1
|
Compton A, Sharma A, Hempel M, Aryan A, Biedler JK, Potters MB, Chandrasegaran K, Vinauger C, Tu Z. Differential elimination of marked sex chromosomes enables production of nontransgenic male mosquitoes in a single strain. Proc Natl Acad Sci U S A 2025; 122:e2412149122. [PMID: 40339129 DOI: 10.1073/pnas.2412149122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 03/25/2025] [Indexed: 05/10/2025] Open
Abstract
Diverse genetic strategies are being pursued to control mosquito-borne infectious diseases. These strategies often rely on the release of nonbiting males to either reduce the target mosquito population or render them resistant to pathogens. Male-only releases are important as any contaminating females can bite and potentially transmit pathogens. Despite significant efforts, it remains a major bottleneck to reliably and efficiently separate males from females, especially when nontransgenic males are preferred. In the yellow fever mosquito Aedes aegypti, sex is determined by a pair of homomorphic sex chromosomes, with the dominant male-determining locus (the M locus) and its counterpart (the m locus) embedded in an M-bearing and an m-bearing chromosome 1, respectively. We utilized both naturally occurring and engineered sex-linked recessive lethal alleles (RLAs) to create sex separation strains for Ae. aegypti on the basis of differential elimination of marked sex chromosomes (DeMark). DeMark strains are self-sustaining and produce nontransgenic males that are readily separated from individuals carrying RLA- and transgene-marked m chromosomes. For example, the marked m chromosome in the heterozygous mother in some strains was only inherited by her female progeny due to RLA-mediated incompatibility with the M-bearing chromosome in the father, producing nontransgenic males and transgenic females, generation after generation. We further explore strategies to conditionally eliminate females that contain marked sex chromosomes. We also discuss DeMark designs that are applicable for efficient sex separation in organisms with well-differentiated X and Y chromosomes, such as the Anopheles mosquitoes.
Collapse
Affiliation(s)
- Austin Compton
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061
| | - Atashi Sharma
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061
| | - Melanie Hempel
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061
| | - Azadeh Aryan
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061
| | - James K Biedler
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061
| | - Mark B Potters
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061
| | | | - Clément Vinauger
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061
| | - Zhijian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
2
|
Ukegbu CV, Mohamed M, Hoermann A, Qin Y, Kweyamba PA, Lwetoijera DW, Windbichler N, Moore S, Christophides GK, Vlachou D. Nanobody-mediated targeting of Plasmodium falciparum PfPIMMS43 can block malaria transmission in mosquitoes. Commun Biol 2025; 8:683. [PMID: 40301628 PMCID: PMC12041390 DOI: 10.1038/s42003-025-08033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/02/2025] [Indexed: 05/01/2025] Open
Abstract
The transition from ookinete to oocyst is a critical step in the Plasmodium falciparum lifecycle and an important target for malaria transmission-blocking strategies. PfPIMMS43, a surface protein of P. falciparum ookinetes and sporozoites, is critical for this transition and aids the parasite in evading mosquito immune responses. Previous studies demonstrated that polyclonal PfPIMMS43 antibodies reduced P. falciparum infection in Anopheles mosquitoes. Here, building on these findings, we have developed high-affinity single-domain VHH antibodies (nanobodies) derived from llama heavy-chain-only antibodies. We have shown that these nanobodies bind both recombinant and endogenous PfPIMMS43 produced by P. falciparum ookinetes in the mosquito midgut. Importantly, they significantly reduce infection intensity and prevalence of laboratory and field strains of P. falciparum in An. coluzzii and An. gambiae, respectively. Epitope mapping has revealed that the nanobodies target conserved regions in the second half of PfPIMMS43, with homology modelling confirming epitope accessibility. These findings establish PfPIMMS43 as a promising transmission-blocking target. To enhance malaria control and elimination efforts, we propose an innovative strategy in which genetically modified mosquitoes express PfPIMMS43-specific nanobodies in their midguts and spread this trait in wild mosquito populations via gene drive technology.
Collapse
Affiliation(s)
| | - Mgeni Mohamed
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Astrid Hoermann
- Department of Life Sciences, Imperial College London, London, UK
| | - Yuyan Qin
- Department of Life Sciences, Imperial College London, London, UK
| | - Prisca A Kweyamba
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Bagamoyo, Tanzania
| | | | | | - Sarah Moore
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Bagamoyo, Tanzania
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Dina Vlachou
- Department of Life Sciences, Imperial College London, London, UK.
| |
Collapse
|
3
|
Verkuijl SAN, Del Corsano G, Capriotti P, Yen PS, Inghilterra MG, Selvaraj P, Hoermann A, Martinez-Sanchez A, Ukegbu CV, Kebede TM, Vlachou D, Christophides GK, Windbichler N. A suppression-modification gene drive for malaria control targeting the ultra-conserved RNA gene mir-184. Nat Commun 2025; 16:3923. [PMID: 40280899 PMCID: PMC12032250 DOI: 10.1038/s41467-025-58954-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
Gene drive technology presents a promising approach to controlling malaria vector populations. Suppression drives are intended to disrupt essential mosquito genes whereas modification drives aim to reduce the individual vectorial capacity of mosquitoes. Here we present a highly efficient homing gene drive in the African malaria vector Anopheles gambiae that targets the microRNA gene mir-184 and combines suppression with modification. Homozygous gene drive (miR-184D) individuals incur significant fitness costs, including high mortality following a blood meal, that curtail their propensity for malaria transmission. We attribute this to a role of miR-184 in regulating solute transport in the mosquito gut. However, females remain fully fertile, and pure-breeding miR-184D populations suitable for large-scale releases can be reared under laboratory conditions. Cage invasion experiments show that miR-184D can spread to fixation thereby reducing population fitness, while being able to propagate a separate antimalarial effector gene at the same time. Modelling indicates that the miR-184D drive integrates aspects of population suppression and population replacement strategies into a candidate strain that should be evaluated further as a tool for malaria eradication.
Collapse
Affiliation(s)
- Sebald A N Verkuijl
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Giuseppe Del Corsano
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Paolo Capriotti
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Pei-Shi Yen
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | | | - Prashanth Selvaraj
- Institute for Disease Modeling, Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - Astrid Hoermann
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Chiamaka Valerie Ukegbu
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Temesgen M Kebede
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Dina Vlachou
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - George K Christophides
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Nikolai Windbichler
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK.
| |
Collapse
|
4
|
Campos M, Crepeau M, Lanzaro GC. Defining the genetics of the widely used G3 strain of the mosquito, Anopheles gambiae. Sci Rep 2025; 15:13142. [PMID: 40240469 PMCID: PMC12003814 DOI: 10.1038/s41598-025-96391-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Mosquito species in the Anopheles gambiae complex have been referred to as "the deadliest animals in the world" due to their role as vectors of malaria throughout sub-Saharan Africa. Consequently, An. gambiae was among the first species to have its whole genome sequenced in 2002 and it continues to be the subject of intense study. An. gambiae is one member of a nine member species complex and, along with its sister species, An. coluzzii, is among the most important vectors of human malaria. Laboratory research on malaria vectors across a broad range of disciplines utilizes a strain known as G3, which was established in 1975 from mosquitoes collected from McCarthy Island, The Gambia. This strain is well known to be a mongrel strain, nonetheless it is often referred to as An. gambiae, which it is not. The issue with G3 goes far beyond the typical inbreeding associated with long-standing laboratory colonies. G3 is an An. gambiae/An. coluzzii interspecific hybrid. Although these two species are known to hybridize in nature, the pattern of interspecific introgression in G3 we describe in this paper is unlike any observed in natural populations. In this report we provide an in-depth analysis of the genetics of the G3 strain and compare it with natural populations of its two parental species. We discuss potential concerns that results obtained from research using the G3 strain may not apply to populations of these mosquito species as they occur in nature.
