1
|
Elst T, Weidner S, Tomalka A, Hahn D, Paternoster FK, Seiberl W, Siebert T. Consecutive SSCs increase the SSC effect in skinned rat muscle fibres. Pflugers Arch 2025; 477:873-888. [PMID: 40338284 DOI: 10.1007/s00424-025-03088-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/03/2025] [Accepted: 04/22/2025] [Indexed: 05/09/2025]
Abstract
Muscle function is essential for generating force and movement, with stretch-shortening cycles (SSCs) playing a fundamental role in the economy of everyday locomotion. Compared with pure shortening contractions, the SSC effect is characterised by increased force, work, and power output during the SSC shortening phase. Few studies have investigated whether SSC effects transfer across consecutive SSCs. Therefore, we investigated SSC effects over three consecutive SSCs in skinned rat muscle fibres by analysing the isometric force immediately before stretch onset (Fonset), the peak force at the end of stretching (Fpeak), and the minimum force at the end of shortening (Fmin), along with mechanical (WorkSSC) and shortening work (WorkSHO) at different activation levels (20%, 60%, and 100%). Each SSC was followed by an isometric hold phase, allowing force to return to a steady state. Results indicated an increase in both Fpeak (20.3%) and WorkSSC (60.9%) from SSC1 to SSC3 across all activation levels tested. At 20% and 60% activation, Fonset, Fmin, and WorkSHO increased (range: 4.5-28.5%) from SSC1 to SSC3. However, at 100% activation, Fonset and WorkSHO remained unchanged, while Fmin decreased (- 8.5%) from SSC1 to SSC3. These results suggest that the increase in SSC effects at submaximal activation may be primarily due to increased cross-bridge forces. The absence of increases in Fonset, Fmin, and WorkSHO at 100% activation suggests that increases in Fpeak and WorkSSC may not be attributed to increased cross-bridge force but could instead be caused by additional effects, possibly involving modulation of non-cross-bridge structures, likely titin, and their stiffness.
Collapse
Affiliation(s)
- Tobias Elst
- Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany.
| | - Sven Weidner
- Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - André Tomalka
- Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - Daniel Hahn
- Human Movement Science, Faculty of Sports Science, Ruhr University Bochum, Bochum, Germany
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Florian Kurt Paternoster
- Biomechanics in Sports, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Wolfgang Seiberl
- Human Movement Science, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Tobias Siebert
- Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
- Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
2
|
Montesel M, De Napoli C, Schmidt L, Germinario E, Guzman UH, Olsen JV, Marcucci L, Nogara L. A combined experimental and computational analysis of mantATP turnover in skinned muscle fibers. Proc Natl Acad Sci U S A 2025; 122:e2502652122. [PMID: 40372438 DOI: 10.1073/pnas.2502652122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/11/2025] [Indexed: 05/16/2025] Open
Abstract
Myosin is the primary motor protein in skeletal muscle, responsible for adenosine triphosphate (ATP) hydrolysis that drives muscle contraction. In addition to force production, resting myosin consumes ATP in futile cycles at two rates, the slower one being associated with the Super Relaxed State (SRX), in contrast to the less inhibited Disordered Relaxed State (DRX). The SRX is typically measured using the mantATP chasing technique, where the decay of a fluorescent ATP analogue is fitted using a multiexponential function. Recently, significant concerns have been raised regarding the use of this technique, particularly when applied to soluble myosin preparations. While skinned fibers offer the advantage of preserving the native thick filament structure and myosin cooperativity, limited diffusion and nonspecific mantATP binding pose challenges. In this study, we combine experimental data and in-silico modeling to dissect the contributions of different components in the mantATP chasing signal. We analyze control skinned fibers and fibers subjected to myosin extraction. Our analysis shows that the nonspecific component partially overlaps with the DRX timescale. In contrast, the slow component linked to myosin SRX nucleotide release is characterized by a time constant that significantly differs from those of the nonspecific signal and DRX, enabling its reliable estimation using this technique. Our findings indicate that evaluating nonspecific mantATP components is necessary to obtain a reliable estimation of both SRX and DRX. We validated our analysis by comparing populations and time constants obtained from chasing with mantATP to mantATPase rates in control conditions and upon piperine-induced SRX destabilization.
