1
|
Choudhury TZ, Gilbert BL, Garg V. Genetic and Environmental Contributors To Congenital Heart Disease. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2025; 27:36. [PMID: 40438121 PMCID: PMC12106511 DOI: 10.1007/s11936-025-01091-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2025] [Indexed: 06/01/2025]
Abstract
Purpose of Review Paradigms surrounding congenital heart disease (CHD) etiology represent an evolving area of study. Traditionally, genetic causes of CHD have been classified into chromosomal abnormalities, copy number variation, and single-gene disorders, while environmental contributors include external and intrinsic maternal factors that impair cardiac development. Here, we summarize established causes of CHD and highlight emerging insights into CHD pathogenesis that may inform future treatment options. Recent Findings Recent advancements in next-generation sequencing technologies have uncovered novel genetic etiologies underlying CHD including oligogenic inheritance and pathogenic noncoding variation. In addition, industrialization and transformation of society has introduced new environmental risk factors that may contribute to CHD. Further, mechanistic insight into both genetic and environmental factors underlying CHD has led to discovery of novel therapeutic strategies. Summary New methodologies have greatly improved our comprehension of the heterogeneous mechanisms underlying CHD, catalyzing the discovery of effective therapeutic strategies to reduce CHD incidence.
Collapse
Affiliation(s)
- Talita Z. Choudhury
- Center for Cardiovascular Research, The Heart Center, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Room WB4275, Columbus, OH 43205 USA
| | - Benjamin L. Gilbert
- Center for Cardiovascular Research, The Heart Center, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Room WB4275, Columbus, OH 43205 USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH USA
| | - Vidu Garg
- Center for Cardiovascular Research, The Heart Center, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Room WB4275, Columbus, OH 43205 USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH USA
- Department of Pediatrics, The Ohio State University, Columbus, OH USA
| |
Collapse
|
2
|
Cheng Y, Li Y, Zhang Y, Liu H, Yang B, Zhu J, Kuang H. Gestational exposure to micro- and nanoplastics leads to poor pregnancy outcomes by impairing placental trophoblast syncytialization. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025:126520. [PMID: 40414412 DOI: 10.1016/j.envpol.2025.126520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 05/13/2025] [Accepted: 05/23/2025] [Indexed: 05/27/2025]
Abstract
The omnipresent micro- and nanoplastics (MNPs), emerging environmental contaminants, have caused a widespread concern because of their potential threats to public health. Increasing evidence has indicated that MNPs were deeply involved in poor pregnancy outcomes, but the detailed mechanism remains obscure. In this research, we firstly identified that maternal exposure to MNPs during gestation increased both the number and rate of embryo resorption, while reducing embryonic weight, placental diameter and placental weight. This was accompanied by disrupted progesterone and estradiol synthesis in MNPs-treated mouse placentas. In addition, our data suggested that MNPs exposure disturbed placental development, as evidenced by the reduction of the total area of placenta, area of spongiotrophoblast layer and area of labyrinth layer. Subsequently, in vivo and in vitro experiments further indicated that MNPs compromised syncytialization process and decreased the expression of syncytialization markers in mouse placentas and human placental trophoblasts. Further investigation indicated that PERK/eIF2α/ATF4 signaling was activated in MNPs-treated mouse placentas and human placental trophoblasts. More importantly,inhibition of PERK partially restored syncytialization insufficiency caused by MNPs administration. On the whole, our results suggested that gestational exposure to MNPs disturbed placental trophoblasts syncytialization possibly through activating PERK/eIF2α/ATF4 pathway, resulting in aberrant placentation and poor pregnancy outcomes.
Collapse
Affiliation(s)
- Yanmin Cheng
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Yue Li
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Yulu Zhang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Hui Liu
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Bei Yang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Jun Zhu
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Haibin Kuang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
3
|
Hawkey-Noble A, Tobin C, Ameen MT, Osmond L, Gill C, Bottaro CS, Young TL, French CR. The P4-phospholipid flippase Atp11a is required for maintenance of eye and ear structure in zebrafish. J Cell Sci 2025; 138:jcs263657. [PMID: 40223426 DOI: 10.1242/jcs.263657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 02/17/2025] [Indexed: 04/15/2025] Open
Abstract
The atp11a gene encodes a phospholipid flippase protein required to flip phosphatidylserine (PS) and phosphatidylethanolamine (PE) from the outer leaflet of the cytoplasmic membrane to the inner leaflet. Mutations in ATP11A have been described in individuals with sensorineural hearing loss and neurological deterioration; however, little is known regarding the mechanism by which loss of atp11a results in such phenotypes. To this end, we created loss-of-function atp11a mutant zebrafish to characterize potential disease states. We demonstrate that mutant atp11a zebrafish display a reduced number of stereocilia in the larval ear and a reduced number of hair cells in some sensory neuromasts, indicating that these fish represent an ideal model for studying atp11a-attributable hearing loss. In addition, atp11a mutant zebrafish raised in a standard light cycle have reduced photoreceptor outer segments, the severity of which is lessened when mutant larvae are raised in the dark. Photoreceptors that do remain in homozygous atp11a mutants undergo mitochondrial fission and produce an increased number of mitochondria, suggesting that defects in energy homeostasis may contribute to or result from outer segment degradation.