Collapse
Affiliation(s)
- Melina Campos
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, UC Davis, Davis, CA, 95616, USA
| | - Marc Crepeau
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, UC Davis, Davis, CA, 95616, USA
| | - Gregory C Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, UC Davis, Davis, CA, 95616, USA.
| |
Collapse
|
5
|
Ang JX, Verkuijl SA, Anderson MA, Alphey L. Synthetic homing endonuclease gene drives to revolutionise Aedes aegypti biocontrol - game changer or pipe dream? CURRENT OPINION IN INSECT SCIENCE 2025; 70:101373. [PMID: 40210111 PMCID: PMC7617619 DOI: 10.1016/j.cois.2025.101373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 04/12/2025]
Abstract
The increasing burden of Aedes aegypti-borne diseases, particularly dengue, is a growing global concern, further exacerbated by climate change. Current control strategies have proven insufficient, necessitating novel approaches. Synthetic homing endonuclease gene (sHEG) drives represent one of the few emerging technologies with the potential to offer a cost-effective and equitable solution to this escalating public health challenge. However, despite multiple attempts, the homing efficiencies of Ae. aegypti sHEG systems lag behind those achieved in Anopheles mosquitoes. We discuss key insights from efforts to develop sHEGs in Ae. aegypti and highlight critical factors that may unlock further advances in this species.
Collapse
Affiliation(s)
- Joshua Xd Ang
- The Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington YO10 5DD, UK.
| | - Sebald An Verkuijl
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, UK
| | - Michelle Ae Anderson
- The Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington YO10 5DD, UK
| | - Luke Alphey
- The Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington YO10 5DD, UK.
| |
Collapse
|
6
|
Schmidt TL. Evolutionary consequences of long-distance dispersal in mosquitoes. CURRENT OPINION IN INSECT SCIENCE 2025; 68:101325. [PMID: 39675628 DOI: 10.1016/j.cois.2024.101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Long-distance dispersal (LDD) provides a means for mosquitoes to invade new regions and spread adaptive alleles, including those conferring insecticide resistance. Most LDD takes place on human transport vessels and will typically be rarer and more directionally constrained than active flight but can connect populations and regions that are otherwise mutually inaccessible. These features make LDD worthy of specific consideration in mosquito research. This paper reviews recent evolutionary research on LDD and its consequences for mosquito populations and mosquito control. LDD is the main source of mosquito range expansions, and genomic methods can now trace the origins of new invasions to specific towns or cities. Genomic methods can also give a rough indication of the number of invaders, which if very small may lead to the stochastic loss of advantageous alleles during invasion bottlenecks. Once invasions are established, LDD spreads adaptive alleles between populations. Emerging insights into insecticide resistance evolution indicate that LDD has repeatedly spread resistance mutations across global species ranges, but these broad patterns are convoluted by two other evolutionary processes: parallel adaptation at the same gene or gene cluster and polygenic adaptation at different genes in different populations. Together, these processes have produced patterns of similarity and dissimilarity at resistance genes that are decoupled from geographical distance. LDD within cities is less well studied but is important for planning and evaluating local control efforts. Urban investigations of LDD may help identify areas experiencing weaker selection pressures from insecticides and isolated areas to target for control.
Collapse
Affiliation(s)
- Thomas L Schmidt
- Bio21 Institute, School of BioSciences, University of Melbourne, Parkville, Australia.
| |
Collapse
|
7
|
Dong Y, Kang S, Sandiford SL, Pike A, Simões ML, Ubalee R, Kobylinski K, Dimopoulos G. Targeting the mosquito prefoldin-chaperonin complex blocks Plasmodium transmission. Nat Microbiol 2025; 10:841-854. [PMID: 40050397 DOI: 10.1038/s41564-025-01947-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/27/2025] [Indexed: 03/16/2025]
Abstract
The Plasmodium infection cycle in mosquitoes relies on numerous host factors in the vector midgut, which can be targeted with therapeutics. The mosquito prefoldin complex is needed to fold proteins and macromolecular complexes properly. Here we show that the conserved Anopheles mosquito prefoldin (PFDN)-chaperonin system is a potent transmission-blocking target for multiple Plasmodium species. Silencing any prefoldin subunit or its CCT/TRiC partner via RNA interference reduces Plasmodium falciparum oocyst loads in the mosquito midgut, as does co-feeding mosquitoes with PFDN6-specific antibody and gametocytes. Inhibition of the PFDN-CCT/TRiC chaperonin complex results in the loss of epithelial and extracellular matrix integrity, which triggers microorganism-mediated anti-Plasmodium immune priming and compromises the parasite's laminin-based immune evasion. Mouse malaria transmission-blocking vaccine and antibody co-feeding assays support its potential as a multispecies transmission-blocking target for P. falciparum and Plasmodium vivax. Further study is needed to determine the potential of this system as a transmission-blocking vaccine target.
Collapse
Affiliation(s)
- Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Seokyoung Kang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Simone L Sandiford
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew Pike
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Maria L Simões
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Ratawan Ubalee
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Kevin Kobylinski
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
8
|
Moretti R, Lim JT, Ferreira AGA, Ponti L, Giovanetti M, Yi CJ, Tewari P, Cholvi M, Crawford J, Gutierrez AP, Dobson SL, Ross PA. Exploiting Wolbachia as a Tool for Mosquito-Borne Disease Control: Pursuing Efficacy, Safety, and Sustainability. Pathogens 2025; 14:285. [PMID: 40137770 PMCID: PMC11944716 DOI: 10.3390/pathogens14030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
Despite the application of control measures, mosquito-borne diseases continue to pose a serious threat to human health. In this context, exploiting Wolbachia, a common symbiotic bacterium in insects, may offer effective solutions to suppress vectors or reduce their competence in transmitting several arboviruses. Many Wolbachia strains can induce conditional egg sterility, known as cytoplasmic incompatibility (CI), when infected males mate with females that do not harbor the same Wolbachia infection. Infected males can be mass-reared and then released to compete with wild males, reducing the likelihood of wild females encountering a fertile mate. Furthermore, certain Wolbachia strains can reduce the competence of mosquitoes to transmit several RNA viruses. Through CI, Wolbachia-infected individuals can spread within the population, leading to an increased frequency of mosquitoes with a reduced ability to transmit pathogens. Using artificial methods, Wolbachia can be horizontally transferred between species, allowing the establishment of various laboratory lines of mosquito vector species that, without any additional treatment, can produce sterilizing males or females with reduced vector competence, which can be used subsequently to replace wild populations. This manuscript reviews the current knowledge in this field, describing the different approaches and evaluating their efficacy, safety, and sustainability. Successes, challenges, and future perspectives are discussed in the context of the current spread of several arboviral diseases, the rise of insecticide resistance in mosquito populations, and the impact of climate change. In this context, we explore the necessity of coordinating efforts among all stakeholders to maximize disease control. We discuss how the involvement of diverse expertise-ranging from new biotechnologies to mechanistic modeling of eco-epidemiological interactions between hosts, vectors, Wolbachia, and pathogens-becomes increasingly crucial. This coordination is especially important in light of the added complexity introduced by Wolbachia and the ongoing challenges posed by global change.
Collapse
Affiliation(s)
- Riccardo Moretti
- Casaccia Research Center, Department for Sustainability, Italian National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (R.M.); (L.P.)
| | - Jue Tao Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.T.L.); (C.J.Y.); (P.T.)
| | | | - Luigi Ponti
- Casaccia Research Center, Department for Sustainability, Italian National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (R.M.); (L.P.)
- Center for the Analysis of Sustainable Agricultural Systems, Kensington, CA 94707, USA or (A.P.G.)
| | - Marta Giovanetti
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte 30190-002, Brazil; (A.G.A.F.); (M.G.)
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Roma, Italy
| | - Chow Jo Yi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.T.L.); (C.J.Y.); (P.T.)
| | - Pranav Tewari
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.T.L.); (C.J.Y.); (P.T.)
| | - Maria Cholvi
- Area of Parasitology, Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, Universitat de València, 46100 Valencia, Spain; (M.C.)
| | - Jacob Crawford
- Verily Life Sciences, South San Francisco, CA 94080, USA; (J.C.)
| | - Andrew Paul Gutierrez
- Center for the Analysis of Sustainable Agricultural Systems, Kensington, CA 94707, USA or (A.P.G.)
