1
|
Ma L, Zuo X, Lu B, Zhang Y. Correlation of METTL4 genetic variants and severe pneumonia pediatric patients in Southern China. BMC Genom Data 2025; 26:33. [PMID: 40312301 PMCID: PMC12044828 DOI: 10.1186/s12863-025-01306-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 02/24/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND Pneumonia is a major cause of mortality and health burden in children under five, yet its genetic etiology remains poorly understood. Methyltransferase 4, N6-adenosine (METTL4), is a methyltransferase enzyme responsible for RNA and DNA methylation and is known to be activated under hypoxic conditions. However, its potential link to susceptibility to pneumonia has not been evaluated. This study aimed to explore candidate regulatory single nucleotide polymorphisms (SNPs) within the METTL4 gene and their association with the development of severe pneumonia. RESULTS In this study, we recruited a cohort of 1034 children with severe pneumonia and 8426 healthy controls. We investigated the associations of candidate regulatory single nucleotide polymorphisms (SNPs) within METTL4 polymorphisms with severe pneumonia. Our results indicated that the C allele of rs9989554 (P = 0.00023, OR = 1.21, 95% CI: 1.09-1.34) and the G allele of rs16943442 (P = 0.0026, OR = 1.22, 95% CI: 1.07-1.38) were significantly associated with an increased risk of severe pneumonia. The regulatory potential of these two SNPs in the lung was investigated using tools such as expression quantitative trait loci (eQTLs), RegulomeDB, and FORGEdb. CONCLUSIONS This study represents the first investigation elucidating the role of genetic variations in the METTL4 gene and their influence on susceptibility to severe pneumonia in pediatric populations. METTL4 is identified as a novel predisposing gene for severe pneumonia and a potential therapeutic target. Further research is warranted to validate this correlation and to comprehensively elucidate the biological role of the METTL4 gene in severe pneumonia.
Collapse
Affiliation(s)
- Liuheyi Ma
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Xiaoyu Zuo
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, China
| | - Bingtai Lu
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, China.
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China.
| | - Yuxia Zhang
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, China.
| |
Collapse
|
2
|
Artika IM, Arianti R, Demény MÁ, Kristóf E. RNA modifications and their role in gene expression. Front Mol Biosci 2025; 12:1537861. [PMID: 40351534 PMCID: PMC12061695 DOI: 10.3389/fmolb.2025.1537861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 04/02/2025] [Indexed: 05/14/2025] Open
Abstract
Post-transcriptional RNA modifications have recently emerged as critical regulators of gene expression programs. Understanding normal tissue development and disease susceptibility requires knowledge of the various cellular mechanisms which control gene expression in multicellular organisms. Research into how different RNA modifications such as in N6-methyladenosine (m6A), inosine (I), 5-methylcytosine (m5C), pseudouridine (Ψ), 5-hydroxymethylcytosine (hm5C), N1-methyladenosine (m1A), N6,2'-O-dimethyladenosine (m6Am), 2'-O-methylation (Nm), N7-methylguanosine (m7G) etc. affect the expression of genes could be valuable. This review highlights the current understanding of RNA modification, methods used to study RNA modification, types of RNA modification, and molecular mechanisms underlying RNA modification. The role of RNA modification in modulating gene expression in both physiological and diseased states is discussed. The potential applications of RNA modification in therapeutic development are elucidated.
Collapse
Affiliation(s)
- I. Made Artika
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
| | - Rini Arianti
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Universitas Muhammadiyah Bangka Belitung, Pangkalpinang, Indonesia
| | - Máté Á. Demény
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Endre Kristóf
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
3
|
Huang H, Zhou F, Jia J, Zhang H. DTC-m6Am: A Framework for Recognizing N6,2'-O-dimethyladenosine Sites in Unbalanced Classification Patterns Based on DenseNet and Attention Mechanisms. FRONT BIOSCI-LANDMRK 2025; 30:36603. [PMID: 40302345 DOI: 10.31083/fbl36603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/12/2025] [Accepted: 03/25/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND m6Am is a specific RNA modification that plays an important role in regulating mRNA stability, translational efficiency, and cellular stress response. m6Am's precise identification is essential to gain insight into its functional mechanisms at transcriptional and post-transcriptional levels. Due to the limitations of experimental assays, the development of efficient computational tools to predict m6Am sites has become a major focus of research, offering potential breakthroughs in RNA epigenetics. In this study, we present a robust and reliable deep learning model, DTC-m6Am, for identifying m6Am sites across the transcriptome. METHODS Our proposed DTC-m6Am model first represents RNA sequences by One-Hot coding to capture base-based features and provide structured inputs for subsequent deep learning models. The model then combines densely connected convolutional networks (DenseNet) and temporal convolutional network (TCN). The DenseNet module leverages its dense connectivity property to effectively extract local features and enhance information flow, whereas the TCN module focuses on capturing global time series dependencies to enhance the modeling capability for long sequence features. To further optimize feature extraction, the Convolutional Block Attention Module (CBAM) is used to focus on key regions through spatial and channel attention mechanisms. Finally, a fully connected layer is used for the classification task to achieve accurate prediction of the m6Am site. For the data imbalance problem, we use the focal loss function to balance the learning effect of positive and negative samples and improve the performance of the model on imbalanced data. RESULTS The deep learning-based DTC-m6Am model performs well on all evaluation metrics, achieving 87.8%, 50.3%, 69.1%, 41.1%, and 76.5% for sensitivity (Sn), specificity (Sp), accuracy (ACC), Mathew's correlation coefficient (MCC), and area under the curve (AUC), respectively, on the independent test set. CONCLUSIONS We critically evaluated the performance of DTC-m6Am using 10-fold cross-validation and independent testing and compared it to existing methods. The MCC value of 41.1% was achieved when using the independent test, which is 19.7% higher than the current state-of-the-art prediction method, m6Aminer. The results indicate that the DTC-m6Am model has high accuracy and stability and is an effective tool for predicting m6Am sites.
