1
|
Liu P, Chen Y, Yao D, Jia J, Meng Y, Zhou P, Gao X, Xie Y, Yao L, Li S, Wang L, Bazan GC, Xu S, Zhou C. Host-Guest Antimicrobial Based on Conjugated Oligoelectrolyte and Cyclodextrin. Angew Chem Int Ed Engl 2025:e202504581. [PMID: 40386884 DOI: 10.1002/anie.202504581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 05/15/2025] [Accepted: 05/19/2025] [Indexed: 05/20/2025]
Abstract
The escalating global threat of antimicrobial resistance necessitates the development of new antimicrobial agents. In this study, we prepared a resveratrol-derived antimicrobial conjugated oligoelectrolyte (COE) named DY6 to enhance drug-like properties. While DY6's increased hydrophobicity augmented its antibacterial efficacy, it also induced significant cytotoxicity, highlighting the long-existing dilemma of amphiphilic antimicrobials. To mitigate this issue, we employed a supramolecular strategy by complexing DY6 with sodium sulfobutyl ether β-cyclodextrin (SβCD), forming the host-guest inclusion complex DY6@SβCD. This complex elevated the half-maximal inhibitory concentration (IC50) against L929 cells from 9.4 to over 128 µg mL-1 while maintaining a minimum inhibitory concentration (MIC) of 2 µg mL-1 against methicillin-resistant Staphylococcus aureus (MRSA). NMR and UV-vis spectroscopic analyses confirmed that DY6's aromatic backbone is encapsulated within the hydrophobic cavity of SβCD. Isothermal titration calorimetry revealed that size compatibility and electrostatic interactions are essential for stable complex formation and enhanced biocompatibility. Importantly, DY6@SβCD exhibited no resistance development over 14-day serial passages against S. aureus, significantly outperforming norfloxacin. In biofilm-based MRSA-infected wound and corneal models, DY6@SβCD more effectively reduced bacterial load and inflammation compared to the last-resort antibiotic vancomycin. These findings demonstrate the potential utility of supramolecular host-guest approach based on COEs to overcome the drug-resistant challenges.
Collapse
Affiliation(s)
- Pengke Liu
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
| | - Yuhui Chen
- Division of Orthopedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P.R. China
| | - Donghao Yao
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, P.R. China
| | - Jishan Jia
- Division of Orthopedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P.R. China
| | - Yingying Meng
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
| | - Peirong Zhou
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
| | - Xianan Gao
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
| | - Yixin Xie
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
| | - Liang Yao
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
| | - Shufen Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Lei Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, P.R. China
| | - Guillermo C Bazan
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, Singapore, 636921, Singapore
| | - Shaoyong Xu
- Division of Orthopedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P.R. China
| | - Cheng Zhou
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
| |
Collapse
|
2
|
Bertolotti P, Gallinardi F, Ghidoli M, Bertarelli C, Lanzani G, Paternò GM. Photocontrol of bacterial membrane potential regulates antibiotic persistence in B. subtilis. EUROPEAN PHYSICAL JOURNAL PLUS 2025; 140:336. [PMID: 40291950 PMCID: PMC12021945 DOI: 10.1140/epjp/s13360-025-06263-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 03/24/2025] [Indexed: 04/30/2025]
Abstract
Bacterial persistence and resistance to antibiotics pose critical challenges in healthcare and environmental contexts. Recent studies revealing that bacteria possess a dynamic electrical membrane potential open new avenues for influencing bacterial behaviour and drug susceptibility. In this work, we present a novel light-responsive strategy to modulate bacterial antibiotic persistence using Ziapin2, an azobenzene photoswitch previously shown to alter bacterial membrane potential. We selected two broad-spectrum antibiotics with distinct modes of action: Kanamycin, which requires cytosolic uptake to inhibit protein synthesis, and Ampicillin, which targets cell wall polymerization at the cell envelope, to probe the role of membrane potential in antibiotic efficacy. Our findings show that when Bacillus subtilis is exposed to Kanamycin and Ziapin2, photoactivation (470 nm) significantly impacts bacterial viability: under illumination, the previously lethal effects of Kanamycin are markedly reduced, suggesting that membrane potential changes drive altered antibiotic uptake or intracellular accumulation. In contrast, Ampicillin-treated samples remain largely unaffected by light-induced membrane modulation, consistent with its action at the external cell envelope. Taken together, these results indicate that membrane potential manipulation can selectively influence the activity of antibiotics whose intracellular uptake is critical to their function. This proof-of-concept study underscores the potential of non-genetic, light-based interventions to modulate bacterial susceptibility in real time. Future work will expand this approach by exploring additional antibiotic classes and novel azobenzene derivatives, ultimately advancing our understanding of bacterial bioelectric regulation and its applications in antimicrobial therapies.