- Division of Ecosystem Science, College of Natural Resources, University of California, Berkeley, CA 94720, USA
| | - Stephen L. Dobson
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA or (S.L.D.)
- MosquitoMate, Inc., Lexington, KY 40502, USA
| | - Perran A. Ross
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 2052, Australia; (P.A.R.)
| |
Collapse
|
9
|
Han Y, Champer J. A Comparative Assessment of Self-limiting Genetic Control Strategies for Population Suppression. Mol Biol Evol 2025; 42:msaf048. [PMID: 40036822 PMCID: PMC11934067 DOI: 10.1093/molbev/msaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
Genetic control strategies are promising solutions for control of pest populations and invasive species. Methods utilizing repeated releases of males such as sterile insect technique (SIT), release of insects carrying a dominant lethal (RIDL), self-limiting gene drives, and gene disruptors are highly controllable methods, ensuring biosafety. Although models of these strategies have been built, detailed comparisons are lacking, particularly for some of the newer strategies. Here, we conducted a thorough comparative assessment of self-limiting genetic control strategies by individual-based simulation models. Specifically, we find that repeated releases greatly enhance suppression power of weak and self-limiting gene drives, enabling population elimination with even low efficiency and high fitness costs. Moreover, dominant female sterility further strengthens self-limiting systems that can either use gene drive or disruptors that target genes without a mechanism to bias their own inheritance. Some of these strategies are highly persistent, resulting in relatively low release ratios even when released males suffer high fitness costs. To quantitatively evaluate different strategies independent from ecological impact, we proposed constant-population genetic load, which achieves over 95% accuracy in predicting simulation outcomes for most strategies, though it is not as precise in a few frequency-dependent systems. Our results suggest that many new self-limiting strategies are safe, flexible, and more cost-effective than traditional SIT and RIDL, and thus have great potential for population suppression of insects and other pests.
Collapse
Affiliation(s)
- Yue Han
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
- CLS Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jackson Champer
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
10
|
Smidler AL, Marrogi EA, Scott S, Mameli E, Abernathy D, Akbari OS, Church GM, Catteruccia F, Esvelt K. Engineering gene drive docking sites in a haplolethal locus in Anopheles gambiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.03.641265. [PMID: 40093134 PMCID: PMC11908198 DOI: 10.1101/2025.03.03.641265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Gene drives are selfish genetic elements which promise to be powerful tools in the fight against vector-borne diseases such as malaria. We previously proposed population replacement gene drives designed to better withstand the evolution of resistance by homing through haplolethal loci. Because most mutations in the wild-type allele that would otherwise confer resistance are lethal, only successful drive homing permits the cell to survive. Here we outline the development and characterization of two ΦC31-Recombination mediated cassette exchange (RMCE) gene drive docking lines with these features in Anopheles gambiae, a first step towards construction of robust gene drives in this important malaria vector. We outline adaption of the technique HACK (Homology Assisted CRISPR knockin) to knock-in two docking site sequences into a paired haplolethal-haplosufficient (Ribosome-Proteasome) locus, and confirm that these docking lines permit insertion of drive-relevant transgenes. We report the first anopheline proteasome knockouts, and identify ribosome mutants that reveal a major hurdle that such designs must overcome to develop robust drives in the future. Although we do not achieve drive, this work provides a new tool for constructing future evolution-robust drive systems and reveals critical challenges that must be overcome for future development of gene drives designed to target haplolethal loci in anophelines and, potentially, other metazoans.
Collapse
Affiliation(s)
- Andrea L Smidler
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eryney A Marrogi
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sean Scott
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Enzo Mameli
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Daniel Abernathy
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Omar S Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Kevin Esvelt
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
11
|
Saab SA, Cardoso-Jaime V, Kefi M, Dimopoulos G. Advances in the dissection of Anopheles-Plasmodium interactions. PLoS Pathog 2025; 21:e1012965. [PMID: 40163471 PMCID: PMC11957333 DOI: 10.1371/journal.ppat.1012965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Malaria is a life-threatening mosquito-borne disease caused by the Plasmodium parasite, responsible for more than half a million deaths annually and principally involving children. The successful transmission of malaria by Anopheles mosquitoes relies on complex successive interactions between the parasite and various mosquito organs, host factors, and restriction factors. This review summarizes our current understanding of the mechanisms regulating Plasmodium infection of the mosquito vector at successive plasmodial developmental stages and highlights potential transmission-blocking targets and strategies.
Collapse
Affiliation(s)
- Sally A. Saab
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States America
| | - Victor Cardoso-Jaime
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States America
| | - Mary Kefi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States America
| |
Collapse
|
12
|
Nyasembe VO, Schregardus CE, Bascunan P, Steele CM, Benedict MQ, Dotson EM. Bicarbonate, calcium ions, hydrogen peroxide and trypsin modulate activation of Anopheles gambiae sperm motility and protein tyrosine phosphorylation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 178:104265. [PMID: 39884471 DOI: 10.1016/j.ibmb.2025.104265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
With the increasing concern of potential loss of transgenic mosquitoes which are candidates as new tools for mosquito-borne disease control, methods for cryopreservation are actively under investigation. Methods to cryopreserve Anopheles gambiae sperm have recently been developed, but there are no artificial insemination or in vitro fertilization tools available. As a step to achieve this, we sought to identify a suitable medium for in vitro incubation of An. gambiae sperm and to tease out critical components that are involved in the sperm motility activation process. Using two cell viability assays, we identified the Biggers-Whitten-Whittingham (BWW) medium as suitable for in vitro incubation of An. gambiae sperm isolated from testes. We then modified the medium for motility assays by testing different HCO3- and Ca2+ concentrations. Our results show that there is an HCO3- and Ca2+ concentration-dependent activation of An. gambiae sperm motility. We further demonstrated that H2O2 can be produced by the testes in vitro and that the addition of 5.3 μM of H2O2 to the medium improves sperm motility and increases protein tyrosine phosphorylation in An. gambiae. Finally, we show a dose-dependent activation of sperm motility by the addition of trypsin to the medium and more than a 2-fold increase in sperm motility when modified BWW (mBWW) medium is supplemented with H2O2 and trypsin. Our in vitro results suggest that protein tyrosine phosphorylation, intracellular ionic influx, intrinsic production of H2O2 and trypsin-like proteases play a vital role in signal transduction that leads to the activation of An. gambiae sperm motility.
Collapse
Affiliation(s)
- Vincent O Nyasembe
- Infectious Disease Programs, CDC Foundation Assigned to Division of Parasitic Diseases and Malaria, Entomology Branch, Centers for Disease Control and Prevention (CDC), 600 Peachtree St. NE, Atlanta, GA, 30308, USA.