Collapse
Affiliation(s)
- Mauro Montesel
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy
- Veneto Institute of Molecular Medicine, Padua 35129, Italy
| | - Cosimo De Napoli
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy
- Veneto Institute of Molecular Medicine, Padua 35129, Italy
| | - Luisa Schmidt
- Mass Spectrometry for Quantitative Proteomics, Proteomics Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Elena Germinario
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy
| | - Ulises H Guzman
- Mass Spectrometry for Quantitative Proteomics, Proteomics Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Jesper V Olsen
- Mass Spectrometry for Quantitative Proteomics, Proteomics Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Lorenzo Marcucci
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy
| | - Leonardo Nogara
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy
- Veneto Institute of Molecular Medicine, Padua 35129, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua 35131, Italy
| |
Collapse
|
3
|
McDonald KS, Kalogeris TJ, Veteto AB, Davis DJ, Hanft LM. Myosin binding protein-C modulates loaded sarcomere shortening in rodent permeabilized cardiac myocytes. J Gen Physiol 2025; 157:e202413678. [PMID: 40126337 PMCID: PMC11932042 DOI: 10.1085/jgp.202413678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/29/2025] [Accepted: 03/09/2025] [Indexed: 03/25/2025] Open
Abstract
During the ejection phase of the cardiac cycle, left ventricular (LV) cardiac myocytes undergo loaded shortening and generate power. However, few studies have measured sarcomere shortening during loaded contractions. Here, we simultaneously monitored muscle length (ML) and sarcomere length (SL) during isotonic contractions in rodent permeabilized LV cardiac myocyte preparations. In permeabilized cardiac myocyte preparations from rats, we found that ML and SL traces were closely matched, as SL velocities were within ∼77% of ML velocities during half-maximal Ca2+ activations. We next tested whether cardiac myosin binding protein-C (cMyBP-C) regulates loaded shortening and power output by modulating cross-bridge availability. We characterized force-velocity and power-load relationships in wildtype (WT) and cMyBP-C deficient (Mybpc3-/-) mouse permeabilized cardiac myocyte preparations, at both the ML and SL level, before and after treatment with the small molecule myosin inhibitor, mavacamten. We found that SL traces closely matched ML traces in both WT and Mybpc3-/- cardiac myocytes. However, Mybpc3-/- cardiac myocytes exhibited disproportionately high sarcomere shortening velocities at high loads. Interestingly, in Mybpc3-/- cardiac myocytes, 0.5 µM mavacamten slowed SL-loaded shortening across the force-velocity curve and normalized SL shortening velocity at high loads. Overall, these results suggest that cMyBP-C moderates sarcomere-loaded shortening, especially at high loads, at least in part, by modulating cross-bridge availability.
Collapse
Affiliation(s)
- Kerry S. McDonald
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Theodore J. Kalogeris
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Adam B. Veteto
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Daniel J. Davis
- Department of Veterinary Pathology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Laurin M. Hanft
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
4
|
Hill C, Kalakoutis M, Arcidiacono A, Paradine Cullup F, Wang Y, Fukutani A, Narayanan T, Brunello E, Fusi L, Irving M. Dual-filament regulation of relaxation in mammalian fast skeletal muscle. Proc Natl Acad Sci U S A 2025; 122:e2416324122. [PMID: 40073060 PMCID: PMC11929500 DOI: 10.1073/pnas.2416324122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/23/2025] [Indexed: 03/14/2025] Open
Abstract
Muscle contraction is driven by myosin motors from the thick filaments pulling on the actin-containing thin filaments of the sarcomere, and it is regulated by structural changes in both filaments. Thin filaments are activated by an increase in intracellular calcium concentration [Ca2+]i and by myosin binding to actin. Thick filaments are activated by direct sensing of the filament load. However, these mechanisms cannot explain muscle relaxation when [Ca2+]i decreases at high load and myosin motors are attached to actin. There is, therefore, a fundamental gap in our understanding of muscle relaxation, despite its importance for muscle function in vivo, for example, for rapid eye movements or, on slower timescales, for the efficient control of posture. Here, we used time-resolved small-angle X-ray diffraction (SAXD) to determine how muscle thin and thick filaments switch OFF in extensor digitorum longus (EDL) muscles of the mouse in response to decreases in either [Ca2+]i or muscle load and to describe the distribution of muscle sarcomere lengths (SLs) during relaxation. We show that reducing load at high [Ca2+]i is more effective in switching OFF both the thick and thin filaments than reducing [Ca2+]i at high load in normal relaxation. In the latter case, the thick filaments initially remain fully ON, although the number of myosin motors bound to actin decreases and the force per attached motor increases. That initial slow phase of relaxation is abruptly terminated by yielding of one population of sarcomeres, triggering a redistribution of SLs that leads to the rapid completion of mechanical relaxation.
