1
|
Vieitas-Gaspar N, Soares-Cunha C, Rodrigues AJ. From valence encoding to motivated behavior: A focus on the nucleus accumbens circuitry. Neurosci Biobehav Rev 2025; 172:106125. [PMID: 40154653 DOI: 10.1016/j.neubiorev.2025.106125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/21/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
How do our brains determine whether something is good or bad? The brain's ability to evaluate stimuli as positive or negative - by attributing valence - is fundamental to survival and decision-making. Different brain regions have been associated with valence encoding, including the nucleus accumbens (NAc). The NAc is predominantly composed of GABAergic medium spiny neurons (MSNs), which segregate into two distinct populations based on their dopamine receptor expression: D1-receptor-expressing (D1-MSNs) and D2-receptor-expressing neurons (D2-MSNs). Classical models propose a binary functional role, where D1-MSNs exclusively mediated reward and positive valence, while D2-MSNs processed aversion and negative valence. However, we now recognize that NAc MSN subpopulations operate in a more complex manner than previously thought, often working cooperatively rather than antagonistically in valence-related behaviors. This review synthesizes our current knowledge of valence-encoding neurocircuitry, with emphasis on the NAc. We examine electrophysiological, calcium imaging, optogenetic, chemogenetic and pharmacological studies detailing the contribution of NAc medium spiny neurons for rewarding and aversive responses. Finally, we explore emerging technical innovations that promise to advance our understanding of how the mammalian brain encodes valence and translates it into behavior.
Collapse
Affiliation(s)
- Natacha Vieitas-Gaspar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
2
|
Faust TW, Mohebi A, Berke JD. Reward expectation and receipt differentially modulate the spiking of accumbens D1+ and D2+ neurons. Curr Biol 2025; 35:1285-1297.e3. [PMID: 40020662 PMCID: PMC11968066 DOI: 10.1016/j.cub.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/21/2024] [Accepted: 02/04/2025] [Indexed: 03/03/2025]
Abstract
The nucleus accumbens (NAc) helps govern motivation to pursue reward. Two distinct sets of NAc projection neurons-expressing dopamine D1 vs. D2 receptors-are thought to promote and suppress motivated behaviors, respectively. However, support for this conceptual framework is limited: in particular, the spiking patterns of these distinct cell types during motivated behavior have been largely unknown. Using optogenetic tagging, we recorded the spiking of identified D1+ and D2+ neurons in the NAc core as unrestrained rats performed an operant task in which motivation to initiate work tracks recent reward rate. D1+ neurons preferentially increased firing as rats initiated trials and fired more when reward expectation was higher. By contrast, D2+ cells preferentially increased firing later in the trial, especially in response to reward delivery-a finding not anticipated from current theoretical models. Our results provide new evidence for the specific contribution of NAc D1+ cells to self-initiated approach behavior and will spur updated models of how D2+ cells contribute to learning.
Collapse
Affiliation(s)
- T W Faust
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - A Mohebi
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - J D Berke
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
3
|
Tan B, Hedbacker K, Kelly L, Zhang Z, Moura-Assis A, Luo JD, Rabinowitz JD, Friedman JM. A cellular and molecular basis of leptin resistance. Cell Metab 2025; 37:723-741.e6. [PMID: 40043692 DOI: 10.1016/j.cmet.2025.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 09/09/2024] [Accepted: 01/02/2025] [Indexed: 05/13/2025]
Abstract
Similar to most humans with obesity, diet-induced obese (DIO) mice have high leptin levels and fail to respond to the exogenous hormone, suggesting that their obesity is caused by leptin resistance, the pathogenesis of which is unknown. We found that leptin treatment reduced plasma levels of leucine and methionine, mTOR-activating ligands, leading us to hypothesize that chronic mTOR activation might reduce leptin signaling. Rapamycin, an mTOR inhibitor, reduced fat mass and increased leptin sensitivity in DIO mice but not in mice with defects in leptin signaling. Rapamycin restored leptin's actions on POMC neurons and failed to reduce the weight of mice with defects in melanocortin signaling. mTOR activation in POMC neurons caused leptin resistance, whereas POMC-specific mutations in mTOR activators decreased weight gain of DIO mice. Thus, increased mTOR activity in POMC neurons is necessary and sufficient for the development of leptin resistance in DIO mice, establishing a key pathogenic mechanism leading to obesity.
