of the nSH3 domain and PRM displays the features consistent with a diffusion-limited process within our experimental conditions, further tests are necessary to determine if the binding is a true diffusion-limited process.
Collapse
Affiliation(s)
- Danyun Zeng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Veer S Bhatt
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Qingliang Shen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Jae-Hyun Cho
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas.
| |
Collapse
|
10
|
Kelil A, Dubreuil B, Levy ED, Michnick SW. Exhaustive search of linear information encoding protein-peptide recognition. PLoS Comput Biol 2017; 13:e1005499. [PMID: 28426660 PMCID: PMC5417721 DOI: 10.1371/journal.pcbi.1005499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 05/04/2017] [Accepted: 04/04/2017] [Indexed: 11/24/2022] Open
Abstract
High-throughput in vitro methods have been extensively applied to identify linear information that encodes peptide recognition. However, these methods are limited in number of peptides, sequence variation, and length of peptides that can be explored, and often produce solutions that are not found in the cell. Despite the large number of methods developed to attempt addressing these issues, the exhaustive search of linear information encoding protein-peptide recognition has been so far physically unfeasible. Here, we describe a strategy, called DALEL, for the exhaustive search of linear sequence information encoded in proteins that bind to a common partner. We applied DALEL to explore binding specificity of SH3 domains in the budding yeast Saccharomyces cerevisiae. Using only the polypeptide sequences of SH3 domain binding proteins, we succeeded in identifying the majority of known SH3 binding sites previously discovered either in vitro or in vivo. Moreover, we discovered a number of sites with both non-canonical sequences and distinct properties that may serve ancillary roles in peptide recognition. We compared DALEL to a variety of state-of-the-art algorithms in the blind identification of known binding sites of the human Grb2 SH3 domain. We also benchmarked DALEL on curated biological motifs derived from the ELM database to evaluate the effect of increasing/decreasing the enrichment of the motifs. Our strategy can be applied in conjunction with experimental data of proteins interacting with a common partner to identify binding sites among them. Yet, our strategy can also be applied to any group of proteins of interest to identify enriched linear motifs or to exhaustively explore the space of linear information encoded in a polypeptide sequence. Finally, we have developed a webserver located at http://michnick.bcm.umontreal.ca/dalel, offering user-friendly interface and providing different scenarios utilizing DALEL. Here we describe the first strategy for the exhaustive search of the linear information encoding protein-peptide recognition; an approach that has previously been physically unfeasible because the combinatorial space of polypeptide sequences is too vast. The search covers the entire space of sequences with no restriction on motif length or composition, and includes all possible combinations of amino acids at distinct positions of each sequence, as well as positions with correlated preferences for amino acids.
Collapse
Affiliation(s)
- Abdellali Kelil
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Benjamin Dubreuil
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Emmanuel D. Levy
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, Canada
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Stephen W. Michnick
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
11
|
A pre-metazoan origin of the CRK gene family and co-opted signaling network. Sci Rep 2016; 6:34349. [PMID: 27686861 PMCID: PMC5043372 DOI: 10.1038/srep34349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 08/11/2016] [Indexed: 12/11/2022] Open
Abstract
CRK and CRKL adapter proteins play essential roles in development and cancer through their SRC homology 2 and 3 (SH2 and SH3) domains. To gain insight into the origin of their shared functions, we have investigated their evolutionary history. We propose a term, crk/crkl ancestral (crka), for orthologs in invertebrates before the divergence of CRK and CRKL in the vertebrate ancestor. We have isolated two orthologs expressed in the choanoflagellate Monosiga brevicollis, a unicellular relative to the metazoans. Consistent with its highly-conserved three-dimensional structure, the SH2 domain of M. brevicollis crka1 can bind to the mammalian CRK/CRKL SH2 binding consensus phospho-YxxP, and to the SRC substrate/focal adhesion protein BCAR1 (p130CAS) in the presence of activated SRC. These results demonstrate an ancient origin of the CRK/CRKL SH2-target recognition specificity. Although BCAR1 orthologs exist only in metazoans as identified by an N-terminal SH3 domain, YxxP motifs, and a C-terminal FAT-like domain, some pre-metazoan transmembrane proteins include several YxxP repeats in their cytosolic region, suggesting that they are remotely related to the BCAR1 substrate domain. Since the tyrosine kinase SRC also has a pre-metazoan origin, co-option of BCAR1-related sequences may have rewired the crka-dependent network to mediate adhesion signals in the metazoan ancestor.
Collapse
|
12
|
Braiman A, Isakov N. The Role of Crk Adaptor Proteins in T-Cell Adhesion and Migration. Front Immunol 2015; 6:509. [PMID: 26500649 PMCID: PMC4593252 DOI: 10.3389/fimmu.2015.00509] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/18/2015] [Indexed: 12/27/2022] Open
Abstract
Crk adaptor proteins are key players in signal transduction from a variety of cell surface receptors. They are involved in early steps of lymphocyte activation through their SH2-mediated transient interaction with signal transducing effector molecules, such as Cbl, ZAP-70, CasL, and STAT5. In addition, they constitutively associate, via their SH3 domain, with effector molecules, such as C3G, that mediate cell adhesion and regulate lymphocyte extravasation and recruitment to sites of inflammation. Recent studies demonstrated that the conformation and function of CrkII is subjected to a regulation by immunophilins, which also affect CrkII-dependent T-cell adhesion to fibronectin and migration toward chemokines. This article addresses mechanisms that regulate CrkII conformation and function, in general, and emphasizes the role of Crk proteins in receptor-coupled signaling pathways that control T-lymphocyte adhesion and migration to inflammatory sites.
Collapse
Affiliation(s)
- Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, The Cancer Research Center, Ben Gurion University of the Negev , Beer Sheva , Israel
| | - Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, The Cancer Research Center, Ben Gurion University of the Negev , Beer Sheva , Israel ; School of Pharmacy, University of Otago , Dunedin , New Zealand
| |
Collapse
|
13
|
Kumar S, Fajardo JE, Birge RB, Sriram G. Crk at the quarter century mark: perspectives in signaling and cancer. J Cell Biochem 2014; 115:819-25. [PMID: 24356912 DOI: 10.1002/jcb.24749] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/05/2013] [Indexed: 01/07/2023]
Abstract
The Crk adaptor protein, discovered 25 years ago as the transforming gene (v-crk) product encoded by the CT10 avian retrovirus, has made a great impact on the field of signal transduction. By encoding an oncoprotein that contained a viral gag protein fused to only SH2 and SH3 domains, v-Crk demonstrated the significance of SH2 and SH3 domains in oncogenic signaling by their virtue of binding in a sequence-specific context to organize and assemble protein networks. In more recent years, the cellular homologs of Crk (Crk II, Crk I, and CrkL) have been extensively studied, and shown to have critical functions in a wide spectrum of biological and pathological processes that include cell motility, invasion, survival, bacterial pathogenesis, and the efferocytosis of apoptotic cells. Clinically, Crk proteins are implicated in the aggressive behavior of human cancers, including adenocarcinomas of the lung, breast, and stomach, as well as in sarcomas and gliomas. Over-expression of Crk proteins in human cancers has led to a renewed interest in both their signal transduction pathways and mechanisms of up-regulation. This prospect summarizes recent developments in Crk biology, including new structural and biochemical roles for the atypical carboxyl-terminal SH3 (SH3C) domain, revelations regarding the molecular differences between Crk II and Crk L, and the significance of Crk expression in stratified human tumor samples.