Collapse
Affiliation(s)
- Pietro Bertolotti
- Center for Nanoscience and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133 Milan, Italy
| | - Federico Gallinardi
- Center for Nanoscience and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy
- Department of Biotechnology and Bioscience, Università di Milano – Bicocca, Building U3 – BIOS, Piazza della Scienza 2, 20126 Milan, Italy
| | - Marta Ghidoli
- Department of Chemistry, Materials and Chemical Engineering, “Giulio Natta” Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milan, Italy
| | - Chiara Bertarelli
- Department of Chemistry, Materials and Chemical Engineering, “Giulio Natta” Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milan, Italy
| | - Guglielmo Lanzani
- Center for Nanoscience and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy
- Department of Physics, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milan, Italy
| | - Giuseppe Maria Paternò
- Center for Nanoscience and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy
- Department of Physics, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milan, Italy
| |
Collapse
|
3
|
de la Viuda V, Buceta J, Grobas I. Physical communication pathways in bacteria: an extra layer to quorum sensing. Biophys Rev 2025; 17:667-685. [PMID: 40376406 PMCID: PMC12075086 DOI: 10.1007/s12551-025-01290-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/13/2025] [Indexed: 05/18/2025] Open
Abstract
Bacterial communication is essential for survival, adaptation, and collective behavior. While chemical signaling, such as quorum sensing, has been extensively studied, physical cues play a significant role in bacterial interactions. This review explores the diverse range of physical stimuli, including mechanical forces, electromagnetic fields, temperature, acoustic vibrations, and light that bacteria may experience with their environment and within a community. By integrating these diverse communication pathways, bacteria can coordinate their activities and adapt to changing environmental conditions. Furthermore, we discuss how these physical stimuli modulate bacterial growth, lifestyle, motility, and biofilm formation. By understanding the underlying mechanisms, we can develop innovative strategies to combat bacterial infections and optimize industrial processes.
Collapse
Affiliation(s)
- Virgilio de la Viuda
- Theoretical and Computational Systems Biology Program, Institute for Integrative Systems Biology (I2sysbio), CSIC-UV, Catedrático Agustín Escardino Benlloch 9, 46980 Paterna, Spain
| | - Javier Buceta
- Theoretical and Computational Systems Biology Program, Institute for Integrative Systems Biology (I2sysbio), CSIC-UV, Catedrático Agustín Escardino Benlloch 9, 46980 Paterna, Spain
| | - Iago Grobas
- Theoretical and Computational Systems Biology Program, Institute for Integrative Systems Biology (I2sysbio), CSIC-UV, Catedrático Agustín Escardino Benlloch 9, 46980 Paterna, Spain
| |
Collapse
|
4
|
Akabuogu E, Carneiro da Cunha Martorelli V, Krašovec R, Roberts IS, Waigh TA. Emergence of ion-channel-mediated electrical oscillations in Escherichia coli biofilms. eLife 2025; 13:RP92525. [PMID: 40117333 PMCID: PMC11928028 DOI: 10.7554/elife.92525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025] Open
Abstract
Bacterial biofilms are communities of bacteria usually attached to solid strata and often differentiated into complex structures. Communication across biofilms has been shown to involve chemical signaling and, more recently, electrical signaling in Gram-positive biofilms. We report for the first time, community-level synchronized membrane potential dynamics in three-dimensional Escherichia coli biofilms. Two hyperpolarization events are observed in response to light stress. The first requires mechanically sensitive ion channels (MscK, MscL, and MscS) and the second needs the Kch-potassium channel. The channels mediated both local spiking of single E. coli biofilms and long-range coordinated electrical signaling in E. coli biofilms. The electrical phenomena are explained using Hodgkin-Huxley and 3D fire-diffuse-fire agent-based models. These data demonstrate that electrical wavefronts based on potassium ions are a mechanism by which signaling occurs in Gram-negative biofilms and as such may represent a conserved mechanism for communication across biofilms.