Collapse
Affiliation(s)
- Cameron Hill
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
| | - Michaeljohn Kalakoutis
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
| | - Alice Arcidiacono
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
| | - Flair Paradine Cullup
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
| | - Yanhong Wang
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
| | - Atsuki Fukutani
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
| | | | - Elisabetta Brunello
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
| | - Luca Fusi
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
- Centre for Human and Applied Physiological Sciences, Shepherd’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
| | - Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
| |
Collapse
|
5
|
Alsheikh R, Aldulaimi H, Hinawi R, Al-Sadi F, Al-Baker A, Alkuwari A, Sameer M, Al-Abdulla G, Shi Z, Rathnaiah Babu G. Association of serum magnesium and calcium with metabolic syndrome: a cross-sectional study from the Qatar-biobank. Nutr Metab (Lond) 2025; 22:8. [PMID: 39885554 PMCID: PMC11783880 DOI: 10.1186/s12986-024-00892-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/28/2024] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Metabolic syndrome (MetS) and its constituent comorbidities, along with mineral imbalances, pose a significant health burden in the Qatari population. Although Magnesium (Mg) and Calcium (Ca) have been individually linked to MetS, the impact of the calcium-to-magnesium ratio (Ca: Mg) on MetS remains unclear, especially in the adult population of Qatar. In this study, we aim to investigate the association between the total serum concentrations of Ca, Mg and Ca: Mg ratio with the outcome of MetS. METHODS This comprehensive cross-sectional study included data on 9693 participants collected by Qatar Biobank (QBB). The serum levels of Mg and Ca, in addition to recorded metabolic parameters for the study participants, were used in the analyses. The presence of MetS was deemed as our primary outcome and its components as secondary outcomes. Logistic regression models were run to examine these associations. RESULTS AND CONCLUSION MetS was present in more than 19% of the population. The mean serum Mg was higher in the non-MetS group 0.83 ± 0.06 mmol/L compared to the MetS group 0.81 ± 0.08 mmol/L. Conversely, the mean serum Ca and Ca: Mg ratio were higher in the MetS group (2.33 ± 0.09 mmol/L, 2.92 ± 0.36 mmol/L) compared to the non-MetS group (2.30 ± 0.08 mmol/L, 2.77 ± 0.23 mmol/L) respectively. In the context of MetS, we observed a negative dose-response relationship between Mg quartiles and MetS. In contrast, we found a positive association between Ca as well as Ca: Mg ratio and MetS.
Collapse
Affiliation(s)
- Raneem Alsheikh
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Haneen Aldulaimi
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Rami Hinawi
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Fatima Al-Sadi
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Alanoud Al-Baker
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Aldana Alkuwari
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Muhammad Sameer
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Ghalya Al-Abdulla
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Zumin Shi
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Giridhara Rathnaiah Babu
- Department of Population Medicine, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
6
|
Irving M. Functional control of myosin motors in the cardiac cycle. Nat Rev Cardiol 2025; 22:9-19. [PMID: 39030271 DOI: 10.1038/s41569-024-01063-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/21/2024]
Abstract
Contraction of the heart is driven by cyclical interactions between myosin and actin filaments powered by ATP hydrolysis. The modular structure of heart muscle and the organ-level synchrony of the heartbeat ensure tight reciprocal coupling between this myosin ATPase cycle and the macroscopic cardiac cycle. The myosin motors respond to the cyclical activation of the actin and myosin filaments to drive the pressure changes that control the inflow and outflow valves of the heart chambers. Opening and closing of the valves in turn switches the myosin motors between roughly isometric and roughly isotonic contraction modes. Peak filament stress in the heart is much smaller than in fully activated skeletal muscle, although the myosin filaments in the two muscle types have the same number of myosin motors. Calculations indicate that only ~5% of the myosin motors in the heart are needed to generate peak systolic pressure, although many more motors are needed to drive ejection. Tight regulation of the number of active motors is essential for the efficient functioning of the healthy heart - this control is commonly disrupted by gene variants associated with inherited heart disease, and its restoration might be a useful end point in the development of novel therapies.
Collapse
Affiliation(s)
- Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics and BHF Centre for Research Excellence, King's College London, London, UK.
| |
Collapse
|
7
|
Goluguri RR, Guhathakurta P, Nandwani N, Dawood A, Yakota S, Roopnarine O, Thomas DD, Spudich JA, Ruppel KM. A FRET assay to quantitate levels of the human β-cardiac myosin interacting heads motif based on its near-atomic resolution structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.626936. [PMID: 39713291 PMCID: PMC11661104 DOI: 10.1101/2024.12.05.626936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
In cardiac muscle, many myosin molecules are in a resting or "OFF" state with their catalytic heads in a folded structure known as the interacting heads motif (IHM). Many mutations in the human β-cardiac myosin gene that cause hypertrophic cardiomyopathy (HCM) are thought to destabilize (decrease the population of) the IHM state. The effects of pathogenic mutations on the IHM structural state are often studied using indirect assays, including a single-ATP turnover assay that detects the super-relaxed (SRX) biochemical state of myosin functionally. Here we develop and use a fluorescence resonance energy transfer (FRET) based sensor for direct quantification of the IHM state in solution. The FRET sensor was able to quantify destabilization of the IHM state in solution, induced by (a) increasing salt concentration, (b) altering proximal S2 tail length, or (c) introducing the HCM mutation P710R, as well as stabilization of the IHM state by introducing a dilated cardiomyopathy-causing mutation (E525K). Our FRET sensor conclusively showed that these perturbations indeed alter the structural IHM state. These results establish that the structural IHM state is one of the structural correlates of the biochemical SRX state in solution.