Collapse
Affiliation(s)
- Alexia Hawkey-Noble
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's NL A1B 3V6, Canada
| | - Cameron Tobin
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's NL A1B 3V6, Canada
| | - Muhammad T Ameen
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's NL A1B 3V6, Canada
| | - Liam Osmond
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's NL A1B 3V6, Canada
| | - Colby Gill
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's NL A1B 3V6, Canada
| | - Christina S Bottaro
- Department of Chemistry, Faculty of Science, Memorial University of Newfoundland, St John's NL A1C 5S7, Canada
| | - Terry-Lynn Young
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's NL A1B 3V6, Canada
| | - Curtis R French
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's NL A1B 3V6, Canada
| |
Collapse
|
4
|
Krala A, Tsolova AO, Radford BN, Jadli AS, Zhao X, Blackwell D, Narang A, Dean W, Hemberger M. Phospholipid flippase ATP11A brokers uterine epithelial integrity and function. Proc Natl Acad Sci U S A 2025; 122:e2420617122. [PMID: 40261925 PMCID: PMC12054786 DOI: 10.1073/pnas.2420617122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/21/2025] [Indexed: 04/24/2025] Open
Abstract
Uterine adaptations driven by the steroid hormones estrogen and progesterone are pivotal for embryo implantation and, ultimately, for a successful pregnancy. Here, we show in mice that genetic ablation of the membrane lipid flippase Atp11a causes severe deficits in this hormonal response and profound defects in the morphological organization and transcriptional profile of the uterine epithelial compartment where Atp11a is expressed. Atp11a-null uterine epithelial cells lack tight junctions, and the luminal epithelium exhibits profound disruptions to cellular morphology. Interestingly, the specification of luminal epithelial cells remains incomplete as they maintain expression of the normally gland-restricted marker FOXA2. The uterine glands of Atp11a-null females are depleted for progenitor cells marked by SOX9, PAX8, LGR5, and PROM1. Collectively, these findings point to a uterine receptivity deficit that underpins the frequent failure of Atp11a-depleted females to establish a successful pregnancy. Most intriguingly, however, loss of only a single functional Atp11a allele causes a higher frequency of abnormal placental trophoblast differentiation as well as a higher incidence of developmental heart defects in wild-type embryos. These data emphasize the far-reaching impact of uterine dysfunction on reproductive outcome and highlight the importance of the maternal genotype in the etiology of developmental disorders.
Collapse
Affiliation(s)
- Alexa Krala
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, ABT2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, ABT2N 4N1, Canada
| | - Aleksandra O. Tsolova
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, ABT2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, ABT2N 4N1, Canada
| | - Bethany N. Radford
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, ABT2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, ABT2N 4N1, Canada
| | - Anshul S. Jadli
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, ABT2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, ABT2N 4N1, Canada
| | - Xiang Zhao
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, ABT2N 4N1, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, ABT2N 4N1, Canada
| | - Danielle Blackwell
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, ABT2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, ABT2N 4N1, Canada
| | - Ankita Narang
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, ABT2N 4N1, Canada
| | - Wendy Dean
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, ABT2N 4N1, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, ABT2N 4N1, Canada
| | - Myriam Hemberger
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, ABT2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, ABT2N 4N1, Canada
| |
Collapse
|
5
|
Benouda I, Vaiman D, Miralles F. Trophoblast Fusion in Hypertensive Disorders of Pregnancy and Preeclampsia. Int J Mol Sci 2025; 26:2859. [PMID: 40243430 PMCID: PMC11988414 DOI: 10.3390/ijms26072859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Trophoblast fusion into the multinucleated syncytiotrophoblast (SCT) appears as an inescapable feature of placentation in mammals and other viviparous species. The trophoblast cells underlying the syncytium are considered a reservoir for the restoration of the aging peripheric structure. The transition from trophoblasts to SCTs has to be tightly regulated, and could be altered by genetic anomalies or environmental exposure. The resulting defective placental function could be one of the causes of the major placental diseases, such as preeclampsia (PE) and Intra-Uterine Growth Restriction (IUGR). This review attempts to take stock of the current knowledge about fusion mechanisms and their deregulations.
Collapse
Affiliation(s)
| | - Daniel Vaiman
- Institut Cochin, U1016, INSERM, UMR8104 CNRS, Université de Paris, 24 rue du Faubourg Saint-Jacques, 75014 Paris, France; (I.B.); (F.M.)