Collapse
Affiliation(s)
- Emmanuel Akabuogu
- Division of Infection, Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, University of ManchesterManchesterUnited Kingdom
- Biological Physics, Department of Physics and Astronomy, University of ManchesterManchesterUnited Kingdom
| | - Victor Carneiro da Cunha Martorelli
- Division of Infection, Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, University of ManchesterManchesterUnited Kingdom
- Biological Physics, Department of Physics and Astronomy, University of ManchesterManchesterUnited Kingdom
| | - Rok Krašovec
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health University of ManchesterManchesterUnited Kingdom
| | - Ian S Roberts
- Division of Infection, Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, University of ManchesterManchesterUnited Kingdom
| | - Thomas A Waigh
- Biological Physics, Department of Physics and Astronomy, University of ManchesterManchesterUnited Kingdom
| |
Collapse
|
5
|
Li M, Jian Q, Ye X, Jing M, Wu J, Wu Z, Ruan Y, Long X, Zhang R, Ren H, Sun J, Liu Y, Liao X, Lian X. Mechanisms of mepA Overexpression and Membrane Potential Reduction Leading to Ciprofloxacin Heteroresistance in a Staphylococcus aureus Isolate. Int J Mol Sci 2025; 26:2372. [PMID: 40076991 PMCID: PMC11901101 DOI: 10.3390/ijms26052372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Heteroresistance has seriously affected the evaluation of antibiotic efficacy against pathogenic bacteria, causing misjudgment of antibiotics' sensitivity in clinical therapy, leading to treatment failure, and posing a serious threat to current medical health. However, the mechanism of Staphylococcus aureus heteroresistance to ciprofloxacin remains unclear. In this study, heteroresistance to ciprofloxacin in S. aureus strain 529 was confirmed by antimicrobial susceptibility testing and population analysis profiling (PAP), with the resistance of subclonal 529_HR based on MIC being 8-fold that of the original bacteria. A 7-day serial MIC evaluation and growth curves demonstrate that their phenotype was stable, with 529_HR growing more slowly than 529, but reaching a plateau in a similar proportion. WGS analysis showed that there were 11 nonsynonymous mutations and one deletion gene between the two bacteria, but none of these SNPs were directly associated with ciprofloxacin resistance. Transcriptome data analysis showed that the expression of membrane potential related genes (qoxA, qoxB, qoxC, qoxD, mprF) was downregulated, and the expression of multidrug resistance efflux pump gene mepA was upregulated. The combination of ciprofloxacin and limonene restored the 529_HR MIC from 1 mg/L to 0.125 mg/L. Measurement of the membrane potential found that 529_HR had a lower potential, which may enable it to withstand the ciprofloxacin-induced decrease in membrane potential. In summary, we demonstrated that upregulation of mepA gene expression and a reduction in membrane potential are the main heteroresistance mechanisms of S. aureus to ciprofloxacin. Additionally, limonene may be a potentially effective agent to inhibit ciprofloxacin heteroresistance phenotypes.
Collapse
Affiliation(s)
- Mengyuan Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Qianting Jian
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Xinyi Ye
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Mou Jing
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jia’en Wu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Zhihong Wu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Yali Ruan
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoling Long
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Rongmin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Hao Ren
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Yahong Liu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoping Liao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Xinlei Lian
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Li YQ, Zhang CM, Liu Y. Antihistamine drug loratadine at environmentally relevant concentrations promotes conjugative transfer of antibiotic resistance genes: Coeffect of oxidative stress and ion transport. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124430. [PMID: 39919578 DOI: 10.1016/j.jenvman.2025.124430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/20/2025] [Accepted: 02/01/2025] [Indexed: 02/09/2025]
Abstract
Due to the widespread use of loratadine (LOR) as an antihistamine, it is widely distributed in the environment as an emerging contaminant. However, its impact on the dissemination of antibiotic resistance genes (ARGs) remains unclear. This study investigated the effect of LOR on the conjugative transfer of ARGs and elucidated the potential mechanisms through transcriptome analysis. The results showed that LOR significantly promoted the frequency of conjugative transfer up to 1.5- to 8.6-fold higher compared with the control group. Exposure to LOR increased reactive oxidative species (ROS) and intracellular Ca2+ concentrations, leading to the upregulation of expression of genes related to transmembrane transport and SOS response. Meanwhile, it stimulated the increase of cell membrane permeability. Moreover, LOR exposure could enhance H+ efflux in donor bacteria, resulting in the decrease of intracellular pH and the elevation of transmembrane potential, which could induce the increase of ion transport, thereby promoting plasmid efflux from the cell membrane. Based on this, we inferred that LOR can induce an increase in ROS level and intracellular Ca2+ concentrations, and promoted the efflux of intracellular H+. This, in turn, triggered the intensification of various ion transport processes on the cell membrane, thereby increasing membrane permeability and accelerating plasmid efflux. Ultimately, the coeffect of oxidative stress response and ion transport promoted conjugative transfer. This study demonstrated that LOR significantly promotes plasmid-mediated conjugative transfer of ARGs, providing novel insights into the mechanisms underlying this process.
Collapse
Affiliation(s)
- Yong-Qiang Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Chong-Miao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Yi Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
7
|
Zhang Y, Cai Y, Jin X, Wu Q, Bai F, Liu J. Persistent glucose consumption under antibiotic treatment protects bacterial community. Nat Chem Biol 2025; 21:238-246. [PMID: 39138382 DOI: 10.1038/s41589-024-01708-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/22/2024] [Indexed: 08/15/2024]
Abstract
Antibiotics typically induce major physiological changes in bacteria. However, their effect on nutrient consumption remains unclear. Here we found that Escherichia coli communities can sustain normal levels of glucose consumption under a broad range of antibiotics. The community-living resulted in a low membrane potential in the bacteria, allowing slow antibiotic accumulation on treatment and better adaptation. Through multi-omics analysis, we identified a prevalent adaptive response characterized by the upregulation of lipid synthesis, which substantially contributes to sustained glucose consumption. The consumption was maintained by the periphery region of the community, thereby restricting glucose penetration into the community interior. The resulting spatial heterogeneity in glucose availability protected the interior from antibiotic accumulation in a membrane potential-dependent manner, ensuring rapid recovery of the community postantibiotic treatment. Our findings unveiled a community-level antibiotic response through spatial regulation of metabolism and suggested new strategies for antibiotic therapies.
