1
|
Drosophila Heart as a Model for Cardiac Development and Diseases. Cells 2021; 10:cells10113078. [PMID: 34831301 PMCID: PMC8623483 DOI: 10.3390/cells10113078] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 01/26/2023] Open
Abstract
The Drosophila heart, also referred to as the dorsal vessel, pumps the insect blood, the hemolymph. The bilateral heart primordia develop from the most dorsally located mesodermal cells, migrate coordinately, and fuse to form the cardiac tube. Though much simpler, the fruit fly heart displays several developmental and functional similarities to the vertebrate heart and, as we discuss here, represents an attractive model system for dissecting mechanisms of cardiac aging and heart failure and identifying genes causing congenital heart diseases. Fast imaging technologies allow for the characterization of heartbeat parameters in the adult fly and there is growing evidence that cardiac dysfunction in human diseases could be reproduced and analyzed in Drosophila, as discussed here for heart defects associated with the myotonic dystrophy type 1. Overall, the power of genetics and unsuspected conservation of genes and pathways puts Drosophila at the heart of fundamental and applied cardiac research.
Collapse
|
2
|
Manivannan SN, Darouich S, Masmoudi A, Gordon D, Zender G, Han Z, Fitzgerald-Butt S, White P, McBride KL, Kharrat M, Garg V. Novel frameshift variant in MYL2 reveals molecular differences between dominant and recessive forms of hypertrophic cardiomyopathy. PLoS Genet 2020; 16:e1008639. [PMID: 32453731 PMCID: PMC7274480 DOI: 10.1371/journal.pgen.1008639] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 06/05/2020] [Accepted: 01/29/2020] [Indexed: 12/18/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by thickening of the ventricular muscle without dilation and is often associated with dominant pathogenic variants in cardiac sarcomeric protein genes. Here, we report a family with two infants diagnosed with infantile-onset HCM and mitral valve dysplasia that led to death before one year of age. Using exome sequencing, we discovered that one of the affected children had a homozygous frameshift variant in Myosin light chain 2 (MYL2:NM_000432.3:c.431_432delCT: p.Pro144Argfs*57;MYL2-fs), which alters the last 20 amino acids of the protein and is predicted to impact the most C-terminal of the three EF-hand domains in MYL2. The parents are unaffected heterozygous carriers of the variant and the variant is absent in control cohorts from gnomAD. The absence of the phenotype in carriers and the infantile presentation of severe HCM is in contrast to HCM associated with dominant MYL2 variants. Immunohistochemical analysis of the ventricular muscle of the deceased patient with the MYL2-fs variant showed a marked reduction of MYL2 expression compared to an unaffected control. In vitro overexpression studies further indicate that the MYL2-fs variant is actively degraded. In contrast, an HCM-associated missense variant (MYL2:p.Gly162Arg) and three other MYL2 stop-gain variants (p.E22*, p.K62*, p.E97*) that result in loss of the EF domains are stably expressed but show impaired localization. The degradation of the MYL2-fs can be rescued by inhibiting the cell’s proteasome function supporting a post-translational effect of the variant. In vivo rescue experiments with a Drosophila MYL2-homolog (Mlc2) knockdown model indicate that neither the MYL2-fs nor the MYL2:p.Gly162Arg variant supports normal cardiac function. The tools that we have generated provide a rapid screening platform for functional assessment of variants of unknown significance in MYL2. Our study supports an autosomal recessive model of inheritance for MYL2 loss-of-function variants in infantile HCM and highlights the variant-specific molecular differences found in MYL2-associated cardiomyopathy. We report a novel frameshift variant in MYL2 that is associated with a severe form of infantile-onset hypertrophic cardiomyopathy. The impact of the variant is only observed in the recessive form of the disease found in the proband and not in the parents who are carriers of the variant. This contrasts with other dominant variants in MYL2 that are associated with cardiomyopathies. We compared the stability of this variant to that of other cardiomyopathy associated MYL2 variants and found molecular differences that correlated with disease pathology. We also show different protein domain requirements for stability and localization of MYL2 in cardiomyocytes. Furthermore, we used a fly model to demonstrate functional deficits due to the variant in the developing heart. Overall, our study shows a molecular mechanism by which loss-of-function variants in MYL2 are recessive while missense variants are dominant. We highlight the use of exome sequencing and functional testing to assist in the diagnosis of rare forms of disease where pathogenicity of the variant is not obvious. The new tools we developed for in vitro functional study and the fly fluorescent reporter analysis will permit rapid analysis of MYL2 variants of unknown significance.
