1
|
Wang Y, Yu Y, Yu J, Wang C, Wang Y, Fu R, Zhang C. The intersections between neuroscience and medulloblastoma. Cancer Lett 2025; 620:217660. [PMID: 40154912 DOI: 10.1016/j.canlet.2025.217660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Medulloblastoma (MB) represents the most common malignant central nervous system tumor in childhood. The nervous system plays a critical role in the progression of MB, with interactions between the nervous system and cancer significantly influencing oncogenesis, tumor growth, invasion, stemness, and metabolism. These interactions also regulate angiogenesis, metastatic dissemination, the tumor immune microenvironment, and drug resistance. Investigating the nervous system-MB axis holds promise for identifying diagnostic markers, prognostic biomarkers, and therapeutic targets. It also provides insights into the molecular mechanisms underlying MB and informs the development of novel therapeutic strategies. This review summarizes the latest advancements in understanding the interplay between the nervous system and MB, including the role of glial cells in MB and the potential of drug repurposing targeting nervous system components for MB treatment. These findings underscore promising diagnostic and therapeutic opportunities for MB management. Additionally, we outline future research directions in neurosciences that may pave the way for innovative therapeutic approaches and deepen our understanding of this complex disease.
Collapse
Affiliation(s)
- Yafei Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ying Yu
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jiahua Yu
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Cheng Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yunkun Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Runxi Fu
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; Shanghai Institute for Pediatric Research, Shanghai, China
| | - Chenran Zhang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
2
|
Hu G, Cao H. Nuclear factor erythroid 2-related factor improves depression and cognitive dysfunction in rats with ischemic stroke by mediating wolfram syndrome 1. Brain Res 2025; 1856:149572. [PMID: 40101845 DOI: 10.1016/j.brainres.2025.149572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/19/2025] [Accepted: 03/12/2025] [Indexed: 03/20/2025]
Abstract
OBJECTIVE This research aims to investigate the molecular mechanism of nuclear factor erythroid 2-related factor (Nrf2) in improving post-stroke depression and cognitive impairment (PSDCI) by mediating wolfram syndrome 1 (Wfs1). METHODS PSDCI rat model was established through middle cerebral artery occlusion (MCAO) and chronic unpredictable mild stress (CUMS). Dimethyl fumarate (DMF) was utilized as an Nrf2 activator, while Wfs1 knockdown lentiviral plasmid was injected into rats for functional investigations. Cognitive function- and depression-relevant parameters were assessed using Morris water maze, forced swimming, sucrose preference, modified neurological severity score (mNSS) tests. The infarct size, pathological changes, and neuronal damage were also evaluated. Additionally, oxidative stress- and inflammatory response-associated proteins were detected by enzyme-linked immunosorbent assay. The binding relation between Nrf2 and the Wfs1 promoter region was analyzed and verified by dual-luciferase and chromatin immunoprecipitation assays. RESULTS PSDCI rats had reduced Nrf2 and Wfs1 expression in the hippocampal tissue and inhibited nuclear translocation of Nrf2, showing aggravated oxidative stress and inflammatory responses as well as cognitive dysfunction- and depressive-like symptoms. However, these symptoms in PSDCI rats can be alleviated in response to Nrf2 activation. Furthermore, Nrf2 activation increased the enrichment level of Nrf2 in the Wfs1 promoter region, promoting the transcriptional expression of Wfs1. Wfs1 knockdown partly reversed the effect of Nrf2 activation on the neuronal damage, cognitive dysfunction- and depressive-like symptoms of PSDCI rats. CONCLUSION Nrf2 activation can promote Wfs1 expression to reduce neuroinflammation and oxidative stress responses, ultimately alleviating PSDCI in rats.
Collapse
Affiliation(s)
- Guangxu Hu
- Department of Psychiatry No.5, Zhumadian Second People's Hospital, Zhumadian 463000 Henan Province, China
| | - Hongjun Cao
- Department of Psychiatry No.5, Zhumadian Second People's Hospital, Zhumadian 463000 Henan Province, China.
| |
Collapse
|
3
|
Yang X, Liu Y, Cao J, Wu C, Tang L, Bian W, Chen Y, Yu L, Wu Y, Li S, Shen Y, Xia J, Du J. Targeting epigenetic and post-translational modifications of NRF2: key regulatory factors in disease treatment. Cell Death Discov 2025; 11:189. [PMID: 40258841 PMCID: PMC12012105 DOI: 10.1038/s41420-025-02491-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 04/23/2025] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a key transcription factor involved in regulating cellular antioxidant defense and detoxification mechanisms. It mitigates oxidative stress and xenobiotic-induced damage by inducing the expression of cytoprotective enzymes, including HO-1 and NQO1. NRF2 also modulates inflammatory responses by inhibiting pro-inflammatory genes and mediates cell death pathways, including apoptosis and ferroptosis. Targeting NRF2 offers potential therapeutic avenues for treating various diseases. NRF2 is regulated through two principal mechanisms: post-translational modifications (PTMs) and epigenetic alterations. PTMs, including phosphorylation, ubiquitination, and acetylation, play a pivotal role in modulating NRF2's stability, activity, and subcellular localization, thereby precisely controlling its function in the antioxidant response. For instance, ubiquitination can lead to NRF2 degradation and reduced antioxidant activity, while deubiquitination enhances its stability and function. Epigenetic modifications, such as DNA methylation, histone modifications, and interactions with non-coding RNAs (e.g., MALAT1, PVT1, MIR4435-2HG, and TUG1), are essential for regulating NRF2 expression by modulating chromatin architecture and gene accessibility. This paper systematically summarizes the molecular mechanisms by which PTMs and epigenetic alterations regulate NRF2, and elucidates its critical role in cellular defense and disease. By analyzing the impact of PTMs, such as phosphorylation, ubiquitination, and acetylation, as well as DNA methylation, histone modifications, and non-coding RNA interactions on NRF2 stability, activity, and expression, the study reveals the complex cellular protection network mediated by NRF2. Furthermore, the paper explores how these regulatory mechanisms affect NRF2's roles in oxidative stress, inflammation, and cell death, identifying novel therapeutic targets and strategies. This provides new insights into the treatment of NRF2-related diseases, such as cancer, neurodegenerative disorders, and metabolic syndrome. This research deepens our understanding of NRF2's role in cellular homeostasis and lays the foundation for the development of NRF2-targeted therapies.