Collapse
Affiliation(s)
- Hui Huang
- School of Information Engineering, Jingdezhen Ceramic University, 333403 Jingdezhen, Jiangxi, China
| | - Fenglin Zhou
- School of Information Engineering, Jingdezhen Ceramic University, 333403 Jingdezhen, Jiangxi, China
| | - Jianhua Jia
- School of Information Engineering, Jingdezhen Ceramic University, 333403 Jingdezhen, Jiangxi, China
| | - Huachun Zhang
- School of Information Engineering, Jingdezhen Ceramic University, 333403 Jingdezhen, Jiangxi, China
| |
Collapse
|
4
|
Liu JF, Hawley BR, Nicholson LS, Jaffrey SR. Decoding m 6Am by simultaneous transcription-start mapping and methylation quantification. eLife 2025; 13:RP104139. [PMID: 40162895 PMCID: PMC11957539 DOI: 10.7554/elife.104139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
N 6,2'-O-dimethyladenosine (m6Am) is a modified nucleotide located at the first transcribed position in mRNA and snRNA that is essential for diverse physiological processes. m6Am mapping methods assume each gene uses a single start nucleotide. However, gene transcription usually involves multiple start sites, generating numerous 5' isoforms. Thus, gene-level annotations cannot capture the diversity of m6Am modification in the transcriptome. Here, we describe CROWN-seq, which simultaneously identifies transcription-start nucleotides and quantifies m6Am stoichiometry for each 5' isoform that initiates with adenosine. Using CROWN-seq, we map the m6Am landscape in nine human cell lines. Our findings reveal that m6Am is nearly always a high stoichiometry modification, with only a small subset of cellular mRNAs showing lower m6Am stoichiometry. We find that m6Am is associated with increased transcript expression and provide evidence that m6Am may be linked to transcription initiation associated with specific promoter sequences and initiation mechanisms. These data suggest a potential new function for m6Am in influencing transcription.
Collapse
Affiliation(s)
- Jianheng Fox Liu
- Department of Pharmacology, Weill Cornell Medicine, Cornell UniversityNew YorkUnited States
| | - Ben R Hawley
- Department of Pharmacology, Weill Cornell Medicine, Cornell UniversityNew YorkUnited States
| | - Luke S Nicholson
- Department of Pharmacology, Weill Cornell Medicine, Cornell UniversityNew YorkUnited States
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medicine, Cornell UniversityNew YorkUnited States
| |
Collapse
|
5
|
Zwolsman R, Darwish YB, Kluza E, van der Meel R. Engineering Lipid Nanoparticles for mRNA Immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70007. [PMID: 40195623 PMCID: PMC11976204 DOI: 10.1002/wnan.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 04/09/2025]
Abstract
Over the last decades, messenger RNA (mRNA) has emerged as a promising therapeutic modality, enabling the delivery of genetic instructions to cells for producing therapeutic proteins or antigens. As such, mRNA-based therapies can be developed for a wide range of conditions, including infections, cancer, metabolic disorders, and genetic diseases. Nevertheless, using mRNA therapeutically requires chemical modifications to reduce immunostimulatory effects and nanotechnology to prevent degradation and ensure intracellular delivery. Lipid nanoparticles (LNPs) have become the most effective delivery platform for mRNA therapeutics, which are primarily employed for vaccine purposes following local administration and hepatic applications following systemic administration. Here, we review the state-of-the-art LNP-mRNA technology and discuss its potential for immunotherapy. We first outline the requirements for mRNA to be used therapeutically, including the role of LNP-mediated delivery. Next, we highlight LNP-mRNA immunotherapy approaches for vaccination, immuno-oncology, and autoimmune disorders. In addition, we discuss challenges that are limiting LNP-mRNA's widespread use, including tunable biodistribution and immunostimulatory effects. Finally, we provide an outlook on how implementing approaches such as library screening and machine learning will guide the development of next-generation mRNA therapeutics.
Collapse
Affiliation(s)
- Robby Zwolsman
- Laboratory of Chemical Biology, Department of Biomedical EngineeringEindhoven University of TechnologyEindhoventhe Netherlands
| | - Youssef B. Darwish
- Laboratory of Chemical Biology, Department of Biomedical EngineeringEindhoven University of TechnologyEindhoventhe Netherlands
| | - Ewelina Kluza
- Laboratory of Chemical Biology, Department of Biomedical EngineeringEindhoven University of TechnologyEindhoventhe Netherlands
| | - Roy van der Meel
- Laboratory of Chemical Biology, Department of Biomedical EngineeringEindhoven University of TechnologyEindhoventhe Netherlands
| |
Collapse
|
6
|
Yang Q, Davidson BA, Pajic P, Chen X, Gokcumen O, Gao M, Neelamegham S. Tuning the tropism and infectivity of SARS-CoV-2 virus-like particles for mRNA delivery. Nucleic Acids Res 2025; 53:gkaf133. [PMID: 40037714 PMCID: PMC11879429 DOI: 10.1093/nar/gkaf133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 03/06/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus-like particles (VLPs) are ∼100-nm-sized bioinspired mimetics of the authentic virus. We undertook molecular engineering to optimize the VLP platform for messenger RNA (mRNA) delivery. Cloning the nucleocapsid protein upstream of M-IRES-E resulted in a three-plasmid (3P) VLP system that displayed ∼7-fold higher viral entry efficiency compared with VLPs formed by co-transfection with four plasmids. More than 90% of human ACE2-expressing cells could be transduced using these 3P VLPs. Viral tropism could be programmed by switching glycoproteins from other viral strains, including other betacoronaviruses and the vesicular stomatitis virus G protein. An infectious two-plasmid VLP system was also advanced where one vector carried the viral surface glycoprotein and the second carried the remaining SARS-CoV-2 structural proteins and reporter gene. SARS-CoV-2 VLPs could be engineered to carry up to four transgenes, including functional Cas9 mRNA for genome editing. Gene editing of specific target cell types was feasible by modifying VLP tropism. Successful mRNA delivery to mouse lungs suggests that the SARS-CoV-2 VLPs can overcome natural biological barriers to enable pulmonary gene delivery. Overall, the study describes the advancement of the SARS-CoV-2 VLP platform for robust mRNA delivery both in vitro and in vivo.