| | - Claire E Schregardus
- Infectious Disease Programs, CDC Foundation Assigned to Division of Parasitic Diseases and Malaria, Entomology Branch, Centers for Disease Control and Prevention (CDC), 600 Peachtree St. NE, Atlanta, GA, 30308, USA
| | - Priscila Bascunan
- Infectious Disease Programs, CDC Foundation Assigned to Division of Parasitic Diseases and Malaria, Entomology Branch, Centers for Disease Control and Prevention (CDC), 600 Peachtree St. NE, Atlanta, GA, 30308, USA
| | - Catherine M Steele
- Infectious Disease Programs, CDC Foundation Assigned to Division of Parasitic Diseases and Malaria, Entomology Branch, Centers for Disease Control and Prevention (CDC), 600 Peachtree St. NE, Atlanta, GA, 30308, USA
| | - Mark Q Benedict
- Infectious Disease Programs, CDC Foundation Assigned to Division of Parasitic Diseases and Malaria, Entomology Branch, Centers for Disease Control and Prevention (CDC), 600 Peachtree St. NE, Atlanta, GA, 30308, USA
| | - Ellen M Dotson
- Division of Parasitic Diseases and Malaria, Entomology Branch, Centers for Disease Control and Prevention (CDC), 1600 Clifton Road, NE, Atlanta, GA, 30329, USA
| |
Collapse
|
13
|
Larrosa-Godall M, Ang JXD, Leftwich PT, Gonzalez E, Shackleford L, Nevard K, Noad R, Anderson MAE, Alphey L. Challenges in developing a split drive targeting dsx for the genetic control of the invasive malaria vector Anopheles stephensi. Parasit Vectors 2025; 18:46. [PMID: 39920845 PMCID: PMC11806748 DOI: 10.1186/s13071-025-06688-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/26/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Anopheles stephensi is a competent malaria vector mainly present in southern Asia and the Arabian Peninsula. Since 2012, it has invaded several countries of eastern Africa, creating an emerging risk of urban transmission. Urgent efforts are required to develop novel and more efficient strategies for targeted vector control. CRISPR/Cas9-based homing gene drives have been proposed as attractive alternative strategies. Gene drives have the potential to spread a desired trait through a population at higher rates than via normal Mendelian inheritance, even in the presence of a fitness cost. Several target genes have been suggested and tested in different mosquito vector species such as Anopheles gambiae and Aedes aegypti. Several promising suppression drives have been developed in An. gambiae that target the sex determination gene doublesex (dsx). METHODS In this study, a geographically confineable gene drive system targeting dsx was developed (dsxgRNA). Here, a transgenic line which expresses Cas9 under the control of the endogenous zpg promoter was generated. Separately a transgenic line which expresses a gRNA targeting the female specific exon of dsx was inserted into that same target site. The reproductive fitness of males and females heterozygous and homozygous for this element was determined. A series of experimental crosses was performed to combine the two elements and assess the homing rate of the dsx element in a split drive system. RESULTS The drive was able to home in a super-Mendelian rate comparable to those obtained by an autonomous drive in this species. Although inheritance rates as high as 99.8% were observed, potentially providing very potent gene drive, dominant effects on male and female fertility were observed, which would be sufficient to hinder spread of such a drive. Molecular analysis indicated that the gRNA expressing insertion disrupted normal splicing of dsx. CONCLUSIONS These results should be considered when proposing the viability of dsx as a target gene for a population suppression gene drives in Anopheles stephensi. Although high homing rates were observed, the fitness defects found in both males and females carrying the transgene would likely prohibit this drive from functioning in the field.
Collapse
Affiliation(s)
- Mireia Larrosa-Godall
- Arthropod Genetics, The Pirbright Institute, Pirbright, GU24 0NF, UK
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
- Current Address: Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, Brookmans Park, Hatfield, AL9 7TA, UK
| | - Joshua X D Ang
- Arthropod Genetics, The Pirbright Institute, Pirbright, GU24 0NF, UK
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
- York Biomedical Research Institute, University of York, Heslington, YO10 5DD, UK
| | - Philip T Leftwich
- School of Biological Sciences, University of East Anglia, Norfolk, Norwich, NRA 7TJ, UK
| | - Estela Gonzalez
- Arthropod Genetics, The Pirbright Institute, Pirbright, GU24 0NF, UK
- Current Address: Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | - Lewis Shackleford
- Arthropod Genetics, The Pirbright Institute, Pirbright, GU24 0NF, UK
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
- York Biomedical Research Institute, University of York, Heslington, YO10 5DD, UK
| | - Katherine Nevard
- Arthropod Genetics, The Pirbright Institute, Pirbright, GU24 0NF, UK
| | - Rob Noad
- Current Address: Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, Brookmans Park, Hatfield, AL9 7TA, UK
| | - Michelle A E Anderson
- Arthropod Genetics, The Pirbright Institute, Pirbright, GU24 0NF, UK.
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.
- York Biomedical Research Institute, University of York, Heslington, YO10 5DD, UK.
| | - Luke Alphey
- Arthropod Genetics, The Pirbright Institute, Pirbright, GU24 0NF, UK.
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.
- York Biomedical Research Institute, University of York, Heslington, YO10 5DD, UK.
| |
Collapse
|
14
|
Xu X, Chen J, Wang Y, Liu Y, Zhang Y, Yang J, Yang X, Chen B, He Z, Champer J. Gene drive-based population suppression in the malaria vector Anopheles stephensi. Nat Commun 2025; 16:1007. [PMID: 39856077 PMCID: PMC11760374 DOI: 10.1038/s41467-025-56290-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Gene drives are alleles that can bias the inheritance of specific traits in target populations for the purpose of modification or suppression. Here, we construct a homing suppression drive in the major urban malaria vector Anopheles stephensi targeting the female-specific exon of doublesex, incorporating two gRNAs and a nanos-Cas9 to reduce functional resistance and improve female heterozygote fitness. Our results show that the drive was recessive sterile in both females and males, with various intersex phenotypes in drive homozygotes. Both male and female drive heterozygotes show only moderate drive conversion, indicating that the nanos promoter has lower activity in A. stephensi than in Anopheles gambiae. By amplicon sequencing, we detect a very low level of resistance allele formation. Combination of the homing suppression drive and a vasa-Cas9 line boosts the drive conversion rate of the homing drive to 100%, suggesting the use of similar systems for population suppression in a continuous release strategy with a lower release rate than SIT or fsRIDL techniques. This study contributes valuable insights to the development of more efficient and environmentally friendly pest control tools aimed at disrupting disease transmission.
Collapse
Affiliation(s)
- Xuejiao Xu
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China.
| | - Jingheng Chen
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - You Wang
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Yiran Liu
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Yongjie Zhang
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Jie Yang
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Xiaozhen Yang
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Zhengbo He
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China.
| | - Jackson Champer
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
15
|
Zhang SM, Yan G, Lekired A, Zhong D. Genomic basis of schistosome resistance in a molluscan vector of human schistosomiasis. iScience 2025; 28:111520. [PMID: 39758819 PMCID: PMC11699755 DOI: 10.1016/j.isci.2024.111520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/15/2024] [Accepted: 11/29/2024] [Indexed: 01/07/2025] Open
Abstract
Freshwater snails are obligate intermediate hosts for the transmission of schistosomiasis, one of the world's most devastating parasitic diseases. To decipher the mechanisms underlying snail resistance to schistosomes, recombinant inbred lines (RILs) were developed from two well-defined homozygous lines (iM line and iBS90) of the snail Biomphalaria glabrata. Whole-genome sequencing (WGS) was used to scan the genomes of 46 individual RIL snails, representing 46 RILs, half of which were resistant or susceptible to Schistosoma mansoni. Genome-wide association study (GWAS) and bin marker-assisted quantitative trait loci (QTLs) analysis, aided by our chromosome-level assembled genome, were conducted. A small genomic region (∼3 Mb) on chromosome 5 was identified as being associated with schistosome resistance, designated the B. glabrata schistosome resistance region 1 (BgSRR1). This study, built on our recently developed genetic and genomic resources, provides valuable insights into anti-schistosome mechanisms and the future development of snail-targeted biocontrol programs for schistosomiasis.
Collapse
Affiliation(s)
- Si-Ming Zhang
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Abdelmalek Lekired
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
16
|
Naidoo K, Oliver SV. Gene drives: an alternative approach to malaria control? Gene Ther 2025; 32:25-37. [PMID: 39039203 PMCID: PMC11785527 DOI: 10.1038/s41434-024-00468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Genetic modification for the control of mosquitoes is frequently touted as a solution for a variety of vector-borne diseases. There has been some success using non-insecticidal methods like sterile or incompatible insect techniques to control arbovirus diseases. However, control by genetic modifications to reduce mosquito populations or create mosquitoes that are refractory to infection with pathogens are less developed. The advent of CRISPR-Cas9-mediated gene drives may advance this mechanism of control. In this review, use and progress of gene drives for vector control, particularly for malaria, is discussed. A brief history of population suppression and replacement gene drives in mosquitoes, rapid advancement of the field over the last decade and how genetic modification fits into the current scope of vector control are described. Mechanisms of alternative vector control by genetic modification to modulate mosquitoes' immune responses and anti-parasite effector molecules as part of a combinational strategy to combat malaria are considered. Finally, the limitations and ethics of using gene drives for mosquito control are discussed.