Collapse
Affiliation(s)
- Sushil Kumar
- Department of Biochemistry and Molecular Biology, Rutgers School of Biomedical and Health Sciences-Cancer Center, Newark, New Jersey, 07103
| | | | | | | |
Collapse
|
14
|
Cui D, Ou S, Patel S. Protein-spanning water networks and implications for prediction of protein-protein interactions mediated through hydrophobic effects. Proteins 2014; 82:3312-26. [DOI: 10.1002/prot.24683] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/30/2014] [Accepted: 08/11/2014] [Indexed: 01/11/2023]
Affiliation(s)
- Di Cui
- Department of Chemistry and Biochemistry; University of Delaware; Newark Delaware 19716
| | - Shuching Ou
- Department of Chemistry and Biochemistry; University of Delaware; Newark Delaware 19716
| | - Sandeep Patel
- Department of Chemistry and Biochemistry; University of Delaware; Newark Delaware 19716
| |
Collapse
|
15
|
Tenguria S, Ansari SA, Khan N, Ranjan A, Devi S, Tegtmeyer N, Lind J, Backert S, Ahmed N. Helicobacter pylori cell translocating kinase (CtkA/JHP0940) is pro-apoptotic in mouse macrophages and acts as auto-phosphorylating tyrosine kinase. Int J Med Microbiol 2014; 304:1066-76. [PMID: 25172221 DOI: 10.1016/j.ijmm.2014.07.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/26/2014] [Accepted: 07/28/2014] [Indexed: 12/16/2022] Open
Abstract
The Helicobacter pylori gene JHP0940 has been shown to encode a serine/threonine kinase which can induce cytokines in gastric epithelial cells relevant to chronic gastric inflammation. Here we demonstrate that JHP0940 can be secreted by the bacteria, triggers apoptosis in cultured mouse macrophages and acts as an auto-phosphorylating tyrosine kinase. Recombinant JHP0940 protein was found to decrease the viability of RAW264.7 cells (a mouse macrophage cell line) up to 55% within 24h of co-incubation. The decreased cellular viability was due to apoptosis, which was confirmed by TUNEL assay and Fas expression analysis by flow-cytometry. Further, we found that caspase-1 and IL-1beta were activated upon treatment with JHP0940. These results point towards possible action through the host inflammasome. Our in vitro studies using tyrosine kinase assays further demonstrated that JHP0940 acts as auto-phosphorylating tyrosine kinase and induces pro-inflammatory cytokines in RAW264.7 cells. Upon exposure with JHP0940, these cells secreted IL-1beta, TNF-alpha and IL-6, in a dose- and time-dependent manner, as detected by ELISA and transcript profiling by q-RT-PCR. The pro-inflammatory, pro-apoptotic and other regulatory responses triggered by JHP0940 lead to the assumption of its possible role in inducing chronic inflammation for enhanced bacterial persistence and escape from host innate immune responses by apoptosis of macrophages.
Collapse
Affiliation(s)
- Shivendra Tenguria
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad 500046, India
| | - Suhail A Ansari
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad 500046, India
| | - Nooruddin Khan
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad 500046, India
| | - Amit Ranjan
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad 500046, India
| | - Savita Devi
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad 500046, India
| | - Nicole Tegtmeyer
- Division of Microbiology, Department of Biology, Friedrich Alexander University Nuremberg, D-91058 Erlangen, Germany
| | - Judith Lind
- Division of Microbiology, Department of Biology, Friedrich Alexander University Nuremberg, D-91058 Erlangen, Germany
| | - Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich Alexander University Nuremberg, D-91058 Erlangen, Germany
| | - Niyaz Ahmed
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
16
|
Van Roey K, Uyar B, Weatheritt RJ, Dinkel H, Seiler M, Budd A, Gibson TJ, Davey NE. Short Linear Motifs: Ubiquitous and Functionally Diverse Protein Interaction Modules Directing Cell Regulation. Chem Rev 2014; 114:6733-78. [DOI: 10.1021/cr400585q] [Citation(s) in RCA: 293] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kim Van Roey
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Bora Uyar
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Robert J. Weatheritt
- MRC
Laboratory of Molecular Biology (LMB), Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Holger Dinkel
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Markus Seiler
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Aidan Budd
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Toby J. Gibson
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Norman E. Davey
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Department
of Physiology, University of California, San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
17
|
Sato K, Suzuki T, Yamaguchi Y, Kitade Y, Nagase T, Ueda H. PLEKHG2/FLJ00018, a Rho family-specific guanine nucleotide exchange factor, is tyrosine phosphorylated via the EphB2/cSrc signaling pathway. Cell Signal 2014; 26:691-6. [PMID: 24378532 DOI: 10.1016/j.cellsig.2013.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 12/18/2013] [Indexed: 10/25/2022]
Abstract
PLEKHG2/FLJ00018, a Rho family-specific guanine nucleotide exchange factor (RhoGEF), is activated by heterotrimeric GTP-binding protein (G protein) Gβγ subunits, and in turn activates the small G protein Rac and Cdc42, which have been shown to mediate signaling pathways leading to actin cytoskeletal reorganization. In the present study, we show that co-expression of the constitutively active mutant of cSrc, a non-receptor tyrosine kinase, and PLEKHG2 induced the tyrosine phosphorylation of PLEKHG2 in HEK293 cells. Through deletion and base substitution mutagenesis we have identified Tyr489 of PLEKHG2 as the site phosphorylated by cSrc. Furthermore, using a high-throughput src homology 2 (SH2) domain binding assay, the SH2 domain of ABL1 and the PI 3-kinse regulator subunit (PIK3R3) were identified as candidates for the binding partner of tyrosine-phosphorylated PLEKHG2. The interaction between PLEKHG2 and the full-length of PIK3R3, but not ABL1, occurs in a tyrosine-phosphorylation-dependent manner. Furthermore, PLEKHG2 is tyrosine phosphorylated at Tyr489 by ephrinB2 receptor signaling via cSrc. Investigation of the physiological function of tyrosine phosphorylation at Tyr489 in PLEKHG2 remains a subject for future studies.
Collapse
Affiliation(s)
- Katsuya Sato
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Takahiro Suzuki
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
| | | | - Yukio Kitade
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido, Gifu 501-1193, Japan; Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Takahiro Nagase
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Hiroshi Ueda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido, Gifu 501-1193, Japan; Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
18
|
Modulation of human α-synuclein aggregation by a combined effect of calcium and dopamine. Neurobiol Dis 2013; 63:115-28. [PMID: 24269918 DOI: 10.1016/j.nbd.2013.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 10/17/2013] [Accepted: 11/12/2013] [Indexed: 11/21/2022] Open
Abstract
Parkinson's disease is characterized by the deposition of aggregated α-syn and its familial mutants into Lewy bodies leading to death of dopaminergic neurons. α-syn is involved in Ca(II) and dopamine (DA) signaling and their adequate balance inside neuronal cytoplasm is essential for maintaining healthy dopaminergic neurons. We have probed the binding energetics of Ca(II) and DA to human α-syn and its familial mutants A30P, A53T and E46K using isothermal titration calorimetry and have investigated the conformational and aggregation aspects using circular dichroism and fluorescence spectroscopy. While binding of Ca(II) to α-syn and its familial mutants was observed to be endothermic in nature, interaction of DA with α-syn was not detectable. Ca(II) enhanced fibrillation of α-syn and its familial mutants while DA promoted the formation of oligomers. However, Ca(II) and DA together critically favored the formation of protofibrils that are more cytotoxic than the mature fibrils. Using fluorescently labeled cysteine mutant A90C, we have shown that different aggregating species of α-syn formed in the presence of Ca(II) and DA are internalized into the human neuroblastoma cells with different rates and are responsible for the differential cytotoxicity depending on their nature. The findings put together suggest that an interplay between the concentrations of Ca(II), DA and α-syn can critically regulate the formation of various aggregating species responsible for the survival of dopaminergic neurons. Modulating this balance leading to either complete suppression of α-syn aggregation or promoting the formation of mature fibrils could be used as a strategy for the development of drugs to cure Parkinson's disease.