Collapse
Affiliation(s)
- Qi Yang
- Chemical & Biological Engineering, State University of New York, Buffalo, NY 14260, United States
| | - Bruce A Davidson
- Department of Anesthesiology, State University of New York, Buffalo, NY 14203, United States
- Veterans Administration Western New York Healthcare System, Buffalo, NY 14215, United States
| | - Petar Pajic
- Department of Biological Sciences, State University of New York, Buffalo, NY 14260, United States
| | - Xuyang Chen
- Chemical & Biological Engineering, State University of New York, Buffalo, NY 14260, United States
| | - Omer Gokcumen
- Department of Biological Sciences, State University of New York, Buffalo, NY 14260, United States
| | - Min Gao
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, United States
| | - Sriram Neelamegham
- Chemical & Biological Engineering, State University of New York, Buffalo, NY 14260, United States
- Biomedical Engineering, State University of New York, Buffalo, NY 14260, United States
- Cell, Gene and Tissue Engineering Center, State University of New York, Buffalo, NY 14260, United States
- Medicine, State University of New York, Buffalo, NY 14260, United States
- Clinical & Translational Research Center, Buffalo, NY 14260, United States
| |
Collapse
|
7
|
Liu JF, Hawley BR, Nicholson LS, Jaffrey SR. Decoding m 6Am by simultaneous transcription-start mapping and methylation quantification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.16.618717. [PMID: 39677659 PMCID: PMC11642800 DOI: 10.1101/2024.10.16.618717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
N 6,2'-O-dimethyladenosine (m6Am) is a modified nucleotide located at the first transcribed position in mRNA and snRNA that is essential for diverse physiological processes. m6Am mapping methods assume each gene uses a single start nucleotide. However, gene transcription usually involves multiple start sites, generating numerous 5' isoforms. Thus, gene levels annotations cannot capture the diversity of m6Am modification in the transcriptome. Here we describe CROWN-seq, which simultaneously identifies transcription-start nucleotides and quantifies m6Am stoichiometry for each 5' isoform that initiates with adenosine. Using CROWN-seq, we map the m6Am landscape in nine human cell lines. Our findings reveal that m6Am is nearly always a high stoichiometry modification, with only a small subset of cellular mRNAs showing lower m6Am stoichiometry. We find that m6Am is associated with increased transcript expression and provide evidence that m6Am may be linked to transcription initiation associated with specific promoter sequences and initiation mechanisms. These data suggest a potential new function for m6Am in influencing transcription.
Collapse
Affiliation(s)
- Jianheng Fox Liu
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Ben R. Hawley
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
- Present address: Engage Bio, San Carlos, CA, USA
| | - Luke S. Nicholson
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Samie R. Jaffrey
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| |
Collapse
|
8
|
Xiang B, Zhang M, Li K, Zhang Z, Liu Y, Gao M, Wang X, Xiao X, Sun Y, He C, Shi J, Fan H, Xing X, Xu G, Yao Y, Chen G, Zhu H, Yi C, Zhang J. The epitranscriptional factor PCIF1 orchestrates CD8 + T cell ferroptosis and activation to control antitumor immunity. Nat Immunol 2025; 26:252-264. [PMID: 39762445 DOI: 10.1038/s41590-024-02047-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 11/26/2024] [Indexed: 02/02/2025]
Abstract
T cell-based immunotherapies have revolutionized cancer treatment, yet durable responses remain elusive. Here we show that PCIF1, an RNA N6 2'-O-dimethyladenosine (m6Am) methyltransferase, negatively regulates CD8+ T cell antitumor responses. Whole-body or T cell-specific Pcif1 knockout (KO) reduced tumor growth in mice. Single-cell RNA sequencing shows an increase in the number of tumor-infiltrating cytotoxic CD8+ T cells in Pcif1-deficient mice. Mechanistically, proteomic and m6Am-sequencing analyses pinpoint that Pcif1 KO elevates m6Am-modified targets, specifically ferroptosis suppressor genes (Fth1, Slc3a2), and the T cell activation gene Cd69, imparting resistance to ferroptosis and enhancing CD8+ T cell activation. Of note, Pcif1-deficient mice had enhanced responses to anti-PD-1 immunotherapy, and Pcif1 KO chimeric antigen receptor T cells improved tumor control. Clinically, cancer patients with low PCIF1 expression in T cells have enhanced responses to immunotherapies. These findings suggest that PCIF1 suppresses CD8+ T cell activation and targeting PCIF1 is a promising strategy to boost antitumor immunity.