Collapse
Affiliation(s)
- Yuzhen Zhang
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Yumin Cai
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Xin Jin
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
| | - Qile Wu
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Fan Bai
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Jintao Liu
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
8
|
Shukla S, Comerci CJ, Süel GM, Jahed Z. Bioelectronic tools for understanding the universal language of electrical signaling across species and kingdoms. Biosens Bioelectron 2025; 267:116843. [PMID: 39426280 DOI: 10.1016/j.bios.2024.116843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/10/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
Modern bioelectronic tools are rapidly advancing to detect electric potentials within networks of electrogenic cells, such as cardiomyocytes, neurons, and pancreatic beta cells. However, it is becoming evident that electrical signaling is not limited to the animal kingdom but may be a universal form of cell-cell communication. In this review, we discuss the existing evidence of, and tools used to collect, subcellular, single-cell and network-level electrical signals across kingdoms, including bacteria, plants, fungi, and even viruses. We discuss how cellular networks employ altered electrical "circuitry" and intercellular mechanisms across kingdoms, and we assess the functionality and scalability of cutting-edge nanobioelectronics to collect electrical signatures regardless of cell size, shape, or function. Researchers today aim to design micro- and nano-topographic structures which harness mechanosensitive membrane and cytoskeletal pathways that enable tight electrical coupling to subcellular compartments within high-throughput recording systems. Finally, we identify gaps in current knowledge of inter-species and inter-kingdom electrical signaling and propose critical milestones needed to create a central theory of electrical signaling across kingdoms. Our discussion demonstrates the need for high resolution, high throughput tools which can probe multiple, diverse cell types at once in their native or experimentally-modeled environments. These advancements will not only reveal the underlying biophysical laws governing the universal language of electrical communication, but can enable bidirectional electrical communication and manipulation of biological systems.
Collapse
Affiliation(s)
- Shivani Shukla
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, United States; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, United States
| | - Colin J Comerci
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| | - Gürol M Süel
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| | - Zeinab Jahed
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, United States; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
9
|
Ciemniecki JA, Ho CL, Horak RD, Okamoto A, Newman DK. Mechanistic study of a low-power bacterial maintenance state using high-throughput electrochemistry. Cell 2024; 187:6882-6895.e8. [PMID: 39447571 PMCID: PMC11606744 DOI: 10.1016/j.cell.2024.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/03/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
Mechanistic studies of life's lower metabolic limits have been limited due to a paucity of tractable experimental systems. Here, we show that redox-cycling of phenazine-1-carboxamide (PCN) by Pseudomonas aeruginosa supports cellular maintenance in the absence of growth with a low mass-specific metabolic rate of 8.7 × 10-4 W (g C)-1 at 25°C. Leveraging a high-throughput electrochemical culturing device, we find that non-growing cells cycling PCN tolerate conventional antibiotics but are susceptible to those that target membrane components. Under these conditions, cells conserve energy via a noncanonical, facilitated fermentation that is dependent on acetate kinase and NADH dehydrogenases. Across PCN concentrations that limit cell survival, the cell-specific metabolic rate is constant, indicating the cells are operating near their bioenergetic limit. This quantitative platform opens the door to further mechanistic investigations of maintenance, a physiological state that underpins microbial survival in nature and disease.
Collapse
Affiliation(s)
- John A Ciemniecki
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Chia-Lun Ho
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; School of Chemical Sciences and Engineering, Hokkaido University, 13 Kita, 8 Nishi, Kita-ku, Sapporo 060-8628, Hokkaido, Japan
| | - Richard D Horak
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Akihiro Okamoto
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan; School of Chemical Sciences and Engineering, Hokkaido University, 13 Kita, 8 Nishi, Kita-ku, Sapporo 060-8628, Hokkaido, Japan; Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, Yokohama 226-8501, Kanagawa, Japan.