Collapse
Affiliation(s)
- Sathiya N. Manivannan
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Sihem Darouich
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES10 Laboratory of Human Genetics, Tunis, Tunisia
- * E-mail: (SD); (VG)
| | - Aida Masmoudi
- University of Tunis El Manar, Faculty of Medicine of Tunis, Department of Embryo-Fetopathology, Maternity and Neonatology Center, Tunis, Tunisia
| | - David Gordon
- Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Gloria Zender
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Zhe Han
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Sara Fitzgerald-Butt
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Peter White
- Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Kim L. McBride
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Maher Kharrat
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES10 Laboratory of Human Genetics, Tunis, Tunisia
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (SD); (VG)
| |
Collapse
|
3
|
Zmojdzian M, de Joussineau S, Da Ponte JP, Jagla K. Distinct subsets of Eve-positive pericardial cells stabilise cardiac outflow and contribute to Hox gene-triggered heart morphogenesis in Drosophila. Development 2018; 145:dev.158717. [PMID: 29247145 PMCID: PMC5825839 DOI: 10.1242/dev.158717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/11/2017] [Indexed: 11/20/2022]
Abstract
The Drosophila heart, composed of discrete subsets of cardioblasts and pericardial cells, undergoes Hox-triggered anterior-posterior morphogenesis, leading to a functional subdivision into heart proper and aorta, with its most anterior part forming a funnel-shaped cardiac outflow. Cardioblasts differentiate into Tin-positive 'working myocytes' and Svp-expressing ostial cells. However, developmental fates and functions of heart-associated pericardial cells remain elusive. Here, we show that the pericardial cells that express the transcription factor Even Skipped adopt distinct fates along the anterior-posterior axis. Among them, the most anterior Antp-Ubx-AbdA-negative cells form a novel cardiac outflow component we call the outflow hanging structure, whereas the Antp-expressing cells differentiate into wing heart precursors. Interestingly, Hox gene expression in the Even Skipped-positive cells not only underlies their antero-posterior diversification, but also influences heart morphogenesis in a non-cell-autonomous way. In brief, we identify a new cardiac outflow component derived from a subset of Even Skipped-expressing cells that stabilises the anterior heart tip, and demonstrate non-cell-autonomous effects of Hox gene expression in the Even Skipped-positive cells on heart morphogenesis.
Collapse
Affiliation(s)
- Monika Zmojdzian
- GReD - INSERM U1103, CNRS UMR6293, University of Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Svetlana de Joussineau
- GReD - INSERM U1103, CNRS UMR6293, University of Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Jean Philippe Da Ponte
- GReD - INSERM U1103, CNRS UMR6293, University of Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Krzysztof Jagla
- GReD - INSERM U1103, CNRS UMR6293, University of Clermont Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|
4
|
Ahmad SM. Conserved signaling mechanisms in Drosophila heart development. Dev Dyn 2017; 246:641-656. [PMID: 28598558 PMCID: PMC11546222 DOI: 10.1002/dvdy.24530] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 04/06/2017] [Accepted: 05/08/2017] [Indexed: 12/24/2022] Open
Abstract
Signal transduction through multiple distinct pathways regulates and orchestrates the numerous biological processes comprising heart development. This review outlines the roles of the FGFR, EGFR, Wnt, BMP, Notch, Hedgehog, Slit/Robo, and other signaling pathways during four sequential phases of Drosophila cardiogenesis-mesoderm migration, cardiac mesoderm establishment, differentiation of the cardiac mesoderm into distinct cardiac cell types, and morphogenesis of the heart and its lumen based on the proper positioning and cell shape changes of these differentiated cardiac cells-and illustrates how these same cardiogenic roles are conserved in vertebrates. Mechanisms bringing about the regulation and combinatorial integration of these diverse signaling pathways in Drosophila are also described. This synopsis of our present state of knowledge of conserved signaling pathways in Drosophila cardiogenesis and the means by which it was acquired should facilitate our understanding of and investigations into related processes in vertebrates. Developmental Dynamics 246:641-656, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shaad M. Ahmad
- Department of Biology, Indiana State University, Terre Haute, IN, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN, USA
| |
Collapse
|
5
|
Lovato TL, Cripps RM. Regulatory Networks that Direct the Development of Specialized Cell Types in the Drosophila Heart. J Cardiovasc Dev Dis 2016; 3. [PMID: 27695700 PMCID: PMC5044875 DOI: 10.3390/jcdd3020018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Drosophila cardiac tube was once thought to be a simple linear structure, however research over the past 15 years has revealed significant cellular and molecular complexity to this organ. Prior reviews have focused upon the gene regulatory networks responsible for the specification of the cardiac field and the activation of cardiac muscle structural genes. Here we focus upon highlighting the existence, function, and development of unique cell types within the dorsal vessel, and discuss their correspondence to analogous structures in the vertebrate heart.