Collapse
Affiliation(s)
- Bowen Tan
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Kristina Hedbacker
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Leah Kelly
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Zhaoyue Zhang
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Alexandre Moura-Assis
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Ji-Dung Luo
- Bioinformatics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Joshua D Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
4
|
Lowet AS, Zheng Q, Meng M, Matias S, Drugowitsch J, Uchida N. An opponent striatal circuit for distributional reinforcement learning. Nature 2025; 639:717-726. [PMID: 39972123 PMCID: PMC12007193 DOI: 10.1038/s41586-024-08488-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 12/04/2024] [Indexed: 02/21/2025]
Abstract
Machine learning research has achieved large performance gains on a wide range of tasks by expanding the learning target from mean rewards to entire probability distributions of rewards-an approach known as distributional reinforcement learning (RL)1. The mesolimbic dopamine system is thought to underlie RL in the mammalian brain by updating a representation of mean value in the striatum2, but little is known about whether, where and how neurons in this circuit encode information about higher-order moments of reward distributions3. Here, to fill this gap, we used high-density probes (Neuropixels) to record striatal activity from mice performing a classical conditioning task in which reward mean, reward variance and stimulus identity were independently manipulated. In contrast to traditional RL accounts, we found robust evidence for abstract encoding of variance in the striatum. Chronic ablation of dopamine inputs disorganized these distributional representations in the striatum without interfering with mean value coding. Two-photon calcium imaging and optogenetics revealed that the two major classes of striatal medium spiny neurons-D1 and D2-contributed to this code by preferentially encoding the right and left tails of the reward distribution, respectively. We synthesize these findings into a new model of the striatum and mesolimbic dopamine that harnesses the opponency between D1 and D2 medium spiny neurons4-9 to reap the computational benefits of distributional RL.
Collapse
Affiliation(s)
- Adam S Lowet
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Program in Neuroscience, Harvard University, Boston, MA, USA
| | - Qiao Zheng
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Melissa Meng
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Sara Matias
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Jan Drugowitsch
- Center for Brain Science, Harvard University, Cambridge, MA, USA.
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| | - Naoshige Uchida
- Center for Brain Science, Harvard University, Cambridge, MA, USA.
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
5
|
Kim YB, Lee YH, Park SJ, Choi HJ. A unified theoretical framework underlying the regulation of motivated behavior. Bioessays 2024; 46:e2400016. [PMID: 39221529 DOI: 10.1002/bies.202400016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
To orchestrate behaviors for survival, multiple psychological components have evolved. The current theories do not clearly distinguish the distinct components. In this article, we provide a unified theoretical framework. To optimize survival, there should be four components; (1) "need", an alarm based on a predicted deficiency. (2) "motivation", a direct behavior driver. (3) "pleasure", a teacher based on immediate outcomes. (4) "utility", a teacher based on final delayed outcomes. For behavior stability, need should be accumulated into motivation to drive behavior. Based on the immediate outcome of the behavior, the pleasure should teach whether to continue the current behavior. Based on the final delay outcome, the utility should teach whether to increase future behavior by reshaping the other three components. We provide several neural substrate candidates in the food context. The proposed theoretical framework, in combination with appropriate experiments, will unravel the neural components responsible for each theoretical component.
Collapse
Affiliation(s)
- Yu-Been Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Hee Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Shee-June Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyung Jin Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
- Wide River Institute of Immunology, Seoul National University, Gangwon-do, Republic of Korea
| |
Collapse
|
6
|
Schall TA, Li KL, Qi X, Lee BT, Wright WJ, Alpaugh EE, Zhao RJ, Liu J, Li Q, Zeng B, Wang L, Huang YH, Schlüter OM, Nestler EJ, Nieh EH, Dong Y. Temporal dynamics of nucleus accumbens neurons in male mice during reward seeking. Nat Commun 2024; 15:9285. [PMID: 39468146 PMCID: PMC11519475 DOI: 10.1038/s41467-024-53690-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
The nucleus accumbens (NAc) regulates reward-motivated behavior, but the temporal dynamics of NAc neurons that enable "free-willed" animals to obtain rewards remain elusive. Here, we recorded Ca2+ activity from individual NAc neurons when mice performed self-paced lever-presses for sucrose. NAc neurons exhibited three temporally-sequenced clusters, defined by times at which they exhibited increased Ca2+ activity: approximately 0, -2.5 or -5 sec relative to the lever-pressing. Dopamine D1 receptor (D1)-expressing neurons and D2-neurons formed the majority of the -5-sec versus -2.5-sec clusters, respectively, while both neuronal subtypes were represented in the 0-sec cluster. We found that pre-press activity patterns of D1- or D2-neurons could predict subsequent lever-presses. Inhibiting D1-neurons at -5 sec or D2-neurons at -2.5 sec, but not at other timepoints, reduced sucrose-motivated lever-pressing. We propose that the time-specific activity of D1- and D2-neurons mediate key temporal features of the NAc through which reward motivation initiates reward-seeking behavior.