Collapse
Affiliation(s)
- Xinyi Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yingchao Liu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Jinghao Cao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Cuiyun Wu
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lusheng Tang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Wenxia Bian
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yuhan Chen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Lingyan Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yunyi Wu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Sainan Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yuhuan Shen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| | - Jun Xia
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
4
|
Jasim MH, Saadoon Abbood R, Sanghvi G, Roopashree R, Uthirapathy S, Kashyap A, Sabarivani A, Ray S, Mustafa YF, Yasin HA. Flavonoids in the regulation of microglial-mediated neuroinflammation; focus on fisetin, rutin, and quercetin. Exp Cell Res 2025; 447:114537. [PMID: 40147710 DOI: 10.1016/j.yexcr.2025.114537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/22/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Neuroinflammation is a critical mechanism in central nervous system (CNS) inflammatory disorders, encompassing conditions such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS), traumatic brain injury (TBI), encephalitis, spinal cord injury (SCI), and cerebral stroke. Neuroinflammation is characterized by increased blood vessel permeability, leukocyte infiltration, glial cell activation, and elevated production of inflammatory mediators, such as chemokines and cytokines. Microglia act as the resident macrophages of the central nervous system, serving as the principal defense mechanism in brain tissue. After CNS injury, microglia modify their morphology and downregulate genes that promote homeostatic functions. Despite comprehensive transcriptome analyses revealing specific gene modifications in "pathological" microglia, microglia's precise protective or harmful functions in neurological disorders remain insufficiently comprehended. Accumulating data suggests that the polarization of microglia into the M1 proinflammatory phenotype or the M2 antiinflammatory phenotype may serve as a sensible therapeutic strategy for neuroinflammation. Flavonoids, including rutin, fisetin, and quercetin, function as crucial chemical reservoirs with unique structures and diverse actions and are extensively used to modulate microglial polarization in treating neuroinflammation. This paper highlights the detrimental effects of neuroinflammation seen in neurological disorders such as stroke. Furthermore, we investigate their therapeutic benefits in alleviating neuroinflammation via the modulation of macrophage polarization.
Collapse
Affiliation(s)
- Mohannad Hamid Jasim
- Biology Department, College of Education, University of Fallujah, Fallujah, Iraq.
| | - Rosull Saadoon Abbood
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-maarif, Anbar, Iraq.
| | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, 360003, Gujarat, India.
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq.
| | - Aditya Kashyap
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India.
| | - A Sabarivani
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
| | - Subhashree Ray
- Department of Biochemistry, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq.
| | - Hatif Abdulrazaq Yasin
- Department of Medical Laboratories Technology, Al-Nisour University College, Nisour Seq. Karkh, Baghdad, Iraq.
| |
Collapse
|
5
|
Ziar R, Tesar PJ, Clayton BLL. Astrocyte and oligodendrocyte pathology in Alzheimer's disease. Neurotherapeutics 2025; 22:e00540. [PMID: 39939240 PMCID: PMC12047399 DOI: 10.1016/j.neurot.2025.e00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/10/2025] [Accepted: 01/24/2025] [Indexed: 02/14/2025] Open
Abstract
Astrocytes and oligodendrocytes, once considered passive support cells, are now recognized as active participants in the pathogenesis of Alzheimer's disease. Emerging evidence highlights the critical role that these glial cells play in the pathological features of Alzheimer's, including neuroinflammation, excitotoxicity, synaptic dysfunction, and myelin degeneration, which contribute to neurodegeneration and cognitive decline. Here, we review the current understanding of astrocyte and oligodendrocyte pathology in Alzheimer's disease and highlight research that supports the therapeutic potential of modulating astrocyte and oligodendrocyte functions to treat Alzheimer's disease.
Collapse
Affiliation(s)
- Rania Ziar
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Paul J Tesar
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Benjamin L L Clayton
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
6
|
Wu J, Li R, Wang J, Zhu H, Ma Y, You C, Shu K. Reactive Astrocytes in Glioma: Emerging Opportunities and Challenges. Int J Mol Sci 2025; 26:2907. [PMID: 40243478 PMCID: PMC11989224 DOI: 10.3390/ijms26072907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/16/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Gliomas are the most prevalent malignant tumors in the adult central nervous system (CNS). Glioblastoma (GBM) accounts for approximately 60-70% of primary gliomas. It is a great challenge to human health because of its high degree of malignancy, rapid progression, short survival time, and susceptibility to recurrence. Owing to the specificity of the CNS, the glioma microenvironment often contains numerous glial cells. Astrocytes are most widely distributed in the human brain and form reactive astrocyte proliferation regions around glioma tissue. In addition, astrocytes are activated under pathological conditions and regulate tumor and microenvironmental cells through cell-to-cell contact or the secretion of active substances. Therefore, astrocytes have attracted attention as important components of the glioma microenvironment. Here, we focus on the mechanisms of reactive astrocyte activation under glioma conditions, their contribution to the mechanisms of glioma genesis and progression, and their potential value as targets for clinical intervention in gliomas.