Collapse
Affiliation(s)
- Kubendran Naidoo
- SAMRC/Wits Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- National Health Laboratory Service, Johannesburg, South Africa.
- Wits Research Institute for Malaria, Faculty of Health Sciences, National Health Laboratory Service, University of the Witwatersrand, Johannesburg, South Africa.
- Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Shüné V Oliver
- Wits Research Institute for Malaria, Faculty of Health Sciences, National Health Laboratory Service, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
17
|
Wang GH, Hoffmann A, Champer J. Gene Drive and Symbiont Technologies for Control of Mosquito-Borne Diseases. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:229-249. [PMID: 39353088 DOI: 10.1146/annurev-ento-012424-011039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Mosquito-borne diseases, such as dengue and malaria, pose a significant burden to global health. Current control strategies with insecticides are only moderately effective. Scalable solutions are needed to reduce the transmission risk of these diseases. Symbionts and genome engineering-based mosquito control strategies have been proposed to address these problems. Bacterial, fungal, and viral symbionts affect mosquito reproduction, reduce mosquito lifespan, and block pathogen transmission. Field tests of endosymbiont Wolbachia-based methods have yielded promising results, but there are hurdles to overcome due to the large-scale rearing and accurate sex sorting required for Wolbachia-based suppression approaches and the ecological impediments to Wolbachia invasion in replacement approaches. Genome engineering-based methods, in which mosquitoes are genetically altered for the modification or suppression of wild populations, offer an additional approach for control of mosquito-borne diseases. In particular, the use of gene drive alleles that bias inheritance in their favor is a potentially powerful approach. Several drives are frequency dependent, potentially giving them broadly similar population dynamics to Wolbachia. However, public acceptance and the behavior of released drives in natural mosquito populations remain challenges. We summarize the latest developments and discuss the knowledge gaps in both symbiont- and gene drive-based methods.
Collapse
Affiliation(s)
- Guan-Hong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China;
| | - Ary Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia;
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China;
| |
Collapse
|
18
|
Tushar T, Pham TB, Parker K, Crepeau M, Lanzaro GC, James AA, Carballar-Lejarazú R. Cas9/guide RNA-based gene-drive dynamics following introduction and introgression into diverse anopheline mosquito genetic backgrounds. BMC Genomics 2024; 25:1078. [PMID: 39533215 PMCID: PMC11558816 DOI: 10.1186/s12864-024-10977-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Novel technologies are needed to combat anopheline vectors of malaria parasites as the reductions in worldwide disease incidence has stalled in recent years. Gene drive-based approaches utilizing Cas9/guide RNA (gRNA) systems are being developed to suppress anopheline populations or modify them by increasing their refractoriness to the parasites. These systems rely on the successful cleavage of a chromosomal DNA target site followed by homology-directed repair (HDR) in germline cells to bias inheritance of the drive system. An optimal drive system should be highly efficient for HDR-mediated gene conversion with minimal error rates. A gene-drive system, AgNosCd-1, with these attributes has been developed in the Anopheles gambiae G3 strain and serves as a framework for further development of population modification strains. To validate AgNosCd-1 as a versatile platform, it must perform well in a variety of genetic backgrounds. RESULTS We introduced or introgressed AgNosCd-1 into different genetic backgrounds, three in geographically-diverse Anopheles gambiae strains, and one each in an An. coluzzii and An. arabiensis strain. The overall drive inheritance, determined by presence of a dominant marker gene in the F2 hybrids, far exceeded Mendelian inheritance ratios in all genetic backgrounds that produced viable progeny. Haldane's rule was confirmed for AgNosCd-1 introgression into the An. arabiensis Dongola strain and sterility of the F1 hybrid males prevented production of F2 hybrid offspring. Back-crosses of F1 hybrid females were not performed to keep the experimental design consistent across all the genetic backgrounds and to avoid maternally-generated mutant alleles that might confound the drive dynamics. DNA sequencing of the target site in F1 and F2 mosquitoes with exceptional phenotypes revealed drive system-generated mutations resulting from non-homologous end joining events (NHEJ), which formed at rates similar to AgNosCd-1 in the G3 genetic background and were generated via the same maternal-effect mechanism. CONCLUSIONS These findings support the conclusion that the AgNosCd-1 drive system is robust and has high drive inheritance and gene conversion efficiency accompanied by low NHEJ mutation rates in diverse An. gambiae s.l. laboratory strains.
Collapse
Affiliation(s)
- Taylor Tushar
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697-4025, USA
| | - Thai Binh Pham
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697-4025, USA
| | - Kiona Parker
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697-4025, USA
| | - Marc Crepeau
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Gregory C Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Anthony A James
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697-4025, USA.
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, 92697-3900, USA.
| | - Rebeca Carballar-Lejarazú
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697-4025, USA.
| |
Collapse
|
19
|
Campos M, Rašić G, Viegas J, Cornel AJ, Pinto J, Lanzaro GC. Patterns of Gene Flow in Anopheles coluzzii Populations From Two African Oceanic Islands. Evol Appl 2024; 17:e70044. [PMID: 39600347 PMCID: PMC11589655 DOI: 10.1111/eva.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
The malaria vector Anopheles coluzzii is widespread across West Africa and is the sole vector species on the islands of São Tomé and Príncipe. Our interest in the population genetics of this species on these islands is part of an assessment of their suitability for a field trial involving the release of genetically engineered A. coluzzii. The engineered construct includes two genes that encode anti-Plasmodium peptides, along with a Cas9-based gene drive. We investigated gene flow among A. coluzzii subpopulations on each island to estimate dispersal rates between sites. Sampling covered the known range of A. coluzzii on both islands. Spatial autocorrelation suggests 7 km to be the likely extent of dispersal of this species, whereas estimates based on a convolutional neural network were roughly 3 km. This difference highlights the complexity of dispersal dynamics and the value of using multiple approaches. Our analysis also revealed weak heterogeneity among populations within each island but did identify areas weakly resistant or permissive of gene flow. Overall, A. coluzzii on each of the two islands exist as single Mendelian populations. We expect that a gene construct that includes a low-threshold gene drive and has minimal fitness impact should, once introduced, spread relatively unimpeded across each island.
Collapse
Affiliation(s)
- Melina Campos
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and ImmunologyUniversity of California—DavisDavisCaliforniaUSA
| | - Gordana Rašić
- Mosquito Genomics, QIMR Berghofer Medical Research InstituteHerstonQueenslandAustralia
| | - João Viegas
- Centro Nacional de Endemias, Ministério da Saúde, Trabalho e Assuntos SociaisSão ToméSao Tome and Principe
| | - Anthony J. Cornel
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and ImmunologyUniversity of California—DavisDavisCaliforniaUSA
- Mosquito Control Research Laboratory, Department of Entomology and NematologyUniversity of CaliforniaParlierCaliforniaUSA
| | - João Pinto
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina TropicalUniversidade Nova de LisboaLisboaPortugal
| | - Gregory C. Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and ImmunologyUniversity of California—DavisDavisCaliforniaUSA
| |
Collapse
|
20
|
Hancock PA, North A, Leach AW, Winskill P, Ghani AC, Godfray HCJ, Burt A, Mumford JD. The potential of gene drives in malaria vector species to control malaria in African environments. Nat Commun 2024; 15:8976. [PMID: 39419965 PMCID: PMC11486997 DOI: 10.1038/s41467-024-53065-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Gene drives are a promising means of malaria control with the potential to cause sustained reductions in transmission. In real environments, however, their impacts will depend on local ecological and epidemiological factors. We develop a data-driven model to investigate the impacts of gene drives that causes vector population suppression. We simulate gene drive releases in sixteen ~ 12,000 km2 areas of west Africa that span variation in vector ecology and malaria prevalence, and estimate reductions in vector abundance, malaria prevalence and clinical cases. Average reductions in vector abundance ranged from 71.6-98.4% across areas, while impacts on malaria depended strongly on which vector species were targeted. When other new interventions including RTS,S vaccination and pyrethroid-PBO bednets were in place, at least 60% more clinical cases were averted when gene drives were added, demonstrating the benefits of integrated interventions. Our results show that different strategies for gene drive implementation may be required across different African settings.