Collapse
|
19
|
Corbi-Verge C, Marinelli F, Zafra-Ruano A, Ruiz-Sanz J, Luque I, Faraldo-Gómez JD. Two-state dynamics of the SH3-SH2 tandem of Abl kinase and the allosteric role of the N-cap. Proc Natl Acad Sci U S A 2013; 110:E3372-80. [PMID: 23959873 PMCID: PMC3767523 DOI: 10.1073/pnas.1303966110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The regulation and localization of signaling enzymes is often mediated by accessory modular domains, which frequently function in tandems. The ability of these tandems to adopt multiple conformations is as important for proper regulation as the individual domain specificity. A paradigmatic example is Abl, a ubiquitous tyrosine kinase of significant pharmacological interest. SH3 and SH2 domains inhibit Abl by assembling onto the catalytic domain, allosterically clamping it in an inactive state. We investigate the dynamics of this SH3-SH2 tandem, using microsecond all-atom simulations and differential scanning calorimetry. Our results indicate that the Abl tandem is a two-state switch, alternating between the conformation observed in the structure of the autoinhibited enzyme and another configuration that is consistent with existing scattering data for an activated form. Intriguingly, we find that the latter is the most probable when the tandem is disengaged from the catalytic domain. Nevertheless, an amino acid stretch preceding the SH3 domain, the so-called N-cap, reshapes the free-energy landscape of the tandem and favors the interaction of this domain with the SH2-kinase linker, an intermediate step necessary for assembly of the autoinhibited complex. This allosteric effect arises from interactions between N-cap and the SH2 domain and SH3-SH2 connector, which involve a phosphorylation site. We also show that the SH3-SH2 connector plays a determinant role in the assembly equilibrium of Abl, because mutations thereof hinder the engagement of the SH2-kinase linker. These results provide a thermodynamic rationale for the involvement of N-cap and SH3-SH2 connector in Abl regulation and expand our understanding of the principles of modular domain organization.
Collapse
Affiliation(s)
- Carles Corbi-Verge
- Department of Physical Chemistry and Institute of Biotechnology, University of Granada, 18071 Granada, Spain; and
| | - Fabrizio Marinelli
- Theoretical Molecular Biophysics Group, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Ana Zafra-Ruano
- Department of Physical Chemistry and Institute of Biotechnology, University of Granada, 18071 Granada, Spain; and
| | - Javier Ruiz-Sanz
- Department of Physical Chemistry and Institute of Biotechnology, University of Granada, 18071 Granada, Spain; and
| | - Irene Luque
- Department of Physical Chemistry and Institute of Biotechnology, University of Granada, 18071 Granada, Spain; and
| | - José D. Faraldo-Gómez
- Theoretical Molecular Biophysics Group, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| |
Collapse
|
20
|
Liu BA, Nash PD. Evolution of SH2 domains and phosphotyrosine signalling networks. Philos Trans R Soc Lond B Biol Sci 2012; 367:2556-73. [PMID: 22889907 DOI: 10.1098/rstb.2012.0107] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Src homology 2 (SH2) domains mediate selective protein-protein interactions with tyrosine phosphorylated proteins, and in doing so define specificity of phosphotyrosine (pTyr) signalling networks. SH2 domains and protein-tyrosine phosphatases expand alongside protein-tyrosine kinases (PTKs) to coordinate cellular and organismal complexity in the evolution of the unikont branch of the eukaryotes. Examination of conserved families of PTKs and SH2 domain proteins provides fiduciary marks that trace the evolutionary landscape for the development of complex cellular systems in the proto-metazoan and metazoan lineages. The evolutionary provenance of conserved SH2 and PTK families reveals the mechanisms by which diversity is achieved through adaptations in tissue-specific gene transcription, altered ligand binding, insertions of linear motifs and the gain or loss of domains following gene duplication. We discuss mechanisms by which pTyr-mediated signalling networks evolve through the development of novel and expanded families of SH2 domain proteins and the elaboration of connections between pTyr-signalling proteins. These changes underlie the variety of general and specific signalling networks that give rise to tissue-specific functions and increasingly complex developmental programmes. Examination of SH2 domains from an evolutionary perspective provides insight into the process by which evolutionary expansion and modification of molecular protein interaction domain proteins permits the development of novel protein-interaction networks and accommodates adaptation of signalling networks.
Collapse
Affiliation(s)
- Bernard A Liu
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | | |
Collapse
|
21
|
Abstract
The Crk family of adaptor proteins (CrkI, CrkII, and CrkL), originally discovered as the oncogene fusion product, v-Crk, of the CT10 chicken retrovirus, lacks catalytic activity but engages with multiple signaling pathways through their SH2 and SH3 domains. Crk proteins link upstream tyrosine kinase and integrin-dependent signals to downstream effectors, acting as adaptors in diverse signaling pathways and cellular processes. Crk proteins are now recognized to play a role in the malignancy of many human cancers, stimulating renewed interest in their mechanism of action in cancer progression. The contribution of Crk signaling to malignancy has been predominantly studied in fibroblasts and in hematopoietic models and more recently in epithelial models. A mechanistic understanding of Crk proteins in cancer progression in vivo is still poorly understood in part due to the highly pleiotropic nature of Crk signaling. Recent advances in the structural organization of Crk domains, new roles in kinase regulation, and increased knowledge of the mechanisms and frequency of Crk overexpression in human cancers have provided an incentive for further study in in vivo models. An understanding of the mechanisms through which Crk proteins act as oncogenic drivers could have important implications in therapeutic targeting.
Collapse
|
22
|
Kaneko T, Joshi R, Feller SM, Li SS. Phosphotyrosine recognition domains: the typical, the atypical and the versatile. Cell Commun Signal 2012; 10:32. [PMID: 23134684 PMCID: PMC3507883 DOI: 10.1186/1478-811x-10-32] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 10/09/2012] [Indexed: 12/21/2022] Open
Abstract
SH2 domains are long known prominent players in the field of phosphotyrosine recognition within signaling protein networks. However, over the years they have been joined by an increasing number of other protein domain families that can, at least with some of their members, also recognise pTyr residues in a sequence-specific context. This superfamily of pTyr recognition modules, which includes substantial fractions of the PTB domains, as well as much smaller, or even single member fractions like the HYB domain, the PKCδ and PKCθ C2 domains and RKIP, represents a fascinating, medically relevant and hence intensely studied part of the cellular signaling architecture of metazoans. Protein tyrosine phosphorylation clearly serves a plethora of functions and pTyr recognition domains are used in a similarly wide range of interaction modes, which encompass, for example, partner protein switching, tandem recognition functionalities and the interaction with catalytically active protein domains. If looked upon closely enough, virtually no pTyr recognition and regulation event is an exact mirror image of another one in the same cell. Thus, the more we learn about the biology and ultrastructural details of pTyr recognition domains, the more does it become apparent that nature cleverly combines and varies a few basic principles to generate a sheer endless number of sophisticated and highly effective recognition/regulation events that are, under normal conditions, elegantly orchestrated in time and space. This knowledge is also valuable when exploring pTyr reader domains as diagnostic tools, drug targets or therapeutic reagents to combat human diseases.
Collapse
Affiliation(s)
- Tomonori Kaneko
- Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada.
| | | | | | | |
Collapse
|
23
|
Gushchina LV, Gabdulkhakov AG, Nikonov SV, Filimonov VV. High-resolution crystal structure of spectrin SH3 domain fused with a proline-rich peptide. J Biomol Struct Dyn 2012; 29:485-95. [PMID: 22066535 DOI: 10.1080/07391102.2011.10507400] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A new chimeric protein, named WT-CIIA, was designed by connecting the proline-rich decapeptide PPPVPPYSAG to the C-terminus of the alpha-spectrin SH3 domain through a natural twelve-residue linker to obtain a single-chain model that would imitate intramolecular SH3-ligand interaction. The crystal structure of this fusion protein was determined at 1.7 Å resolution. The asymmetric unit of the crystal contained two SH3 globules contacting with one PPPVPPY fragment located between them. The domains are related by the two-fold non-crystallographic axis and the ligand lies in two opposite orientations with respect to the conservative binding sites of SH3 domains.