Collapse
Affiliation(s)
| | | | | | | | | | - Chao You
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jie Fang Avenue, Qiao Kou District, Wuhan 430030, China; (J.W.); (J.W.); (H.Z.); (Y.M.)
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jie Fang Avenue, Qiao Kou District, Wuhan 430030, China; (J.W.); (J.W.); (H.Z.); (Y.M.)
| |
Collapse
|
7
|
Zhang Y, Chen F, Li X, Xu Y, Liu X, Barkat MQ, Choudhary MI, Chang Q, Jiang N. Gastrodia elata, Polygonatum sibiricum, and Poria cocos as a Functional Food Formula: Cognitive Enhancement via Modulation of Hippocampal Neuroinflammation and Neuroprotection in Sleep-Restricted Mice. Foods 2025; 14:1103. [PMID: 40238194 PMCID: PMC11988919 DOI: 10.3390/foods14071103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/03/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Gastrodia elata, Polygonatum sibiricum, and Poria cocos are traditional Chinese herbs commonly used as both medicinal and food ingredients, traditionally believed to improve liver and kidney functions, replenish vital energy (qi) and blood, and mitigate stress-induced damage. These herbs are combined in the Compound Gastrodia elata Formula (CGEF), a functional food formulation. Amidst growing interest in functional foods, this study explores the cognitive-enhancing effects of CGEF, focusing on cognitive function improvement. Cognitive impairment was induced in ICR mice via chronic sleep restriction. Behavioral assessments including the Y-maze test, object recognition test, Morris water maze test, and Passive avoidance test, were conducted to evaluate CGEF's effects. Serum levels of inflammatory markers and oxidative stress were quantified while in rat hippocampus tissue expressions of inflammatory, apoptotic, and neuroprotective-related protein markers were analyzed by Western blotting. Neurotransmitter concentrations in both the hippocampus and prefrontal cortex were determined by LC-MS/MS. CGEF significantly alleviated cognitive impairments across all behavioral tests. The underlying mechanisms likely involve a reduction in oxidative stress and peripheral inflammatory factors, and suppression of the TLR2/MyD88/NF-κB signaling cascade in the hippocampus, thereby mitigating neuroinflammation and neuronal apoptosis. Furthermore, CGEF modulated the PI3K/AKT/GSK3β signaling pathway, potentially contributing to neuronal integrity and synaptic plasticity maintenance. CGEF also restored neurotransmitter balance and regulated tryptophan metabolism, further alleviating cognitive deficits associated with sleep disruption. These findings suggest CGEF's potential as a functional food for reversing cognitive impairments caused by chronic sleep restriction, primarily through its anti-inflammatory and neuroprotective effects.
Collapse
Affiliation(s)
- Yiwen Zhang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Fang Chen
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Xueyan Li
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yanfei Xu
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Xinmin Liu
- Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, China
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | | | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Qi Chang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Ning Jiang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
8
|
Guo Y, Zhang J, Gong L, Liu N, Liu Q, Liu Z, Guo B, Yang J. Mechanical Loading Induces NRF2 Nuclear Translocation to Epigenetically Remodel Oxidative Stress Defense in Osteocytes. Antioxidants (Basel) 2025; 14:346. [PMID: 40227420 PMCID: PMC11939503 DOI: 10.3390/antiox14030346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 04/15/2025] Open
Abstract
The mechano-responsiveness of osteocytes is critical for maintaining bone health and associated with a reduced oxidative stress defense, yet the precise molecular mechanisms remain incompletely understood. Here, we address the gap by investigating the epigenetic reprogramming that drives osteocyte responses to mechanical loading. We found overall remodeling of antioxidant response under mechanical loading and identified NRF2, a key transcription factor in oxidative stress response, which plays a vital role in the epigenetic remodeling of osteocytes. The results showed that mechanical loading enhanced NRF2 protein stability, promoted its nuclear translocation, and activated osteocyte-specific transcriptional programs. In contrast, pharmacological stabilization of NRF2 failed to fully replicate these effects, underscoring the unique role of mechanical stimuli in modulating NRF2 activity and antioxidant function. Our findings highlight the potential therapeutic limitations of NRF2-stabilizing drugs and suggest that combining pharmacological approaches with mechanical interventions could offer more effective treatments to maintain oxidative homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Baosheng Guo
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China; (Y.G.); (J.Z.); (L.G.); (N.L.); (Q.L.); (Z.L.)
| | - Jingping Yang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China; (Y.G.); (J.Z.); (L.G.); (N.L.); (Q.L.); (Z.L.)
