1
|
Levitan DR, Olsen KC, Best RM, Edmunds PJ. Brooding and parthenogenesis enhance the success of the coral Porites astreoides relative to Orbicella annularis. Ecology 2025; 106:e70102. [PMID: 40344585 PMCID: PMC12062785 DOI: 10.1002/ecy.70102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 02/21/2025] [Accepted: 03/12/2025] [Indexed: 05/11/2025]
Abstract
The abundance of many Caribbean corals has declined over the past few decades, yet now Porites astreoides is more common on many shallow reefs than in the 1980s and shows evidence of local adaptation. We compare the small-scale (1-8000 m) genetic structure of this brooding species and the broadcasting coral Orbicella annularis on reefs (<14 m depth) in St. John, US Virgin Islands, to examine how larval dispersal and asexual propagation contribute to the retention of genotypes within reefs. Populations of P. astreoides have genetic structure across reefs separated by a few 100 m, increased relatedness within reefs, and parthenogenetic larval propagation confirmed by parent-offspring genotyping. Within reefs, P. astreoides colonies <1 m apart are more related, independent of clonal reproduction, than corals at greater distances. In contrast, O. annularis lacks across-reef genetic structure, has low relatedness within and among reefs, and does not produce asexual larvae. Small-scale genetic structure and high relatedness in P. astreoides are evident even without considering asexual propagation, but asexual reproduction enhances these differences. Neither species shows the genetic signature of inbreeding or reduced genotypic diversity despite the high within-site relatedness of P. astreoides. Monitoring on these reefs from 1987 indicates that Porites has increased in abundance while Orbicella has decreased in abundance. The success of Porites is due to greatly increased settlement and recruitment compared with Orbicella. Together these results indicate that high numbers of locally retained and successful genotypes might explain the relative success of Porites on shallow, present-day reefs in the Caribbean.
Collapse
Affiliation(s)
- Don R. Levitan
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Kevin C. Olsen
- State Fisheries Genomics Lab, Coastal Oregon Marine Experiment Station, Department of Fisheries, Wildlife and Conservation SciencesHatfield Marine Science Center, Oregon State UniversityNewportOregonUSA
| | - Rachael M. Best
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Peter J. Edmunds
- Department of BiologyCalifornia State UniversityNorthridgeCaliforniaUSA
| |
Collapse
|
2
|
Vilanova-Cuevas B, DeRito CM, Ritchie IT, Kellogg CA, Evans JS, Zimmerman A, Williams SM, Brandt M, Sevier M, Gittens S, Budd KA, Warham M, Sharp WC, Delgado GA, Hylkema A, Kitson-Walters K, Quod JP, Breitbart M, Hewson I. Investigating the influence of Diadematidae scuticociliatosis on host microbiome composition. mSystems 2025; 10:e0141824. [PMID: 39969199 PMCID: PMC11915805 DOI: 10.1128/msystems.01418-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
Mass mortality of Diadematidae urchins, caused by the Diadema antillarum scuticociliatosis Philaster clade (DScPc), affected the Caribbean in spring 2022 and subsequently spread to the eastern Mediterranean, Red Sea, and western Indian Ocean. A key question around Diadematidae scuticociliatosis (DSc), the disease caused by the scuticociliate, is whether the urchin microbiome varies between scuticociliatosis-affected and grossly normal urchins. Tissue samples from both grossly normal and abnormal Diadema antillarum were collected in the field during the initial assessment of the DSc causative agent and from an experimental challenge of DScPc culture on aquacultured D. antillarum. Specimens were analyzed using 16S rRNA gene amplicon sequencing. Additional abnormal urchin samples were collected from the most recent outbreak site in the western Indian Ocean (Réunion Island). At reference (i.e., unaffected by DSc) sites, Kistimonas spp., Propionigenium spp., and Endozoicomonas spp. were highly represented in amplicon libraries. DSc-affected urchin amplicon libraries had lower taxonomic richness and a greater representation of taxa related to Fangia hongkongensis and Psychrobium spp. Amplicon libraries of urchins experimentally challenged with the DSc pathogen had some shifts in microbial composition, but F. hongkongensis was not a part of the core bacteria in DSc-challenged specimens. DSc-affected Echinothrix diadema from Réunion Island showed a similar high representation of F. hongkongensis as that seen on Caribbean D. antillarum. Our results suggest that DSc alters Diadematidae microbiomes and that F. hongkongensis may be a candidate bacterial biomarker for DSc in environmental samples. The mechanism driving microbiome variation in host-pathogen interactions remains to be explored.IMPORTANCEThe mass mortality of Diadematidae urchins due to Diadema antillarum scuticociliatosis (DSc) has had significant ecological impacts, spreading from the Caribbean to the eastern Mediterranean, Red Sea, and western Indian Ocean. This study investigates whether the microbiome of urchins varies between those affected by DSc and those that are not. Using 16S rRNA gene amplicon sequencing, researchers found that DSc-affected urchins had lower taxonomic richness and a greater representation of Fangia hongkongensis and Psychrobium spp. The findings indicate that F. hongkongensis could serve as a bacterial biomarker for DSc in environmental samples, providing a potential tool for early detection and management of the disease. Understanding these microbiome changes is crucial for developing strategies to mitigate the spread and impact of DSc on marine ecosystems.