| | - Dianne K Newman
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
10
|
Horak RD, Ciemniecki JA, Newman DK. Bioenergetic suppression by redox-active metabolites promotes antibiotic tolerance in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2024; 121:e2406555121. [PMID: 39503891 PMCID: PMC11573671 DOI: 10.1073/pnas.2406555121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/01/2024] [Indexed: 11/21/2024] Open
Abstract
The proton-motive force (PMF), consisting of a pH gradient and a membrane potential (ΔΨ) underpins many processes essential to bacterial growth and/or survival. Yet bacteria often enter a bioenergetically diminished state characterized by a low PMF. Consequently, they have increased tolerance for diverse stressors, including clinical antibiotics. Despite the ubiquity of low metabolic rates in the environment, the extent to which bacteria have agency over entry into such a low-bioenergetic state has received relatively little attention. Here, we tested the hypothesis that production of redox-active metabolites (RAMs) could drive such a physiological transition. Pseudomonas aeruginosa is an opportunistic pathogen that produces phenazines, model RAMs that are highly toxic in the presence of molecular oxygen (O2). Under oxic conditions, the phenazines pyocyanin and phenazine-1-carboximide, as well as toxoflavin-a RAM produced by Burkholderia species-suppress the ΔΨ in distinct ways across distributions of single cells, reduce the efficiency of proton pumping, and lower cellular adenosine-triphosphate (ATP) levels. In planktonic culture, the degree and rate by which each RAM lowers the ΔΨ correlates with the protection it confers against antibiotics that strongly impact cellular energy flux. This bioenergetic suppression requires the RAM's presence and corresponds to its cellular reduction rate and abiotic oxidation rate by O2; it can be reversed by increasing the ΔΨ with nigericin. RAMs similarly impact the bioenergetic state of cells in (hyp)oxic biofilm aggregates. Collectively, these findings demonstrate that bacteria can suppress their bioenergetic state by the production of endogenous toxins in a manner that bolsters stress resilience.
Collapse
Affiliation(s)
- Richard D. Horak
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - John A. Ciemniecki
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Dianne K. Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
11
|
Monk T, Dennler N, Ralph N, Rastogi S, Afshar S, Urbizagastegui P, Jarvis R, van Schaik A, Adamatzky A. Electrical Signaling Beyond Neurons. Neural Comput 2024; 36:1939-2029. [PMID: 39141803 DOI: 10.1162/neco_a_01696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/21/2024] [Indexed: 08/16/2024]
Abstract
Neural action potentials (APs) are difficult to interpret as signal encoders and/or computational primitives. Their relationships with stimuli and behaviors are obscured by the staggering complexity of nervous systems themselves. We can reduce this complexity by observing that "simpler" neuron-less organisms also transduce stimuli into transient electrical pulses that affect their behaviors. Without a complicated nervous system, APs are often easier to understand as signal/response mechanisms. We review examples of nonneural stimulus transductions in domains of life largely neglected by theoretical neuroscience: bacteria, protozoans, plants, fungi, and neuron-less animals. We report properties of those electrical signals-for example, amplitudes, durations, ionic bases, refractory periods, and particularly their ecological purposes. We compare those properties with those of neurons to infer the tasks and selection pressures that neurons satisfy. Throughout the tree of life, nonneural stimulus transductions time behavioral responses to environmental changes. Nonneural organisms represent the presence or absence of a stimulus with the presence or absence of an electrical signal. Their transductions usually exhibit high sensitivity and specificity to a stimulus, but are often slow compared to neurons. Neurons appear to be sacrificing the specificity of their stimulus transductions for sensitivity and speed. We interpret cellular stimulus transductions as a cell's assertion that it detected something important at that moment in time. In particular, we consider neural APs as fast but noisy detection assertions. We infer that a principal goal of nervous systems is to detect extremely weak signals from noisy sensory spikes under enormous time pressure. We discuss neural computation proposals that address this goal by casting neurons as devices that implement online, analog, probabilistic computations with their membrane potentials. Those proposals imply a measurable relationship between afferent neural spiking statistics and efferent neural membrane electrophysiology.
Collapse
Affiliation(s)
- Travis Monk
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Nik Dennler
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
- Biocomputation Group, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, U.K.
| | - Nicholas Ralph
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Shavika Rastogi
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
- Biocomputation Group, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, U.K.
| | - Saeed Afshar
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Pablo Urbizagastegui
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Russell Jarvis
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - André van Schaik
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Andrew Adamatzky
- Unconventional Computing Laboratory, University of the West of England, Bristol BS16 1QY, U.K.
| |
Collapse
|
12
|
Zhang Y, Cai Y, Zhang B, Zhang YHPJ. Spatially structured exchange of metabolites enhances bacterial survival and resilience in biofilms. Nat Commun 2024; 15:7575. [PMID: 39217184 PMCID: PMC11366000 DOI: 10.1038/s41467-024-51940-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Biofilm formation enhances bacterial survival and antibiotic tolerance, but the underlying mechanisms are incompletely understood. Here, we show that biofilm growth is accompanied by a reduction in bacterial energy metabolism and membrane potential, together with metabolic exchanges between the inner and outer regions in biofilms. More specifically, nutrient-starved cells in the interior supply amino acids to cells in the periphery, while peripheral cells experience a decrease in membrane potential and provide fatty acids to interior cells. Fatty acids facilitate the repair of starvation-induced membrane damage in inner cells and enhance their survival in the presence of antibiotics. Thus, metabolic exchanges between inner and outer cells contribute to survival of the nutrient-starved inner cells and contribute to antibiotic tolerance within the biofilm.