Collapse
Affiliation(s)
- Rama Reddy Goluguri
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, United States
- Stanford Cardiovascular Institute, Stanford, CA 94305, United States
| | - Piyali Guhathakurta
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Neha Nandwani
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, United States
- Stanford Cardiovascular Institute, Stanford, CA 94305, United States
| | - Aminah Dawood
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, United States
- Stanford Cardiovascular Institute, Stanford, CA 94305, United States
| | - Seiji Yakota
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, United States
- Stanford Cardiovascular Institute, Stanford, CA 94305, United States
| | - Osha Roopnarine
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, United States
- Stanford Cardiovascular Institute, Stanford, CA 94305, United States
| | - Kathleen M. Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, United States
- Stanford Cardiovascular Institute, Stanford, CA 94305, United States
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, United States
| |
Collapse
|
8
|
Morotti I, Caremani M, Marcello M, Pertici I, Squarci C, Bianco P, Narayanan T, Piazzesi G, Reconditi M, Lombardi V, Linari M. An integrated picture of the structural pathways controlling the heart performance. Proc Natl Acad Sci U S A 2024; 121:e2410893121. [PMID: 39630866 DOI: 10.1073/pnas.2410893121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
The regulation of heart function is attributed to a dual filament mechanism: i) the Ca2+-dependent structural changes in the regulatory proteins of the thin, actin-containing filament making actin available for myosin motor attachment, and ii) the release of motors from their folded (OFF) state on the surface of the thick filament allowing them to attach and pull the actin filament. Thick filament mechanosensing is thought to control the number of motors switching ON in relation to the systolic performance, but its molecular basis is still controversial. Here, we use high spatial resolution X-ray diffraction data from electrically paced rat trabeculae and papillary muscles to provide a molecular explanation of the modulation of heart performance that calls for a revision of the mechanosensing hypothesis. We find that upon stimulation, titin-mediated structural changes in the thick filament switch motors ON throughout the filament within ~½ the maximum systolic force. These structural changes also drive Myosin Binding Protein-C (MyBP-C) to promote first motor attachments to actin from the central 1/3 of the half-thick filament. Progression of attachments toward the periphery of half-thick filament with increase in systolic force is carried on by near-neighbor cooperative thin filament activation by attached motors. The identification of the roles of MyBP-C, titin, thin and thick filaments in heart regulation enables their targeting for potential therapeutic interventions.
Collapse
Affiliation(s)
- Ilaria Morotti
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| | - Marco Caremani
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| | - Matteo Marcello
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| | - Irene Pertici
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| | - Caterina Squarci
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| | - Pasquale Bianco
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| | | | - Gabriella Piazzesi
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| | - Massimo Reconditi
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Vincenzo Lombardi
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| | - Marco Linari
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| |
Collapse
|
9
|
Wang Y, Fusi L, Ovejero JG, Hill C, Juma S, Cullup FP, Ghisleni A, Park-Holohan SJ, Ma W, Irving T, Narayanan T, Irving M, Brunello E. Load-dependence of the activation of myosin filaments in heart muscle. J Physiol 2024; 602:6889-6907. [PMID: 39552044 DOI: 10.1113/jp287434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/03/2024] [Indexed: 11/19/2024] Open
Abstract
Contraction of heart muscle requires activation of both the actin and myosin filaments. The mechanism of myosin filament activation is unknown, but the leading candidate hypothesis is direct mechano-sensing by the filaments. Here, we tested this hypothesis by activating intact trabeculae from rat heart by electrical stimulation under different loads and measuring myosin filament activation by X-ray diffraction. Unexpectedly, we found that the distinct structural changes in the myosin filament associated with activation had different dependences on the load. In early activation, all the structural changes indicated faster activation at higher load, as expected from the mechano-sensing hypothesis, but, at later times, the helical order of the myosin motors characteristic of the inactivated state was lost even at very low load. We conclude that mechano-sensing does operate in heart muscle, but it is supplemented by a previously undescribed mechanism that links myosin filament activation to actin filament activation. KEY POINTS: Myosin filament activation controls the strength and speed of contraction in heart muscle. Early activation of the myosin filament is determined by the filament load. At later times, myosin filament activation is controlled by a load independent pathway. This load independent pathway provides new targets and assays for drug development.