| | | |
Collapse
|
6
|
Pulica R, Aquib A, Varsanyi C, Gadiyar V, Wang Z, Frederick T, Calianese DC, Patel B, de Dios KV, Poalasin V, De Lorenzo MS, Kotenko SV, Wu Y, Yang A, Choudhary A, Sriram G, Birge RB. Dys-regulated phosphatidylserine externalization as a cell intrinsic immune escape mechanism in cancer. Cell Commun Signal 2025; 23:131. [PMID: 40069722 PMCID: PMC11900106 DOI: 10.1186/s12964-025-02090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
The negatively charged aminophospholipid, phosphatidylserine (PS), is typically restricted to the inner leaflet of the plasma membrane under normal, healthy physiological conditions. PS is irreversibly externalized during apoptosis, where it serves as a signal for elimination by efferocytosis. PS is also reversibly and transiently externalized during cell activation such as platelet and immune cell activation. These events associated with physiological PS externalization are tightly controlled by the regulated activation of flippases and scramblases. Indeed, improper regulation of PS externalization results in thrombotic diseases such as Scott Syndrome, a defect in coagulation and thrombin production, and in the case of efferocytosis, can result in autoimmunity such as systemic lupus erythematosus (SLE) when PS-mediated apoptosis and efferocytosis fails. The physiological regulation of PS is also perturbed in cancer and during viral infection, whereby PS becomes persistently exposed on the surface of such stressed and diseased cells, which can lead to chronic thrombosis and chronic immune evasion. In this review, we summarize evidence for the dysregulation of PS with a main focus on cancer biology and the pathogenic mechanisms for immune evasion and signaling by PS, as well as the discussion of new therapeutic strategies aimed to target externalized PS. We posit that chronic PS externalization is a universal and agnostic marker for diseased tissues, and in cancer, likely reflects a cell intrinsic form of immune escape. The continued development of new therapeutic strategies for targeting PS also provides rationale for their co-utility as adjuvants and with immune checkpoint therapeutics.
Collapse
Affiliation(s)
- Rachael Pulica
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Ahmed Aquib
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Christopher Varsanyi
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Varsha Gadiyar
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Ziren Wang
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Trevor Frederick
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - David C Calianese
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Bhumik Patel
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Kenneth Vergel de Dios
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Victor Poalasin
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Mariana S De Lorenzo
- Department of Cell Biology and Molecular Medicine, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Sergei V Kotenko
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Yi Wu
- Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Aizen Yang
- Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Alok Choudhary
- International Center for Public Health, Public Health Research Institute, Newark, NJ, 07103, USA
| | - Ganapathy Sriram
- Department Biological, Chemical and Environmental Sciences, Wheaton College, 26 E Main St, Norton, MA, 02766, USA
| | - Raymond B Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA.
| |
Collapse
|
7
|
Shin HW, Takatsu H. Substrates, regulation, cellular functions, and disease associations of P4-ATPases. Commun Biol 2025; 8:135. [PMID: 39875509 PMCID: PMC11775268 DOI: 10.1038/s42003-025-07549-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
P4-ATPases, a subfamily of the P-type ATPase superfamily, play a crucial role in translocating membrane lipids from the exoplasmic/luminal leaflet to the cytoplasmic leaflet. This process generates and regulates transbilayer lipid asymmetry. These enzymes are conserved across all eukaryotes, and the human genome encodes 14 distinct P4-ATPases. Initially identified as aminophospholipid translocases, P4-ATPases have since been found to translocate other phospholipids, including phosphatidylcholine, phosphatidylinositol, and even glycosphingolipids. Recent advances in structural analysis have significantly improved our understanding of the lipid transport machinery associated with P4-ATPases, as documented in recent reviews. In this review, we highlight the emerging evidence related to substrate diversity, the regulation of cellular localization, enzymatic activities, and their impact on organism homeostasis and diseases.
Collapse
Affiliation(s)
- Hye-Won Shin
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Hiroyuki Takatsu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
8
|
Luo C, Xu X, Zhao C, Wang Q, Wang R, Lang D, Zhang J, Hu W, Mu Y. Insight Into Body Size Evolution in Aves: Based on Some Body Size-Related Genes. Integr Zool 2024. [PMID: 39663511 DOI: 10.1111/1749-4877.12927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/21/2024] [Accepted: 10/31/2024] [Indexed: 12/13/2024]
Abstract
Birds exhibit remarkable variations in body size, making them an ideal group for the study of adaptive evolution. However, the genetic mechanisms underlying body size evolution in avian species remain inadequately understood. This study investigates the evolutionary patterns of avian body size by analyzing 15 body-size-related genes, including GHSR, IGF2BP1, and IGFBP7 from the growth hormone/insulin-like growth factor axis, EIF2AK3, GALNS, NCAPG, PLOD1, and PLAG1 associated with tall stature, and ACAN, OBSL1, and GRB10 associated with short stature, four genes previously reported in avian species: ATP11A, PLXDC2, TNS3, and TUBGCP3. The results indicate significant adaptive evolution of body size-related genes across different avian lineages. Notably, in the IGF2BP1 gene, a significant positive correlation was observed between the evolutionary rate and body size, suggesting that larger bird species exhibit higher evolutionary rates of the IGF2BP1 gene. Furthermore, the IGFBP7 and PLXDC2 genes demonstrated accelerated evolution in large- and medium-sized birds, respectively, indicating distinct evolutionary patterns for these genes among birds of different sizes. The branch-site model analysis identified numerous positively selected sites, primarily concentrated near functional domains, thereby reinforcing the critical role of these genes in body size evolution. Interestingly, extensive convergent evolution was detected in lineages with larger body sizes. This study elucidates the genetic basis of avian body size evolution for the first time, identifying adaptive evolutionary patterns of body size-related genes across birds of varying sizes and documenting patterns of convergent evolution. These findings provide essential genetic data and novel insights into the adaptive evolution of body size in birds.