Collapse
Affiliation(s)
- Terra A Schall
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - King-Lun Li
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Xiguang Qi
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Brian T Lee
- School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - William J Wright
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Erin E Alpaugh
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Rachel J Zhao
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Jianwei Liu
- Department of Industrial Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Qize Li
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Bo Zeng
- Department of Industrial Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Lirong Wang
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Yanhua H Huang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Oliver M Schlüter
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Edward H Nieh
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22903, USA
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
7
|
Helgesen EH, Ulevåg R, Solheim TS, Thronæs M, Jakobsen G, Løhre ET, Balstad TR, Vagnildhaug OM. Appetite Loss in Patients with Advanced Cancer Treated at an Acute Palliative Care Unit. Curr Oncol 2024; 31:6061-6072. [PMID: 39451756 PMCID: PMC11506380 DOI: 10.3390/curroncol31100452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Appetite loss is prevalent in patients with advanced cancer and negatively affects their quality of life. However, understanding of the factors associated with appetite loss is limited. The current study aims to explore characteristics and therapeutic interventions used for patients with and without appetite loss admitted to an acute palliative care unit. Patient characteristics and patient-reported outcome measures (PROMs), using the 11-point numeric rating scale (NRS 0-10), were registered. Descriptive statistics, independent samples T-tests and chi-square tests were utilized for data analysis. Of the 167 patients included in the analysis, 62% (104) had moderate to severe appetite loss at admission, whereof 63% (66) improved their appetite during their hospital stay. At admission, there was a significant association between appetite loss and having gastrointestinal cancer, living alone, poor performance status and withdrawn anticancer treatment. Patients with appetite loss also experienced more nausea, depression, fatigue, dyspnea and anxiety. In patients with improved appetite during hospitalization, mean decrease in NRS was 3.4 (standard error (SE) 0.27). Additionally, patients living alone were more likely to improve their appetite. Appetite improvement frequently coincided with alleviation of fatigue. Understanding these associations may help in developing better interventions for managing appetite loss in patients with advanced cancer.
Collapse
Affiliation(s)
- Elisabeth Hagen Helgesen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030 Trondheim, Norway; (T.S.S.); (M.T.); (E.T.L.); (T.R.B.)
| | - Ragnhild Ulevåg
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030 Trondheim, Norway; (T.S.S.); (M.T.); (E.T.L.); (T.R.B.)
| | - Tora Skeidsvoll Solheim
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030 Trondheim, Norway; (T.S.S.); (M.T.); (E.T.L.); (T.R.B.)
- Cancer Clinic, St. Olavs Hospital–Trondheim University Hospital, 7030 Trondheim, Norway;
| | - Morten Thronæs
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030 Trondheim, Norway; (T.S.S.); (M.T.); (E.T.L.); (T.R.B.)
- Cancer Clinic, St. Olavs Hospital–Trondheim University Hospital, 7030 Trondheim, Norway;
- Centre for Crisis Psychology, Faculty of Psychology, University of Bergen, 5007 Bergen, Norway
| | - Gunnhild Jakobsen
- Cancer Clinic, St. Olavs Hospital–Trondheim University Hospital, 7030 Trondheim, Norway;
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU–Norwegian University of Science and Technology, 7030 Trondheim, Norway
| | - Erik Torbjørn Løhre
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030 Trondheim, Norway; (T.S.S.); (M.T.); (E.T.L.); (T.R.B.)
- Cancer Clinic, St. Olavs Hospital–Trondheim University Hospital, 7030 Trondheim, Norway;
- Centre for Crisis Psychology, Faculty of Psychology, University of Bergen, 5007 Bergen, Norway
| | - Trude Rakel Balstad
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030 Trondheim, Norway; (T.S.S.); (M.T.); (E.T.L.); (T.R.B.)