| |
Collapse
|
9
|
Yang D, Li W, Chen Q, Liu S, Peng C, Deng F, Meng Y, Yang Y, Yan P, Ao H, Huang L. Gut-Brain Axis-Based Polygala Tenuifolia and Magnolia Officinalis Improve D-gal-Induced Cognitive Impairment in Mice Through cAMP and NF-κB Signaling Pathways. Drug Des Devel Ther 2025; 19:1869-1894. [PMID: 40098911 PMCID: PMC11913050 DOI: 10.2147/dddt.s506545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/01/2025] [Indexed: 03/19/2025] Open
Abstract
Purpose Polygala tenuifolia Willd. (PT) is commonly used to address cognitive impairment (CI), while Magnolia officinalis Rehd. et Wils (MO) is often prescribed for gastrointestinal issues as well as CI. This study seeks to explore the impacts and mechanisms behind the combined therapy of PT and MO (PM) in treating CI, based on the concept of the gut-brain axis. Methods The characteristic components of PT, MO, and PM were identified using ultra-high performance liquid chromatography-tandem triple quadrupole mass Spectrometry (UPLC-MS/MS). A mouse model was established by D-gal induction, and the effects of PT, MO, and PM on CI were evaluated through behavioral tests, pathological staining, and Enzyme-Linked Immunosorbent Assay (ELISA). Subsequently, network pharmacology was used to analyze the potential mechanisms by which PM improves CI, followed by validation through Western blotting (WB), traditional Chinese medicine (TEM), Immunofluorescence (IF), and 16S rRNA. Results PT, MO, and PM can each alleviate cognitive decline and neuropathological damage in D-gal mice to varying degrees, reduce the expression of pro-inflammatory factors (TNF-α, IL-1β, IL-6, IFN-γ, LPS) in serum or hippocampal tissue, and increase SOD and GSH levels. Network pharmacology analysis and molecular experiments confirmed that PM upregulates the expression of tight junction s (TJs), enhances the expression of proteins in the cAMP pathway, and inhibits p-NF-κB-p65 expression. PM reverses D-gal-induced gut microbiota dysbiosis, increases the abundance of SCFA-producing bacteria, and decreases the abundance of LPS-producing bacteria. Conclusion PM alleviates CI by reducing inflammation and oxidative stress, protecting the blood-brain barrier (BBB) and intestinal barrier, inhibiting the NF-κB pathway, activating the cAMP pathway, and regulating gut microbiota.
Collapse
Affiliation(s)
- Dan Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Wen Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Qiuping Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Si Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Chengjie Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Fengcheng Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Yingqi Meng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Yang Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Ping Yan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Hui Ao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, People’s Republic of China
| | - Lihua Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, People’s Republic of China
| |
Collapse
|
10
|
Zhang X, Zhang Y, Peng X, Yang L, Miao J, Yue Y, Wang Y, Wang X, Zhu C, Song J. Targeting Neuroinflammation in Preterm White Matter Injury: Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes. Cell Mol Neurobiol 2025; 45:23. [PMID: 40072734 PMCID: PMC11903990 DOI: 10.1007/s10571-025-01540-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
Neuroinflammation is a key factor in the development of preterm white matter injury (PWMI), leading to glial cell dysfunction, arrest of oligodendrocyte maturation, and long-term neurological damage. As a potential therapeutic strategy, mesenchymal stem cells (MSCs) exhibit significant immunomodulatory and regenerative potential. Recent studies suggest that the primary mechanism of MSC action is their paracrine effects, particularly mediated by extracellular vesicles, with MSC-derived exosomes (MSC-Exos) being the key mediators. MSC-Exos, enriched with lipids, proteins, and nucleic acids, regulate neuroinflammation by modulating glial cell activity and influencing signaling pathways associated with inflammation and repair. Preclinical evidence has indicated that MSC-Exos can suppress the activation of microglia and astrocytes, promote oligodendrocyte maturation, and enhance myelination, highlighting their potential as a cell-free treatment for PWMI. However, there are a paucity of comprehensive reviews on how MSC-Exos regulate neuroinflammation in PWMI through specific signaling pathways. This review aims to summarize the key signaling pathways through which MSC-Exos modulate neuroinflammation in PWMI and discuss the challenges associated with the clinical application of MSC-Exos-based therapies.
Collapse
Affiliation(s)
- Xinling Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Kangfu Qian Street 7, Zhengzhou, 450052, China
| | - Yuhang Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Kangfu Qian Street 7, Zhengzhou, 450052, China
| | - Xirui Peng
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Kangfu Qian Street 7, Zhengzhou, 450052, China
| | - Luxiang Yang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Kangfu Qian Street 7, Zhengzhou, 450052, China
| | - Jingwen Miao
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Kangfu Qian Street 7, Zhengzhou, 450052, China
| | - Yuyang Yue
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Kangfu Qian Street 7, Zhengzhou, 450052, China
| | - Yong Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Kangfu Qian Street 7, Zhengzhou, 450052, China
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Kangfu Qian Street 7, Zhengzhou, 450052, China
- Center for Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Kangfu Qian Street 7, Zhengzhou, 450052, China.
- Department of Women's and Children's Health, Karolinska Institutet, 17176, Stockholm, Sweden.