Collapse
Affiliation(s)
| | | | - Isabella T. Ritchie
- College of Marine Science, University of South, St. Petersburg, Florida, USA
| | - Christina A. Kellogg
- U.S. Geological Survey St Petersburg Coastal and Marine Science Center, St. Petersburg, Florida, USA
| | - James S. Evans
- U.S. Geological Survey St Petersburg Coastal and Marine Science Center, St. Petersburg, Florida, USA
| | - Alizee Zimmerman
- Turks and Caicos Reef Fund, Providenciales, Turks and Caicos Islands
| | | | - Marilyn Brandt
- Center for Marine and Environmental Studies, University of the Virgin Islands, Saint Thomas, Virgin Islands, USA
| | - Moriah Sevier
- Center for Marine and Environmental Studies, University of the Virgin Islands, Saint Thomas, Virgin Islands, USA
| | - Samuel Gittens
- Center for Marine and Environmental Studies, University of the Virgin Islands, Saint Thomas, Virgin Islands, USA
| | - Kayla A. Budd
- Center for Marine and Environmental Studies, University of the Virgin Islands, Saint Thomas, Virgin Islands, USA
| | - Matthew Warham
- Department of Planning and Natural Resources, Virgin Islands Government, Christiansted, Virgin Islands, USA
| | - William C. Sharp
- Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, Marathon, Florida, USA
| | - Gabriel A. Delgado
- Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, Marathon, Florida, USA
| | - Alwin Hylkema
- Van Hall Larenstein University of Applied Sciences, Leeuwarden, Netherlands
- Marine Animal Ecology Group, Wageningen University, Wageningen, Netherlands
| | - Kimani Kitson-Walters
- Caribbean Netherlands Science Institute, St. Eustatius, Caribbean, Netherlands
- NIOZ Royal Netherlands Institute for Sea Research, Oranjestad, Caribbean, Netherlands
| | - Jean-Pascal Quod
- ARVAM, c/o association Technopole de la Réunion, Sainte Clotide, Réunion, France
| | - Mya Breitbart
- College of Marine Science, University of South, St. Petersburg, Florida, USA
| | - Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
3
|
Garner AM, Moura AJ, Narvaez CA, Stark AY, Russell MP. Repeated Hyposalinity Pulses Immediately and Persistently Impair the Sea Urchin Adhesive System. Integr Comp Biol 2024; 64:257-269. [PMID: 38444171 DOI: 10.1093/icb/icae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
Climate change will increase the frequency and intensity of extreme climatic events (e.g., storms) that result in repeated pulses of hyposalinity in nearshore ecosystems. Sea urchins inhabit these ecosystems and are stenohaline (restricted to salinity levels ∼32‰), thus are particularly susceptible to hyposalinity events. As key benthic omnivores, sea urchins use hydrostatic adhesive tube feet for numerous functions, including attachment to and locomotion on the substratum as they graze for food. Hyposalinity severely impacts sea urchin locomotor and adhesive performance but several ecologically relevant and climate change-related questions remain. First, do sea urchin locomotion and adhesion acclimate to repeated pulses of hyposalinity? Second, how do tube feet respond to tensile forces during single and repeated hyposalinity events? Third, do the negative effects of hyposalinity exposure persist following a return to normal salinity levels? To answer these questions, we repeatedly exposed green sea urchins (Strongylocentrotus droebachiensis) to pulses of three different salinities (control: 32‰, moderate hyposalinity: 22‰, severe hyposalinity: 16‰) over the course of two months and measured locomotor performance, adhesive performance, and tube foot tensile behavior. We also measured these parameters 20 h after sea urchins returned to normal salinity levels. We found no evidence that tube feet performance and properties acclimate to repeated pulses of hyposalinity, at least over the timescale examined in this study. In contrast, hyposalinity has severe consequences on locomotion, adhesion, and tube foot tensile behavior, and these impacts are not limited to the hyposalinity exposure. Our results suggest both moderate and severe hyposalinity events have the potential to increase sea urchin dislodgment and reduce movement, which may impact sea urchin distribution and their role in marine communities.