- Department of Clinical Medicine, Clinical Nutrition Research Group, UiT The Arctic University of Norway, 9019 Tromsø, Norway
| | - Ola Magne Vagnildhaug
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030 Trondheim, Norway; (T.S.S.); (M.T.); (E.T.L.); (T.R.B.)
- Cancer Clinic, St. Olavs Hospital–Trondheim University Hospital, 7030 Trondheim, Norway;
| |
Collapse
|
8
|
Liu Y, Wang Y, Zhao ZD, Xie G, Zhang C, Chen R, Zhang Y. A subset of dopamine receptor-expressing neurons in the nucleus accumbens controls feeding and energy homeostasis. Nat Metab 2024; 6:1616-1631. [PMID: 39147933 PMCID: PMC11349581 DOI: 10.1038/s42255-024-01100-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024]
Abstract
Orchestrating complex behaviors, such as approaching and consuming food, is critical for survival. In addition to hypothalamus neuronal circuits, the nucleus accumbens (NAc) also controls appetite and satiety. However, specific neuronal subtypes of the NAc that are involved and how the humoral and neuronal signals coordinate to regulate feeding remain incompletely understood. Here we decipher the spatial diversity of neuron subtypes of the NAc shell (NAcSh) and define a dopamine receptor D1-expressing and Serpinb2-expressing subtype controlling food consumption in male mice. Chemogenetics and optogenetics-mediated regulation of Serpinb2+ neurons bidirectionally regulate food seeking and consumption specifically. Circuitry stimulation reveals that the NAcShSerpinb2→LHLepR projection controls refeeding and can overcome leptin-mediated feeding suppression. Furthermore, NAcSh Serpinb2+ neuron ablation reduces food intake and upregulates energy expenditure, resulting in reduced bodyweight gain. Our study reveals a neural circuit consisting of a molecularly distinct neuronal subtype that bidirectionally regulates energy homeostasis, providing a potential therapeutic target for eating disorders.
Collapse
Affiliation(s)
- Yiqiong Liu
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Ying Wang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Zheng-Dong Zhao
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Guoguang Xie
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Chao Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Renchao Chen
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Boston, MA, USA.
| |
Collapse
|
9
|
Zhao Z, Stern SA. Homeostatic feeding in hedonic centres. Nat Metab 2024; 6:1433-1434. [PMID: 39147932 DOI: 10.1038/s42255-024-01089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Affiliation(s)
- Zhe Zhao
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Sarah A Stern
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
| |
Collapse
|
10
|
Suwa Y, Kunimatsu J, Kamata A, Matsumoto M, Yamada H. A Method for Evaluating Hunger and Thirst in Monkeys by Measuring Blood Ghrelin and Osmolality Levels. eNeuro 2024; 11:ENEURO.0481-23.2024. [PMID: 39013584 PMCID: PMC11361293 DOI: 10.1523/eneuro.0481-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Hunger and thirst drive animals' consumption behavior and regulate their decision-making concerning rewards. We previously assessed the thirst states of monkeys by measuring blood osmolality under controlled water access and examined how these thirst states influenced their risk-taking behavior in decisions involving fluid rewards. However, hunger assessment in monkeys remains poorly performed. Moreover, the lack of precise measures for hunger states leads to another issue regarding how hunger and thirst states interact with each other in each individual. Thus, when controlling food access to motivate performance, it remains unclear how these two physiological needs are satisfied in captive monkeys. Here, we measured blood ghrelin and osmolality levels to respectively assess hunger and thirst in four captive macaques. Using an enzyme-linked immunosorbent assay, we identified that the levels of blood ghrelin, a widely measured hunger-related peptide hormone in humans, were high after 20 h of no food access (with ad libitum water). This reflects a typical controlled food access condition. One hour after consuming a regular dry meal, the blood ghrelin levels in three out of four monkeys decreased to within their baseline range. Additionally, blood osmolality measured from the same blood sample, the standard hematological index of hydration status, increased after consuming the regular dry meal with no water access. Thus, ghrelin and osmolality may reflect the physiological states of individual monkeys regarding hunger and thirst, suggesting that these indices can be used as tools for monitoring hunger and thirst levels that mediate an animal's decision to consume rewards.