Collapse
Affiliation(s)
- Yanhong Wang
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | - Luca Fusi
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, UK
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Jesus G Ovejero
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | - Cameron Hill
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | - Samina Juma
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | - Flair Paradine Cullup
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | - Andrea Ghisleni
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | - So-Jin Park-Holohan
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | - Weikang Ma
- BioCAT, Dept of Biology, Illinois Institute of Technology, Chicago, IL, USA
| | - Thomas Irving
- BioCAT, Dept of Biology, Illinois Institute of Technology, Chicago, IL, USA
| | | | - Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | - Elisabetta Brunello
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| |
Collapse
|
10
|
Sevrieva IR, Kampourakis T, Irving M. Structural changes in troponin during activation of skeletal and heart muscle determined in situ by polarised fluorescence. Biophys Rev 2024; 16:753-772. [PMID: 39830118 PMCID: PMC11735716 DOI: 10.1007/s12551-024-01245-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/30/2024] [Indexed: 01/22/2025] Open
Abstract
Calcium binding to troponin triggers the contraction of skeletal and heart muscle through structural changes in the thin filaments that allow myosin motors from the thick filaments to bind to actin and drive filament sliding. Here, we review studies in which those changes were determined in demembranated fibres of skeletal and heart muscle using fluorescence for in situ structure (FISS), which determines domain orientations using polarised fluorescence from bifunctional rhodamine attached to cysteine pairs in the target domain. We describe the changes in the orientations of the N-terminal lobe of troponin C (TnCN) and the troponin IT arm in skeletal and cardiac muscle cells associated with contraction and compare the orientations with those determined in isolated cardiac thin filaments by cryo-electron microscopy. We show that the orientations of the IT arm determined by the two approaches are essentially the same and that this region acts as an almost rigid scaffold for regulatory changes in the more mobile regions of troponin. However, the TnCN orientations determined by the two methods are clearly distinct in both low- and high-calcium conditions. We discuss the implications of these results for the role of TnCN in mediating the multiple signalling pathways acting through troponin in heart muscle cells and the general advantages and limitations of FISS and cryo-EM for determining protein domain orientations in cells and multiprotein complexes.
Collapse
Affiliation(s)
- Ivanka R Sevrieva
- Randall Centre for Cell & Molecular Biophysics, New Hunt’s House, Guy’s Campus, King’s College London, London, UK
| | - Thomas Kampourakis
- Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY USA
| | - Malcolm Irving
- Randall Centre for Cell & Molecular Biophysics, New Hunt’s House, Guy’s Campus, King’s College London, London, UK
| |
Collapse
|
11
|
Morales PN, Coons AN, Koopman AJ, Patel S, Chase PB, Parvatiyar MS, Pinto JR. Post-translational modifications of vertebrate striated muscle myosin heavy chains. Cytoskeleton (Hoboken) 2024; 81:832-842. [PMID: 38587113 PMCID: PMC11458826 DOI: 10.1002/cm.21857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/06/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
Post-translational modifications (PTMs) play a crucial role in regulating the function of many sarcomeric proteins, including myosin. Myosins comprise a family of motor proteins that play fundamental roles in cell motility in general and muscle contraction in particular. A myosin molecule consists of two myosin heavy chains (MyHCs) and two pairs of myosin light chains (MLCs); two MLCs are associated with the neck region of each MyHC's N-terminal head domain, while the two MyHC C-terminal tails form a coiled-coil that polymerizes with other MyHCs to form the thick filament backbone. Myosin undergoes extensive PTMs, and dysregulation of these PTMs may lead to abnormal muscle function and contribute to the development of myopathies and cardiovascular disorders. Recent studies have uncovered the significance of PTMs in regulating MyHC function and showed how these PTMs may provide additional modulation of contractile processes. Here, we discuss MyHC PTMs that have been biochemically and/or functionally studied in mammals' and rodents' striated muscle. We have identified hotspots or specific regions in three isoforms of myosin (MYH2, MYH6, and MYH7) where the prevalence of PTMs is more frequent and could potentially play a significant role in fine-tuning the activity of these proteins.