Collapse
Affiliation(s)
- Yuzhen Zhang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, In Vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| | - Yukmi Cai
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, In Vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Bing Zhang
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
| | - Yi-Heng P Job Zhang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, In Vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| |
Collapse
|
13
|
Yao M, Cao J, Zhang L, Wang K, Lin H, Qin L, Zhang Q, Qu C, Miao J, Xue C. Indole-3-Lactic Acid Derived from Lacticaseibacillus paracasei Inhibits Helicobacter pylori Infection via Destruction of Bacteria Cells, Protection of Gastric Mucosa Epithelial Cells, and Alleviation of Inflammation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15725-15739. [PMID: 38973111 DOI: 10.1021/acs.jafc.4c02868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Indole-3-lactic acid (ILA) has exhibited antimicrobial properties. However, its role in inhibiting Helicobacter pylori infection remains elusive. This study investigated the inhibitory effect of ILA produced by Lacticaseibacillus paracasei on H. pylori, which was further confirmed by cell and animal experiments. 5 mg/mL ILA was sufficient to directly inhibit the growth of H. pylori in vitro, with a urease inhibitory activity reaching 60.94 ± 1.03%, and the cell morphology and structure were destroyed. ILA inhibited 56.5% adhesion of H. pylori to GES-1 and significantly reduced the number of apoptotic cells. Furthermore, ILA suppresses H. pylori colonization by approximately 38% to 63%, reduced inflammation and oxidative stress in H. pylori-infected mice, and enhanced the enrichment and variety of gut microbiota, notably fostering the growth of beneficial bacteria such as Lactobacillus and Bifidobacterium strains. The results support that ILA derived from Lactobacillus can be applicated as a novel prebiotic in anti-H. pylori functional foods.
Collapse
Affiliation(s)
- Mengke Yao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Junhan Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Liping Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Kai Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Huan Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Ling Qin
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Qing Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Changfeng Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao 266061, China
| | - Jinlai Miao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao 266061, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
14
|
Lo WC, Krasnopeeva E, Pilizota T. Bacterial Electrophysiology. Annu Rev Biophys 2024; 53:487-510. [PMID: 38382113 DOI: 10.1146/annurev-biophys-030822-032215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Bacterial ion fluxes are involved in the generation of energy, transport, and motility. As such, bacterial electrophysiology is fundamentally important for the bacterial life cycle, but it is often neglected and consequently, by and large, not understood. Arguably, the two main reasons for this are the complexity of measuring relevant variables in small cells with a cell envelope that contains the cell wall and the fact that, in a unicellular organism, relevant variables become intertwined in a nontrivial manner. To help give bacterial electrophysiology studies a firm footing, in this review, we go back to basics. We look first at the biophysics of bacterial membrane potential, and then at the approaches and models developed mostly for the study of neurons and eukaryotic mitochondria. We discuss their applicability to bacterial cells. Finally, we connect bacterial membrane potential with other relevant (electro)physiological variables and summarize methods that can be used to both measure and influence bacterial electrophysiology.
Collapse
Affiliation(s)
- Wei-Chang Lo
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| | | | - Teuta Pilizota
- School of Biological Sciences, Centre for Engineering Biology, University of Edinburgh, Edinburgh, United Kingdom;
| |
Collapse
|
15
|
Biquet-Bisquert A, Carrio B, Meyer N, Fernandes TFD, Abkarian M, Seduk F, Magalon A, Nord AL, Pedaci F. Spatiotemporal dynamics of the proton motive force on single bacterial cells. SCIENCE ADVANCES 2024; 10:eadl5849. [PMID: 38781330 PMCID: PMC11114223 DOI: 10.1126/sciadv.adl5849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
Electrochemical gradients across biological membranes are vital for cellular bioenergetics. In bacteria, the proton motive force (PMF) drives essential processes like adenosine triphosphate production and motility. Traditionally viewed as temporally and spatially stable, recent research reveals a dynamic PMF behavior at both single-cell and community levels. Moreover, the observed lateral segregation of respiratory complexes could suggest a spatial heterogeneity of the PMF. Using a light-activated proton pump and detecting the activity of the bacterial flagellar motor, we perturb and probe the PMF of single cells. Spatially homogeneous PMF perturbations reveal millisecond-scale temporal dynamics and an asymmetrical capacitive response. Localized perturbations show a rapid lateral PMF homogenization, faster than proton diffusion, akin to the electrotonic potential spread observed in passive neurons, explained by cable theory. These observations imply a global coupling between PMF sources and consumers along the membrane, precluding sustained PMF spatial heterogeneity but allowing for rapid temporal changes.