Collapse
Affiliation(s)
- Yuki Suwa
- Academic Service Office for the Medical Science Area, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Jun Kunimatsu
- Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Akua Kamata
- Medical Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Masayuki Matsumoto
- Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Hiroshi Yamada
- Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
11
|
Tan B, Browne CJ, Nöbauer T, Vaziri A, Friedman JM, Nestler EJ. Drugs of abuse hijack a mesolimbic pathway that processes homeostatic need. Science 2024; 384:eadk6742. [PMID: 38669575 PMCID: PMC11077477 DOI: 10.1126/science.adk6742] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/26/2024] [Indexed: 04/28/2024]
Abstract
Drugs of abuse are thought to promote addiction in part by "hijacking" brain reward systems, but the underlying mechanisms remain undefined. Using whole-brain FOS mapping and in vivo single-neuron calcium imaging, we found that drugs of abuse augment dopaminoceptive ensemble activity in the nucleus accumbens (NAc) and disorganize overlapping ensemble responses to natural rewards in a cell type-specific manner. Combining FOS-Seq, CRISPR-perturbation, and single-nucleus RNA sequencing, we identified Rheb as a molecular substrate that regulates cell type-specific signal transduction in NAc while enabling drugs to suppress natural reward consumption. Mapping NAc-projecting regions activated by drugs of abuse revealed input-specific effects on natural reward consumption. These findings characterize the dynamic, molecular and circuit basis of a common reward pathway, wherein drugs of abuse interfere with the fulfillment of innate needs.
Collapse
Affiliation(s)
- Bowen Tan
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University; New York, NY 10065, USA
| | - Caleb J. Browne
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health; Toronto, ON, M5T 1R8, Canada
| | - Tobias Nöbauer
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University; New York, NY 10065, USA
| | - Alipasha Vaziri
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University; New York, NY 10065, USA
- The Kavli Neural Systems Institute, The Rockefeller University; New York, NY 10065, USA
| | - Jeffrey M. Friedman
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University; New York, NY 10065, USA
| | - Eric J. Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| |
Collapse
|
12
|
Liu Y, Zhao ZD, Xie G, Chen R, Zhang Y. A molecularly defined NAcSh D1 subtype controls feeding and energy homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.27.530275. [PMID: 36909586 PMCID: PMC10002697 DOI: 10.1101/2023.02.27.530275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Orchestrating complex behavioral states, such as approach and consumption of food, is critical for survival. In addition to hypothalamus neuronal circuits, the nucleus accumbens (NAc) also plays an important role in controlling appetite and satiety in responses to changing external stimuli. However, the specific neuronal subtypes of NAc involved as well as how the humoral and neuronal signals coordinate to regulate feeding remain incompletely understood. Here, we deciphered the spatial diversity of neuron subtypes of the NAc shell (NAcSh) and defined a dopamine receptor D1(Drd1)- and Serpinb2-expressing subtype located in NAcSh encoding food consumption. Chemogenetics- and optogenetics-mediated regulation of Serpinb2 + neurons bidirectionally regulates food seeking and consumption specifically. Circuitry stimulation revealed the NAcSh Serpinb2 →LH LepR projection controls refeeding and can overcome leptin-mediated feeding suppression. Furthermore, NAcSh Serpinb2 + neuron ablation reduces food intake and upregulates energy expenditure resulting in body weight loss. Together, our study reveals a neural circuit consisted of molecularly distinct neuronal subtype that bidirectionally regulates energy homeostasis, which can serve as a potential therapeutic target for eating disorders.