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, Box 436, 405 30, Gothenburg, Sweden.
| | - Juan Song
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Kangfu Qian Street 7, Zhengzhou, 450052, China.
| |
Collapse
|
11
|
Ren J, Ma N, Seckar T, Bassa S, Zetola N, Grover S, Wei Z, Robertson E. Characterization of the Genomic Landscape in HPV-positive Cervical and Head and Neck Squamous Cell Carcinomas by Whole Genome Next Generation Sequencing. Cancer Genomics Proteomics 2025; 22:188-207. [PMID: 39993810 PMCID: PMC11880920 DOI: 10.21873/cgp.20496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/24/2024] [Accepted: 01/10/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND/AIM In this study, we provide a comprehensive characterization of HPV-positive primary cervical cancers (CC) and HPV-positive head and neck squamous cell carcinomas (HNSCC) through whole genome next-generation sequencing. Human papillomavirus (HPV) infection, recognized as a definitive human carcinogen, is increasingly acknowledged for its role in development of human cancers. HPV-driven cervical cancers are among the leading causes of cancer-related deaths worldwide, while HPV-driven head and neck cancers exhibit distinct biological and clinical characteristics. Recent data has provided convincing evidence that HPV-related cervical cancer, like HPV head and neck cancer also predict better outcomes, with viral integration patterns further predicting disease related outcomes. MATERIALS AND METHODS We designed an experimental study that encompasses four pairs of HPV-positive patient samples with controls, utilizing state-of-the-art Next Generation Sequencing (NGS) technology including whole genome sequencing, transcriptome sequencing and virus integration. RESULTS Multiple mutated genes, including TTN, COL6A3, and FLNA, were identified shared between CC and HNSCC. Additionally, we observed a notable proportion of pathways affected by oncogenic alterations, particularly in the RTK-RAS and NOTCH pathways, in both CC and HNSCC. Furthermore, we discovered a shared down-regulation of the Hedgehog signaling pathway based on transcriptome expression analysis in KEGG. We also identified RUNX2 and TFPI as sites of virus integration, and upstream as well as downstream pathway modulators, and represent potential targets for therapeutic interventions. CONCLUSION Overall, this study showed a thorough comparison between CC and HNSCC from multiple aspects, including gene variations, oncogenic pathways, KEGG enrichment and virus integration sites. However, further studies, which involve larger patient cohorts should be undertaken to further support these findings.
Collapse
Affiliation(s)
- Jianlan Ren
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, U.S.A
| | - Nian Ma
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - Tyler Seckar
- Department of Cancer Biology, George Washington School of Medicine, George Washington University, Washington, DC, U.S.A
| | - Sheynaz Bassa
- Department of Radiation Oncology, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Nicola Zetola
- Division of Pulmonary Medicine, Department of Medicine, Augusta College of Medicine, Augusta, GA, U.S.A
| | - Surbhi Grover
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, U.S.A
| | - Erle Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, U.S.A.;
| |
Collapse
|
12
|
He KL, Yu X, Xia L, Xie YD, Qi EB, Wan L, Hua XM, Jing CH. A new perspective on the regulation of neuroinflammation in intracerebral hemorrhage: mechanisms of NLRP3 inflammasome activation and therapeutic strategies. Front Immunol 2025; 16:1526786. [PMID: 40083546 PMCID: PMC11903264 DOI: 10.3389/fimmu.2025.1526786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/10/2025] [Indexed: 03/16/2025] Open
Abstract
Intracerebral hemorrhage (ICH), a specific subtype within the spectrum of stroke disorders, is characterized by its high mortality and significant risk of long-term disability. The initiation and progression of neuroinflammation play a central and critical role in the pathophysiology of ICH. The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, a protein complex involved in initiating inflammation, is the central focus of this article. Microglia and astrocytes play critical roles in the inflammatory damage process associated with neuroinflammation. The NLRP3 inflammasome is expressed within both types of glial cells, and its activation drives these cells toward a pro-inflammatory phenotype, which exacerbates inflammatory damage in the brain. However, the regulatory relationship between these two cell types remains to be explored. Targeting NLRP3 inflammasomes in microglia or astrocytes may provide an effective approach to mitigate neuroinflammation following ICH. This article first provides an overview of the composition and activation mechanisms of the NLRP3 inflammasome. Subsequently, it summarizes recent research findings on novel signaling pathways that regulate NLRP3 inflammasome activity. Finally, we reviewed recent progress in NLRP3 inflammasome inhibitors, highlighting the clinical translation potential of certain candidates. These inhibitors hold promise as innovative strategies for managing inflammation following ICH.
Collapse
Affiliation(s)
- Kai-long He
- Department of Neurosurgery, XinHua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xian Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Xia
- Department of Neurosurgery, XinHua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yan-dong Xie
- Department of Neurosurgery, XinHua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - En-bo Qi
- Department of Neurosurgery, XinHua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Liang Wan
- Department of Neurosurgery, XinHua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xu-ming Hua
- Department of Neurosurgery, XinHua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Chao-hui Jing
- Department of Neurosurgery, XinHua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Derevyanko A, Tao T, Allen NJ. Common alterations to astrocytes across neurodegenerative disorders. Curr Opin Neurobiol 2025; 90:102970. [PMID: 39879721 DOI: 10.1016/j.conb.2025.102970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/16/2024] [Accepted: 01/02/2025] [Indexed: 01/31/2025]
Abstract
Astrocytes perform multiple functions in the nervous system, many of which are altered in neurodegenerative disorders. In this review, we explore shared astrocytic alterations across neurodegenerative disorders, including Alzheimer's disease, Huntington's disease, Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal lobe degeneration. Assessing recent datasets of single-nucleus RNA-sequencing of human brains, a theme emerges of common alterations in astrocyte state across disorders including in neuroinflammation, synaptic organization, metabolic support, and the cellular stress response. Immune pathways are upregulated by astrocytes across disorders and may exacerbate neurodegeneration. Dysregulated expression of synaptogenic factors could contribute to synaptic loss, while compromised metabolic support affects neuronal homeostasis. On the other hand, upregulated responses to cellular stress may represent a protective response of astrocytes and thus mitigate pathology. Understanding these shared responses offers insights into disease progression and provides potential therapeutic targets for various neurodegenerative disorders.