Collapse
Affiliation(s)
- Liubov V Gushchina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | | | | | | |
Collapse
|
24
|
SH3 domains: modules of protein-protein interactions. Biophys Rev 2012; 5:29-39. [PMID: 28510178 DOI: 10.1007/s12551-012-0081-z] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/29/2012] [Indexed: 01/01/2023] Open
Abstract
Src homology 3 (SH3) domains are involved in the regulation of important cellular pathways, such as cell proliferation, migration and cytoskeletal modifications. Recognition of polyproline and a number of noncanonical sequences by SH3 domains has been extensively studied by crystallography, nuclear magnetic resonance and other methods. High-affinity peptides that bind SH3 domains are used in drug development as candidates for anticancer treatment. This review summarizes the latest achievements in deciphering structural determinants of SH3 function.
Collapse
|
25
|
Domain organization differences explain Bcr-Abl's preference for CrkL over CrkII. Nat Chem Biol 2012; 8:590-6. [PMID: 22581121 PMCID: PMC3423979 DOI: 10.1038/nchembio.954] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 03/20/2012] [Indexed: 12/12/2022]
Abstract
CrkL is a key signaling protein that mediates the leukemogenic activity of Bcr-Abl. CrkL is thought to adopt a structure that is similar to that of its CrkII homolog. The two proteins share high sequence identity and indistinguishable ligand binding preferences; yet they have distinct physiological roles. Here we show that the structures of CrkL and phosphorylated CrkL are drastically different than the corresponding structures of CrkII. As a result, the binding activities of the SH2 and SH3 domains in the two proteins are regulated in a distinct manner and to a different extent. The different structural architecture of CrkL and CrkII may account for their distinct functional roles. The data show that CrkL forms a constitutive complex with Abl thus explaining the strong preference of Bcr-Abl for CrkL. The results also highlight how the structural organization of the modular domains in adaptor proteins can control signaling outcome.
Collapse
|
26
|
Liu BA, Engelmann BW, Nash PD. The language of SH2 domain interactions defines phosphotyrosine-mediated signal transduction. FEBS Lett 2012; 586:2597-605. [PMID: 22569091 DOI: 10.1016/j.febslet.2012.04.054] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 04/25/2012] [Accepted: 04/26/2012] [Indexed: 10/28/2022]
Abstract
Natural languages arise in an unpremeditated fashion resulting in words and syntax as individual units of information content that combine in a manner that is both complex and contextual, yet intuitive to a native reader. In an analogous manner, protein interaction domains such as the Src Homology 2 (SH2) domain recognize and "read" the information contained within their cognate peptide ligands to determine highly selective protein-protein interactions that underpin much of cellular signal transduction. Herein, we discuss how contextual sequence information, which combines the use of permissive and non-permissive residues within a parent motif, is a defining feature of selective interactions across SH2 domains. Within a system that reads phosphotyrosine modifications this provides crucial information to distinguish preferred interactions. This review provides a structural and biochemical overview of SH2 domain binding to phosphotyrosine-containing peptide motifs and discusses how the diverse set of SH2 domains is able to differentiate phosphotyrosine ligands.
Collapse
Affiliation(s)
- Bernard A Liu
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Ave., Toronto, Ontario, Canada M5G 1X5
| | | | | |
Collapse
|
27
|
Liu BA, Shah E, Jablonowski K, Stergachis A, Engelmann B, Nash PD. The SH2 domain-containing proteins in 21 species establish the provenance and scope of phosphotyrosine signaling in eukaryotes. Sci Signal 2011; 4:ra83. [PMID: 22155787 DOI: 10.1126/scisignal.2002105] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Src homology 2 (SH2) domains are participants in metazoan signal transduction, acting as primary mediators for regulated protein-protein interactions with tyrosine-phosphorylated substrates. Here, we describe the origin and evolution of SH2 domain proteins by means of sequence analysis from 21 eukaryotic organisms from the basal unicellular eukaryotes, where SH2 domains first appeared, through the multicellular animals and increasingly complex metazoans. On the basis of our results, SH2 domains and phosphotyrosine signaling emerged in the early Unikonta, and the numbers of SH2 domains expanded in the choanoflagellate and metazoan lineages with the development of tyrosine kinases, leading to rapid elaboration of phosphotyrosine signaling in early multicellular animals. Our results also indicated that SH2 domains coevolved and the number of the domains expanded alongside protein tyrosine kinases and tyrosine phosphatases, thereby coupling phosphotyrosine signaling to downstream signaling networks. Gene duplication combined with domain gain or loss produced novel SH2-containing proteins that function within phosphotyrosine signaling, which likely have contributed to diversity and complexity in metazoans. We found that intra- and intermolecular interactions within and between SH2 domain proteins increased in prevalence along with organismal complexity and may function to generate more highly connected and robust phosphotyrosine signaling networks.
Collapse
Affiliation(s)
- Bernard A Liu
- Ben May Department for Cancer Research, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
28
|
Yuwen T, Post CB, Skrynnikov N. Domain cooperativity in multidomain proteins: what can we learn from molecular alignment in anisotropic media? JOURNAL OF BIOMOLECULAR NMR 2011; 51:131-50. [PMID: 21947922 PMCID: PMC4721247 DOI: 10.1007/s10858-011-9548-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 07/07/2011] [Indexed: 05/13/2023]
Abstract
Many proteins have modular design with multiple globular domains connected via flexible linkers. As a simple model of such system, we study a tandem construct consisting of two identical SH3 domains and a variable-length Gly/Ser linker. When the linker is short, this construct represents a dumbbell-shaped molecule with limited amount of domain-domain mobility. Due to its elongated shape, this molecule efficiently aligns in steric alignment media. As the length of the linker increases, the two domains become effectively uncoupled and begin to behave as independent entities. Consequently, their degree of alignment drops, approaching that found in the (near-spherical) isolated SH3 domains. To model the dependence of alignment parameters on the length of the interdomain linker, we have generated in silico a series of conformational ensembles representing SH3 tandems with different linker length. These ensembles were subsequently used as input for alignment prediction software PALES. The predicted alignment tensors were compared with the results of experimental measurements using a series of tandem-SH3 samples in PEG/hexanol alignment media. This comparison broadly confirmed the expected trends. At the same time, it has been found that the isolated SH3 domain aligns much stronger than expected. This finding can be attributed to complex morphology of the PEG/hexanol media and/or to weak site-specific interactions between the protein and the media. In the latter case, there are strong indications that electrostatic interactions may play a role. The fact that PEG/hexanol does not behave as a simple steric media should serve as a caution for studies that use PALES as a quantitative prediction tool (especially for disordered proteins). Further progress in this area depends on our ability to accurately model the anisotropic media and its site-specific interactions with protein molecules. Once this ability is improved, it should be possible to use the alignment parameters as a measure of domain-domain cooperativity, thus identifying the situations where two domains transiently interact with each other or become coupled through a partially structured linker.
Collapse
Affiliation(s)
- Tairan Yuwen
- Department of Chemistry, Purdue University, West Lafayette IN 47907, USA
| | - Carol Beth Post
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette IN 47907, USA
| | - Nikolai Skrynnikov
- Department of Chemistry, Purdue University, West Lafayette IN 47907, USA
| |
Collapse
|
29
|
Two closely spaced tyrosines regulate NFAT signaling in B cells via Syk association with Vav. Mol Cell Biol 2011; 31:2984-96. [PMID: 21606197 DOI: 10.1128/mcb.05043-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Activated Syk, an essential tyrosine kinase in B cell signaling, interacts with Vav guanine nucleotide exchange factors and regulates Vav activity through tyrosine phosphorylation. The Vav SH2 domain binds Syk linker B by an unusual recognition of two closely spaced Syk tyrosines: Y342 and Y346. The binding affinity is highest when both Y342 and Y346 are phosphorylated. An investigation in B cells of the dependence of Vav phosphorylation and NFAT activation on phosphorylation of Y342 and Y346 finds that cellular response levels match the relative binding affinities of the Vav1 SH2 domain for singly and doubly phosphorylated linker B peptides. This key result suggests that the uncommon recognition determinant of these two closely spaced tyrosines is a limiting factor in signaling. Interestingly, differences in affinities for binding singly and doubly phosphorylated peptides are reflected in the on rate, not the off rate. Such a control mechanism would be highly effective for regulating binding among competing Syk binding partners. The nuclear magnetic resonance (NMR) structure of Vav1 SH2 in complex with a doubly phosphorylated linker B peptide reveals diverse conformations associated with the unusual SH2 recognition of two phosphotyrosines. NMR relaxation indicates compensatory changes in loop fluctuations upon binding, with implications for nonphosphotyrosine interactions of Vav1 SH2.