Collapse
Affiliation(s)
- Yiqiong Liu
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
| | - Zheng-dong Zhao
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
| | - Guoguang Xie
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
| | - Renchao Chen
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Harvard Stem Cell Institute, WAB-149G, 200 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
13
|
Lowet AS, Zheng Q, Meng M, Matias S, Drugowitsch J, Uchida N. An opponent striatal circuit for distributional reinforcement learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573966. [PMID: 38260354 PMCID: PMC10802299 DOI: 10.1101/2024.01.02.573966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Machine learning research has achieved large performance gains on a wide range of tasks by expanding the learning target from mean rewards to entire probability distributions of rewards - an approach known as distributional reinforcement learning (RL)1. The mesolimbic dopamine system is thought to underlie RL in the mammalian brain by updating a representation of mean value in the striatum2,3, but little is known about whether, where, and how neurons in this circuit encode information about higher-order moments of reward distributions4. To fill this gap, we used high-density probes (Neuropixels) to acutely record striatal activity from well-trained, water-restricted mice performing a classical conditioning task in which reward mean, reward variance, and stimulus identity were independently manipulated. In contrast to traditional RL accounts, we found robust evidence for abstract encoding of variance in the striatum. Remarkably, chronic ablation of dopamine inputs disorganized these distributional representations in the striatum without interfering with mean value coding. Two-photon calcium imaging and optogenetics revealed that the two major classes of striatal medium spiny neurons - D1 and D2 MSNs - contributed to this code by preferentially encoding the right and left tails of the reward distribution, respectively. We synthesize these findings into a new model of the striatum and mesolimbic dopamine that harnesses the opponency between D1 and D2 MSNs5-15 to reap the computational benefits of distributional RL.
Collapse
Affiliation(s)
- Adam S. Lowet
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Program in Neuroscience, Harvard University, Boston, MA, USA
| | - Qiao Zheng
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Melissa Meng
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Sara Matias
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Jan Drugowitsch
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Naoshige Uchida
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
14
|
Passeri A, Municchi D, Cavalieri G, Babicola L, Ventura R, Di Segni M. Linking drug and food addiction: an overview of the shared neural circuits and behavioral phenotype. Front Behav Neurosci 2023; 17:1240748. [PMID: 37767338 PMCID: PMC10520727 DOI: 10.3389/fnbeh.2023.1240748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Despite a lack of agreement on its definition and inclusion as a specific diagnosable disturbance, the food addiction construct is supported by several neurobiological and behavioral clinical and preclinical findings. Recognizing food addiction is critical to understanding how and why it manifests. In this overview, we focused on those as follows: 1. the hyperpalatable food effects in food addiction development; 2. specific brain regions involved in both food and drug addiction; and 3. animal models highlighting commonalities between substance use disorders and food addiction. Although results collected through animal studies emerged from protocols differing in several ways, they clearly highlight commonalities in behavioral manifestations and neurobiological alterations between substance use disorders and food addiction characteristics. To develop improved food addiction models, this heterogeneity should be acknowledged and embraced so that research can systematically investigate the role of specific variables in the development of the different behavioral features of addiction-like behavior in preclinical models.
Collapse
Affiliation(s)
- Alice Passeri
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| | - Diana Municchi
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| | - Giulia Cavalieri
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| | | | - Rossella Ventura
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
- IRCCS San Raffaele, Rome, Italy
| | - Matteo Di Segni
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| |
Collapse
|
15
|
Tan B, Browne CJ, Nöbauer T, Vaziri A, Friedman JM, Nestler EJ. Drugs of abuse hijack a mesolimbic pathway that processes homeostatic need. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.03.556059. [PMID: 37732251 PMCID: PMC10508763 DOI: 10.1101/2023.09.03.556059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Addiction prioritizes drug use over innate needs by "hijacking" brain circuits that direct motivation, but how this develops remains unclear. Using whole-brain FOS mapping and in vivo single-neuron calcium imaging, we find that drugs of abuse augment ensemble activity in the nucleus accumbens (NAc) and disorganize overlapping ensemble responses to natural rewards in a cell-type-specific manner. Combining "FOS-Seq", CRISPR-perturbations, and snRNA-seq, we identify Rheb as a shared molecular substrate that regulates cell-type-specific signal transductions in NAc while enabling drugs to suppress natural reward responses. Retrograde circuit mapping pinpoints orbitofrontal cortex which, upon activation, mirrors drug effects on innate needs. These findings deconstruct the dynamic, molecular, and circuit basis of a common reward circuit, wherein drug value is scaled to promote drug-seeking over other, normative goals.