Collapse
Affiliation(s)
- Aksinya Derevyanko
- Salk Institute for Biological Studies, Molecular Neurobiology Laboratory, 10010 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Tao Tao
- Salk Institute for Biological Studies, Molecular Neurobiology Laboratory, 10010 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Nicola J Allen
- Salk Institute for Biological Studies, Molecular Neurobiology Laboratory, 10010 North Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
14
|
Xia Q, Que M, Zhan G, Zhang L, Zhang X, Zhao Y, Zhou H, Zheng L, Mao M, Li X. SENP6-Mediated deSUMOylation of Nrf2 Exacerbates Neuronal Oxidative Stress Following Cerebral Ischemia and Reperfusion Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410410. [PMID: 39716997 PMCID: PMC11831438 DOI: 10.1002/advs.202410410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/03/2024] [Indexed: 12/25/2024]
Abstract
Oxidative stress is believed to play critical pathophysiological roles in ischemic brain injury, and the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway is recognized as the most crucial endogenous antioxidant stress damage route. Some research have demonstrated that Nrf2 play critical roles in oxidative stress after ischemic stroke, but the underlying mechanism are not fully elucidated. This study reveals that Nrf2 is modified by SUMOylation and identifies Sentrin/SUMO-specific protease 6 (SENP6) as a negative regulator of Nrf2 SUMOylation. Notably, SENP6 binds to and mediates the deSUMOylation of Nrf2, which in turn inhibits antioxidant response by enhancing ubiquitination-dependent degradation of Nrf2, thereby reducing its transcriptional activity, inducing oxidative stress and aggravating neuronal apoptosis after ischemic stroke. Additionally, blocking the interaction between SENP6 and Nrf2 with a cell membrane-permeable peptide (Tat-Nrf2) preserves the SUMOylation of Nrf2, effectively attenuates oxidative stress, and rescues neurological functions in mice subjected to ischemic stroke. Furthermore, no toxicity is observed when high doses Tat-Nrf2 are injected into nonischemic mice. Collectively, this study uncovers a previously unidentified mechanism whereby SUMOylation of Nrf2 regulates oxidative stress and strongly indicates that interventions targeting SENP6 or its interaction with Nrf2 may provide therapeutic benefits for ischemic stroke.
Collapse
Affiliation(s)
- Qian Xia
- Department of Anesthesiology and Pain MedicineHubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Mengxin Que
- Department of Anesthesiology and Pain MedicineHubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Gaofeng Zhan
- Department of Anesthesiology and Pain MedicineHubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Longqing Zhang
- Department of Anesthesiology and Pain MedicineHubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xue Zhang
- Department of Anesthesiology and Pain MedicineHubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yilin Zhao
- Department of Anesthesiology and Pain MedicineHubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Huijuan Zhou
- Department of NeurobiologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Lu Zheng
- Department of TransfusionThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450000China
| | - Meng Mao
- Department of Anesthesiology and Perioperative MedicineZhengzhou Central Hospital Affiliated to Zhengzhou UniversityZhengzhou450007China
| | - Xing Li
- Department of Anesthesiology and Pain MedicineHubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| |
Collapse
|
15
|
Wang Z, Wu D, Hu X, Hu X, Zhu Q, Lai B, Zeng C, Long Q. WuYou decoction effectively reduces neuronal damage, synaptic dysfunction, and Aβ production in rats exposed to chronic sleep deprivation by modulating the Aβ-related enzymes and SIRT1/Nrf2/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118939. [PMID: 39413939 DOI: 10.1016/j.jep.2024.118939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic sleep deprivation (CSD) can result in neuronal damage, synaptic dysfunction, Aβ production, neuroinflammation, and ultimately cognitive deterioration. WuYou Decoction (WYD), a contemporary prescription, has shown promise in enhancing sleep quality and cognitive performance in individuals with insomnia. However, the specific molecular mechanisms responsible for the neuroprotective effects of WYD on CSD remain incompletely understood. AIM OF THE STUDY This study aimed to investigate the neuroprotective effects of WYD on the CSD model and its molecular mechanism. MATERIALS AND METHODS UHPLC-MS/MS analysis was utilized to analyze the active ingredients of WYD extract. The study employed the multi-platform water environment method to establish the CSD model in rats. Subsequent to treatment with varying doses of WYD in CSD rats, cognitive function and pathological alterations in hippocampus and cortex, including neuronal damage, synaptic dysfunction, Aβ production, and neuroinflammation, were evaluated through a combination of Morris Water Maze test, HE staining, Nissl staining, Golgi-Cox staining, Transmission electron microscope, ELISA, Immunohistochemistry staining, Immunofluorescence staining and Western blot. RESULTS UHPLC-MS/MS analysis revealed a total of 99 active ingredients were identified from the WYD extract. The administration of WYD exhibited a mitigation of cognitive decline in the model of CSD, as evidenced by increased neuron count in the hippocampus and cortex, and improved density and length of dendritic spines in these brain regions. Furthermore, WYD was found to suppress the Aβ production, and inhibit the expression of BACE1, PS1, GFAP, IBA1, IL-1β, IL-6, TNF-α, phosphorylated IκBα (Ser32) and phosphorylated NF-κB p65 (Ser536) in the hippocampus and cortex, while also increasing the levels of PSD95, SYN1, ADAM10, IDE, SIRT1 and Nrf2. CONCLUSIONS WYD exhibits neuroprotective properties in CSD, potentially through modulation of the Aβ-related enzymes and SIRT1/Nrf2/NF-κB pathway.