Collapse
MESH Headings
- Animals
- Ferroptosis/immunology
- Ferroptosis/genetics
- Mice
- CD8-Positive T-Lymphocytes/immunology
- Lymphocyte Activation/immunology
- Mice, Knockout
- Humans
- Methyltransferases/genetics
- Methyltransferases/metabolism
- Methyltransferases/immunology
- Neoplasms/immunology
- Neoplasms/therapy
- Mice, Inbred C57BL
- Antigens, CD/genetics
- Cell Line, Tumor
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Lymphocytes, Tumor-Infiltrating/immunology
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
Collapse
Affiliation(s)
- Bolin Xiang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Meiling Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Kai Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zijian Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, China
| | - Yutong Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Minling Gao
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Xiyong Wang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Xiangling Xiao
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yishuang Sun
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Chuan He
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Jie Shi
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Hongzeng Fan
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Xixin Xing
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Gaoshan Xu
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yingmeng Yao
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Gang Chen
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Haichuan Zhu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, China.
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, China.
| | - Jinfang Zhang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
9
|
Zeng H, Wu Y, Long X. Cap-specific terminal N6-methyladeonsine methylation of RNA mediated by PCIF1 and possible therapeutic implications. Genes Dis 2025; 12:101181. [PMID: 39524541 PMCID: PMC11550742 DOI: 10.1016/j.gendis.2023.101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2024] Open
Abstract
Posttranscriptional RNA modification is an important mode of epigenetic regulation in various biological and pathological contexts. N6, 2'-O-dimethyladenosine (m6Am) is one of the most abundant methylation modifications in mammals and usually occurs at the first transcribed nucleotide. Accumulating evidence indicates that m6Am modifications have important roles in RNA metabolism and physiological and pathological processes. PCIF1 (phosphorylated C-terminal domain interacting factor 1) is a protein that can bind to the phosphorylated C-terminal domain of RNA polymerase II through its WW domain. PCIF1 is named after this binding ability. Recently, PCIF1 has been identified as a cap-specific adenine N6-methyltransferase responsible for m6Am formation. Discovered as the sole m6Am methyltransferase for mammalian mRNA, PCIF1 has since received more extensive and in-depth study. Dysregulation of PCIF1 contributes to various pathological processes. Targeting PCIF1 may hold promising therapeutic significance. In this review, we provide an overview of the current knowledge of PCIF1. We explore the current understanding of the structure and the biological characteristics of PCIF1. We further review the molecular mechanisms of PCIF1 in cancer and viral infection and discuss its therapeutic potential.
Collapse
Affiliation(s)
- Hui Zeng
- Center of Clinical Laboratory, Hangzhou Ninth People's Hospital, Hangzhou, Zhejiang 311225, China
| | - Yidong Wu
- Center of Clinical Laboratory, Hangzhou Ninth People's Hospital, Hangzhou, Zhejiang 311225, China
| | - Xinghua Long
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| |
Collapse
|
10
|
Luo W, Xu Z, Li F, Ding L, Wang R, Lin Y, Mao X, Chen X, Li Y, Lu Z, Xie H, Wang H, Zhu Z, Lu Y, Guo L, Yu X, Xia L, He HH, Li G. m6Am Methyltransferase PCIF1 Promotes LPP3 Mediated Phosphatidic Acid Metabolism and Renal Cell Carcinoma Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404033. [PMID: 39422663 PMCID: PMC11633504 DOI: 10.1002/advs.202404033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/29/2024] [Indexed: 10/19/2024]
Abstract
N6-methyl-2'-O-methyladenosine (m6Am), occurring adjacent to the 7-methylguanosine (m7G) cap structure and catalyzed by the newly identified writer PCIF1 (phosphorylated CTD interacting factor 1), has been implicated in the pathogenesis of various diseases. However, its involvement in renal cell carcinoma (RCC) remains unexplored. Here, significant upregulation of PCIF1 and m6Am levels in RCC tissues are identified, unveiling their oncogenic roles both in vitro and in vivo. Mechanically, employing m6Am-Exo-Seq, LPP3 (phospholipid phosphatase 3) mRNA is identified as a key downstream target whose translation is enhanced by m6Am modification. Furthermore, LPP3 is revealed as a key regulator of phosphatidic acid metabolism, critical for preventing its accumulation in mitochondria and facilitating mitochondrial fission. Consequently, Inhibition of the PCIF1/LPP3 axis significantly altered mitochondrial morphology and reduced RCC tumor progression. In addition, depletion of PCIF1 sensitizes RCC to sunitinib treatment. This study highlights the intricate interplay between m6Am modification, phosphatidic acid metabolism, and mitochondrial dynamics, offering a promising therapeutic avenue for RCC.
Collapse
Affiliation(s)
- Wenqin Luo
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Zhehao Xu
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Fan Li
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Lifeng Ding
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Ruyue Wang
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Yudong Lin
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Xudong Mao
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Xianjiong Chen
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Yang Li
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Zeyi Lu
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Haiyun Xie
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Huan Wang
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Ziwei Zhu
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Yi Lu
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Luying Guo
- Kidney Disease Center of First Affiliated HospitalZhejiang University School of MedicineHangzhou310000China
| | - Xiaojing Yu
- Department of RadiologySir Run Run Shaw hospitalZhejiang University School of MedicineHangzhou310016China
| | - Liqun Xia
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Housheng Hansen He
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioM5G 1L7Canada
| | - Gonghui Li
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| |
Collapse
|
11
|
Sugita A, Kano R, Ishiguro H, Yanagisawa N, Kuruma S, Wani S, Tanaka A, Tabuchi Y, Ohkuma Y, Hirose Y. Cap-Specific m 6Am Methyltransferase PCIF1/CAPAM Regulates mRNA Stability of RAB23 and CNOT6 through the m 6A Methyltransferase Activity. Cells 2024; 13:1689. [PMID: 39451207 PMCID: PMC11506431 DOI: 10.3390/cells13201689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Chemical modifications of cellular RNAs play key roles in gene expression and host defense. The cap-adjacent N6,2'-O-dimethyladenosine (m6Am) is a prevalent modification of vertebrate and viral mRNAs and is catalyzed by the newly discovered N6 methyltransferase PCIF1. However, its role in gene expression remains unclear due to conflicting reports on its effects on mRNA stability and translation. In this study, we investigated the impact of siRNA-mediated transient suppression of PCIF1 on global mRNA expression in HeLa cells. We identified a subset of differentially expressed genes (DEGs) that exhibited minimal overlap with previously reported DEGs. Subsequent validation revealed that PCIF1 positively and negatively regulates RAB23 and CNOT6 expression, respectively, at both the mRNA and protein levels. Mechanistic analyses demonstrated that PCIF1 regulates the stability of these target mRNAs rather than their transcription, and rescue experiments confirmed the requirement of PCIF1's methyltransferase activity for these regulations. Furthermore, MeRIP-qPCR analysis showed that PCIF1 suppression significantly reduced the m6A levels of RAB23 and CNOT6 mRNAs. These findings suggest that PCIF1 regulates the stability of specific mRNAs in opposite ways through m6A modification, providing new insights into the role of m6Am in the regulation of gene expression.