Collapse
|
6
|
Alex A, Li A, Zeng X, Tate RE, McKee ML, Capen DE, Zhang Z, Tanzi RE, Zhou C. A Circadian Clock Gene, Cry, Affects Heart Morphogenesis and Function in Drosophila as Revealed by Optical Coherence Microscopy. PLoS One 2015; 10:e0137236. [PMID: 26348211 PMCID: PMC4565115 DOI: 10.1371/journal.pone.0137236] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/13/2015] [Indexed: 01/21/2023] Open
Abstract
Circadian rhythms are endogenous, entrainable oscillations of physical, mental and behavioural processes in response to local environmental cues such as daylight, which are present in the living beings, including humans. Circadian rhythms have been related to cardiovascular function and pathology. However, the role that circadian clock genes play in heart development and function in a whole animal in vivo are poorly understood. The Drosophila cryptochrome (dCry) is a circadian clock gene that encodes a major component of the circadian clock negative feedback loop. Compared to the embryonic stage, the relative expression levels of dCry showed a significant increase (>100-fold) in Drosophila during the pupa and adult stages. In this study, we utilized an ultrahigh resolution optical coherence microscopy (OCM) system to perform non-invasive and longitudinal analysis of functional and morphological changes in the Drosophila heart throughout its post-embryonic lifecycle for the first time. The Drosophila heart exhibited major morphological and functional alterations during its development. Notably, heart rate (HR) and cardiac activity period (CAP) of Drosophila showed significant variations during the pupa stage, when heart remodeling took place. From the M-mode (2D + time) OCM images, cardiac structural and functional parameters of Drosophila at different developmental stages were quantitatively determined. In order to study the functional role of dCry on Drosophila heart development, we silenced dCry by RNAi in the Drosophila heart and mesoderm, and quantitatively measured heart morphology and function in those flies throughout its development. Silencing of dCry resulted in slower HR, reduced CAP, smaller heart chamber size, pupal lethality and disrupted posterior segmentation that was related to increased expression of a posterior compartment protein, wingless. Collectively, our studies provided novel evidence that the circadian clock gene, dCry, plays an essential role in heart morphogenesis and function.
Collapse
Affiliation(s)
- Aneesh Alex
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, United States of America, 18015
- Center for Photonics and Nanoelectronics, Lehigh University, Bethlehem, PA, United States of America, 18015
| | - Airong Li
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America, 02129
| | - Xianxu Zeng
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, United States of America, 18015
- Center for Photonics and Nanoelectronics, Lehigh University, Bethlehem, PA, United States of America, 18015
- Department of Pathology, The 3rd Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China, 450000
| | - Rebecca E. Tate
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America, 02129
| | - Mary L. McKee
- Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America, 02115
| | - Diane E. Capen
- Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America, 02115
| | - Zhan Zhang
- Department of Pathology, The 3rd Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China, 450000
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America, 02129
- * E-mail: (R.E. Tanzi); (CZ)
| | - Chao Zhou
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, United States of America, 18015
- Center for Photonics and Nanoelectronics, Lehigh University, Bethlehem, PA, United States of America, 18015
- Bioengineering Program, Lehigh University, Bethlehem, PA, United States of America, 18015
- * E-mail: (R.E. Tanzi); (CZ)
| |
Collapse
|
7
|
Abstract
Many of the major discoveries in the fields of genetics and developmental biology have been made using the fruit fly, Drosophila melanogaster. With regard to heart development, the conserved network of core cardiac transcription factors that underlies cardiogenesis has been studied in great detail in the fly, and the importance of several signaling pathways that regulate heart morphogenesis, such as Slit/Robo, was first shown in the fly model. Recent technological advances have led to a large increase in the genomic data available from patients with congenital heart disease (CHD). This has highlighted a number of candidate genes and gene networks that are potentially involved in CHD. To validate genes and genetic interactions among candidate CHD-causing alleles and to better understand heart formation in general are major tasks. The specific limitations of the various cardiac model systems currently employed (mammalian and fish models) provide a niche for the fly model, despite its evolutionary distance to vertebrates and humans. Here, we review recent advances made using the Drosophila embryo that identify factors relevant for heart formation. These underline how this model organism still is invaluable for a better understanding of CHD.
Collapse
|
8
|
Zmojdzian M, Jagla K. Tailup plays multiple roles during cardiac outflow assembly in Drosophila. Cell Tissue Res 2014; 354:639-45. [PMID: 23797334 DOI: 10.1007/s00441-013-1644-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/22/2013] [Indexed: 01/15/2023]
Abstract
The Drosophila LIM-homeodomain transcription factor Tailup and its vertebrate counterpart Islet1 are expressed in cardiac progenitor cells where they play a specification role. Loss of function of Islet1 leads to a complete absence of the right ventricle and affects the development of the cardiac outflow tract in mouse embryos. Similarly, tailup mutant embryos display a reduced number of cardiac cells but the role of tailup in cardiac outflow formation in Drosophila remains unknown. Here, we show that tailup is expressed in the main Drosophila cardiac outflow components, i.e., heart anchoring cells (HANC) and cardiac outflow muscles (COM) and that loss of its function and/or tissue-specific knockdowns dramatically affect cardiac outflow morphogenesis. Our data demonstrate that tailup plays many roles and is required for the acquisition of HANC and COM properties. We also show that tailup regulates HANC motility, COM shapes and their attachment to the heart tip and genetically interacts with ladybird, shotgun and slit, which are known to be involved in cardiac outflow assembly. Furthemore, using tissue-specific overexpression of dominant negative tailup constructs lacking sequences encoding either the homeodomain or the LIM domain, we demonstrate that tailup can exert its function not only in transcription factor mode but also via its protein-protein interaction domain. We identify Tailup as an evolutionarily-conserved regulator of cardiac outflow formation and provide further evidence for its conserved role in heart development.