Collapse
Affiliation(s)
- Penelope A Hancock
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK.
| | - Ace North
- Department of Biology, University of Oxford, Oxford, UK
| | - Adrian W Leach
- Centre for Environmental Policy, Imperial College London, Ascot, UK
| | - Peter Winskill
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - Azra C Ghani
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - H Charles J Godfray
- Department of Biology, University of Oxford, Oxford, UK
- Oxford Martin School, University of Oxford, Oxford, UK
| | - Austin Burt
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - John D Mumford
- Centre for Environmental Policy, Imperial College London, Ascot, UK
| |
Collapse
|
21
|
Gangwar U, Choudhury H, Shameem R, Singh Y, Bansal A. Recent development in CRISPR-Cas systems for human protozoan diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 208:109-160. [PMID: 39266180 DOI: 10.1016/bs.pmbts.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Protozoan parasitic diseases pose a substantial global health burden. Understanding the pathogenesis of these diseases is crucial for developing intervention strategies in the form of vaccine and drugs. Manipulating the parasite's genome is essential for gaining insights into its fundamental biology. Traditional genomic manipulation methods rely on stochastic homologous recombination events, which necessitates months of maintaining the cultured parasites under drug pressure to generate desired transgenics. The introduction of mega-nucleases (MNs), zinc-finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs) greatly reduced the time required for obtaining a desired modification. However, there is a complexity associated with the design of these nucleases. CRISPR (Clustered regularly interspaced short palindromic repeats)/Cas (CRISPR associated proteins) is the latest gene editing tool that provides an efficient and convenient method for precise genomic manipulations in protozoan parasites. In this chapter, we have elaborated various strategies that have been adopted for the use of CRISPR-Cas9 system in Plasmodium, Leishmania and Trypanosoma. We have also discussed various applications of CRISPR-Cas9 pertaining to understanding of the parasite biology, development of drug resistance mechanism, gene drive and diagnosis of the infection.
Collapse
Affiliation(s)
- Utkarsh Gangwar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Risha Shameem
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Yashi Singh
- Department of Biosciences & Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Abhisheka Bansal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
22
|
Hou S, Chen J, Feng R, Xu X, Liang N, Champer J. A homing rescue gene drive with multiplexed gRNAs reaches high frequency in cage populations but generates functional resistance. J Genet Genomics 2024; 51:836-843. [PMID: 38599514 DOI: 10.1016/j.jgg.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
CRISPR homing gene drives have considerable potential for managing populations of medically and agriculturally significant insects. They operate by Cas9 cleavage followed by homology-directed repair, copying the drive allele to the wild-type chromosome and thus increasing in frequency and spreading throughout a population. However, resistance alleles formed by end-joining repair pose a significant obstacle. To address this, we create a homing drive targeting the essential hairy gene in Drosophila melanogaster. Nonfunctional resistance alleles are recessive lethal, while drive carriers have a recoded "rescue" version of hairy. The drive inheritance rate is moderate, and multigenerational cage studies show drive spread to 96%-97% of the population. However, the drive does not reach 100% due to the formation of functional resistance alleles despite using four gRNAs. These alleles have a large deletion but likely utilize an alternate start codon. Thus, revised designs targeting more essential regions of a gene may be necessary to avoid such functional resistance. Replacement of the rescue element's native 3' UTR with a homolog from another species increases drive inheritance by 13%-24%. This was possibly because of reduced homology between the rescue element and surrounding genomic DNA, which could also be an important design consideration for rescue gene drives.
Collapse
Affiliation(s)
- Shibo Hou
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jingheng Chen
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ruobing Feng
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xuejiao Xu
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Nan Liang
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jackson Champer
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
23
|
Collier TC, Lee Y, Mathias DK, López Del Amo V. CRISPR-Cas9 and Cas12a target site richness reflects genomic diversity in natural populations of Anopheles gambiae and Aedes aegypti mosquitoes. BMC Genomics 2024; 25:700. [PMID: 39020310 PMCID: PMC11253549 DOI: 10.1186/s12864-024-10597-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024] Open
Abstract
Due to limitations in conventional disease vector control strategies including the rise of insecticide resistance in natural populations of mosquitoes, genetic control strategies using CRISPR gene drive systems have been under serious consideration. The identification of CRISPR target sites in mosquito populations is a key aspect for developing efficient genetic vector control strategies. While genome-wide Cas9 target sites have been explored in mosquitoes, a precise evaluation of target sites focused on coding sequence (CDS) is lacking. Additionally, target site polymorphisms have not been characterized for other nucleases such as Cas12a, which require a different DNA recognition site (PAM) and would expand the accessibility of mosquito genomes for genetic engineering. We undertook a comprehensive analysis of potential target sites for both Cas9 and Cas12a nucleases within the genomes of natural populations of Anopheles gambiae and Aedes aegypti from multiple continents. We demonstrate that using two nucleases increases the number of targets per gene. Also, we identified differences in nucleotide diversity between North American and African Aedes populations, impacting the abundance of good target sites with a minimal degree of polymorphisms that can affect the binding of gRNA. Lastly, we screened for gRNAs targeting sex-determination genes that could be widely applicable for developing field genetic control strategies. Overall, this work highlights the utility of employing both Cas9 and Cas12a nucleases and underscores the importance of designing universal genetic strategies adaptable to diverse mosquito populations.
Collapse
Affiliation(s)
| | - Yoosook Lee
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32962, USA
| | - Derrick K Mathias
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32962, USA
| | - Víctor López Del Amo
- Center for Infectious Diseases, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center, Houston, TX, 77030, USA.
| |
Collapse
|
24
|
Kefi M, Cardoso-Jaime V, Saab SA, Dimopoulos G. Curing mosquitoes with genetic approaches for malaria control. Trends Parasitol 2024; 40:487-499. [PMID: 38760256 DOI: 10.1016/j.pt.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Malaria remains a persistent global public health challenge because of the limitations of current prevention tools. The use of transgenic mosquitoes incapable of transmitting malaria, in conjunction with existing methods, holds promise for achieving elimination of malaria and preventing its reintroduction. In this context, population modification involves the spread of engineered genetic elements through mosquito populations that render them incapable of malaria transmission. Significant progress has been made in this field over the past decade in revealing promising targets, optimizing genetic tools, and facilitating the transition from the laboratory to successful field deployments, which are subject to regulatory scrutiny. This review summarizes recent advances and ongoing challenges in 'curing' Anopheles vectors of the malaria parasite.
Collapse
Affiliation(s)
- Mary Kefi
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Victor Cardoso-Jaime
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Sally A Saab
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - George Dimopoulos
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
25
|
Connolly JB, Burt A, Christophides G, Diabate A, Habtewold T, Hancock PA, James AA, Kayondo JK, Lwetoijera DW, Manjurano A, McKemey AR, Santos MR, Windbichler N, Randazzo F. Considerations for first field trials of low-threshold gene drive for malaria vector control. Malar J 2024; 23:156. [PMID: 38773487 PMCID: PMC11110314 DOI: 10.1186/s12936-024-04952-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/15/2024] [Indexed: 05/23/2024] Open
Abstract
Sustainable reductions in African malaria transmission require innovative tools for mosquito control. One proposal involves the use of low-threshold gene drive in Anopheles vector species, where a 'causal pathway' would be initiated by (i) the release of a gene drive system in target mosquito vector species, leading to (ii) its transmission to subsequent generations, (iii) its increase in frequency and spread in target mosquito populations, (iv) its simultaneous propagation of a linked genetic trait aimed at reducing vectorial capacity for Plasmodium, and (v) reduced vectorial capacity for parasites in target mosquito populations as the gene drive system reaches fixation in target mosquito populations, causing (vi) decreased malaria incidence and prevalence. Here the scope, objectives, trial design elements, and approaches to monitoring for initial field releases of such gene dive systems are considered, informed by the successful implementation of field trials of biological control agents, as well as other vector control tools, including insecticides, Wolbachia, larvicides, and attractive-toxic sugar bait systems. Specific research questions to be addressed in initial gene drive field trials are identified, and adaptive trial design is explored as a potentially constructive and flexible approach to facilitate testing of the causal pathway. A fundamental question for decision-makers for the first field trials will be whether there should be a selective focus on earlier points of the pathway, such as genetic efficacy via measurement of the increase in frequency and spread of the gene drive system in target populations, or on wider interrogation of the entire pathway including entomological and epidemiological efficacy. How and when epidemiological efficacy will eventually be assessed will be an essential consideration before decisions on any field trial protocols are finalized and implemented, regardless of whether initial field trials focus exclusively on the measurement of genetic efficacy, or on broader aspects of the causal pathway. Statistical and modelling tools are currently under active development and will inform such decisions on initial trial design, locations, and endpoints. Collectively, the considerations here advance the realization of developer ambitions for the first field trials of low-threshold gene drive for malaria vector control within the next 5 years.