Collapse
Affiliation(s)
- Ai Sugita
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (A.S.); (R.K.); (H.I.); (N.Y.); (S.K.); (S.W.); (A.T.); (Y.O.)
| | - Ryoya Kano
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (A.S.); (R.K.); (H.I.); (N.Y.); (S.K.); (S.W.); (A.T.); (Y.O.)
| | - Hiroyasu Ishiguro
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (A.S.); (R.K.); (H.I.); (N.Y.); (S.K.); (S.W.); (A.T.); (Y.O.)
| | - Natsuki Yanagisawa
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (A.S.); (R.K.); (H.I.); (N.Y.); (S.K.); (S.W.); (A.T.); (Y.O.)
| | - Soichiro Kuruma
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (A.S.); (R.K.); (H.I.); (N.Y.); (S.K.); (S.W.); (A.T.); (Y.O.)
| | - Shotaro Wani
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (A.S.); (R.K.); (H.I.); (N.Y.); (S.K.); (S.W.); (A.T.); (Y.O.)
| | - Aki Tanaka
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (A.S.); (R.K.); (H.I.); (N.Y.); (S.K.); (S.W.); (A.T.); (Y.O.)
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan;
| | - Yoshiaki Ohkuma
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (A.S.); (R.K.); (H.I.); (N.Y.); (S.K.); (S.W.); (A.T.); (Y.O.)
- Department of Biochemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yutaka Hirose
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (A.S.); (R.K.); (H.I.); (N.Y.); (S.K.); (S.W.); (A.T.); (Y.O.)
| |
Collapse
|
12
|
Jin H, Shi Z, Zhou T, Xie S. Regulation of m6Am RNA modification and its implications in human diseases. J Mol Cell Biol 2024; 16:mjae012. [PMID: 38509021 PMCID: PMC11345611 DOI: 10.1093/jmcb/mjae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 03/22/2024] Open
Abstract
N 6,2'-O-dimethyladenosine (m6Am) is a prevalent modification frequently found at the 5' cap-adjacent adenosine of messenger RNAs (mRNAs) and small nuclear RNAs (snRNAs) and the internal adenosine of snRNAs. This dynamic and reversible modification is under the regulation of methyltransferases phosphorylated CTD interacting factor 1 and methyltransferase-like protein 4, along with the demethylase fat mass and obesity-associated protein. m6Am RNA modification plays a crucial role in the regulation of pre-mRNA splicing, mRNA stability, and translation, thereby influencing gene expression. In recent years, there has been growing interest in exploring the functions of m6Am and its relevance to human diseases. In this review, we provide a comprehensive overview of the current knowledge concerning m6Am, with a focus on m6Am-modifying enzymes, sequencing approaches for its detection, and its impacts on pre-mRNA splicing, mRNA stability, and translation regulation. Furthermore, we highlight the roles of m6Am in the context of obesity, viral infections, and cancers, unravelling its underlying regulatory mechanisms.
Collapse
Affiliation(s)
- Hao Jin
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhouyuanjing Shi
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China
| | - Tianhua Zhou
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou 310020, China
| | - Shanshan Xie
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| |
Collapse
|
13
|
Patarca R, Haseltine WA. Forty years of HIV research inspires the development of SARS-CoV-2 therapy. J Mol Cell Biol 2024; 15:mjad065. [PMID: 37873695 PMCID: PMC11137671 DOI: 10.1093/jmcb/mjad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/24/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023] Open
|
14
|
Liu WW, Zheng SQ, Li T, Fei YF, Wang C, Zhang S, Wang F, Jiang GM, Wang H. RNA modifications in cellular metabolism: implications for metabolism-targeted therapy and immunotherapy. Signal Transduct Target Ther 2024; 9:70. [PMID: 38531882 DOI: 10.1038/s41392-024-01777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
Cellular metabolism is an intricate network satisfying bioenergetic and biosynthesis requirements of cells. Relevant studies have been constantly making inroads in our understanding of pathophysiology, and inspiring development of therapeutics. As a crucial component of epigenetics at post-transcription level, RNA modification significantly determines RNA fates, further affecting various biological processes and cellular phenotypes. To be noted, immunometabolism defines the metabolic alterations occur on immune cells in different stages and immunological contexts. In this review, we characterize the distribution features, modifying mechanisms and biological functions of 8 RNA modifications, including N6-methyladenosine (m6A), N6,2'-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N4-acetylcytosine (ac4C), N7-methylguanosine (m7G), Pseudouridine (Ψ), adenosine-to-inosine (A-to-I) editing, which are relatively the most studied types. Then regulatory roles of these RNA modification on metabolism in diverse health and disease contexts are comprehensively described, categorized as glucose, lipid, amino acid, and mitochondrial metabolism. And we highlight the regulation of RNA modifications on immunometabolism, further influencing immune responses. Above all, we provide a thorough discussion about clinical implications of RNA modification in metabolism-targeted therapy and immunotherapy, progression of RNA modification-targeted agents, and its potential in RNA-targeted therapeutics. Eventually, we give legitimate perspectives for future researches in this field from methodological requirements, mechanistic insights, to therapeutic applications.