Collapse
|
9
|
Li A, Ahsen OO, Liu JJ, Du C, McKee ML, Yang Y, Wasco W, Newton-Cheh CH, O'Donnell CJ, Fujimoto JG, Zhou C, Tanzi RE. Silencing of the Drosophila ortholog of SOX5 in heart leads to cardiac dysfunction as detected by optical coherence tomography. Hum Mol Genet 2013; 22:3798-806. [PMID: 23696452 DOI: 10.1093/hmg/ddt230] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The SRY-related HMG-box 5 (SOX5) gene encodes a member of the SOX family of transcription factors. Recently, genome-wide association studies have implicated SOX5 as a candidate gene for susceptibility to four cardiac-related endophenotypes: higher resting heart rate (HR), the electrocardiographic PR interval, atrial fibrillation and left ventricular mass. We have determined that human SOX5 has a highly conserved Drosophila ortholog, Sox102F, and have employed transgenic Drosophila models to quantitatively measure cardiac function in adult flies. For this purpose, we have developed a high-speed and ultrahigh-resolution optical coherence tomography imaging system, which enables rapid cross-sectional imaging of the heart tube over various cardiac cycles for the measurement of cardiac structural and dynamical parameters such as HR, dimensions and areas of heart chambers, cardiac wall thickness and wall velocities. We have found that the silencing of Sox102F resulted in a significant decrease in HR, heart chamber size and cardiac wall velocities, and a significant increase in cardiac wall thickness that was accompanied by disrupted myofibril structure in adult flies. In addition, the silencing of Sox102F in the wing led to increased L2, L3 and wing marginal veins and increased and disorganized expression of wingless, the central component of the Wnt signaling pathway. Collectively, the silencing of Sox102F resulted in severe cardiac dysfunction and structural defects with disrupted Wnt signaling transduction in flies. This implicates an important functional role for SOX5 in heart and suggests that the alterations in SOX5 levels may contribute to the pathogenesis of multiple cardiac diseases or traits.
Collapse
Affiliation(s)
- Airong Li
- Genetics and Aging Research Unit, Department of Neurology, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Li A, Zhou C, Moore J, Zhang P, Tsai TH, Lee HC, Romano DM, McKee ML, Schoenfeld DA, Serra MJ, Raygor K, Cantiello HF, Fujimoto JG, Tanzi RE. Changes in the expression of the Alzheimer’s disease-associated presenilin gene in drosophila heart leads to cardiac dysfunction. Curr Alzheimer Res 2011; 8:313-22. [PMID: 21524270 DOI: 10.2174/156720511795563746] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 10/15/2010] [Indexed: 12/22/2022]
Abstract
Mutations in the presenilin genes cause the majority of early-onset familial Alzheimer’s disease. Recently, presenilin mutations have been identified in patients with dilated cardiomyopathy (DCM), a common cause of heart failure and the most prevalent diagnosis in cardiac transplantation patients. However, the molecular mechanisms, by which presenilin mutations lead to either AD or DCM, are not yet understood. We have employed transgenic Drosophila models and optical coherence tomography imaging technology to analyze cardiac function in live adult Drosophila. Silencing of Drosophila ortholog of presenilins (dPsn) led to significantly reduced heart rate and remarkably age-dependent increase in end-diastolic vertical dimensions. In contrast, overexpression of dPsn increased heart rate. Either overexpression or silencing of dPsn resulted in irregular heartbeat rhythms accompanied by cardiomyofibril defects and mitochondrial impairment. The calcium channel receptor activities in cardiac cells were quantitatively determined via real-time RT-PCR. Silencing of dPsn elevated dIP3R expression, and reduced dSERCA expression; overexprerssion of dPsn led to reduced dRyR expression. Moreover, overexpression of dPsn in wing disc resulted in loss of wing phenotype and reduced expression of wingless. Our data provide novel evidence that changes in presenilin level leads to cardiac dysfunction, owing to aberrant calcium channel receptor activities and disrupted Wnt signaling transduction, indicating a pathogenic role for presenilin mutations in DCM pathogenesis.