Collapse
Affiliation(s)
- Paula Nieto Morales
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306 USA
| | - Arianna N. Coons
- Department of Biological Science, Florida State University, Tallahassee, FL 32306 USA
| | - Amelia J. Koopman
- Department of Biological Science, Florida State University, Tallahassee, FL 32306 USA
| | - Sonu Patel
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306 USA
| | - P. Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL 32306 USA
| | - Michelle S. Parvatiyar
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306 USA
| | - Jose R. Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306 USA
| |
Collapse
|
12
|
Turner KL, Vander Top BJ, Kooiker KB, Mohran S, Mandrycky C, McMillen T, Regnier M, Irving TC, Ma W, Tanner BC. The structural and functional effects of myosin regulatory light chain phosphorylation are amplified by increases in sarcomere length and [Ca 2+]. J Physiol 2024; 602:4941-4958. [PMID: 39283968 PMCID: PMC11466700 DOI: 10.1113/jp286802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/21/2024] [Indexed: 10/04/2024] Open
Abstract
Precise regulation of sarcomeric contraction is essential for normal cardiac function. The heart must generate sufficient force to pump blood throughout the body, but either inadequate or excessive force can lead to dysregulation and disease. Myosin regulatory light chain (RLC) is a thick-filament protein that binds to the neck of the myosin heavy chain. Post-translational phosphorylation of RLC (RLC-P) by myosin light chain kinase is known to influence acto-myosin interactions, thereby increasing force production and Ca2+-sensitivity of contraction. Here, we investigated the role of RLC-P on cardiac structure and function as sarcomere length and [Ca2+] were altered. We found that at low, non-activating levels of Ca2+, RLC-P contributed to myosin head disorder, though there were no effects on isometric stress production and viscoelastic stiffness. With increases in sarcomere length and Ca2+-activation, the structural changes due to RLC-P become greater, which translates into greater force production, greater viscoelastic stiffness, slowed myosin detachment rates and altered nucleotide handling. Altogether, these data suggest that RLC-P may alter thick-filament structure by releasing ordered, off-state myosin. These more disordered myosin heads are available to bind actin, which could result in greater force production as Ca2+ levels increase. However, prolonged cross-bridge attachment duration due to slower ADP release could delay relaxation long enough to enable cross-bridge rebinding. Together, this work further elucidates the effects of RLC-P in regulating muscle function, thereby promoting a better understanding of thick-filament regulatory contributions to cardiac function in health and disease. KEY POINTS: Myosin regulatory light chain (RLC) is a thick-filament protein in the cardiac sarcomere that can be phosphorylated (RLC-P), and changes in RLC-P are associated with cardiac dysfunction and disease. This study assesses how RLC-P alters cardiac muscle structure and function at different sarcomere lengths and calcium concentrations. At low, non-activating levels of Ca2+, RLC-P contributed to myofilament disorder, though there were no effects on isometric stress production and viscoelastic stiffness. With increases in sarcomere length and Ca2+-activation, the structural changes due to RLC-P become greater, which translates into greater force production, greater viscoelastic stiffness, slower myosin detachment rate and altered cross-bridge nucleotide handling rates. This work elucidates the role of RLC-P in regulating muscle function and facilitates understanding of thick-filament regulatory protein contributions to cardiac function in health and disease.
Collapse
Affiliation(s)
- Kyrah L. Turner
- School of Molecular Biosciences, Washington State University, Pullman, Washington
| | - Blake J. Vander Top
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Kristina B. Kooiker
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
- Center for Translational Muscle Research, University of Washington, Seattle, Washington
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Saffie Mohran
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Christian Mandrycky
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Tim McMillen
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Michael Regnier
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
- Center for Translational Muscle Research, University of Washington, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Thomas C. Irving
- Department of Biology, Illinois Institute of Technology, Chicago, Illinois
- Center for Synchrotron Radiation Research and Instrumentation, Illinois Institute of Technology, Chicago, Illinois
| | - Weikang Ma
- Department of Biology, Illinois Institute of Technology, Chicago, Illinois
- Center for Synchrotron Radiation Research and Instrumentation, Illinois Institute of Technology, Chicago, Illinois
| | - Bertrand C.W. Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
13
|
Arts T, Lyon A, Delhaas T, Kuster DWD, van der Velden J, Lumens J. Translating myosin-binding protein C and titin abnormalities to whole-heart function using a novel calcium-contraction coupling model. J Mol Cell Cardiol 2024; 190:13-23. [PMID: 38462126 DOI: 10.1016/j.yjmcc.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/15/2024] [Accepted: 03/01/2024] [Indexed: 03/12/2024]
Abstract
Mutations in cardiac myosin-binding protein C (cMyBP-C) or titin may respectively lead to hypertrophic (HCM) or dilated (DCM) cardiomyopathies. The mechanisms leading to these phenotypes remain unclear because of the challenge of translating cellular abnormalities to whole-heart and system function. We developed and validated a novel computer model of calcium-contraction coupling incorporating the role of cMyBP-C and titin based on the key assumptions: 1) tension in the thick filament promotes cross-bridge attachment mechanochemically, 2) with increasing titin tension, more myosin heads are unlocked for attachment, and 3) cMyBP-C suppresses cross-bridge attachment. Simulated stationary calcium-tension curves, isotonic and isometric contractions, and quick release agreed with experimental data. The model predicted that a loss of cMyBP-C function decreases the steepness of the calcium-tension curve, and that more compliant titin decreases the level of passive and active tension and its dependency on sarcomere length. Integrating this cellular model in the CircAdapt model of the human heart and circulation showed that a loss of cMyBP-C function resulted in HCM-like hemodynamics with higher left ventricular end-diastolic pressures and smaller volumes. More compliant titin led to higher diastolic pressures and ventricular dilation, suggesting DCM-like hemodynamics. The novel model of calcium-contraction coupling incorporates the role of cMyBP-C and titin. Its coupling to whole-heart mechanics translates changes in cellular calcium-contraction coupling to changes in cardiac pump and circulatory function and identifies potential mechanisms by which cMyBP-C and titin abnormalities may develop into HCM and DCM phenotypes. This modeling platform may help identify distinct mechanisms underlying clinical phenotypes in cardiac diseases.