Collapse
Affiliation(s)
- Wei-Wei Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- School of Clinical Medicine, Shandong University, Jinan, China
| | - Si-Qing Zheng
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Tian Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Yun-Fei Fei
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Chen Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Shuang Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Fei Wang
- Neurosurgical Department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Guan-Min Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.
| | - Hao Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China.
| |
Collapse
|
15
|
Warminski M, Trepkowska E, Smietanski M, Sikorski PJ, Baranowski MR, Bednarczyk M, Kedzierska H, Majewski B, Mamot A, Papiernik D, Popielec A, Serwa RA, Shimanski BA, Sklepkiewicz P, Sklucka M, Sokolowska O, Spiewla T, Toczydlowska-Socha D, Warminska Z, Wolosewicz K, Zuberek J, Mugridge JS, Nowis D, Golab J, Jemielity J, Kowalska J. Trinucleotide mRNA Cap Analogue N6-Benzylated at the Site of Posttranscriptional m6A m Mark Facilitates mRNA Purification and Confers Superior Translational Properties In Vitro and In Vivo. J Am Chem Soc 2024; 146:8149-8163. [PMID: 38442005 PMCID: PMC10979456 DOI: 10.1021/jacs.3c12629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 03/07/2024]
Abstract
Eukaryotic mRNAs undergo cotranscriptional 5'-end modification with a 7-methylguanosine cap. In higher eukaryotes, the cap carries additional methylations, such as m6Am─a common epitranscriptomic mark unique to the mRNA 5'-end. This modification is regulated by the Pcif1 methyltransferase and the FTO demethylase, but its biological function is still unknown. Here, we designed and synthesized a trinucleotide FTO-resistant N6-benzyl analogue of the m6Am-cap-m7GpppBn6AmpG (termed AvantCap) and incorporated it into mRNA using T7 polymerase. mRNAs carrying Bn6Am showed several advantages over typical capped transcripts. The Bn6Am moiety was shown to act as a reversed-phase high-performance liquid chromatography (RP-HPLC) purification handle, allowing the separation of capped and uncapped RNA species, and to produce transcripts with lower dsRNA content than reference caps. In some cultured cells, Bn6Am mRNAs provided higher protein yields than mRNAs carrying Am or m6Am, although the effect was cell-line-dependent. m7GpppBn6AmpG-capped mRNAs encoding reporter proteins administered intravenously to mice provided up to 6-fold higher protein outputs than reference mRNAs, while mRNAs encoding tumor antigens showed superior activity in therapeutic settings as anticancer vaccines. The biochemical characterization suggests several phenomena potentially underlying the biological properties of AvantCap: (i) reduced propensity for unspecific interactions, (ii) involvement in alternative translation initiation, and (iii) subtle differences in mRNA impurity profiles or a combination of these effects. AvantCapped-mRNAs bearing the Bn6Am may pave the way for more potent mRNA-based vaccines and therapeutics and serve as molecular tools to unravel the role of m6Am in mRNA.
Collapse
Affiliation(s)
- Marcin Warminski
- Division
of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Edyta Trepkowska
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | | | - Pawel J. Sikorski
- Centre
of New Technologies, University of Warsaw, 02-089 Warsaw, Poland
- Laboratory
of Epitranscriptomics, Department of Environmental Microbiology and
Biotechnology, Institute of Microbiology, Faculty of Biology, Biological
and Chemical Research Centre, University
of Warsaw, 02-089 Warsaw, Poland
| | | | - Marcelina Bednarczyk
- Centre
of New Technologies, University of Warsaw, 02-089 Warsaw, Poland
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Hanna Kedzierska
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Bartosz Majewski
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Adam Mamot
- Centre
of New Technologies, University of Warsaw, 02-089 Warsaw, Poland
| | - Diana Papiernik
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Agnieszka Popielec
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Remigiusz A. Serwa
- Proteomics
Core Facility, IMol Polish Academy of Sciences, 02-247 Warsaw, Poland
| | - Brittany A. Shimanski
- Department
of Chemistry & Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Piotr Sklepkiewicz
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Marta Sklucka
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Olga Sokolowska
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Tomasz Spiewla
- Division
of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | | | - Zofia Warminska
- Centre
of New Technologies, University of Warsaw, 02-089 Warsaw, Poland
| | - Karol Wolosewicz
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Joanna Zuberek
- Division
of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Jeffrey S. Mugridge
- Department
of Chemistry & Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Dominika Nowis
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
- Laboratory
of Experimental Medicine, Faculty of Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Jakub Golab
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
- Laboratory
of Experimental Medicine, Faculty of Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Jacek Jemielity
- Centre
of New Technologies, University of Warsaw, 02-089 Warsaw, Poland
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Joanna Kowalska
- Division
of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| |
Collapse
|
16
|
Benak D, Kolar F, Zhang L, Devaux Y, Hlavackova M. RNA modification m 6Am: the role in cardiac biology. Epigenetics 2023; 18:2218771. [PMID: 37331009 DOI: 10.1080/15592294.2023.2218771] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Epitranscriptomic modifications have recently emerged into the spotlight of researchers due to their vast regulatory effects on gene expression and thereby cellular physiology and pathophysiology. N6,2'-O-dimethyladenosine (m6Am) is one of the most prevalent chemical marks on RNA and is dynamically regulated by writers (PCIF1, METTL4) and erasers (FTO). The presence or absence of m6Am in RNA affects mRNA stability, regulates transcription, and modulates pre-mRNA splicing. Nevertheless, its functions in the heart are poorly known. This review summarizes the current knowledge and gaps about m6Am modification and its regulators in cardiac biology. It also points out technical challenges and lists the currently available techniques to measure m6Am. A better understanding of epitranscriptomic modifications is needed to improve our knowledge of the molecular regulations in the heart which may lead to novel cardioprotective strategies.