Collapse
Affiliation(s)
- John B Connolly
- Department of Life Sciences, Silwood Park, Imperial College London, London, UK.
| | - Austin Burt
- Department of Life Sciences, Silwood Park, Imperial College London, London, UK
| | - George Christophides
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, UK
| | - Abdoulaye Diabate
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Tibebu Habtewold
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, UK
- Environmental Health and Ecological Science Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Penelope A Hancock
- MRC Centre for Global Infectious Disease Analysis, St. Mary's Campus, Imperial College London, London, UK
| | - Anthony A James
- Departments of Microbiology & Molecular Genetics and Molecular Biology & Biochemistry, University of California, Irvine, USA
| | - Jonathan K Kayondo
- Entomology Department, Uganda Virus Research Institute (UVRI), Entebbe, Uganda
| | | | - Alphaxard Manjurano
- Malaria Research Unit and Laboratory Sciences, Mwanza Medical Research Centre, National Institute for Medical Research, Mwanza, Tanzania
| | - Andrew R McKemey
- Department of Life Sciences, Silwood Park, Imperial College London, London, UK
| | - Michael R Santos
- Foundation for the National Institutes of Health, North Bethesda, MD, USA
| | - Nikolai Windbichler
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, UK
| | | |
Collapse
|
26
|
Mondal A, Sánchez C. HM, Marshall JM. MGDrivE 3: A decoupled vector-human framework for epidemiological simulation of mosquito genetic control tools and their surveillance. PLoS Comput Biol 2024; 20:e1012133. [PMID: 38805562 PMCID: PMC11161092 DOI: 10.1371/journal.pcbi.1012133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 06/07/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024] Open
Abstract
Novel mosquito genetic control tools, such as CRISPR-based gene drives, hold great promise in reducing the global burden of vector-borne diseases. As these technologies advance through the research and development pipeline, there is a growing need for modeling frameworks incorporating increasing levels of entomological and epidemiological detail in order to address questions regarding logistics and biosafety. Epidemiological predictions are becoming increasingly relevant to the development of target product profiles and the design of field trials and interventions, while entomological surveillance is becoming increasingly important to regulation and biosafety. We present MGDrivE 3 (Mosquito Gene Drive Explorer 3), a new version of a previously-developed framework, MGDrivE 2, that investigates the spatial population dynamics of mosquito genetic control systems and their epidemiological implications. The new framework incorporates three major developments: i) a decoupled sampling algorithm allowing the vector portion of the MGDrivE framework to be paired with a more detailed epidemiological framework, ii) a version of the Imperial College London malaria transmission model, which incorporates age structure, various forms of immunity, and human and vector interventions, and iii) a surveillance module that tracks mosquitoes captured by traps throughout the simulation. Example MGDrivE 3 simulations are presented demonstrating the application of the framework to a CRISPR-based homing gene drive linked to dual disease-refractory genes and their potential to interrupt local malaria transmission. Simulations are also presented demonstrating surveillance of such a system by a network of mosquito traps. MGDrivE 3 is freely available as an open-source R package on CRAN (https://cran.r-project.org/package=MGDrivE2) (version 2.1.0), and extensive examples and vignettes are provided. We intend the software to aid in understanding of human health impacts and biosafety of mosquito genetic control tools, and continue to iterate per feedback from the genetic control community.
Collapse
Affiliation(s)
- Agastya Mondal
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, California, United States of America
| | - Héctor M. Sánchez C.
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, California, United States of America
| | - John M. Marshall
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, California, United States of America
| |
Collapse
|
27
|
Ambrose L, Allen SL, Iro'ofa C, Butafa C, Beebe NW. Genetic and geographic population structure in the malaria vector, Anopheles farauti, provides a candidate system for pioneering confinable gene-drive releases. Heredity (Edinb) 2024; 132:232-246. [PMID: 38494530 PMCID: PMC11074138 DOI: 10.1038/s41437-024-00677-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
Indoor insecticide applications are the primary tool for reducing malaria transmission in the Solomon Archipelago, a region where Anopheles farauti is the only common malaria vector. Due to the evolution of behavioural resistance in some An. farauti populations, these applications have become less effective. New malaria control interventions are therefore needed in this region, and gene-drives provide a promising new technology. In considering developing a population-specific (local) gene-drive in An. farauti, we detail the species' population genetic structure using microsatellites and whole mitogenomes, finding many spatially confined populations both within and between landmasses. This strong population structure suggests that An. farauti would be a useful system for developing a population-specific, confinable gene-drive for field release, where private alleles can be used as Cas9 targets. Previous work on Anopheles gambiae has used the Cardinal gene for the development of a global population replacement gene-drive. We therefore also analyse the Cardinal gene to assess whether it may be a suitable target to engineer a gene-drive for the modification of local An. farauti populations. Despite the extensive population structure observed in An. farauti for microsatellites, only one remote island population from Vanuatu contained fixed and private alleles at the Cardinal locus. Nonetheless, this study provides an initial framework for further population genomic investigations to discover high-frequency private allele targets in localized An. farauti populations. This would enable the development of gene-drive strains for modifying localised populations with minimal chance of escape and may provide a low-risk route to field trial evaluations.
Collapse
Affiliation(s)
- Luke Ambrose
- School of the Environment, University of Queensland, St Lucia, Brisbane, QLD, Australia.
| | - Scott L Allen
- School of the Environment, University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Charlie Iro'ofa
- Solomon Islands Ministry of Health, Honiara, Guadalcanal, Solomon Islands
| | - Charles Butafa
- Solomon Islands Ministry of Health, Honiara, Guadalcanal, Solomon Islands
| | - Nigel W Beebe
- School of the Environment, University of Queensland, St Lucia, Brisbane, QLD, Australia.
| |
Collapse
|
28
|
Alphey L. Sex or poison? Genetic pest management in the 21st century. BMC Biol 2023; 21:289. [PMID: 38155354 PMCID: PMC10755943 DOI: 10.1186/s12915-023-01785-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023] Open
Affiliation(s)
- Luke Alphey
- Department of Biology, University of York, York, YO10 5DD, UK.
- York Biomedical Research Institute, University of York, York, YO10 5DD, UK.
| |
Collapse
|
29
|
Cuccurullo EC, Dong Y, Simões ML, Dimopoulos G, Bier E. Development of an anti-Pfs230 monoclonal antibody as a Plasmodium falciparum gametocyte blocker. RESEARCH SQUARE 2023:rs.3.rs-3757253. [PMID: 38196646 PMCID: PMC10775378 DOI: 10.21203/rs.3.rs-3757253/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Vector control is a crucial strategy for malaria elimination by preventing infection and reducing disease transmission. Most gains have been achieved through insecticide-treated nets (ITNs) and indoor residual spraying (IRS), but the emergence of insecticide resistance among Anopheles mosquitoes calls for new tools to be applied. Here, we present the development of a highly effective murine monoclonal antibody, targeting the N-terminal region of the Plasmodium falciparum gametocyte antigen Pfs230, that can decrease the infection prevalence by > 50% when fed to Anopheles mosquitoes with gametocytes in an artificial membrane feeding system. We used a standard mouse immunization protocol followed by protein interaction and parasite-blocking validation at three distinct stages of the monoclonal antibody development pipeline: post-immunization, post-hybridoma generation, and final validation of the monoclonal antibody. We evaluated twenty antibodies identifying one (mAb 13G9) with high Pfs230-affinity and parasite-blocking activity. This 13G9 monoclonal antibody could potentially be developed into a transmission-blocking single-chain antibody for expression in transgenic mosquitoes.