Collapse
Affiliation(s)
- Theo Arts
- Department of Biomedical Engineering, Cardiovascular Research Center Maastricht (CARIM), Maastricht University, 6200MD Maastricht, the Netherlands.
| | - Aurore Lyon
- Department of Biomedical Engineering, Cardiovascular Research Center Maastricht (CARIM), Maastricht University, 6200MD Maastricht, the Netherlands
| | - Tammo Delhaas
- Department of Biomedical Engineering, Cardiovascular Research Center Maastricht (CARIM), Maastricht University, 6200MD Maastricht, the Netherlands
| | - Diederik W D Kuster
- Department of Physiology, Amsterdam University Medical Center, 1081HZ Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam University Medical Center, 1081HZ Amsterdam, the Netherlands
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Center Maastricht (CARIM), Maastricht University, 6200MD Maastricht, the Netherlands
| |
Collapse
|
14
|
Kelly CM, Martin JL, Previs MJ. Myosin folding boosts solubility in cardiac muscle sarcomeres. JCI Insight 2024; 9:e178131. [PMID: 38483507 PMCID: PMC11141871 DOI: 10.1172/jci.insight.178131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/05/2024] [Indexed: 04/23/2024] Open
Abstract
The polymerization of myosin molecules into thick filaments in muscle sarcomeres is essential for cardiac contractility, with the attenuation of interactions between the heads of myosin molecules within the filaments being proposed to result in hypercontractility, as observed in hypertrophic cardiomyopathy (HCM). However, experimental evidence demonstrates that the structure of these giant macromolecular complexes is highly dynamic, with molecules exchanging between the filaments and a pool of soluble molecules on the minute timescale. Therefore, we sought to test the hypothesis that the enhancement of interactions between the heads of myosin molecules within thick filaments limits the mobility of myosin by taking advantage of mavacamten, a small molecule approved for the treatment of HCM. Myosin molecules were labeled in vivo with a green fluorescent protein (GFP) and imaged in intact hearts using multiphoton microscopy. Treatment of the intact hearts with mavacamten resulted in an unexpected > 5-fold enhancement in GFP-myosin mobility within the sarcomere. In vitro biochemical assays suggested that mavacamten enhanced the mobility of GFP-myosin by increasing the solubility of myosin molecules, through the stabilization of a compact/folded conformation of the molecules, once disassociated from the thick filaments. These findings provide alternative insight into the mechanisms by which molecules exchange into and out of thick filaments and have implications for how mavacamten may affect cardiac contractility.
Collapse
Affiliation(s)
- Colleen M Kelly
- Molecular Physiology and Biophysics Department, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Jody L Martin
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Michael J Previs
- Molecular Physiology and Biophysics Department, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
15
|
Abstract
Force generation in striated muscle is primarily controlled by structural changes in the actin-containing thin filaments triggered by an increase in intracellular calcium concentration. However, recent studies have elucidated a new class of regulatory mechanisms, based on the myosin-containing thick filament, that control the strength and speed of contraction by modulating the availability of myosin motors for the interaction with actin. This review summarizes the mechanisms of thin and thick filament activation that regulate the contractility of skeletal and cardiac muscle. A novel dual-filament paradigm of muscle regulation is emerging, in which the dynamics of force generation depends on the coordinated activation of thin and thick filaments. We highlight the interfilament signaling pathways based on titin and myosin-binding protein-C that couple thin and thick filament regulatory mechanisms. This dual-filament regulation mediates the length-dependent activation of cardiac muscle that underlies the control of the cardiac output in each heartbeat.