Collapse
|
30
|
Tuning protein autoinhibition by domain destabilization. Nat Struct Mol Biol 2011; 18:550-5. [PMID: 21532593 PMCID: PMC3265570 DOI: 10.1038/nsmb.2039] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 02/15/2011] [Indexed: 12/19/2022]
Abstract
Activation of many multi-domain signaling proteins requires rearrangement of autoinhibitory interdomain interactions that occlude activator binding sites. In one model for activation, the major inactive conformation exists in equilibrium with activated-like conformations that can be stabilized by ligand binding or post-translational modifications. The molecular basis for this model is established for the archetypal signaling adapter protein Crk-II by measuring the thermodynamics and kinetics of the equilibrium between autoinhibited and activated-like states using fluorescence and NMR spectroscopies, together with segmental isotopic labeling via expressed protein ligation. The results demonstrate that intramolecular domain-domain interactions both stabilize the autoinhibited state and induce the activated-like conformation. A combination of favorable interdomain interactions and unfavorable intradomain structural changes fine-tunes the population of the activated-like conformation and allows facile response to activators. This mechanism suggests a general strategy for optimization of autoinhibitory interactions of multi-domain proteins.
Collapse
|
31
|
Insights into structure and function of SHIP2-SH2: homology modeling, docking, and molecular dynamics study. J Chem Biol 2011; 4:149-58. [PMID: 22328908 DOI: 10.1007/s12154-011-0057-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 01/27/2011] [Indexed: 01/18/2023] Open
Abstract
SRC homology 2 (SH2)-containing inositol 5'-phosphatase protein (SHIP2) is a potential target for type 2 diabetes. Its ability to dephosphorylate the lipid messenger phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3], important for insulin signaling, makes it an important target against type 2 diabetes. The insulin-induced SHIP2 interaction with Shc is very important for the membrane localization and functioning of SHIP2. There is a bidentate relationship between the two proteins where two domains each from SHIP2 and Shc are involved in mutual binding. However in the present study, the SHIP2-SH2 domain binding with the phosphorylated tyrosine 317 on the collagen-homology (CH) domain of Shc, has been studied due to the indispensability of this interaction in SHIP2 localization. In the absence of the crystal structure of SHIP2-SH2, its structural model was developed followed by tracking its molecular interactions with Shc through molecular docking and dynamics studies. This study revealed much about the structural interactions between the SHIP2-SH2 and Shc-CH. Finally, docking study of a nonpeptide inhibitor into the SHIP2-SH2 domain further confirmed the structural interactions involved in ligand binding and also proposed the inhibitor as a major starting point against SHIP2-SH2 inhibition. The insights gained from the current study should prove useful in the design of more potent inhibitors against type 2 diabetes.
Collapse
|
32
|
Kaneko T, Sidhu SS, Li SSC. Evolving specificity from variability for protein interaction domains. Trends Biochem Sci 2011; 36:183-90. [PMID: 21227701 DOI: 10.1016/j.tibs.2010.12.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 12/18/2022]
Abstract
An important question in modular domain-peptide interactions, which play crucial roles in many biological processes, is how the diverse specificities exhibited by different members of a domain family are encoded in a common scaffold. Analysis of the Src homology (SH) 2 family has revealed that its specificity is determined, in large part, by the configuration of surface loops that regulate ligand access to binding pockets. In a distinct manner, SH3 domains employ loops for ligand recognition. The PDZ domain, in contrast, achieves specificity by co-evolution of binding-site residues. Thus, the conformational and sequence variability afforded by surface loops and binding sites provides a general mechanism by which to encode the wide spectrum of specificities observed for modular protein interaction domains.
Collapse
Affiliation(s)
- Tomonori Kaneko
- Department of Biochemistry and the Siebens-Drake Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | | | |
Collapse
|
33
|
Sarkar P, Saleh T, Tzeng SR, Birge RB, Kalodimos CG. Structural basis for regulation of the Crk signaling protein by a proline switch. Nat Chem Biol 2010; 7:51-7. [PMID: 21131971 PMCID: PMC3039521 DOI: 10.1038/nchembio.494] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 10/15/2010] [Indexed: 01/12/2023]
Abstract
Proline switches, controlled by cis–trans isomerization, have emerged as a particularly effective regulatory mechanism in a wide range of biological processes. Here we report the structures of both the cis and trans conformers of a proline switch in Crk signaling protein. Proline isomerization toggles Crk between two conformations: an autoinhibitory, stabilized by the intramolecular association of two tandem SH3 domains in the cis form, and an uninhibited, activated conformation promoted by the trans form. In addition to acting as a structural switch the heterogeneous proline recruits cyclophilin A, which accelerates the interconversion rate between the isomers thereby regulating the kinetics of Crk activation. The data provide atomic insight into the mechanisms that underpin the functionality of this binary switch and elucidate its remarkable efficiency. The results also reveal novel SH3 binding surfaces highlighting the binding versatility and expanding the non-canonical ligand repertoire of this important signaling domain.
Collapse
Affiliation(s)
- Paramita Sarkar
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | | | | | | | | |
Collapse
|
34
|
Liu BA, Jablonowski K, Shah EE, Engelmann BW, Jones RB, Nash PD. SH2 domains recognize contextual peptide sequence information to determine selectivity. Mol Cell Proteomics 2010; 9:2391-404. [PMID: 20627867 DOI: 10.1074/mcp.m110.001586] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Selective ligand recognition by modular protein interaction domains is a primary determinant of specificity in signaling pathways. Src homology 2 (SH2) domains fulfill this capacity immediately downstream of tyrosine kinases, acting to recruit their host polypeptides to ligand proteins harboring phosphorylated tyrosine residues. The degree to which SH2 domains are selective and the mechanisms underlying selectivity are fundamental to understanding phosphotyrosine signaling networks. An examination of interactions between 50 SH2 domains and a set of 192 phosphotyrosine peptides corresponding to physiological motifs within FGF, insulin, and IGF-1 receptor pathways indicates that individual SH2 domains have distinct recognition properties and exhibit a remarkable degree of selectivity beyond that predicted by previously described binding motifs. The underlying basis for such selectivity is the ability of SH2 domains to recognize both permissive amino acid residues that enhance binding and non-permissive amino acid residues that oppose binding in the vicinity of the essential phosphotyrosine. Neighboring positions affect one another so local sequence context matters to SH2 domains. This complex linguistics allows SH2 domains to distinguish subtle differences in peptide ligands. This newly appreciated contextual dependence substantially increases the accessible information content embedded in the peptide ligands that can be effectively integrated to determine binding. This concept may serve more broadly as a paradigm for subtle recognition of physiological ligands by protein interaction domains.
Collapse
Affiliation(s)
- Bernard A Liu
- Ben May Department for Cancer Research and Committee on Cancer Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
35
|
Kaneko T, Huang H, Zhao B, Li L, Liu H, Voss CK, Wu C, Schiller MR, Li SSC. Loops govern SH2 domain specificity by controlling access to binding pockets. Sci Signal 2010; 3:ra34. [PMID: 20442417 DOI: 10.1126/scisignal.2000796] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cellular functions require specific protein-protein interactions that are often mediated by modular domains that use binding pockets to engage particular sequence motifs in their partners. Yet, how different members of a domain family select for distinct sequence motifs is not fully understood. The human genome encodes 120 Src homology 2 (SH2) domains (in 110 proteins), which mediate protein-protein interactions by binding to proteins with diverse phosphotyrosine (pTyr)-containing sequences. The structure of the SH2 domain of BRDG1 bound to a peptide revealed a binding pocket that was blocked by a loop residue in most other SH2 domains. Analysis of 63 SH2 domain structures suggested that the SH2 domains contain three binding pockets, which exhibit selectivity for the three positions after the pTyr in a peptide, and that SH2 domain loops defined the accessibility and shape of these pockets. Despite sequence variability in the loops, we identified conserved structural features in the loops of SH2 domains responsible for controlling access to these surface pockets. We engineered new loops in an SH2 domain that altered specificity as predicted. Thus, selective blockage of binding subsites or pockets by surface loops provides a molecular basis by which the diverse modes of ligand recognition by the SH2 domain may have evolved and provides a framework for engineering SH2 domains and designing SH2-specific inhibitors.