Collapse
Affiliation(s)
- A Li
- Genetics and Aging Research Unit, Department of Neurology, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Piazza N, Wessells RJ. Drosophila models of cardiac disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:155-210. [PMID: 21377627 PMCID: PMC3551295 DOI: 10.1016/b978-0-12-384878-9.00005-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The fruit fly Drosophila melanogaster has emerged as a useful model for cardiac diseases, both developmental abnormalities and adult functional impairment. Using the tools of both classical and molecular genetics, the study of the developing fly heart has been instrumental in identifying the major signaling events of cardiac field formation, cardiomyocyte specification, and the formation of the functioning heart tube. The larval stage of fly cardiac development has become an important model system for testing isolated preparations of living hearts for the effects of biological and pharmacological compounds on cardiac activity. Meanwhile, the recent development of effective techniques to study adult cardiac performance in the fly has opened new uses for the Drosophila model system. The fly system is now being used to study long-term alterations in adult performance caused by factors such as diet, exercise, and normal aging. The fly is a unique and valuable system for the study of such complex, long-term interactions, as it is the only invertebrate genetic model system with a working heart developmentally homologous to the vertebrate heart. Thus, the fly model combines the advantages of invertebrate genetics (such as large populations, facile molecular genetic techniques, and short lifespan) with physiological measurement techniques that allow meaningful comparisons with data from vertebrate model systems. As such, the fly model is well situated to make important contributions to the understanding of complicated interactions between environmental factors and genetics in the long-term regulation of cardiac performance.
Collapse
Affiliation(s)
- Nicole Piazza
- University of Michigan Medical School, Ann Arbor, MI, USA
| | | |
Collapse
|
12
|
Regulation and functions of the lms homeobox gene during development of embryonic lateral transverse muscles and direct flight muscles in Drosophila. PLoS One 2010; 5:e14323. [PMID: 21179520 PMCID: PMC3002276 DOI: 10.1371/journal.pone.0014323] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 11/16/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Patterning and differentiation of developing musculatures require elaborate networks of transcriptional regulation. In Drosophila, significant progress has been made into identifying the regulators of muscle development and defining their interactive networks. One major family of transcription factors involved in these processes consists of homeodomain proteins. In flies, several members of this family serve as muscle identity genes to specify the fates of individual muscles, or groups thereof, during embryonic and/or adult muscle development. Herein, we report on the expression and function of a new Drosophila homeobox gene during both embryonic and adult muscle development. METHODOLOGY/PRINCIPAL FINDINGS The newly described homeobox gene, termed lateral muscles scarcer (lms), which has yet uncharacterized orthologs in other invertebrates and primitive chordates but not in vertebrates, is expressed exclusively in subsets of developing muscle tissues. In embryos, lms is expressed specifically in the four lateral transverse (LT) muscles and their founder cells in each hemisegment, whereas in larval wing imaginal discs, it is expressed in myoblasts that develop into direct flight muscles (DFMs), which are important for proper wing positioning. We have analyzed the regulatory inputs of various other muscle identity genes with overlapping or complementary expression patterns towards the cell type specific regulation of lms expression. Further we demonstrate that lms null mutants exhibit reduced numbers of embryonic LT muscles, and null mutant adults feature held-out-wing phenotypes. We provide a detailed description of the pattern and morphology of the direct flight muscles in the wild type and lms mutant flies by using the recently-developed ultramicroscopy and show that, in the mutants, all DFMs are present and present normal morphologies. CONCLUSIONS/SIGNIFICANCE We have identified the homeobox gene lms as a new muscle identity gene and show that it interacts with various previously-characterized muscle identity genes to regulate normal formation of embryonic lateral transverse muscles. In addition, the direct flight muscles in the adults require lms for reliably exerting their functions in controlling wing postures.
Collapse
|
13
|
Hazelett DJ, Lakeland DL, Weiss JB. Affinity Density: a novel genomic approach to the identification of transcription factor regulatory targets. Bioinformatics 2009; 25:1617-24. [PMID: 19401399 PMCID: PMC2732317 DOI: 10.1093/bioinformatics/btp282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Methods: A new method was developed for identifying novel transcription factor regulatory targets based on calculating Local Affinity Density. Techniques from the signal-processing field were used, in particular the Hann digital filter, to calculate the relative binding affinity of different regions based on previously published in vitro binding data. To illustrate this approach, the complete genomes of Drosophila melanogaster and D.pseudoobscura were analyzed for binding sites of the homeodomain proteinc Tinman, an essential heart development gene in both Drosophila and Mouse. The significant binding regions were identified relative to genomic background and assigned to putative target genes. Valid candidates common to both species of Drosophila were selected as a test of conservation. Results: The new method was more sensitive than cluster searches for conserved binding motifs with respect to positive identification of known Tinman targets. Our Local Affinity Density method also identified a significantly greater proportion of Tinman-coexpressed genes than equivalent, optimized cluster searching. In addition, this new method predicted a significantly greater than expected number of genes with previously published RNAi phenotypes in the heart. Availability: Algorithms were implemented in Python, LISP, R and maxima, using MySQL to access locally mirrored sequence data from Ensembl (D.melanogaster release 4.3) and flybase (D.pseudoobscura). All code is licensed under GPL and freely available at http://www.ohsu.edu/cellbio/dev_biol_prog/affinitydensity/. Contact:hazelett@ohsu.edu
Collapse
Affiliation(s)
- Dennis J Hazelett
- Integrative Biosciences, Oregon Health and Science University, 611 SW Campus Drive, Portland, OR 97239, USA.