Collapse
Affiliation(s)
- Chaoyang Luo
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
| | - Xionghui Xu
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
| | - Chengfa Zhao
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
| | - Qiuping Wang
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
| | - Rongxing Wang
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
| | - Datian Lang
- Department of Agronomy and Life Science, Zhaotong University, Zhaotong, Yunnan, China
| | - Juan Zhang
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, China
| | - Wenxian Hu
- Erhai Watershed Ecological Environment Quality Testing Engineering Research Center of Yunnan Provincial Universities, Erhai Research Institute, West Yunnan University of Applied Sciences, Dali, Yunnan, China
| | - Yuan Mu
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali, Yunnan, China
| |
Collapse
|
9
|
Qi W, Ying Y, Wu P, Dong N, Fu W, Liu Q, Ward N, Dong X, Zhao RC, Wang J. Inhibition of miR-4763-3p expression activates the PI3K/mTOR/Bcl2 autophagy signaling pathway to ameliorate cognitive decline. Int J Biol Sci 2024; 20:5999-6017. [PMID: 39664587 PMCID: PMC11628338 DOI: 10.7150/ijbs.103225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/27/2024] [Indexed: 12/13/2024] Open
Abstract
Cognitive decline and memory impairment are subsequently result in neuronal apoptosis and synaptic damage. Aberrant regulation of microRNAs has been implicated in the pathogenesis of Alzheimer's disease (AD) and may play a pivotal role in the early stages of the disease. In this study, we identified the critical role of miR-4763-3p in AD pathogenesis, focusing on early-stage mild cognitive impairment (AD-MCI). Leveraging fluorescence in situ hybridization, we observed miR-4763-3p upregulation in AD hippocampal tissue, colocalizing with Aβ and Tau. Antagomir-mediated inhibition of miR-4763-3p ameliorated cognitive decline in AD-MCI mice. RNA-seq and functional assays revealed that miR-4763-3p targets ATP11A, and antagomir enhancing inward flipping of the "eat me" phosphatidylserine signal on the surface of neuronal cells, autophagy, and clearance of Aβ/lipofuscin, while reducing neuroinflammation and neuronal apoptosis. Mechanistically, miR-4763-3p modulates the PI3K/AKT/mTOR/Bcl2 pathway, thereby promoting neuronal autophagy and reducing apoptotic crosstalk. These findings underscore miR-4763-3p as a therapeutic target for AD-MCI, offering a novel strategy to enhance neuronal autophagy, alleviate inflammation, and improve cognitive function.
Collapse
Affiliation(s)
- Wenxin Qi
- School of Life Sciences, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Yiwei Ying
- School of Life Sciences, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Peiru Wu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Naijun Dong
- School of Life Sciences, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Wenjun Fu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Qian Liu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Natalie Ward
- Banner Ocotillo Medical Center, 1405 S Alma School Rd, Chandler, AZ 85286, USA
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai, China
| | - Robert Chunhua Zhao
- School of Life Sciences, Shanghai University, Shanghai, China
- Centre of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jiao Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
10
|
Wang Z, Xue M, Liu J, Jiang H, Li F, Xu M, Wang H. ATP11A Promotes Epithelial-mesenchymal Transition in Gastric Cancer Cells via the Hippo Pathway. J Cancer 2024; 15:5477-5491. [PMID: 39247595 PMCID: PMC11375558 DOI: 10.7150/jca.97895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/30/2024] [Indexed: 09/10/2024] Open
Abstract
Background: ATP11A, a P-type ATPase, functions as flippases at the plasma membrane to maintain cellular function and vitality in several cancers. However, the role of ATP11A in gastric cancer remains unknown. This study aimed to identify ATP11A related to the biological behavior of gastric cancer, and elucidate the underlying mechanism. Methods: The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases were used to analyze the expression and prognosis of ATP11A. The biofunctions of ATP11A were explored through Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA). The expression of ATP11A were validated by immunohistochemistry (IHC), qRT-PCR and Western blotting. Transwell, wound healing, CCK8 and colony-formation were to detected the migration, invasion and proliferation of gastric cancer cells. The epithelial-mesenchymal transition (EMT) and Hippo pathway markers were examined by Western blotting. Results: The expression of ATP11A was higher in gastric cancer tissues than in normal tissues, and high ATP11A levels were related to worse prognosis of gastric cancer patients. Additionally, we proved that ATP11A promoted the migration, invasion and proliferation in gastric cancer cells. Furthermore, ATP11A was found to promote EMT by devitalizing the Hippo pathway. Conclusion: ATP11A promoted migration, invasion, proliferation and EMT via Hippo signaling devitalization in gastric cancer cells.