Collapse
Affiliation(s)
- Tomonori Kaneko
- Department of Biochemistry and the Siebens-Drake Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sylvester JE, Kron SJ. A bead-based activity screen for small-molecule inhibitors of signal transduction in chronic myelogenous leukemia cells. Mol Cancer Ther 2010; 9:1469-81. [PMID: 20423990 DOI: 10.1158/1535-7163.mct-10-0157] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chronic myelogenous leukemia is characterized by the presence of the chimeric BCR-ABL gene, which is expressed as the constitutively active Bcr-Abl kinase. Although kinase activity is directly responsible for the clinical phenotype, current diagnostic and prognostic methods focus on a genetic classification system in which molecularly distinct subcategories are used to predict patient responses to small-molecule inhibitors of the Bcr-Abl kinase. Point mutations in the kinase domain are a central factor regulating inhibitor resistance; however, compensatory signaling caused by the activation of unrelated kinases can influence inhibitor efficacy. Kinase activity profiling can be used as a complementary approach to genetic screening and allows direct screening of small-molecule inhibitors. We developed a quantitative assay to monitor tyrosine kinase activities and inhibitor sensitivities in a model of chronic myelogenous leukemia using peptide reporters covalently immobilized on Luminex beads. Kinase activity is quantified by nonlinear regression from well-specific internal standard curves. Using optimized synthetic substrates and peptides derived from native substrates as probes, we measured kinase inhibition in cell lysates by the signal transduction inhibitors imatinib and dasatinib. Taking advantage of a convenient 96-well plate format, this assay also allows a straightforward and quantitative analysis of the differential effects of ATP and inhibitors on kinase activity. This method for analyzing a focused signaling network benefits from rigorous statistical analysis and short processing times, thereby offering a powerful tool for drug discovery and clinical testing.
Collapse
Affiliation(s)
- Juliesta E Sylvester
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
37
|
Bae JH, Lew ED, Yuzawa S, Tomé F, Lax I, Schlessinger J. The selectivity of receptor tyrosine kinase signaling is controlled by a secondary SH2 domain binding site. Cell 2009; 138:514-24. [PMID: 19665973 DOI: 10.1016/j.cell.2009.05.028] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 03/26/2009] [Accepted: 05/07/2009] [Indexed: 01/04/2023]
Abstract
SH2 domain-mediated interactions represent a crucial step in transmembrane signaling by receptor tyrosine kinases. SH2 domains recognize phosphotyrosine (pY) in the context of particular sequence motifs in receptor phosphorylation sites. However, the modest binding affinity of SH2 domains to pY containing peptides may not account for and likely represents an oversimplified mechanism for regulation of selectivity of signaling pathways in living cells. Here we describe the crystal structure of the activated tyrosine kinase domain of FGFR1 in complex with a phospholipase Cgamma fragment. The structural and biochemical data and experiments with cultured cells show that the selectivity of phospholipase Cgamma binding and signaling via activated FGFR1 are determined by interactions between a secondary binding site on an SH2 domain and a region in FGFR1 kinase domain in a phosphorylation independent manner. These experiments reveal a mechanism for how SH2 domain selectivity is regulated in vivo to mediate a specific cellular process.
Collapse
Affiliation(s)
- Jae Hyun Bae
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
38
|
Birge RB, Kalodimos C, Inagaki F, Tanaka S. Crk and CrkL adaptor proteins: networks for physiological and pathological signaling. Cell Commun Signal 2009; 7:13. [PMID: 19426560 PMCID: PMC2689226 DOI: 10.1186/1478-811x-7-13] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 05/10/2009] [Indexed: 01/24/2023] Open
Abstract
The Crk adaptor proteins (Crk and CrkL) constitute an integral part of a network of essential signal transduction pathways in humans and other organisms that act as major convergence points in tyrosine kinase signaling. Crk proteins integrate signals from a wide variety of sources, including growth factors, extracellular matrix molecules, bacterial pathogens, and apoptotic cells. Mounting evidence indicates that dysregulation of Crk proteins is associated with human diseases, including cancer and susceptibility to pathogen infections. Recent structural work has identified new and unusual insights into the regulation of Crk proteins, providing a rationale for how Crk can sense diverse signals and produce a myriad of biological responses.
Collapse
Affiliation(s)
- Raymond B Birge
- Department of Biochemistry & Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Ave, Newark, NJ 07103, USA.
| | | | | | | |
Collapse
|
39
|
Structural and functional basis of a role for CRKL in a fibroblast growth factor 8-induced feed-forward loop. Mol Cell Biol 2009; 29:3076-87. [PMID: 19307307 DOI: 10.1128/mcb.01686-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The adapter protein CRKL is required for the normal development of multiple tissues that rely on fibroblast growth factor 8 (FGF8). The precise role of CRKL in receptor signaling has been unclear, however. To address this issue, we first modeled the three-dimensional structure of CRKL by molecular dynamics. By taking advantage of structural simulations, we performed in silico analysis of the interactions of the autophosphorylation sites of FGR receptor 1 (FGFR1) with the SH2 domain of CRKL or a highly related protein, CRK. As predicted by simulations, we confirm the specific physical interaction of phosphorylated Y463 (pY463) in FGFR1 with the CRKL SH2 domain at an affinity approximately 30-fold stronger than that of CRK. We also provide evidence that interactions outside of the core YXXP motif have a significant impact on physical association, which is consistent with predictions from molecular-dynamics simulations. Furthermore, we identify CRKL as an essential component of an FGF8-induced feed-forward loop permissive for efficient activation of the mitogen-activated protein kinase Erk1/2, as well as FGF8-induced anchorage-independent cell growth, using Crkl-deficient cells or a pY463 synthetic peptide. Although many cells generally require cell-matrix adhesion, our results demonstrate that CRKL permits cells to bypass the strict need for adhesion in response to FGF8 through direct interaction with receptor.
Collapse
|
40
|
Hunter T. Tyrosine phosphorylation: thirty years and counting. Curr Opin Cell Biol 2009; 21:140-6. [PMID: 19269802 DOI: 10.1016/j.ceb.2009.01.028] [Citation(s) in RCA: 536] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Accepted: 01/19/2009] [Indexed: 01/04/2023]
Abstract
In the 30 years since its discovery, tyrosine phosphorylation has emerged as a fundamentally important mechanism of signal transduction and regulation in all eukaryotic cells, governing many processes, including cell proliferation, cell cycle progression, metabolic homeostasis, transcriptional activation, neural transmission, differentiation and development, and aging. Perturbations in tyrosine phosphorylation underlie many human diseases, and in particular cancer, and this has prompted the development of inhibitors of tyrosine kinases implicated in disease, a number of which have been approved for clinical use. The following is a brief personal reflection on some of the salient findings over the past 30 years that led to the development of tyrosine kinase inhibitors for disease therapy.
Collapse
Affiliation(s)
- Tony Hunter
- The Salk Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
41
|
Huang X, Wu D, Jin H, Stupack D, Wang JYJ. Induction of cell retraction by the combined actions of Abl-CrkII and Rho-ROCK1 signaling. ACTA ACUST UNITED AC 2008; 183:711-23. [PMID: 19001122 PMCID: PMC2582888 DOI: 10.1083/jcb.200801192] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Dynamic modulation of cell adhesion is integral to a wide range of biological processes. The small guanosine triphosphatase (GTPase) Rap1 is an important regulator of cell–cell and cell–matrix adhesions. We show here that induced expression of activated Abl tyrosine kinase reduces Rap1-GTP levels through phosphorylation of Tyr221 of CrkII, which disrupts interaction of CrkII with C3G, a guanine nucleotide exchange factor for Rap1. Abl-dependent down-regulation of Rap1-GTP causes cell rounding and detachment only when the Rho–ROCK1 pathway is also activated, for example, by lysophosphatidic acid (LPA). During ephrin-A1–induced retraction of PC3 prostate cancer cells, we show that endogenous Abl is activated and disrupts the CrkII–C3G complex to reduce Rap1-GTP. Interestingly, ephrin-A1–induced PC3 cell retraction also requires LPA, which stimulates Rho to a much higher level than that is activated by ephrin-A1. Our results establish Rap1 as another downstream target of the Abl–CrkII signaling module and show that Abl–CrkII collaborates with Rho–ROCK1 to stimulate cell retraction.