Collapse
Affiliation(s)
- Daniel Benak
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Frantisek Kolar
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lu Zhang
- Bioinformatics Platform, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Marketa Hlavackova
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
17
|
Shen S, Zhang LS. The regulation of antiviral innate immunity through non-m 6A RNA modifications. Front Immunol 2023; 14:1286820. [PMID: 37915585 PMCID: PMC10616867 DOI: 10.3389/fimmu.2023.1286820] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023] Open
Abstract
The post-transcriptional RNA modifications impact the dynamic regulation of gene expression in diverse biological and physiological processes. Host RNA modifications play an indispensable role in regulating innate immune responses against virus infection in mammals. Meanwhile, the viral RNAs can be deposited with RNA modifications to interfere with the host immune responses. The N6-methyladenosine (m6A) has boosted the recent emergence of RNA epigenetics, due to its high abundance and a transcriptome-wide widespread distribution in mammalian cells, proven to impact antiviral innate immunity. However, the other types of RNA modifications are also involved in regulating antiviral responses, and the functional roles of these non-m6A RNA modifications have not been comprehensively summarized. In this Review, we conclude the regulatory roles of 2'-O-methylation (Nm), 5-methylcytidine (m5C), adenosine-inosine editing (A-to-I editing), pseudouridine (Ψ), N1-methyladenosine (m1A), N7-methylguanosine (m7G), N6,2'-O-dimethyladenosine (m6Am), and N4-acetylcytidine (ac4C) in antiviral innate immunity. We provide a systematic introduction to the biogenesis and functions of these non-m6A RNA modifications in viral RNA, host RNA, and during virus-host interactions, emphasizing the biological functions of RNA modification regulators in antiviral responses. Furthermore, we discussed the recent research progress in the development of antiviral drugs through non-m6A RNA modifications. Collectively, this Review conveys knowledge and inspiration to researchers in multiple disciplines, highlighting the challenges and future directions in RNA epitranscriptome, immunology, and virology.
Collapse
Affiliation(s)
- Shenghai Shen
- Division of Life Science, The Hong Kong University of Science and Technology (HKUST), Kowloon, Hong Kong SAR, China
| | - Li-Sheng Zhang
- Division of Life Science, The Hong Kong University of Science and Technology (HKUST), Kowloon, Hong Kong SAR, China
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Kowloon, Hong Kong SAR, China
| |
Collapse
|
18
|
Li K, Chen J, Zhang C, Cheng M, Chen S, Song W, Yang C, Ling R, Chen Z, Wang X, Xiong G, Ma J, Zhu Y, Yuan Q, Liu Q, Peng L, Chen Q, Chen D. The CTBP2-PCIF1 complex regulates m6Am modification of mRNA in head and neck squamous cell carcinoma. J Clin Invest 2023; 133:e170173. [PMID: 37643007 PMCID: PMC10575729 DOI: 10.1172/jci170173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
PCIF1 can mediate the methylation of N6,2'-O-dimethyladenosine (m6Am) in mRNA. Yet, the detailed interplay between PCIF1 and the potential cofactors and its pathological significance remain elusive. Here, we demonstrated that PCIF1-mediated cap mRNA m6Am modification promoted head and neck squamous cell carcinoma progression both in vitro and in vivo. CTBP2 was identified as a cofactor of PCIF1 to catalyze m6Am deposition on mRNA. CLIP-Seq data demonstrated that CTBP2 bound to similar mRNAs as compared with PCIF1. We then used the m6Am-Seq method to profile the mRNA m6Am site at single-base resolution and found that mRNA of TET2, a well-known tumor suppressor, was a major target substrate of the PCIF1-CTBP2 complex. Mechanistically, knockout of CTBP2 reduced PCIF1 occupancy on TET2 mRNA, and the PCIF1-CTBP2 complex negatively regulated the translation of TET2 mRNA. Collectively, our study demonstrates the oncogenic function of the epitranscriptome regulator PCIF1-CTBP2 complex, highlighting the importance of the m6Am modification in tumor progression.
Collapse
Affiliation(s)
- Kang Li
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jie Chen
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Caihua Zhang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Maosheng Cheng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuang Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chunlong Yang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rongsong Ling
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Zhi Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaochen Wang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gan Xiong
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jieyi Ma
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Zhu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qi Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Guangzhou, China
| | - Liang Peng
- Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Fengtai District, Beijing, China
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Demeng Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Wu Y, Pu X, Wu S, Zhang Y, Fu S, Tang H, Wang X, Xu M. PCIF1, the only methyltransferase of N6,2-O-dimethyladenosine. Cancer Cell Int 2023; 23:226. [PMID: 37779183 PMCID: PMC10544176 DOI: 10.1186/s12935-023-03066-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/14/2023] [Indexed: 10/03/2023] Open
Abstract
N6-methyladenosine(m6A), is the most abundant post-transcriptional modification of mRNA in biology. When the first nucleotide after the m7G cap is adenosine, it is methylated at the N6 position to form N6,2-O-dimethyladenosine (m6Am). m6Am is a reversible modification located at the first transcribed nucleotide, which is present in about 30% of cellular mRNAs, thus m6Am can have a significant impact on gene expression in the transcriptome. Phosphorylated CTD interaction factor 1(PCIF1), the unique and specific methyltransferase of m6Am, has been shown to affect mRNA stability, transcription, and translation. Several studies have shown that PCIF1 is clearly associated with tumor, viral, and endocrine diseases. Moreover, PCIF1 may be related to the tumor microenvironment, immune cell typing, and programmed cell death protein 1(PD-1) drug resistance. Here, we summarize the mechanism of PCIF1 involvement in mRNA modifications, and outline m6Am modifications and diseases in which PCIF1 is involved. We also summarized the role of PCIF1 in immune and immune checkpoint blockade(ICB) treatment, and predicted the possibility of PCIF1 as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Yuting Wu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Xi Pu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Sihui Wu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Yiran Zhang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Shengqiao Fu
- Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Haowen Tang
- Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Xu Wang
- Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China.