Collapse
Affiliation(s)
- Austin M Garner
- Department of Biology, Villanova University, Villanova, PA 19085, USA
- Department of Biology & BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Andrew J Moura
- Department of Biology, Villanova University, Villanova, PA 19085, USA
- Department of Biology & BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Carla A Narvaez
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Department of Biology, Rhode Island College, Providence, RI 02908, USA
| | - Alyssa Y Stark
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| | - Michael P Russell
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| |
Collapse
|
4
|
Edmunds PJ. Decadal-scale time series highlight the role of chronic disturbances in driving ecosystem collapse in the Anthropocene. Ecology 2024; 105:e4360. [PMID: 38899537 DOI: 10.1002/ecy.4360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/12/2024] [Accepted: 04/09/2024] [Indexed: 06/21/2024]
Abstract
Biome degradation characterizes the Anthropocene Epoch, and modern ecology is deeply involved with describing the changes underway. Most research has focused on the role of acute disturbances in causing conspicuous changes in ecosystem structure, which leads to an underappreciation of the chronic effects causing large changes through the cumulative effects of small perturbations over decades. Coral reefs epitomize this trend, because the changes in community structure are profound, yet the data to quantify these effects are usually insufficient to evaluate the relative roles of different disturbance types. Here, four decades of surveys from two coral reefs (9 and 14 m depth) off St. John, US Virgin Islands, are used to quantify the associations of acute and chronic events with the changes in benthic community structure. These reefs profoundly changed over 36 years, with coral death altering species assemblages to depress abundances of the ecologically important coral Orbicella spp. and elevating the coverage of macroalgae and crustose coralline algae/turf/bare space (CTB). Linear mixed models revealed the prominent role of chronic variation in temperature in accounting for changes in coverage of corals, macroalgae, and CTB, with rising temperature associated with increases in coral cover on the deep reef, and declines on the shallow reef. Hurricanes were also associated with declines in coral cover on the shallow reef, and increases on the deep reef. Multivariate analyses revealed strong associations between community structure and temperature, but weaker associations with hurricanes, bleaching, and diseases. These results highlight the overwhelming importance of chronically increasing temperature in altering the benthic community structure of Caribbean reefs.
Collapse
Affiliation(s)
- Peter J Edmunds
- Department of Biology, California State University, Northridge, California, USA
| |
Collapse
|
5
|
Breitbart M, Hewson I. Coral-reef ecology: Expanding urchin disease threatens ecosystem balance. Curr Biol 2024; 34:R578-R580. [PMID: 38889681 DOI: 10.1016/j.cub.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Sea urchins are critically important herbivores on coral reefs. A new study shows that a disease that decimated sea urchins in the Caribbean in 2022 has spread to the Red Sea, further threatening coral ecosystems.