Collapse
Affiliation(s)
- XiaoDong Huang
- Division of Biological Sciences, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
42
|
Wang L, Sauer UH. OnD-CRF: predicting order and disorder in proteins using [corrected] conditional random fields. Bioinformatics 2008; 24:1401-2. [PMID: 18430742 PMCID: PMC2387219 DOI: 10.1093/bioinformatics/btn132] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Motivation: Order and Disorder prediction using Conditional Random Fields (OnD-CRF) is a new method for accurately predicting the transition between structured and mobile or disordered regions in proteins. OnD-CRF applies CRFs relying on features which are generated from the amino acids sequence and from secondary structure prediction. Benchmarking results based on CASP7 targets, and evaluation with respect to several CASP criteria, rank the OnD-CRF model highest among the fully automatic server group. Availability:http://babel.ucmp.umu.se/ond-crf/ Contact:Uwe.Sauer@ucmp.umu.se
Collapse
Affiliation(s)
- Lixiao Wang
- Umeå Centre for Molecular Pathogenesis, UCMP, and Centre for Chemical Biology, KBC, Umeå University, SE-901 87 Umeå, Sweden
| | | |
Collapse
|
43
|
Kobashigawa Y, Sakai M, Naito M, Yokochi M, Kumeta H, Makino Y, Ogura K, Tanaka S, Inagaki F. [Structural basis for the transforming activity of human cancer-related signaling adaptor protein Crk]. Nat Struct Mol Biol 2008; 14:503-10. [PMID: 17515907 DOI: 10.1038/nsmb1241] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2006] [Accepted: 03/27/2007] [Indexed: 01/13/2023]
Abstract
CRKI (SH2-SH3) and CRKII (SH2-SH3-SH3) are splicing isoforms of the oncoprotein CRK that regulate transcription and cytoskeletal reorganization for cell growth and motility by linking tyrosine kinases to small G proteins. CRKI shows substantial transforming activity, whereas the activity of CRKII is low, and phosphorylated CRKII has no biological activity whatsoever. The molecular mechanisms underlying the distinct biological activities of the CRK proteins remain elusive. We determined the solution structures of CRKI, CRKII and phosphorylated CRKII by NMR and identified the molecular mechanism that gives rise to their activities. Results from mutational analysis using rodent 3Y1 fibroblasts were consistent with those from the structural studies. Together, these data suggest that the linker region modulates the binding of CRKII to its targets, thus regulating cell growth and motility.
Collapse
Affiliation(s)
- Yoshihiro Kobashigawa
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sainlos M, Imperiali B. Tools for investigating peptide–protein interactions: peptide incorporation of environment-sensitive fluorophores via on-resin derivatization. Nat Protoc 2007; 2:3201-9. [DOI: 10.1038/nprot.2007.442] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Yang KJ, Shin S, Piao L, Shin E, Li Y, Park KA, Byun HS, Won M, Hong J, Kweon GR, Hur GM, Seok JH, Chun T, Brazil DP, Hemmings BA, Park J. Regulation of 3-phosphoinositide-dependent protein kinase-1 (PDK1) by Src involves tyrosine phosphorylation of PDK1 and Src homology 2 domain binding. J Biol Chem 2007; 283:1480-1491. [PMID: 18024423 DOI: 10.1074/jbc.m706361200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
3-Phosphoinositide-dependent protein kinase-1 (PDK1) appears to play a central regulatory role in many cell signalings between phosphoinositide-3 kinase and various intracellular serine/threonine kinases. In resting cells, PDK1 is known to be constitutively active and is further activated by tyrosine phosphorylation (Tyr(9) and Tyr(373/376)) following the treatment of the cell with insulin or pervanadate. However, little is known about the mechanisms for this additional activation of PDK1. Here, we report that the SH2 domain of Src, Crk, and GAP recognized tyrosine-phosphorylated PDK1 in vitro. Destabilization of PDK1 induced by geldanamycin (a Hsp90 inhibitor) was partially blocked in HEK 293 cells expressing PDK1-Y9F. Co-expression of Hsp90 enhanced PDK1-Src complex formation and led to further increased PDK1 activity toward PKB and SGK. Immunohistochemical analysis with anti-phospho-Tyr(9) antibodies showed that the level of Tyr(9) phosphorylation was markedly increased in tumor samples compared with normal. Taken together, these data suggest that phosphorylation of PDK1 on Tyr(9), distinct from Tyr(373/376), is important for PDK1/Src complex formation, leading to PDK1 activation. Furthermore, Tyr(9) phosphorylation is critical for the stabilization of both PDK1 and the PDK1/Src complex via Hsp90-mediated protection of PDK1 degradation.
Collapse
Affiliation(s)
- Keum-Jin Yang
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Sanghee Shin
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Longzhen Piao
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Eulsoon Shin
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Yuwen Li
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Kyeong Ah Park
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Hee Sun Byun
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Minho Won
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Janghee Hong
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Gi Ryang Kweon
- Department of Biochemistry, College of Medicine, Chungnam National University, Taejeon 301-131, South Korea
| | - Gang Min Hur
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Jeong Ho Seok
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Taehoon Chun
- Division of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, South Korea
| | - Derek P Brazil
- University College Dublin School of Biomolecular and Biomedical Science, University College Dublin Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Brian A Hemmings
- Friedrich Miescher Institute for Biomedical Research, Basel CH-4058, Switzerland
| | - Jongsun Park
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea.
| |
Collapse
|
46
|
Bommarius B, Maxwell D, Swimm A, Leung S, Corbett A, Bornmann W, Kalman D. Enteropathogenic Escherichia coli Tir is an SH2/3 ligand that recruits and activates tyrosine kinases required for pedestal formation. Mol Microbiol 2007; 63:1748-68. [PMID: 17367393 DOI: 10.1111/j.1365-2958.2007.05626.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) cause intestinal inflammation, severe diarrhoea and mortality, particularly among children in developing nations. Upon attachment to intestinal epithelial cells, EPEC induces actin-filled membrane protrusions called 'pedestals' and disrupts microvilli to form attaching and effacing (A/E) lesions. EPEC also disrupts epithelial barrier function and causes colitis. Here we have investigated how virulence factors which orchestrate formation of actin pedestals interface with host tyrosine kinases. We show that Tec-family tyrosine kinases localize beneath EPEC and, with Abl-family kinases, comprise a set of redundant host kinases utilized by EPEC to form actin pedestals. We also show that Tir, a virulence factor required for pathogenesis, contains a polyproline region (PPR) that interacts with SH3 domains of redundant kinases, and a phosphorylation site (Y474) that interacts with kinase SH2 domains. These interactions are essential for pedestal formation, and mimic activation of kinases by cellular ligands. Our results suggest that a positive feedback loop exists in which initial phosphorylation of Tir on Y474 by tyrosine kinases causes recruitment of additional redundant kinases via PPR-SH3 interactions and PO(3)-Y474-SH2 interactions, which in turn phosphorylate other Tir molecules as well as proteins that catalyse formation of actin pedestals.