Collapse
Affiliation(s)
- Zhihua Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, China
| | - Mingmiao Xue
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, China
| | - Junqiang Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, China
| | - Han Jiang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, China
| | - Feifan Li
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, China
| | - Huizhi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, China
| |
Collapse
|
11
|
Zang X, Gu S, Wang W, Shi J, Gan J, Hu Q, Zhou C, Ding Y, He Y, Jiang L, Gu T, Xu Z, Huang S, Yang H, Meng F, Li Z, Cai G, Hong L, Wu Z. Dynamic intrauterine crosstalk promotes porcine embryo implantation during early pregnancy. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1676-1696. [PMID: 38748354 DOI: 10.1007/s11427-023-2557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/21/2024] [Indexed: 08/09/2024]
Abstract
Dynamic crosstalk between the embryo and mother is crucial during implantation. Here, we comprehensively profile the single-cell transcriptome of pig peri-implantation embryos and corresponding maternal endometrium, identifying 4 different lineages in embryos and 13 cell types in the endometrium. Cell-specific gene expression characterizes 4 distinct trophectoderm subpopulations, showing development from undifferentiated trophectoderm to polar and mural trophectoderm. Dynamic expression of genes in different types of endometrial cells illustrates their molecular response to embryos during implantation. Then, we developed a novel tool, ExtraCellTalk, generating an overall dynamic map of maternal-foetal crosstalk using uterine luminal proteins as bridges. Through cross-species comparisons, we identified a conserved RBP4/STRA6 pathway in which embryonic-derived RBP4 could target the STRA6 receptor on stromal cells to regulate the interaction with other endometrial cells. These results provide insight into the maternal-foetal crosstalk during embryo implantation and represent a valuable resource for further studies to improve embryo implantation.
Collapse
Affiliation(s)
- Xupeng Zang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Shengchen Gu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Wenjing Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Junsong Shi
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, 527300, China
| | - Jianyu Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Qun Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Chen Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Yue Ding
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Yanjuan He
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Lei Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Ting Gu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, 510520, China
| | - Zheng Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, 510520, China
| | - Sixiu Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, 510520, China
| | - Huaqiang Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, 510520, China
| | - Fanming Meng
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zicong Li
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, 510520, China
| | - Gengyuan Cai
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, 510520, China
| | - Linjun Hong
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, 510520, China.
| | - Zhenfang Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, 527300, China.
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, 510520, China.
| |
Collapse
|
12
|
Norris AC, Mansueto AJ, Jimenez M, Yazlovitskaya EM, Jain BK, Graham TR. Flipping the script: Advances in understanding how and why P4-ATPases flip lipid across membranes. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119700. [PMID: 38382846 DOI: 10.1016/j.bbamcr.2024.119700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/15/2023] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Type IV P-type ATPases (P4-ATPases) are a family of transmembrane enzymes that translocate lipid substrates from the outer to the inner leaflet of biological membranes and thus create an asymmetrical distribution of lipids within membranes. On the cellular level, this asymmetry is essential for maintaining the integrity and functionality of biological membranes, creating platforms for signaling events and facilitating vesicular trafficking. On the organismal level, this asymmetry has been shown to be important in maintaining blood homeostasis, liver metabolism, neural development, and the immune response. Indeed, dysregulation of P4-ATPases has been linked to several diseases; including anemia, cholestasis, neurological disease, and several cancers. This review will discuss the evolutionary transition of P4-ATPases from cation pumps to lipid flippases, the new lipid substrates that have been discovered, the significant advances that have been achieved in recent years regarding the structural mechanisms underlying the recognition and flipping of specific lipids across biological membranes, and the consequences of P4-ATPase dysfunction on cellular and physiological functions. Additionally, we emphasize the requirement for additional research to comprehensively understand the involvement of flippases in cellular physiology and disease and to explore their potential as targets for therapeutics in treating a variety of illnesses. The discussion in this review will primarily focus on the budding yeast, C. elegans, and mammalian P4-ATPases.
Collapse
Affiliation(s)
- Adriana C Norris
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Mariana Jimenez
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Bhawik K Jain
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Todd R Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
13
|
Lee JG, Yon JM, Kim G, Lee SG, Kim CY, Cheong SA, Kim HY, Yu J, Kim K, Sung YH, Yoo HJ, Woo DC, Rho JK, Ha CH, Pack CG, Oh SH, Lim JS, Han YM, Hong EJ, Seong JK, Lee HW, Lee SW, Lee KU, Kim CJ, Nam SY, Cho YS, Baek IJ. PIBF1 regulates trophoblast syncytialization and promotes cardiovascular development. Nat Commun 2024; 15:1487. [PMID: 38374152 PMCID: PMC10876648 DOI: 10.1038/s41467-024-45647-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/30/2024] [Indexed: 02/21/2024] Open
Abstract
Proper placental development in early pregnancy ensures a positive outcome later on. The developmental relationship between the placenta and embryonic organs, such as the heart, is crucial for a normal pregnancy. However, the mechanism through which the placenta influences the development of embryonic organs remains unclear. Trophoblasts fuse to form multinucleated syncytiotrophoblasts (SynT), which primarily make up the placental materno-fetal interface. We discovered that endogenous progesterone immunomodulatory binding factor 1 (PIBF1) is vital for trophoblast differentiation and fusion into SynT in humans and mice. PIBF1 facilitates communication between SynT and adjacent vascular cells, promoting vascular network development in the primary placenta. This process affected the early development of the embryonic cardiovascular system in mice. Moreover, in vitro experiments showed that PIBF1 promotes the development of cardiovascular characteristics in heart organoids. Our findings show how SynTs organize the barrier and imply their possible roles in supporting embryogenesis, including cardiovascular development. SynT-derived factors and SynT within the placenta may play critical roles in ensuring proper organogenesis of other organs in the embryo.