Collapse
Affiliation(s)
- Anaïs Biquet-Bisquert
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM. Montpellier, France
| | - Baptiste Carrio
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM. Montpellier, France
| | - Nathan Meyer
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM. Montpellier, France
| | - Thales F. D. Fernandes
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM. Montpellier, France
| | - Manouk Abkarian
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM. Montpellier, France
| | - Farida Seduk
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13402 Marseille, France
| | - Axel Magalon
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13402 Marseille, France
| | - Ashley L. Nord
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM. Montpellier, France
| | - Francesco Pedaci
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM. Montpellier, France
| |
Collapse
|
16
|
Wang C, Ji Y, Huo X, Li X, Lu W, Zhang Z, Dong W, Wang X, Chen H, Tan C. Discovery of Salifungin as a Repurposed Antibiotic against Methicillin-Resistant Staphylococcus aureus with Limited Resistance Development. ACS Infect Dis 2024; 10:1576-1589. [PMID: 38581387 DOI: 10.1021/acsinfecdis.3c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
Exploring novel antimicrobial drugs and strategies has become essential to the fight MRSA-associated infections. Herein, we found that membrane-disrupted repurposed antibiotic salifungin had excellent bactericidal activity against MRSA, with limited development of drug resistance. Furthermore, adding salifungin effectively decreased the minimum inhibitory concentrations of clinical antibiotics against Staphylococcus aureus. Evaluations of the mechanism demonstrated that salifungin disrupted the level of H+ and K+ ions using hydrophilic and lipophilic groups to interact with bacterial membranes, causing the disruption of bacterial proton motive force followed by impacting on bacterial the function of the respiratory chain and adenosine 5'-triphosphate, thereby inhibiting phosphatidic acid biosynthesis. Moreover, salifungin also significantly inhibited the formation of bacterial biofilms and eliminated established bacterial biofilms by interfering with bacterial membrane potential and inhibiting biofilm-associated gene expression, which was even better than clinical antibiotics. Finally, salifungin exhibited efficacy comparable to or even better than that of vancomycin in the MRSA-infected animal models. In conclusion, these results indicate that salifungin can be a potential drug for treating MRSA-associated infections.
Collapse
Affiliation(s)
- Chenchen Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, Hubei, China
- Hubei Hongshan Laboratory, Wuhan 430000, Hubei, China
| | - Yueyue Ji
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, Hubei, China
- Hubei Hongshan Laboratory, Wuhan 430000, Hubei, China
| | - Xingyu Huo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, Hubei, China
- Hubei Hongshan Laboratory, Wuhan 430000, Hubei, China
| | - Xiaodan Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, Hubei, China
- Hubei Hongshan Laboratory, Wuhan 430000, Hubei, China
| | - Wenjia Lu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, Hubei, China
- Hubei Hongshan Laboratory, Wuhan 430000, Hubei, China
| | - Zhaoran Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, Hubei, China
- Hubei Hongshan Laboratory, Wuhan 430000, Hubei, China
| | - Wenqi Dong
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, Hubei, China
- Hubei Hongshan Laboratory, Wuhan 430000, Hubei, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, Hubei, China
- Hubei Hongshan Laboratory, Wuhan 430000, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430000, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430000, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430000, Hubei, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, Hubei, China
- Hubei Hongshan Laboratory, Wuhan 430000, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430000, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430000, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430000, Hubei, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, Hubei, China
- Hubei Hongshan Laboratory, Wuhan 430000, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430000, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430000, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430000, Hubei, China
| |
Collapse
|
17
|
Deisl C, Moe OW, Hilgemann DW. Constitutive Plasma Membrane Turnover in T-REx293 cells via Ordered Membrane Domain Endocytosis under Mitochondrial Control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576124. [PMID: 38293164 PMCID: PMC10827192 DOI: 10.1101/2024.01.17.576124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Clathrin/dynamin-independent endocytosis of ordered plasma membrane domains (ordered membrane domain endocytosis, OMDE) can become massive in response to cytoplasmic Ca elevations, G protein activation by non-hydrolyzable GTP analogs, and enhanced oxidative metabolism. In patch-clamped murine bone marrow macrophages (BMMs), cytoplasmic succinate and pyruvate, but not β-hydroxybutyrate, induce OMDE of 75% of the plasma membrane within 2 min. The responses require palmitoylation of membrane proteins, being decreased by 70% in BMMs lacking the acyltransferase, DHHC5, by treatment with carnitine to shift long-chain acyl groups from cytoplasmic to mitochondrial acyl-CoAs, by bromopalmitate/albumin complexes to block DHHCs, and by the mitochondria-specific cyclosporin, NIM811, to block permeability transition pores that may release mitochondrial coenzyme A into the cytoplasm. Using T-REx293 cells, OMDE amounts to 40% with succinate, pyruvate, or GTPγS, and it is inhibited by actin cytoskeleton disruption. Pyruvate-induced OMDE is blocked by the hydrophobic antioxidant, edaravone, which prevents permeability transition pore openings. Using fluorescent 3kD dextrans to monitor endocytosis, OMDE appears to be constitutively active in T-REx293 cells but not in BMMs. After 1 h without substrates or bicarbonate, pyruvate and hydroxybutyrate inhibit constitutive OMDE, as expected for a shift of CoA from long-chain acyl-CoAs to other CoA metabolites. In the presence of bicarbonate, pyruvate strongly enhances OMDE, which is then blocked by β-hydroxybutyrate, bromopalmitate/albumin complexes, cyclosporines, or edaravone. After pyruvate responses, T-REx293 cells grow normally with no evidence for apoptosis. Fatty acid-free albumin (15 μM) inhibits basal OMDE in T-REx293 cells, as do cyclosporines, carnitine, and RhoA blockade. Surprisingly, OMDE in the absence of substrates and bicarbonate is not inhibited by siRNA knockdown of the acyltransferases, DHHC5 or DHHC2, which are required for activated OMDE in patch clamp experiments. We verify biochemically that small CoA metabolites decrease long-chain acyl-CoAs. We verify also that palmitoylations of many PM-associated proteins decrease and increase when OMDE is inhibited and stimulated, respectively, by different metabolites. STED microscopy reveals that vesicles formed during constitutive OMDE in T-REX293 cells have 90 to 130 nm diameters. In summary, OMDE is likely a major G-protein-dependent endocytic mechanism that can be constitutively active in some cell types, albeit not BMMs. OMDE depends on different DHHC acyltransferases in different circumstances and can be limited by local supplies of fatty acids, CoA, and long-chain acyl-CoAs.