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, Jiangsu, China.
- Digestive Disease Research Institute of Jiangsu University, Zhenjiang, 212001, Jiangsu, China.
| |
Collapse
|
20
|
Sun H, Li K, Liu C, Yi C. Regulation and functions of non-m 6A mRNA modifications. Nat Rev Mol Cell Biol 2023; 24:714-731. [PMID: 37369853 DOI: 10.1038/s41580-023-00622-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2023] [Indexed: 06/29/2023]
Abstract
Nucleobase modifications are prevalent in eukaryotic mRNA and their discovery has resulted in the emergence of epitranscriptomics as a research field. The most abundant internal (non-cap) mRNA modification is N6-methyladenosine (m6A), the study of which has revolutionized our understanding of post-transcriptional gene regulation. In addition, numerous other mRNA modifications are gaining great attention because of their major roles in RNA metabolism, immunity, development and disease. In this Review, we focus on the regulation and function of non-m6A modifications in eukaryotic mRNA, including pseudouridine (Ψ), N6,2'-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), inosine, 5-methylcytidine (m5C), N4-acetylcytidine (ac4C), 2'-O-methylated nucleotide (Nm) and internal N7-methylguanosine (m7G). We highlight their regulation, distribution, stoichiometry and known roles in mRNA metabolism, such as mRNA stability, translation, splicing and export. We also discuss their biological consequences in physiological and pathological processes. In addition, we cover research techniques to further study the non-m6A mRNA modifications and discuss their potential future applications.
Collapse
Affiliation(s)
- Hanxiao Sun
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Kai Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Cong Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| |
Collapse
|
21
|
Wang L, Wang S, Wu L, Li W, Bray W, Clark AE, Gonzalez GM, Wang Y, Carlin AF, Rana TM. PCIF1-mediated deposition of 5'-cap N6,2'- O-dimethyladenosine in ACE2 and TMPRSS2 mRNA regulates susceptibility to SARS-CoV-2 infection. Proc Natl Acad Sci U S A 2023; 120:e2210361120. [PMID: 36689652 PMCID: PMC9945940 DOI: 10.1073/pnas.2210361120] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/14/2022] [Indexed: 01/25/2023] Open
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be a major health problem worldwide. Due to the fast emergence of SARS-CoV-2 variants, understanding the molecular mechanisms of viral pathogenesis and developing novel inhibitors are essential and urgent. Here, we investigated the potential roles of N6,2'-O-dimethyladenosine (m6Am), one of the most abundant modifications of eukaryotic messenger ribonucleic acid (mRNAs), in SARS-CoV-2 infection of human cells. Using genome-wide m6Am-exo-seq, RNA sequencing analysis, and Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing, we demonstrate that phosphorylated C-terminal domain (CTD)-interacting factor 1 (PCIF1), a cap-specific adenine N6-methyltransferase, plays a major role in facilitating infection of primary human lung epithelial cells and cell lines by SARS-CoV-2, variants of concern, and other coronaviruses. We show that PCIF1 promotes infection by sustaining expression of the coronavirus receptors angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) via m6Am-dependent mRNA stabilization. In PCIF1-depleted cells, both ACE2/TMPRSS2 expression and viral infection are rescued by re-expression of wild-type, but not catalytically inactive, PCIF1. These findings suggest a role for PCIF1 and cap m6Am in regulating SARS-CoV-2 susceptibility and identify a potential therapeutic target for prevention of infection.
Collapse
Affiliation(s)
- Lingling Wang
- Division of Genetics, Program in Immunology, Bioinformatics and Systems Biology Program, Institute for Genomic Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Shaobo Wang
- Division of Genetics, Program in Immunology, Bioinformatics and Systems Biology Program, Institute for Genomic Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Lujing Wu
- Division of Genetics, Program in Immunology, Bioinformatics and Systems Biology Program, Institute for Genomic Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Wanyu Li
- Division of Genetics, Program in Immunology, Bioinformatics and Systems Biology Program, Institute for Genomic Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - William Bray
- Division of Genetics, Program in Immunology, Bioinformatics and Systems Biology Program, Institute for Genomic Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Alex E. Clark
- Division of Infectious Diseases and Global Public Health, Department of Medicine, Department of Pathology, University of California San Diego, La Jolla, CA92093
| | - Gwendolyn Michelle Gonzalez
- Environmental Toxicology Graduate Program, University of California, Riverside, CA92521
- Department of Chemistry University of California, Riverside, CA92521
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, CA92521
- Department of Chemistry University of California, Riverside, CA92521
| | - Aaron F. Carlin
- Division of Infectious Diseases and Global Public Health, Department of Medicine, Department of Pathology, University of California San Diego, La Jolla, CA92093
| | - Tariq M. Rana
- Division of Genetics, Program in Immunology, Bioinformatics and Systems Biology Program, Institute for Genomic Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| |
Collapse
|