Collapse
Affiliation(s)
- Bowen Tan
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
- These authors contributed equally
| | - Caleb J. Browne
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- These authors contributed equally
| | - Tobias Nöbauer
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Alipasha Vaziri
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
- The Kavli Neural Systems Institute, The Rockefeller University, New York, NY 10065, USA
| | - Jeffrey M. Friedman
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Eric J. Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
16
|
Pereira‐Acácio A, Veloso‐Santos JPM, Alves‐Bezerra D, Costa‐Sarmento G, Muzi‐Filho H, Vieyra A. Different antihypertensive and metabolic responses to rostafuroxin in undernourished and normonourished male rats: Outcomes on bodily Na + handling. Physiol Rep 2023; 11:e15820. [PMID: 37667414 PMCID: PMC10477346 DOI: 10.14814/phy2.15820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023] Open
Abstract
Hypertension is a pandemic nowadays. We aimed to investigate whether chronic undernutrition modifies the response to the antihypertensive drug rostafuroxin in juvenile hypertensive rats. Chronic undernutrition was induced in male rats using a multideficient diet known as the Regional Basic Diet (RBD), mimicking alimentary habits in impoverished regions worldwide. Animals were given RBD-or a control/CTRL normal diet for rodents-from weaning to 90 days, and rostafuroxin (1 mg/kg body mass) was orally administered from day 60 onwards. For the last 2 days, the rats were hosted in metabolic cages to measure food/energy, water, Na+ ingestion, and urinary volume. Rostafuroxin increased food/energy/Na+ intake in CTRL and RBD rats but had opposite effects on Na+ balance (intake minus urinary excretion). The drug normalized the decreased plasma Na+ concentration in RBD rats, increased urinary volume in RBD but not in CTRL, and decreased and increased urinary Na+ concentration in the RBD and CTRL groups, respectively. Rostafuroxin decreased the ouabain-sensitive (Na+ +K+ )ATPase and increased the ouabain-resistant Na+ -ATPase from proximal tubule cells in both groups and normalized the systolic blood pressure in RBD without effect in CTRL rats. We conclude that chronic undernutrition modifies the response of blood pressure and metabolic responses to rostafuroxin.
Collapse
Affiliation(s)
- Amaury Pereira‐Acácio
- Graduate Program of Translational Biomedicine/BIOTRANSUniversity of Grande RioDuque de CaxiasBrazil
- Carlos Chagas Filho Institute of BiophysicsFederal University of Rio de JaneiroRio de JaneiroBrazil
- National Center for Structural Biology and Bioimaging/CENABIOFederal University of Rio de JaneiroRio de JaneiroBrazil
- National Institute of Science and Technology for Regenerative Medicine/REGENERARio de JaneiroBrazil
| | - João P. M. Veloso‐Santos
- Carlos Chagas Filho Institute of BiophysicsFederal University of Rio de JaneiroRio de JaneiroBrazil
- National Center for Structural Biology and Bioimaging/CENABIOFederal University of Rio de JaneiroRio de JaneiroBrazil
- National Institute of Science and Technology for Regenerative Medicine/REGENERARio de JaneiroBrazil
| | - Danilo Alves‐Bezerra
- Graduate Program of Translational Biomedicine/BIOTRANSUniversity of Grande RioDuque de CaxiasBrazil
- National Center for Structural Biology and Bioimaging/CENABIOFederal University of Rio de JaneiroRio de JaneiroBrazil
- National Institute of Science and Technology for Regenerative Medicine/REGENERARio de JaneiroBrazil
| | - Glória Costa‐Sarmento
- Carlos Chagas Filho Institute of BiophysicsFederal University of Rio de JaneiroRio de JaneiroBrazil
- National Center for Structural Biology and Bioimaging/CENABIOFederal University of Rio de JaneiroRio de JaneiroBrazil
- National Institute of Science and Technology for Regenerative Medicine/REGENERARio de JaneiroBrazil
| | - Humberto Muzi‐Filho
- Carlos Chagas Filho Institute of BiophysicsFederal University of Rio de JaneiroRio de JaneiroBrazil
- National Center for Structural Biology and Bioimaging/CENABIOFederal University of Rio de JaneiroRio de JaneiroBrazil
- National Institute of Science and Technology for Regenerative Medicine/REGENERARio de JaneiroBrazil
| | - Adalberto Vieyra
- Graduate Program of Translational Biomedicine/BIOTRANSUniversity of Grande RioDuque de CaxiasBrazil
- Carlos Chagas Filho Institute of BiophysicsFederal University of Rio de JaneiroRio de JaneiroBrazil
- National Center for Structural Biology and Bioimaging/CENABIOFederal University of Rio de JaneiroRio de JaneiroBrazil
- National Institute of Science and Technology for Regenerative Medicine/REGENERARio de JaneiroBrazil
| |
Collapse
|