Collapse
Affiliation(s)
- Christine Deisl
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Orson W Moe
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Donald W Hilgemann
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
18
|
Wu H, Wei M, Hu S, Cheng P, Shi S, Xia F, Xu L, Yin L, Liang G, Li F, Ling D. A Photomodulable Bacteriophage-Spike Nanozyme Enables Dually Enhanced Biofilm Penetration and Bacterial Capture for Photothermal-Boosted Catalytic Therapy of MRSA Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301694. [PMID: 37310410 PMCID: PMC10460864 DOI: 10.1002/advs.202301694] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/22/2023] [Indexed: 06/14/2023]
Abstract
Nanozymes, featuring intrinsic biocatalytic effects and broad-spectrum antimicrobial properties, are emerging as a novel antibiotic class. However, prevailing bactericidal nanozymes face a challenging dilemma between biofilm penetration and bacterial capture capacity, significantly impeding their antibacterial efficacy. Here, this work introduces a photomodulable bactericidal nanozyme (ICG@hMnOx ), composed of a hollow virus-spiky MnOx nanozyme integrated with indocyanine green, for dually enhanced biofilm penetration and bacterial capture for photothermal-boosted catalytic therapy of bacterial infections. ICG@hMnOx demonstrates an exceptional capability to deeply penetrate biofilms, owing to its pronounced photothermal effect that disrupts the compact structure of biofilms. Simultaneously, the virus-spiky surface significantly enhances the bacterial capture capacity of ICG@hMnOx . This surface acts as a membrane-anchored generator of reactive oxygen species and a glutathione scavenger, facilitating localized photothermal-boosted catalytic bacterial disinfection. Effective treatment of methicillin-resistant Staphylococcus aureus-associated biofilm infections is achieved using ICG@hMnOx , offering an appealing strategy to overcome the longstanding trade-off between biofilm penetration and bacterial capture capacity in antibacterial nanozymes. This work presents a significant advancement in the development of nanozyme-based therapies for combating biofilm-related bacterial infections.
Collapse
Affiliation(s)
- Haibin Wu
- School of Pharmaceutical SciencesHangzhou Medical CollegeHangzhou311399P. R. China
| | - Min Wei
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058P. R. China
| | - Shen Hu
- Department of Obstetrics and GynaecologyThe Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310009P. R. China
| | - Pu Cheng
- Department of Obstetrics and GynaecologyThe Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310009P. R. China
| | - Shuhan Shi
- School of Pharmaceutical SciencesHangzhou Medical CollegeHangzhou311399P. R. China
| | - Fan Xia
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058P. R. China
| | - Lenan Xu
- School of Pharmaceutical SciencesHangzhou Medical CollegeHangzhou311399P. R. China
| | - Lina Yin
- School of Pharmaceutical SciencesHangzhou Medical CollegeHangzhou311399P. R. China
| | - Guang Liang
- School of Pharmaceutical SciencesHangzhou Medical CollegeHangzhou311399P. R. China
| | - Fangyuan Li
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058P. R. China
- Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310012P. R. China
- World Laureates Association (WLA) LaboratoriesShanghai201203P. R. China
| | - Daishun Ling
- Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310012P. R. China
- World Laureates Association (WLA) LaboratoriesShanghai201203P. R. China
- Frontiers Science Center for Transformative MoleculesSchool of Chemistry and Chemical EngineeringNational Center for Translational MedicineShanghai Jiao Tong UniversityShanghai200240P. R. China
| |
Collapse
|