Collapse
Affiliation(s)
- Mya Breitbart
- College of Marine Science, University of South Florida, St. Petersburg, FL 33701, USA.
| | - Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
6
|
Roth L, Eviatar G, Schmidt LM, Bonomo M, Feldstein-Farkash T, Schubert P, Ziegler M, Al-Sawalmih A, Abdallah IS, Quod JP, Bronstein O. Mass mortality of diadematoid sea urchins in the Red Sea and Western Indian Ocean. Curr Biol 2024; 34:2693-2701.e4. [PMID: 38788707 DOI: 10.1016/j.cub.2024.04.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 04/07/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
Sea urchins are primary herbivores on coral reefs, regulating algal biomass and facilitating coral settlement and growth.1,2,3,4,5,6,7,8,9,10,11,12 Recurring mass mortality events (MMEs) of Diadema species Gray, 1825 have been recorded globally,13,14,15,16,17,18,19,20,21,22,23 the most notorious and ecologically significant of which occurred in the Caribbean in 1983,14,17,19,20 contributing to the shift from coral to algal-dominated ecosystems.17,24,25 Recently, first evidence of Diadema setosum mass mortality was reported from the eastern Mediterranean Sea.23 Here, we report extensive mass mortalities of several diadematoid species inhabiting the Red Sea and Western Indian Ocean (WIO)26,27,28 including first evidence of mortalities in the genus Echinothrix Peters, 1853. Mortalities initiated in the Gulf of Aqaba on December 2022 and span the Red Sea, the Gulf of Oman, and the Western Indian Ocean (Réunion Island), with population declines reaching 100% at some sites. Infected individuals are characterized by spine loss and tissue necrosis, resulting in exposed skeletons (i.e., tests) and mortality. Molecular diagnostics of the 18S rRNA gene confirm the presence of a waterborne scuticociliate protozoan most closely related to Philaster apodigitiformis in infected specimens-identical to the pathogen found in the 2022 Caribbean mass mortality of Diadema antillarum.13,15,18 Collapse of these key benthic grazers in the Red Sea and Western Indian Ocean may lead to algal dominance over corals, threatening the stability of coral reefs on a regional scale.29,30,31,32 We issue a warning regarding the further expansion of mortalities and call for immediate monitoring and conservation efforts for these key ecological species.
Collapse
Affiliation(s)
- Lachan Roth
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv 69978, Israel; The Inter-University Institute for Marine Sciences in Eilat, Eilat 8810302, Israel
| | - Gal Eviatar
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv 69978, Israel; The Inter-University Institute for Marine Sciences in Eilat, Eilat 8810302, Israel
| | - Lisa-Maria Schmidt
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv 69978, Israel; The Inter-University Institute for Marine Sciences in Eilat, Eilat 8810302, Israel
| | - Mai Bonomo
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv 69978, Israel
| | | | - Patrick Schubert
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Maren Ziegler
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Ali Al-Sawalmih
- Marine Science Station, University of Jordan, Aqaba 77110, Jordan
| | | | - Jean-Pascal Quod
- Arvam, Technopole de la Réunion, le Kub, 6 rue Albert Lougnon, 97438 Réunion Island, France
| | - Omri Bronstein
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
7
|
Klokman OJ, Hylkema A. Spatial distribution of settlement of Diadema antillarum around Saba, Dutch Caribbean. PeerJ 2024; 12:e17291. [PMID: 38708336 PMCID: PMC11067890 DOI: 10.7717/peerj.17291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 04/02/2024] [Indexed: 05/07/2024] Open
Abstract
The mass mortality event of the herbivorous sea urchin Diadema antillarum in 1983-1984 has been a major contributor to the diminished resilience of coral reefs throughout the Caribbean. The reduction in grazing pressure resulted in algae proliferation, which inhibited coral recruitment after disturbances such as disease, hurricanes, pollution and climatic change induced marine heat waves. Natural recovery of D. antillarum after the 1983-1984 die-off has been slow. However, the few locations with recovered populations exhibit signs of improvement in coral reef health, prompting interest in D. antillarum restoration. Current restoration strategies include translocation of wild individuals, the restocking of juveniles that are either cultured from gametes or collected as settlers and head-started in a nursery, and assisted natural recovery by providing suitable settlement substrate. Both the collection of wild settlers and assisted natural recovery necessitate an understanding of the local, spatiotemporal trends in settlement. In this study, which was carried out on the Dutch Caribbean Island of Saba, artificial turf settlement collectors were deployed at nine locations around the island and monitored from June 2019 till July 2020 (13 months). The primary objective was to identify trends in larval settlement in space and time, to be able to optimize restoration efforts. Additionally, the small size of Saba allowed us to deploy settlement collectors around the island and compare D. antillarum settlement between windward and leeward sides. Our study showed that on Saba, D. antillarum settlement peaked in June and July, following similar seasonal trends observed around other islands in the Northeastern Caribbean. By far the most settlement occurred at the leeward side of the island, suggesting that hydrodynamic forces entrained D. antillarum larvae in the lee of Saba and/or calmer waters facilitated settlement. Limited settlement occurred on the more exposed windward locations. The identified high settlement locations are candidates for settler collection and restoration attempts. Continued monitoring of D. antillarum settlement, especially in light of the 2022 D. antillarum die-off, holds significance as it can provide insights into the potential of natural recovery.