Collapse
Affiliation(s)
- Elisabetta Brunello
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom; ,
| | - Luca Fusi
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom; ,
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| |
Collapse
|
16
|
Månsson A. Changing face of contractile activation in striated muscle at physiological temperature. J Gen Physiol 2023; 155:e202313494. [PMID: 37934475 PMCID: PMC10630095 DOI: 10.1085/jgp.202313494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Calcium binding to troponin, with subsequent displacement of its linked tropomyosin molecule on the thin filament surface, cooperates with myosin binding to actin in the contractile regulation of striated muscle. The intertwined role of these systems is studied in the present issue of JGP by Ishii et al. (https://doi.org/10.1085/jgp.202313414). A particularly interesting feature of the paper, except for studying both skeletal and cardiac muscle proteins, is that the experiments unlike most other similar studies are performed at physiological temperature (35-40°C).
Collapse
Affiliation(s)
- Alf Månsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
17
|
Caremani M, Fusi L, Reconditi M, Piazzesi G, Narayanan T, Irving M, Lombardi V, Linari M, Brunello E. Dependence of myosin filament structure on intracellular calcium concentration in skeletal muscle. J Gen Physiol 2023; 155:e202313393. [PMID: 37756601 PMCID: PMC10533363 DOI: 10.1085/jgp.202313393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/15/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Contraction of skeletal muscle is triggered by an increase in intracellular calcium concentration that relieves the structural block on actin-binding sites in resting muscle, potentially allowing myosin motors to bind and generate force. However, most myosin motors are not available for actin binding because they are stabilized in folded helical tracks on the surface of myosin-containing thick filaments. High-force contraction depends on the release of the folded motors, which can be triggered by stress in the thick filament backbone, but additional mechanisms may link the activation of the thick filaments to that of the thin filaments or to intracellular calcium concentration. Here, we used x-ray diffraction in combination with temperature-jump activation to determine the steady-state calcium dependence of thick filament structure and myosin motor conformation in near-physiological conditions. We found that x-ray signals associated with the perpendicular motors characteristic of isometric force generation had almost the same calcium sensitivity as force, but x-ray signals associated with perturbations in the folded myosin helix had a much higher calcium sensitivity. Moreover, a new population of myosin motors with a longer axial periodicity became prominent at low levels of calcium activation and may represent an intermediate regulatory state of the myosin motors in the physiological pathway of filament activation.
Collapse
Affiliation(s)
| | - Luca Fusi
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King’s College London, London, UK
- Centre for Human and Applied Physiological Sciences, King’s College London, London, UK
| | - Massimo Reconditi
- PhysioLab, University of Florence, Florence, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Florence, Italy
| | | | | | - Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King’s College London, London, UK
| | | | - Marco Linari
- PhysioLab, University of Florence, Florence, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Florence, Italy
| | - Elisabetta Brunello
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King’s College London, London, UK
| |
Collapse
|
18
|
Chase PB, Coons AN. Ryanodine receptor-associated myopathies: What's myosin got to do with it? Acta Physiol (Oxf) 2023; 239:e14058. [PMID: 37902162 DOI: 10.1111/apha.14058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/31/2023]
Affiliation(s)
- P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Arianna N Coons
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
19
|
Terrell K, Choi S, Choi S. Calcium's Role and Signaling in Aging Muscle, Cellular Senescence, and Mineral Interactions. Int J Mol Sci 2023; 24:17034. [PMID: 38069357 PMCID: PMC10706910 DOI: 10.3390/ijms242317034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Calcium research, since its pivotal discovery in the early 1800s through the heating of limestone, has led to the identification of its multi-functional roles. These include its functions as a reducing agent in chemical processes, structural properties in shells and bones, and significant role in cells relating to this review: cellular signaling. Calcium signaling involves the movement of calcium ions within or between cells, which can affect the electrochemical gradients between intra- and extracellular membranes, ligand binding, enzyme activity, and other mechanisms that determine cell fate. Calcium signaling in muscle, as elucidated by the sliding filament model, plays a significant role in muscle contraction. However, as organisms age, alterations occur within muscle tissue. These changes include sarcopenia, loss of neuromuscular junctions, and changes in mineral concentration, all of which have implications for calcium's role. Additionally, a field of study that has gained recent attention, cellular senescence, is associated with aging and disturbed calcium homeostasis, and is thought to affect sarcopenia progression. Changes seen in calcium upon aging may also be influenced by its crosstalk with other minerals such as iron and zinc. This review investigates the role of calcium signaling in aging muscle and cellular senescence. We also aim to elucidate the interactions among calcium, iron, and zinc across various cells and conditions, ultimately deepening our understanding of calcium signaling in muscle aging.
Collapse
Affiliation(s)
| | | | - Sangyong Choi
- Department of Nutritional Sciences, College of Agriculture, Health, and Natural Resources, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|