| | | | | |
Collapse
|
14
|
Iklé J, Elwell JA, Bryantsev AL, Cripps RM. Cardiac expression of the Drosophila Transglutaminase (CG7356) gene is directly controlled by myocyte enhancer factor-2. Dev Dyn 2008; 237:2090-9. [PMID: 18627097 DOI: 10.1002/dvdy.21624] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The myocyte enhancer factor-2 (MEF2) family of transcription factors plays key roles in the activation of muscle structural genes. In Drosophila, MEF2 accumulates at high levels in the embryonic muscles, where it activates target genes throughout the mesoderm. Here, we identify the Transglutaminase gene (Tg; CG7356) as a direct transcriptional target of MEF2 in the cardiac musculature. Tg is expressed in cells forming the inflow tracts of the dorsal vessel, and we identify the enhancer responsible for this expression. The enhancer contains three binding sites for MEF2, and can be activated by MEF2 in tissue culture and in vivo. Moreover, loss of MEF2 function, or removal of the MEF2 binding sites from the enhancer, results in loss of Tg expression. These studies identify a new MEF2 target in the cardiac musculature. These studies provide a possible mechanism for the activation of transglutaminase genes.
Collapse
Affiliation(s)
- Jennifer Iklé
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131-0001, USA
| | | | | | | |
Collapse
|
15
|
Tögel M, Pass G, Paululat A. The Drosophila wing hearts originate from pericardial cells and are essential for wing maturation. Dev Biol 2008; 318:29-37. [PMID: 18430414 DOI: 10.1016/j.ydbio.2008.02.043] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 02/14/2008] [Accepted: 02/15/2008] [Indexed: 11/19/2022]
Abstract
In addition to the heart proper, insects possess wing hearts in the thorax to ensure regular hemolymph flow through the narrow wings. In Drosophila, the wing hearts consist of two bilateral muscular pumps of unknown origin. Here, we present the first developmental study on these organs and report that the wing hearts originate from eight embryonic progenitor cells arising in two pairs in parasegments 4 and 5. These progenitors represent a so far undescribed subset of the Even-skipped positive pericardial cells (EPC) and are characterized by the early loss of tinman expression in contrast to the continuously Tinman positive classical EPCs. Ectopic expression of Tinman in the wing heart progenitors omits organ formation, indicating a crucial role for Tinman during progenitor specification. The subsequent postembryonic development is a highly dynamic process, which includes proliferation and two relocation events. Adults lacking wing hearts display a severe wing phenotype and are unable to fly. The phenotype is caused by omitted clearance of the epidermal cells from the wings during maturation, which inhibits the formation of a flexible wing blade. This indicates that wing hearts are required for proper wing morphogenesis and functionality.
Collapse
Affiliation(s)
- Markus Tögel
- Department of Biology, University of Osnabrück, Zoology/Developmental Biology, Barbarastrasse 11, D-49069 Osnabrück, Germany
| | | | | |
Collapse
|
16
|
Zmojdzian M, Da Ponte JP, Jagla K. Cellular components and signals required for the cardiac outflow tract assembly in Drosophila. Proc Natl Acad Sci U S A 2008; 105:2475-80. [PMID: 18250318 PMCID: PMC2268161 DOI: 10.1073/pnas.0706402105] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Indexed: 11/18/2022] Open
Abstract
Specification of cardiac primordia and formation of the Drosophila heart tube is highly reminiscent of the early steps of vertebrate heart development. We previously reported that the final morphogenesis of the Drosophila heart involves a group of nonmesodermal cells called heart-anchoring cells and a pair of derived from the pharyngeal mesoderm cardiac outflow muscles. Like the vertebrate cardiac neural crest cells, heart-anchoring cells migrate, interact with the tip of the heart, and participate in shaping the cardiac outflow tract. To better understand this process, we performed an in-depth analysis of how the Drosophila outflow tract is formed. We found that the most anterior cardioblasts that form a central outflow tract component, the funnel-shaped heart tip, do not originate from the cardiac primordium. They are initially associated with the pharyngeal cardiac outflow muscles and join the anterior aorta during outflow tract assembly. The particular morphology of the heart tip is disrupted in embryos in which heart-anchoring cells were ablated, revealing their critical role in outflow tract morphogenesis. We also demonstrate that Slit and Robo are required for directed movements of heart-anchoring cells toward the heart tip and that the cell-cell contact between the heart-anchoring cells and the ladybird-expressing cardioblasts is critically dependent on DE-cadherin Shotgun. Our observations suggest that the similarities between Drosophila and vertebrate cardiogenesis extend beyond the early developmental events.