Collapse
Affiliation(s)
- Oliver J. Klokman
- University of Applied Sciences Van Hall Larenstein, Leeuwarden, The Netherlands
| | - Alwin Hylkema
- University of Applied Sciences Van Hall Larenstein, Leeuwarden, The Netherlands
- Marine Animal Ecology group, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
8
|
Godard RD, Wilson CM, Amstutz CG, Badawy N, Richardson B. Impacts of hurricanes and disease on Diadema antillarum in shallow water reef and mangrove locations in St John, USVI. PLoS One 2024; 19:e0297026. [PMID: 38359027 PMCID: PMC10868783 DOI: 10.1371/journal.pone.0297026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/26/2023] [Indexed: 02/17/2024] Open
Abstract
The 1983-1984 mortality event of the long-spined sea urchin Diadema antillarum reduced their population by up to 99% and was accompanied by a phase shift from coral dominated to algal dominated reefs in the Caribbean. Modest rebounds of D. antillarum populations in the Caribbean have been noted, and here we document the impacts of two major hurricanes (2017, Irma and Maria) and the 2022 disease outbreak on populations of D. antillarum found by targeted surveys in the urchin zone at nine fringing reef and three mangrove sites on St. John, USVI. D. antillarum populations at the reef sites had declined by 66% five months after the hurricanes but showed significant recovery just one year later. The impact of recent disease on these populations was much more profound, with all reef populations exhibiting a significant decline (96.4% overall). Fifteen months after the disease was first noted, D. antillarum at reef sites exhibited a modest yet significant recovery (15% pre-disease density). D. antillarum populations in mangrove sites were impacted by the hurricanes but exhibited much higher density than reef sites after the disease outbreak, suggesting that at D. antillarum in some locations may be less vulnerable to disease.
Collapse
Affiliation(s)
- Renee D. Godard
- Departments of Biology and Environmental Studies, Hollins University, Roanoke, Va, United States of America
| | - C. Morgan Wilson
- Departments of Biology and Environmental Studies, Hollins University, Roanoke, Va, United States of America
| | | | - Natalie Badawy
- Departments of Biology and Environmental Studies, Hollins University, Roanoke, Va, United States of America
| | - Brittany Richardson
- Departments of Biology and Environmental Studies, Hollins University, Roanoke, Va, United States of America
| |
Collapse
|
9
|
Rodríguez-Barreras R, Ruiz-Diaz CP, Quiñones-Otero MA, Toledo-Hernández C. Uneven demographic consequences of the 2022 disease outbreak for the sea urchin Diadema antillarum in Puerto Rico. PeerJ 2023; 11:e16675. [PMID: 38144189 PMCID: PMC10748467 DOI: 10.7717/peerj.16675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Pervasive epizootic events have had a significant impact on marine invertebrates throughout the Caribbean, leading to severe population declines and consequential ecological implications. One such event was the regional collapse of herbivory, partly caused by the Diadema antillarum mortality event in 1983-84, resulting in a trophic cascade and altering the structure of reef communities. Consequently, there was a notable decrease in coral recruitment and an increase in the coverage of macroalgae. Nearly four decades later, in early 2022, the Caribbean basin experienced another widespread mass mortality event, further reducing the populations of D. antillarum. To assess the effects of this recent mortality event on the current demographics of D. antillarum, we surveyed eight populations along the eastern, northeastern, northern, and northwestern coast of Puerto Rico from May to July 2022, estimating their population density, size distribution, and disease prevalence. Additionally, the study compared these population parameters with data from four sites previously surveyed in 2012 and 2017 to understand the impact of the recent mortality event. The survey conducted in 2022 showed varying population densities at the surveyed reefs. Some populations exhibited mean densities of nearly one individual per square meter, while others had extremely low or no living individuals per square meter. The four populations with the highest density showed no evidence of disease, whereas the four populations with the lowest D. antillarum densities exhibited moderate to high disease prevalence. However, when considering all sites, the estimated disease prevalence remained below 5%. Nevertheless, the comparison with data from 2012 and 2017 indicated that the recent mortality event had a negative impact on D. antillarum demographics at multiple sites, as the densities in 2022 were reduced by 60.19% compared to those from the previous years. However, it is still too early to determine the severity of this new mortality event compared to the 1983-84 mortality event. Therefore, it is imperative to continue monitoring these populations.