Collapse
Affiliation(s)
- Jong Geol Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
- Korea Mouse Phenotyping Center (KMPC), Seoul, 08826, Korea
- Biological Resources Research Group, Bioenvironmental Science & Toxicology Division, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju, 52834, Korea
| | - Jung-Min Yon
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
- Department of Cell and Genetic Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Globinna Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
- Department of Cell and Genetic Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Seul-Gi Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, 05029, Korea
| | - C-Yoon Kim
- College of Veterinary Medicine, Konkuk University, Seoul, 05029, Korea
| | - Seung-A Cheong
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
| | | | - Jiyoung Yu
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
| | - Kyunggon Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
- Department of Digital Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Young Hoon Sung
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
- Department of Cell and Genetic Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Hyun Ju Yoo
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
- Department of Digital Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Dong-Cheol Woo
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
- Department of Biomedical Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Jin Kyung Rho
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Chang Hoon Ha
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Chan-Gi Pack
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
- Department of Biomedical Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Seak Hee Oh
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Joon Seo Lim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
| | - Yu Mi Han
- Research Institute of Medical Science, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center (KMPC), Seoul, 08826, Korea
- College of Veterinary Medicine, Seoul National University, Seoul, 08826, Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Sang-Wook Lee
- Korea Mouse Phenotyping Center (KMPC), Seoul, 08826, Korea
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Ki-Up Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Chong Jai Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Sang-Yoon Nam
- College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Korea
| | - You Sook Cho
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea.
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.
| | - In-Jeoung Baek
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea.
- Korea Mouse Phenotyping Center (KMPC), Seoul, 08826, Korea.
- Department of Cell and Genetic Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.
| |
Collapse
|
14
|
Xiong L, Liu J, Han SY, Koppitch K, Guo JJ, Rommelfanger M, Miao Z, Gao F, Hallgrimsdottir IB, Pachter L, Kim J, MacLean AL, McMahon AP. Direct androgen receptor control of sexually dimorphic gene expression in the mammalian kidney. Dev Cell 2023; 58:2338-2358.e5. [PMID: 37673062 PMCID: PMC10873092 DOI: 10.1016/j.devcel.2023.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023]
Abstract
Mammalian organs exhibit distinct physiology, disease susceptibility, and injury responses between the sexes. In the mouse kidney, sexually dimorphic gene activity maps predominantly to proximal tubule (PT) segments. Bulk RNA sequencing (RNA-seq) data demonstrated that sex differences were established from 4 and 8 weeks after birth under gonadal control. Hormone injection studies and genetic removal of androgen and estrogen receptors demonstrated androgen receptor (AR)-mediated regulation of gene activity in PT cells as the regulatory mechanism. Interestingly, caloric restriction feminizes the male kidney. Single-nuclear multiomic analysis identified putative cis-regulatory regions and cooperating factors mediating PT responses to AR activity in the mouse kidney. In the human kidney, a limited set of genes showed conserved sex-linked regulation, whereas analysis of the mouse liver underscored organ-specific differences in the regulation of sexually dimorphic gene expression. These findings raise interesting questions on the evolution, physiological significance, disease, and metabolic linkage of sexually dimorphic gene activity.
Collapse
Affiliation(s)
- Lingyun Xiong
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA; Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jing Liu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Seung Yub Han
- Graduate Program in Genomics and Computational Biology, Biomedical Graduate Studies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kari Koppitch
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Jin-Jin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Megan Rommelfanger
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhen Miao
- Graduate Program in Genomics and Computational Biology, Biomedical Graduate Studies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fan Gao
- Caltech Bioinformatics Resource Center at Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ingileif B Hallgrimsdottir
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lior Pachter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Junhyong Kim
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam L MacLean
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
15
|
Lawless L, Qin Y, Xie L, Zhang K. Trophoblast Differentiation: Mechanisms and Implications for Pregnancy Complications. Nutrients 2023; 15:3564. [PMID: 37630754 PMCID: PMC10459728 DOI: 10.3390/nu15163564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Placental development is a tightly controlled event, in which cell expansion from the trophectoderm occurs in a spatiotemporal manner. Proper trophoblast differentiation is crucial to the vitality of this gestational organ. Obstructions to its development can lead to pregnancy complications, such as preeclampsia, fetal growth restriction, and preterm birth, posing severe health risks to both the mother and offspring. Currently, the only known treatment strategy for these complications is delivery, making it an important area of research. The aim of this review was to summarize the known information on the development and mechanistic regulation of trophoblast differentiation and highlight the similarities in these processes between the human and mouse placenta. Additionally, the known biomarkers for each cell type were compiled to aid in the analysis of sequencing technologies.