Collapse
Affiliation(s)
- Monika Zmojdzian
- Unité Mixte de Recherche, Centre National de la Recherche Scientifique 6247-GreD, Clermont–Ferrand University, Institut National de la Santé et de la Recherche Médicale Clermont–Ferrand, 28 Place Henri Dunant, F-63000 Clermont–Ferrand, France
| | - Jean Philippe Da Ponte
- Unité Mixte de Recherche, Centre National de la Recherche Scientifique 6247-GreD, Clermont–Ferrand University, Institut National de la Santé et de la Recherche Médicale Clermont–Ferrand, 28 Place Henri Dunant, F-63000 Clermont–Ferrand, France
| | - Krzysztof Jagla
- Unité Mixte de Recherche, Centre National de la Recherche Scientifique 6247-GreD, Clermont–Ferrand University, Institut National de la Santé et de la Recherche Médicale Clermont–Ferrand, 28 Place Henri Dunant, F-63000 Clermont–Ferrand, France
| |
Collapse
|
17
|
Junion G, Bataillé L, Jagla T, Da Ponte JP, Tapin R, Jagla K. Genome-wide view of cell fate specification: ladybird acts at multiple levels during diversification of muscle and heart precursors. Genes Dev 2008; 21:3163-80. [PMID: 18056427 DOI: 10.1101/gad.437307] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Correct diversification of cell types during development ensures the formation of functional organs. The evolutionarily conserved homeobox genes from ladybird/Lbx family were found to act as cell identity genes in a number of embryonic tissues. A prior genetic analysis showed that during Drosophila muscle and heart development ladybird is required for the specification of a subset of muscular and cardiac precursors. To learn how ladybird genes exert their cell identity functions we performed muscle and heart-targeted genome-wide transcriptional profiling and a chromatin immunoprecipitation (ChIP)-on-chip search for direct Ladybird targets. Our data reveal that ladybird not only contributes to the combinatorial code of transcription factors specifying the identity of muscle and cardiac precursors, but also regulates a large number of genes involved in setting cell shape, adhesion, and motility. Among direct ladybird targets, we identified bric-a-brac 2 gene as a new component of identity code and inflated encoding alphaPS2-integrin playing a pivotal role in cell-cell interactions. Unexpectedly, ladybird also contributes to the regulation of terminal differentiation genes encoding structural muscle proteins or contributing to muscle contractility. Thus, the identity gene-governed diversification of cell types is a multistep process involving the transcriptional control of genes determining both morphological and functional properties of cells.
Collapse
Affiliation(s)
- Guillaume Junion
- Institut National de la Santé et de la Recherche Médicale U384, 63000 Clermont-Ferrand, France
| | | | | | | | | | | |
Collapse
|
18
|
Tao Y, Christiansen AE, Schulz RA. Second chromosome genes required for heart development inDrosophila melanogaster. Genesis 2007; 45:607-17. [DOI: 10.1002/dvg.20333] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Wei K, Chen J, Akrami K, Sekhon R, Chen F. Generation of mice deficient for Lbx2, a gene expressed in the urogenital system, nervous system, and Pax3 dependent tissues. Genesis 2007; 45:361-8. [PMID: 17492753 DOI: 10.1002/dvg.20302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lbx2 is a member of the ladybird family of homeobox genes. The first murine ortholog identified, Lbx1, is required for hypaxial musculature and dorsal spinal cord neuron development. The second murine ortholog, Lbx2, is expressed in the developing urogenital and nervous systems. To elucidate the function of Lbx2, we generated a gene-targeted allele of Lbx2 in mice. Lbx2 deficiency did not impair mouse development, and Lbx2 null mice appeared healthy and fertile. Replacement of Lbx2 by the lacZ gene provides a valuable histological marker for Lbx2-expressing cells. Given the important role of Pax3 in neural crest, we intercrossed our Lbx2 deficient mice with Splotch Pax3 mutant mice to determine if Pax3 affects Lbx2 expression. There was reduced Lbx2 expression in dorsal root ganglia and cranial nerve ganglia with Pax3 deficiency, but not in the genital tubercle. This suggested that Pax3 is required for Lbx2 expression in affected neural crest-derived tissues.
Collapse
Affiliation(s)
- Ke Wei
- Cardiovascular Research Laboratory, Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
The Drosophila heart, also called the dorsal vessel, is an organ for hemolymph circulation that resembles the vertebrate heart at its transient linear tube stage. Dorsal vessel morphogenesis shares several similarities with early events of vertebrate heart development and has proven to be an insightful system for the study of cardiogenesis due to its relatively simple structure and the productive use of Drosophila genetic approaches. In this review, we summarize published findings on Drosophila heart development in terms of the regulators and genetic pathways required for cardiac cell specification and differentiation, and organ formation and function. Emerging genome-based strategies should further facilitate the use of Drosophila as an advantageous system in which to identify previously unknown genes and regulatory networks essential for normal cardiac development and function.