Collapse
Affiliation(s)
- Zhengyu Wang
- Health Medical Center, Hubei Minzu University, Enshi, 445000, PR China
| | - Dan Wu
- Health Medical Center, Hubei Minzu University, Enshi, 445000, PR China
| | - Xinyi Hu
- Health Medical Center, Hubei Minzu University, Enshi, 445000, PR China
| | - Xuan Hu
- Health Medical Center, Hubei Minzu University, Enshi, 445000, PR China
| | - Qihang Zhu
- Health Medical Center, Hubei Minzu University, Enshi, 445000, PR China
| | - Bixuan Lai
- Health Medical Center, Hubei Minzu University, Enshi, 445000, PR China
| | - Chuhua Zeng
- Health Medical Center, Hubei Minzu University, Enshi, 445000, PR China; School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, 650500, PR China.
| | - Qinghua Long
- Health Medical Center, Hubei Minzu University, Enshi, 445000, PR China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Disease, Hubei Minzu University, Enshi, 445000, PR China.
| |
Collapse
|
16
|
Cai X, Cai X, Xie Q, Xiao X, Li T, Zhou T, Sun H. NLRP3 inflammasome and gut microbiota-brain axis: a new perspective on white matter injury after intracerebral hemorrhage. Neural Regen Res 2025; 21:01300535-990000000-00684. [PMID: 39885662 DOI: 10.4103/nrr.nrr-d-24-00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/07/2025] [Indexed: 02/01/2025] Open
Abstract
ABSTRACT Intracerebral hemorrhage is the most dangerous subtype of stroke, characterized by high mortality and morbidity rates, and frequently leads to significant secondary white matter injury. In recent decades, studies have revealed that gut microbiota can communicate bidirectionally with the brain through the gut microbiota-brain axis. This axis indicates that gut microbiota is closely related to the development and prognosis of intracerebral hemorrhage and its associated secondary white matter injury. The NACHT, LRR, and pyrin domain-containing protein 3 (NLRP3) inflammasome plays a crucial role in this context. This review summarizes the dysbiosis of gut microbiota following intracerebral hemorrhage and explores the mechanisms by which this imbalance may promote the activation of the NLRP3 inflammasome. These mechanisms include metabolic pathways (involving short-chain fatty acids, lipopolysaccharides, lactic acid, bile acids, trimethylamine-N-oxide, and tryptophan), neural pathways (such as the vagus nerve and sympathetic nerve), and immune pathways (involving microglia and T cells). We then discuss the relationship between the activated NLRP3 inflammasome and secondary white matter injury after intracerebral hemorrhage. The activation of the NLRP3 inflammasome can exacerbate secondary white matter injury by disrupting the blood-brain barrier, inducing neuroinflammation, and interfering with nerve regeneration. Finally, we outline potential treatment strategies for intracerebral hemorrhage and its secondary white matter injury. Our review highlights the critical role of the gut microbiota-brain axis and the NLRP3 inflammasome in white matter injury following intracerebral hemorrhage, paving the way for exploring potential therapeutic approaches.
Collapse
Affiliation(s)
- Xiaoxi Cai
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xinhong Cai
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Quanhua Xie
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xueqi Xiao
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Tong Li
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Tian Zhou
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
17
|
Liu Q, Jiang M, Wang Z, Meng J, Jia H, Li J, Lin J, Guo L, Gao L. SENP1 inhibits aerobic glycolysis in Aβ 1-42-incubated astrocytes by promoting PUM2 deSUMOylation. Cell Biol Toxicol 2025; 41:28. [PMID: 39794619 PMCID: PMC11723902 DOI: 10.1007/s10565-025-09986-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia in the elderly, involves critical changes such as reduced aerobic glycolysis in astrocytes and increased neuronal apoptosis, both of which are significant in the disease's pathology. In our study, astrocytes treated with amyloid β1-42 (Aβ1-42) to simulate AD conditions exhibited upregulated expressions of small ubiquitin-like modifier (SUMO)-specific protease 1 (SENP1) and Pumilio RNA Binding Family Member 2 (PUM2), alongside decreased levels of Nuclear factor erythroid 2-related factor 2 (NRF2). SENP1 is notably the most upregulated SUMOylation enzyme in Aβ1-42-exposed astrocytes. Functional assays including Ni2+-Nitrilotriacetic acid (NTA) agarose bead pull-down and co-immunoprecipitation (Co-IP) confirmed SENP1's role in actively deSUMOylating PUM2, thereby enhancing its stability and expression. The interaction between PUM2 and the 3' untranslated region (3'UTR) of NRF2 mRNA reduces NRF2 levels, subsequently diminishing the transcriptional activation of critical glycolytic enzymes, Hexokinase 1 (HK1) and Glucose Transporter 1 (GLUT1). These changes contribute to the observed reduction in glycolytic function in astrocytes, exacerbating neuronal apoptosis. Targeted interventions, such as knockdown of Senp1 or Pum2 or overexpression of NRF2 in APPswe/PSEN1dE9 (APP/PS1) transgenic mice, effectively increased HK1 and GLUT1 levels, decreased apoptosis, and alleviated cognitive impairment. These findings highlight the important roles of the SENP1/PUM2/NRF2 pathway in influencing glucose metabolism in astrocytes, presenting new potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Qianshuo Liu
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhengze Wang
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jihong Meng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hui Jia
- Department of Medical Administration, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jing Li
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiacai Lin
- Department of Neurology, Hainan Hospital of Chinese PLA General Hospital, Sanya, China.