Collapse
Affiliation(s)
- Lauren Lawless
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX 77030, USA;
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Yushu Qin
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Ke Zhang
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX 77030, USA;
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
16
|
Xiong L, Liu J, Han SY, Koppitch K, Guo JJ, Rommelfanger M, Gao F, Hallgrimsdottir IB, Pachter L, Kim J, MacLean AL, McMahon AP. Direct androgen receptor regulation of sexually dimorphic gene expression in the mammalian kidney. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.06.539585. [PMID: 37205355 PMCID: PMC10187285 DOI: 10.1101/2023.05.06.539585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Mammalian organs exhibit distinct physiology, disease susceptibility and injury responses between the sexes. In the mouse kidney, sexually dimorphic gene activity maps predominantly to proximal tubule (PT) segments. Bulk RNA-seq data demonstrated sex differences were established from 4 and 8 weeks after birth under gonadal control. Hormone injection studies and genetic removal of androgen and estrogen receptors demonstrated androgen receptor (AR) mediated regulation of gene activity in PT cells as the regulatory mechanism. Interestingly, caloric restriction feminizes the male kidney. Single-nuclear multiomic analysis identified putative cis-regulatory regions and cooperating factors mediating PT responses to AR activity in the mouse kidney. In the human kidney, a limited set of genes showed conserved sex-linked regulation while analysis of the mouse liver underscored organ-specific differences in the regulation of sexually dimorphic gene expression. These findings raise interesting questions on the evolution, physiological significance, and disease and metabolic linkage, of sexually dimorphic gene activity.
Collapse
Affiliation(s)
- Lingyun Xiong
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jing Liu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Seung Yub Han
- Graduate Program in Genomics and Computational Biology, Biomedical Graduate Studies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kari Koppitch
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Jin-Jin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Megan Rommelfanger
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Fan Gao
- Caltech Bioinformatics Resource Center at Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Lior Pachter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Junhyong Kim
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam L. MacLean
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
- Lead Contact
| |
Collapse
|
17
|
Sakuragi T, Nagata S. Regulation of phospholipid distribution in the lipid bilayer by flippases and scramblases. Nat Rev Mol Cell Biol 2023:10.1038/s41580-023-00604-z. [PMID: 37106071 PMCID: PMC10134735 DOI: 10.1038/s41580-023-00604-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 04/29/2023]
Abstract
Cellular membranes function as permeability barriers that separate cells from the external environment or partition cells into distinct compartments. These membranes are lipid bilayers composed of glycerophospholipids, sphingolipids and cholesterol, in which proteins are embedded. Glycerophospholipids and sphingolipids freely move laterally, whereas transverse movement between lipid bilayers is limited. Phospholipids are asymmetrically distributed between membrane leaflets but change their location in biological processes, serving as signalling molecules or enzyme activators. Designated proteins - flippases and scramblases - mediate this lipid movement between the bilayers. Flippases mediate the confined localization of specific phospholipids (phosphatidylserine (PtdSer) and phosphatidylethanolamine) to the cytoplasmic leaflet. Scramblases randomly scramble phospholipids between leaflets and facilitate the exposure of PtdSer on the cell surface, which serves as an important signalling molecule and as an 'eat me' signal for phagocytes. Defects in flippases and scramblases cause various human diseases. We herein review the recent research on the structure of flippases and scramblases and their physiological roles. Although still poorly understood, we address the mechanisms by which they translocate phospholipids between lipid bilayers and how defects cause human diseases.
Collapse
Affiliation(s)
- Takaharu Sakuragi
- Biochemistry & Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shigekazu Nagata
- Biochemistry & Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.
| |
Collapse
|
18
|
Radford BN, Zhao X, Glazer T, Eaton M, Blackwell D, Mohammad S, Lo Vercio LD, Devine J, Shalom-Barak T, Hallgrimsson B, Cross JC, Sucov HM, Barak Y, Dean W, Hemberger M. Defects in placental syncytiotrophoblast cells are a common cause of developmental heart disease. Nat Commun 2023; 14:1174. [PMID: 36859534 PMCID: PMC9978031 DOI: 10.1038/s41467-023-36740-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 02/15/2023] [Indexed: 03/03/2023] Open
Abstract
Placental abnormalities have been sporadically implicated as a source of developmental heart defects. Yet it remains unknown how often the placenta is at the root of congenital heart defects (CHDs), and what the cellular mechanisms are that underpin this connection. Here, we selected three mouse mutant lines, Atp11a, Smg9 and Ssr2, that presented with placental and heart defects in a recent phenotyping screen, resulting in embryonic lethality. To dissect phenotype causality, we generated embryo- and trophoblast-specific conditional knockouts for each of these lines. This was facilitated by the establishment of a new transgenic mouse, Sox2-Flp, that enables the efficient generation of trophoblast-specific conditional knockouts. We demonstrate a strictly trophoblast-driven cause of the CHD and embryonic lethality in one of the three lines (Atp11a) and a significant contribution of the placenta to the embryonic phenotypes in another line (Smg9). Importantly, our data reveal defects in the maternal blood-facing syncytiotrophoblast layer as a shared pathology in placentally induced CHD models. This study highlights the placenta as a significant source of developmental heart disorders, insights that will transform our understanding of the vast number of unexplained congenital heart defects.