Collapse
Affiliation(s)
- Ye Tao
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | |
Collapse
|
21
|
Sellin J, Albrecht S, Kölsch V, Paululat A. Dynamics of heart differentiation, visualized utilizing heart enhancer elements of the Drosophila melanogaster bHLH transcription factor Hand. Gene Expr Patterns 2006; 6:360-75. [PMID: 16455308 DOI: 10.1016/j.modgep.2005.09.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 09/25/2005] [Indexed: 11/27/2022]
Abstract
Drosophila melanogaster has become one of the important model systems to investigate the development and differentiation of the heart. After 24h after egg deposition (h AED), a simple tube-like organ is formed, consisting of essentially only two cell types, the contractile cardioblasts and non-myogenic pericardial cells. In contrast to the detailed knowledge of heart formation during embryogenesis, only a few studies deal with later changes in heart morphology and/or function. This is mainly due to the difficulties to carry out whole mount stainings in later stages without complicated dissections or treatments of the cuticle and puparium. In this paper we describe the identification of a hand genomic region, which is fully sufficient to drive GFP expression in heart cells of embryos, larvae, and adults. This serves as an initial step to understand the position of hand in the early regulatory network in heart development. Furthermore, we demonstrate that our newly created GFP reporter line is extremely useful to study postembryonic heart differentiation. For the first time we document heart differentiation in living animals throughout all developmental stages of Drosophila melanogaster, including embryogenesis, all three larval stages, metamorphosis, and the adult life with respect to pericardial cells and cardiomyocytes.
Collapse
Affiliation(s)
- Julia Sellin
- Universität Osnabrück, Fachbereich Biologie/Chemie - Zoologie, Barbarastrasse 11, 49069 Osnabrück, Germany
| | | | | | | |
Collapse
|
22
|
De Graeve F, Jagla T, Daponte JP, Rickert C, Dastugue B, Urban J, Jagla K. The ladybird homeobox genes are essential for the specification of a subpopulation of neural cells. Dev Biol 2004; 270:122-34. [PMID: 15136145 DOI: 10.1016/j.ydbio.2004.02.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Revised: 02/06/2004] [Accepted: 02/09/2004] [Indexed: 11/26/2022]
Abstract
In Drosophila, neurons and glial cells are produced by neural precursor cells called neuroblasts (NBs), which can be individually identified. Each NB generates a characteristic cell lineage specified by a precise spatiotemporal control of gene expression within the NB and its progeny. Here we show that the homeobox genes ladybird early and ladybird late are expressed in subsets of cells deriving from neuroblasts NB 5-3 and NB 5-6 and are essential for their correct development. Our analysis revealed that ladybird in Drosophila, like their vertebrate orthologous Lbx1 genes, play an important role in cell fate specification processes. Among those cells that express ladybird are NB 5-6-derived glial cells. In ladybird loss-of-function mutants, the NB 5-6-derived exit glial cells are absent while overexpression of these genes leads to supernumerary glial cells of this type. Furthermore, aberrant glial cell positioning and aberrant spacing of axonal fascicles in the nerve roots observed in embryos with altered ladybird function suggest that the ladybird genes might also control directed cell movements and cell-cell interactions within the developing Drosophila ventral nerve cord.
Collapse
|
23
|
Brown J, Chazaud C, Irving C. A Nice development: The first joint meeting of the British and French Societies for Developmental Biology, 13-16th September, 2003, Nice, France. Dev Dyn 2004; 230:385-8. [PMID: 15162518 DOI: 10.1002/dvdy.20062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Held this autumn on the beautiful Cote d'Azur, the first joint meeting of the BSDB and SFBD provided delegates with the perfect informal setting for discussion spanning a broad cross-section of Developmental Biology. Participants' interests were diverse, ranging from the implementation of genome-wide approaches aimed at identifying all the molecular components of cell proliferation, signalling, patterning, and morphogenesis, to those engaged in capturing mesmerising glimpses of the minute and intricate workings of the cell. The meeting considered a wide spectrum of model organisms, including the simple plant Arabidopsis, the invertebrates Dictyostelium, Caenorhabditis elegans, and Drosophila melanogaster, the ascidian Ciona intestinalis, and the vertebrates Xenopus, zebrafish, chick, and mouse. Such a diverse approach served to highlight both similarities and differences in the molecular mechanisms that govern embryonic development among different species. Here, we highlight a few aspects of the meeting that illustrate this point.
Collapse
Affiliation(s)
- Jennifer Brown
- Department of Human Anatomy and Genetics, Oxford University, Oxford, United Kingdom.
| | | | | |
Collapse
|