Collapse
|
10
|
Jézéquel Y, Aoki N, Cones SF, Mooney TA. Daytime boat sound does not affect the behavior of wild thorny oysters (Spondylus americanus): A field-based study. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:1041-1047. [PMID: 37584466 DOI: 10.1121/10.0020725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/03/2023] [Indexed: 08/17/2023]
Abstract
There is increasing awareness of boat sound effects on coral reef assemblages. While behavioral disturbances have been found in fishes, the effects on marine invertebrates remain largely unknown. Here, the behavioral effects of recreational boat sound on thorny oysters at two coral reef habitats within the U.S. Virgin Island National Park were assessed. The "treatment" site was characterized by frequent boat traffic, which increased daytime mean particle acceleration levels (PALrms) by more than 6 dB, while mean PALrms at the "control" site were not contaminated by boat sound. Despite these contrasting soundscapes, all oysters showed the same diurnal cycle, with their valves open at night and partially closed during the day. There was no statistical evidence of behavioral responses in oysters exposed to daytime boat sound. This can be explained by low auditory sensitivity, habituation to a noisy environment due to the pervasiveness of boat sound pollution, or that boat sound may not represent an immediate concern for this species. These findings contrast with laboratory studies that have shown behavioral responses in bivalves exposed to boat sound, highlighting the need for more realistic field-based studies when evaluating potential effects of anthropogenic sounds on this group.
Collapse
Affiliation(s)
- Youenn Jézéquel
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| | - Nadège Aoki
- Massachusetts Institute of Technology-Woods Hole Oceanographic Institution Joint Program in Oceanography/Applied Ocean Science & Engineering, Cambridge, Massachusetts 02139, USA
| | - Seth F Cones
- Massachusetts Institute of Technology-Woods Hole Oceanographic Institution Joint Program in Oceanography/Applied Ocean Science & Engineering, Cambridge, Massachusetts 02139, USA
| | - T Aran Mooney
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| |
Collapse
|
11
|
Vega Thurber R, Hay M. Mystery solved: Disease detectives identify the cause of a mass die-off in the sea. SCIENCE ADVANCES 2023; 9:eadh5478. [PMID: 37075120 PMCID: PMC10115403 DOI: 10.1126/sciadv.adh5478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A mass sea urchin die-off in the Caribbean Sea in the 1980s resulted from a single-cell protist called a scuticociliate.
Collapse
Affiliation(s)
| | - Mark Hay
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| |
Collapse
|
12
|
Sea urchin mass mortalities 40 y apart further threaten Caribbean coral reefs. Proc Natl Acad Sci U S A 2023; 120:e2218901120. [PMID: 36848553 PMCID: PMC10013861 DOI: 10.1073/pnas.2218901120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
In 1983 to 1984, a mass mortality event caused a Caribbean-wide, >95% population reduction of the echinoid grazer, Diadema antillarum. This led to blooms of algae contributing to the devastation of scleractinian coral populations. Since then, D. antillarum exhibited only limited and patchy population recovery in shallow water, and in 2022 was struck by a second mass mortality reported over many reef localities in the Caribbean. Half-a-century time-series analyses of populations of this sea urchin from St. John, US Virgin Islands, reveal that the 2022 event has reduced population densities by 98.00% compared to 2021, and by 99.96% compared to 1983. In 2021, coral cover throughout the Caribbean was approaching the lowest values recorded in modern times. However, prior to 2022, locations with small aggregations of D. antillarum produced grazing halos in which weedy corals were able to successfully recruit and become the dominant coral taxa. The 2022 mortality has eliminated these algal-free halos on St. John and perhaps many other regions, thereby increasing the risk that these reefs will further transition into coral-free communities.
Collapse
|