Collapse
|
30
|
Green EI, Jaouen E, Klug D, Proveti Olmo R, Gautier A, Blandin S, Marois E. A population modification gene drive targeting both Saglin and Lipophorin impairs Plasmodium transmission in Anopheles mosquitoes. eLife 2023; 12:e93142. [PMID: 38051195 PMCID: PMC10786457 DOI: 10.7554/elife.93142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023] Open
Abstract
Lipophorin is an essential, highly expressed lipid transport protein that is secreted and circulates in insect hemolymph. We hijacked the Anopheles coluzzii Lipophorin gene to make it co-express a single-chain version of antibody 2A10, which binds sporozoites of the malaria parasite Plasmodium falciparum. The resulting transgenic mosquitoes show a markedly decreased ability to transmit Plasmodium berghei expressing the P. falciparum circumsporozoite protein to mice. To force the spread of this antimalarial transgene in a mosquito population, we designed and tested several CRISPR/Cas9-based gene drives. One of these is installed in, and disrupts, the pro-parasitic gene Saglin and also cleaves wild-type Lipophorin, causing the anti-malarial modified Lipophorin version to replace the wild type and hitch-hike together with the Saglin drive. Although generating drive-resistant alleles and showing instability in its gRNA-encoding multiplex array, the Saglin-based gene drive reached high levels in caged mosquito populations and efficiently promoted the simultaneous spread of the antimalarial Lipophorin::Sc2A10 allele. This combination is expected to decrease parasite transmission via two different mechanisms. This work contributes to the design of novel strategies to spread antimalarial transgenes in mosquitoes, and illustrates some expected and unexpected outcomes encountered when establishing a population modification gene drive.
Collapse
Affiliation(s)
- Emily I Green
- Inserm U1257, CNRS UPR9022, University of StrasbourgStrasbourgFrance
| | - Etienne Jaouen
- Inserm U1257, CNRS UPR9022, University of StrasbourgStrasbourgFrance
| | - Dennis Klug
- Inserm U1257, CNRS UPR9022, University of StrasbourgStrasbourgFrance
| | | | - Amandine Gautier
- Inserm U1257, CNRS UPR9022, University of StrasbourgStrasbourgFrance
| | - Stéphanie Blandin
- Inserm U1257, CNRS UPR9022, University of StrasbourgStrasbourgFrance
| | - Eric Marois
- Inserm U1257, CNRS UPR9022, University of StrasbourgStrasbourgFrance
| |
Collapse
|
31
|
Raban R, Marshall JM, Hay BA, Akbari OS. Manipulating the Destiny of Wild Populations Using CRISPR. Annu Rev Genet 2023; 57:361-390. [PMID: 37722684 PMCID: PMC11064769 DOI: 10.1146/annurev-genet-031623-105059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Genetic biocontrol aims to suppress or modify populations of species to protect public health, agriculture, and biodiversity. Advancements in genome engineering technologies have fueled a surge in research in this field, with one gene editing technology, CRISPR, leading the charge. This review focuses on the current state of CRISPR technologies for genetic biocontrol of pests and highlights the progress and ongoing challenges of using these approaches.
Collapse
Affiliation(s)
- Robyn Raban
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - John M Marshall
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, California, USA
| | - Bruce A Hay
- Division of Biology and Biological Engineering (BBE), California Institute of Technology, Pasadena, California, USA
| | - Omar S Akbari
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
32
|
Kormos A, Dimopoulos G, Bier E, Lanzaro GC, Marshall JM, James AA. Conceptual risk assessment of mosquito population modification gene-drive systems to control malaria transmission: preliminary hazards list workshops. Front Bioeng Biotechnol 2023; 11:1261123. [PMID: 37965050 PMCID: PMC10641379 DOI: 10.3389/fbioe.2023.1261123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
The field-testing and eventual adoption of genetically-engineered mosquitoes (GEMs) to control vector-borne pathogen transmission will require them meeting safety criteria specified by regulatory authorities in regions where the technology is being considered for use and other locales that might be impacted. Preliminary risk considerations by researchers and developers may be useful for planning the baseline data collection and field research used to address the anticipated safety concerns. Part of this process is to identify potential hazards (defined as the inherent ability of an entity to cause harm) and their harms, and then chart the pathways to harm and evaluate their probability as part of a risk assessment. The University of California Malaria Initiative (UCMI) participated in a series of workshops held to identify potential hazards specific to mosquito population modification strains carrying gene-drive systems coupled to anti-parasite effector genes and their use in a hypothetical island field trial. The hazards identified were placed within the broader context of previous efforts discussed in the scientific literature. Five risk areas were considered i) pathogens, infections and diseases, and the impacts of GEMs on human and animal health, ii) invasiveness and persistence of GEMs, and interactions of GEMs with target organisms, iii) interactions of GEMs with non-target organisms including horizontal gene transfer, iv) impacts of techniques used for the management of GEMs and v) evolutionary and stability considerations. A preliminary hazards list (PHL) was developed and is made available here. This PHL is useful for internal project risk evaluation and is available to regulators at prospective field sites. UCMI project scientists affirm that the subsequent processes associated with the comprehensive risk assessment for the application of this technology should be driven by the stakeholders at the proposed field site and areas that could be affected by this intervention strategy.
Collapse
Affiliation(s)
- Ana Kormos
- Vector Genetics Laboratory, University of California, Davis, Davis, CA, United States
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Malaria Research Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Ethan Bier
- Department of Cell and Developmental Biology, University of California, San Diego, San Diego, CA, United States
| | - Gregory C. Lanzaro
- Vector Genetics Laboratory, University of California, Davis, Davis, CA, United States
| | - John M. Marshall
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Anthony A. James
- Departments of Microbiology and Molecular Genetics and Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
33
|
Mondal A, C. HMS, Marshall JM. MGDrivE 3: A decoupled vector-human framework for epidemiological simulation of mosquito genetic control tools and their surveillance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.09.556958. [PMID: 37745458 PMCID: PMC10515759 DOI: 10.1101/2023.09.09.556958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Novel mosquito genetic control tools, such as CRISPR-based gene drives, hold great promise in reducing the global burden of vector-borne diseases. As these technologies advance through the research and development pipeline, there is a growing need for modeling frameworks incorporating increasing levels of entomological and epidemiological detail in order to address questions regarding logistics and biosafety. Epidemiological predictions are becoming increasingly relevant to the development of target product profiles and the design of field trials and interventions, while entomological surveillance is becoming increasingly important to regulation and biosafety. We present MGDrivE 3 (Mosquito Gene Drive Explorer 3), a new version of a previously-developed framework, MGDrivE 2, that investigates the spatial population dynamics of mosquito genetic control systems and their epidemiological implications. The new framework incorporates three major developments: i) a decoupled sampling algorithm allowing the vector portion of the MGDrivE framework to be paired with a more detailed epidemiological framework, ii) a version of the Imperial College London malaria transmission model, which incorporates age structure, various forms of immunity, and human and vector interventions, and iii) a surveillance module that tracks mosquitoes captured by traps throughout the simulation. Example MGDrivE 3 simulations are presented demonstrating the application of the framework to a CRISPR-based homing gene drive linked to dual disease-refractory genes and their potential to interrupt local malaria transmission. Simulations are also presented demonstrating surveillance of such a system by a network of mosquito traps. MGDrivE 3 is freely available as an open-source R package on CRAN (https://cran.r-project.org/package=MGDrivE2) (version 2.1.0), and extensive examples and vignettes are provided. We intend the software to aid in understanding of human health impacts and biosafety of mosquito genetic control tools, and continue to iterate per feedback from the genetic control community.
Collapse
Affiliation(s)
- Agastya Mondal
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Héctor M. Sánchez C.
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - John M. Marshall
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|