Collapse
Affiliation(s)
- Bettina Bommarius
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Pawson T. Dynamic control of signaling by modular adaptor proteins. Curr Opin Cell Biol 2007; 19:112-6. [PMID: 17317137 DOI: 10.1016/j.ceb.2007.02.013] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Accepted: 02/09/2007] [Indexed: 11/22/2022]
Abstract
Adaptor proteins are composed exclusively of domains and motifs that mediate molecular interactions, and can thereby link signaling proteins such as activated cell-surface receptors to downstream effectors. Recent data supports the notion that adaptors are not simply coupling devices that hard-wire successive components of signaling pathways. Rather, they display highly dynamic properties that direct the flow of information through signaling networks. The binding activity of adaptors can be regulated by conformational reorganization, and by the cooperative association of domains within the same adaptor. Furthermore, an individual adaptor can deliver different outputs by utilizing distinct combinations of binding partners. Adaptors can also control the oligomerization of receptor signaling complexes, and the subcellular location and duration of signaling events, and act as coincidence detectors to enhance specificity in cellular responses.
Collapse
Affiliation(s)
- Tony Pawson
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada.
| |
Collapse
|
48
|
Kalia LV, Pitcher GM, Pelkey KA, Salter MW. PSD-95 is a negative regulator of the tyrosine kinase Src in the NMDA receptor complex. EMBO J 2006; 25:4971-82. [PMID: 16990796 PMCID: PMC1618112 DOI: 10.1038/sj.emboj.7601342] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Accepted: 08/18/2006] [Indexed: 11/09/2022] Open
Abstract
The tyrosine kinase Src upregulates the activity of the N-methyl-D-aspartate subtype of glutamate receptor (NMDAR) and tyrosine phosphorylation of this receptor is critical for induction of NMDAR-dependent plasticity of synaptic transmission. A binding partner for Src within the NMDAR complex is the protein PSD-95. Here we demonstrate an interaction of PSD-95 with Src that does not require the well-characterized domains of PSD-95. Rather, we show binding to Src through a 12-amino-acid sequence in the N-terminal region of PSD-95, a region not previously known to participate in protein-protein interactions. This region interacts directly with the Src SH2 domain. Contrary to typical SH2 domain binding, the PSD-95-Src SH2 domain interaction is phosphotyrosine-independent. Binding of the Src-interacting region of PSD-95 inhibits Src kinase activity and reduces NMDAR phosphorylation. Intracellularly administering a peptide matching the Src SH2 domain-interacting region of PSD-95 depresses NMDAR currents in cultured neurons and inhibits induction of long-term potentiation in hippocampus. Thus, the PSD-95-Src SH2 domain interaction suppresses Src-mediated NMDAR upregulation, a finding that may be of broad importance for synaptic transmission and plasticity.
Collapse
Affiliation(s)
- Lorraine V Kalia
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Graham M Pitcher
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Kenneth A Pelkey
- Laboratory of Cellular and Synaptic Neurophysiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Michael W Salter
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Program in Neurosciences and Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8. Tel.: +1 416 813 6272; Fax: +1 416 813 7921; E-mail:
| |
Collapse
|
49
|
Liu BA, Jablonowski K, Raina M, Arcé M, Pawson T, Nash PD. The human and mouse complement of SH2 domain proteins-establishing the boundaries of phosphotyrosine signaling. Mol Cell 2006; 22:851-868. [PMID: 16793553 DOI: 10.1016/j.molcel.2006.06.001] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 05/19/2006] [Accepted: 06/02/2006] [Indexed: 01/07/2023]
Abstract
SH2 domains are interaction modules uniquely dedicated to the recognition of phosphotyrosine sites and are embedded in proteins that couple protein-tyrosine kinases to intracellular signaling pathways. Here, we report a comprehensive bioinformatics, structural, and functional view of the human and mouse complement of SH2 domain proteins. This information delimits the set of SH2-containing effectors available for PTK signaling and will facilitate the systems-level analysis of pTyr-dependent protein-protein interactions and PTK-mediated signal transduction. The domain-based architecture of SH2-containing proteins is of more general relevance for understanding the large family of protein interaction domains and the modular organization of the majority of human proteins.
Collapse
Affiliation(s)
- Bernard A Liu
- Ben May Institute for Cancer Research and the Committee on Cancer Biology, The University of Chicago, Chicago, Illinois 60637
| | - Karl Jablonowski
- Ben May Institute for Cancer Research and the Committee on Cancer Biology, The University of Chicago, Chicago, Illinois 60637
| | - Monica Raina
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada
| | - Michael Arcé
- Ben May Institute for Cancer Research and the Committee on Cancer Biology, The University of Chicago, Chicago, Illinois 60637
| | - Tony Pawson
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada.
| | - Piers D Nash
- Ben May Institute for Cancer Research and the Committee on Cancer Biology, The University of Chicago, Chicago, Illinois 60637.
| |
Collapse
|
50
|
Hou T, Chen K, McLaughlin WA, Lu B, Wang W. Computational analysis and prediction of the binding motif and protein interacting partners of the Abl SH3 domain. PLoS Comput Biol 2006; 2:e1. [PMID: 16446784 PMCID: PMC1356089 DOI: 10.1371/journal.pcbi.0020001] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Accepted: 12/05/2005] [Indexed: 11/18/2022] Open
Abstract
Protein-protein interactions, particularly weak and transient ones, are often mediated by peptide recognition domains, such as Src Homology 2 and 3 (SH2 and SH3) domains, which bind to specific sequence and structural motifs. It is important but challenging to determine the binding specificity of these domains accurately and to predict their physiological interacting partners. In this study, the interactions between 35 peptide ligands (15 binders and 20 non-binders) and the Abl SH3 domain were analyzed using molecular dynamics simulation and the Molecular Mechanics/Poisson-Boltzmann Solvent Area method. The calculated binding free energies correlated well with the rank order of the binding peptides and clearly distinguished binders from non-binders. Free energy component analysis revealed that the van der Waals interactions dictate the binding strength of peptides, whereas the binding specificity is determined by the electrostatic interaction and the polar contribution of desolvation. The binding motif of the Abl SH3 domain was then determined by a virtual mutagenesis method, which mutates the residue at each position of the template peptide relative to all other 19 amino acids and calculates the binding free energy difference between the template and the mutated peptides using the Molecular Mechanics/Poisson-Boltzmann Solvent Area method. A single position mutation free energy profile was thus established and used as a scoring matrix to search peptides recognized by the Abl SH3 domain in the human genome. Our approach successfully picked ten out of 13 experimentally determined binding partners of the Abl SH3 domain among the top 600 candidates from the 218,540 decapeptides with the PXXP motif in the SWISS-PROT database. We expect that this physical-principle based method can be applied to other protein domains as well. One of the central questions of molecular biology is to understand how signals are transduced in the cell. Intracellular signal transduction is mainly achieved through cascades of protein-protein interactions, which are often mediated by peptide-binding modular domains, such as Src Homology 2 and 3 (SH2 and SH3). Each family of these domains binds to peptides with specific sequence and structural characteristics. To reconstruct the protein-protein interaction networks mediated by modular domains, one must identify the peptide motifs recognized by these domains and understand the mechanism of binding specificity. These questions are challenging because the domain-peptide interactions are usually weak and transient. Here, the authors took a physical-principles approach to address these difficult questions for the SH3 domain of human protein Abl, which binds to peptides containing the PXXP motif (where P is proline and X is any amino acid). They generated a position-specific scoring matrix to represent the binding motif of the Abl SH3 domain. Analysis on the binding free energy components suggested insights into how the binding specificity is achieved. Most known protein interacting partners of the Abl SH3 domain were correctly identified using the position-specific scoring matrix, and other potential interacting partners were also suggested.
Collapse
Affiliation(s)
- Tingjun Hou
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Center for Theoretical Biological Physics, University of California San Diego, La Jolla, California, United States of America
| | - Ken Chen
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Center for Theoretical Biological Physics, University of California San Diego, La Jolla, California, United States of America
| | - William A McLaughlin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Center for Theoretical Biological Physics, University of California San Diego, La Jolla, California, United States of America
| | - Benzhuo Lu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Center for Theoretical Biological Physics, University of California San Diego, La Jolla, California, United States of America
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Center for Theoretical Biological Physics, University of California San Diego, La Jolla, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|