Collapse
Affiliation(s)
- Bethany N Radford
- Dept. of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Xiang Zhao
- Dept. of Cell Biology and Anatomy, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Tali Glazer
- Dept. of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Malcolm Eaton
- Dept. of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Danielle Blackwell
- Dept. of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Shuhiba Mohammad
- Dept. of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Lucas Daniel Lo Vercio
- Dept. of Cell Biology and Anatomy, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Jay Devine
- Dept. of Cell Biology and Anatomy, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Tali Shalom-Barak
- Magee-Women's Research Institute, Dept. of Obstetrics/Gynecology and Reproductive Sciences, University of Pittsburgh, 204 Craft Ave., Pittsburgh, PA, 15213, USA
| | - Benedikt Hallgrimsson
- Dept. of Cell Biology and Anatomy, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - James C Cross
- Dept. of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Henry M Sucov
- Dept. of Regenerative Medicine and Cell Biology, Division of Cardiology, Dept. of Medicine, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC, 29403, USA
| | - Yaacov Barak
- Magee-Women's Research Institute, Dept. of Obstetrics/Gynecology and Reproductive Sciences, University of Pittsburgh, 204 Craft Ave., Pittsburgh, PA, 15213, USA
| | - Wendy Dean
- Dept. of Cell Biology and Anatomy, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| | - Myriam Hemberger
- Dept. of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
19
|
Miyata Y, Yamada K, Nagata S, Segawa K. Two types of type IV P-type ATPases independently re-establish the asymmetrical distribution of phosphatidylserine in plasma membranes. J Biol Chem 2022; 298:102527. [PMID: 36162506 PMCID: PMC9597894 DOI: 10.1016/j.jbc.2022.102527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022] Open
Abstract
Phospholipids are asymmetrically distributed between the lipid bilayer of plasma membranes in which phosphatidylserine (PtdSer) is confined to the inner leaflet. ATP11A and ATP11C, type IV P-Type ATPases in plasma membranes, flip PtdSer from the outer to the inner leaflet, but involvement of other P4-ATPases is unclear. We herein demonstrated that once PtdSer was exposed on the cell surface of ATP11A−/−ATP11C−/− mouse T cell line (W3), its internalization to the inner leaflet of plasma membranes was negligible at 15 °C. However, ATP11A−/−ATP11C−/− cells internalized the exposed PtdSer at 37 °C, a temperature at which trafficking of intracellular membranes was active. In addition to ATP11A and 11C, W3 cells expressed ATP8A1, 8B2, 8B4, 9A, 9B, and 11B, with ATP8A1 and ATP11B being present at recycling endosomes. Cells deficient in four P4-ATPases (ATP8A1, 11A, 11B, and 11C) (QKO) did not constitutively expose PtdSer on the cell surface but lost the ability to re-establish PtdSer asymmetry within 1 hour, even at 37 °C. The expression of ATP11A or ATP11C conferred QKO cells with the ability to rapidly re-establish PtdSer asymmetry at 15 °C and 37 °C, while cells expressing ATP8A1 or ATP11B required a temperature of 37 °C to achieve this function, and a dynamin inhibitor blocked this process. These results revealed that mammalian cells are equipped with two independent mechanisms to re-establish its asymmetry: the first is a rapid process involving plasma membrane flippases, ATP11A and ATP11C, while the other is mediated by ATP8A1 and ATP11B, which require an endocytosis process.
Collapse
Affiliation(s)
- Yugo Miyata
- Department of Medical Chemistry, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Kyoko Yamada
- Laboratory of Biochemistry & Immunology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Shigekazu Nagata
- Laboratory of Biochemistry & Immunology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
| | - Katsumori Segawa
- Department of Medical Chemistry, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan; Laboratory of Biochemistry & Immunology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
20
|
Renaud SJ, Jeyarajah MJ. How trophoblasts fuse: an in-depth look into placental syncytiotrophoblast formation. Cell Mol Life Sci 2022; 79:433. [PMID: 35859055 PMCID: PMC11072895 DOI: 10.1007/s00018-022-04475-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/07/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022]
Abstract
In humans, cell fusion is restricted to only a few cell types under normal conditions. In the placenta, cell fusion is a critical process for generating syncytiotrophoblast: the giant multinucleated trophoblast lineage containing billions of nuclei within an interconnected cytoplasm that forms the primary interface separating maternal blood from fetal tissue. The unique morphology of syncytiotrophoblast ensures that nutrients and gases can be efficiently transferred between maternal and fetal tissue while simultaneously restricting entry of potentially damaging substances and maternal immune cells through intercellular junctions. To maintain integrity of the syncytiotrophoblast layer, underlying cytotrophoblast progenitor cells terminate their capability for self-renewal, upregulate expression of genes needed for differentiation, and then fuse into the overlying syncytium. These processes are disrupted in a variety of obstetric complications, underscoring the importance of proper syncytiotrophoblast formation for pregnancy health. Herein, an overview of key mechanisms underlying human trophoblast fusion and syncytiotrophoblast development is discussed.
Collapse
Affiliation(s)
- Stephen J Renaud
- Department of Anatomy and Cell Biology and Children's Health Research Institute, University of Western Ontario, London, ON, N6A5C1, Canada.
| | - Mariyan J Jeyarajah
- Department of Anatomy and Cell Biology and Children's Health Research Institute, University of Western Ontario, London, ON, N6A5C1, Canada
| |
Collapse
|