| | - Libin Guo
- The Second Cardiovascular Endocrine Department, Shenyang Ninth People's Hospital, Shenyang, China.
| | - Lianbo Gao
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
18
|
Li B, Du L, Wu S, Yin Y. Protective effects of taurine on heat Stress-Induced cognitive impairment through Npas4 and Lcn2. Int Immunopharmacol 2024; 143:113376. [PMID: 39405930 DOI: 10.1016/j.intimp.2024.113376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/10/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024]
Abstract
Heat stress (HS) induces various pathophysiological responses in the brain, encompassing neuroinflammation and cognitive impairments. Although taurine has been reported to possess anti-inflammatory and cognitive-enhancing properties, its role and mechanisms in HS-induced cognitive impairment remain unclear. This study supplemented mice exposed to HS with taurine to assess its effect on cognitive function in a HS-induced mouse model. The results revealed that taurine ameliorated cognitive deficits following HS in mice and mitigated HS-induced astrocyte and microglia activation as well as blood-brain barrier (BBB) damage in the hippocampus. Mechanistically, Mechanistically, transcriptome sequencing was employed to identify that taurine regulates neuronal PAS domain protein (Npas4) and lipocalin 2 (Lcn2) during HS. Taurine was found to modulate hippocampal inflammation and influence cognitive function by upregulating Npas4 and downregulating Lcn2 after HS. Subsequently, molecular docking and AnimalTFDB database calculations were conducted, revealing that taurine might regulate the expression of Npas4 and Lcn2 by modulating the regulatory transcription factors (TFs) RE1 silencing transcription factor (REST) and nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NFKB1). Our findings demonstrate that taurine enhances the recovery of cognitive function through Npas4 and Lcn2 following HS, providing a theoretical basis for the clinical application of taurine in preventing or treating HS-induced cognitive impairment.
Collapse
Affiliation(s)
- Bin Li
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.
| | - Longfei Du
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| | - Shusheng Wu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu, China
| | - Yuye Yin
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
19
|
Chu CT, Uruno A, Katsuoka F, Yamamoto M. Role of NRF2 in Pathogenesis of Alzheimer's Disease. Antioxidants (Basel) 2024; 13:1529. [PMID: 39765857 PMCID: PMC11727090 DOI: 10.3390/antiox13121529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/15/2025] Open
Abstract
Alzheimer's disease (AD) is a polygenic, multifactorial neurodegenerative disorder and remains the most prevalent form of dementia, globally. Despite decades of research efforts, there is still no effective cure for this debilitating condition. AD research has increasingly focused on transcription factor NRF2 (nuclear factor erythroid 2-related factor 2) as a potential therapeutic target. NRF2 plays a crucial role in protecting cells and tissues from environmental stressors, such as electrophiles and reactive oxygen species. Recently, an increasing number of studies have demonstrated that NRF2 is a key regulator in AD pathology. NRF2 is highly expressed in microglia, resident macrophages in the central nervous system, and contributes to neuroinflammation, phagocytosis and neurodegeneration in AD. NRF2 has been reported to modulate microglia-induced inflammation and facilitate the transition from homeostatic microglia to a disease-associated microglia subset. Genetic and pharmacological activation of NRF2 has been demonstrated to improve cognitive function. Here, we review the current understanding of the involvement of NRF2 in AD and the critical role that NRF2 plays in microglia in the context of AD. Our aim is to highlight the potential of targeting NRF2 in the microglia as a promising therapeutic strategy for mitigating the progression of AD.
Collapse
Affiliation(s)
- Ching-Tung Chu
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (C.-T.C.); (A.U.)
| | - Akira Uruno
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (C.-T.C.); (A.U.)
| | - Fumiki Katsuoka
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan;
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8573, Japan
| | - Masayuki Yamamoto
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (C.-T.C.); (A.U.)
| |
Collapse
|
20
|
Navarro E, Esteras N. Multitarget Effects of Nrf2 Signalling in the Brain: Common and Specific Functions in Different Cell Types. Antioxidants (Basel) 2024; 13:1502. [PMID: 39765831 PMCID: PMC11673142 DOI: 10.3390/antiox13121502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a crucial regulator of cellular defence mechanisms, essential for maintaining the brain's health. Nrf2 supports mitochondrial function and protects against oxidative damage, which is vital for meeting the brain's substantial energy and antioxidant demands. Furthermore, Nrf2 modulates glial inflammatory responses, playing a pivotal role in preventing neuroinflammation. This review explores these multifaceted functions of Nrf2 within the central nervous system, focusing on its activity across various brain cell types, including neurons, astrocytes, microglia, and oligodendrocytes. Due to the brain's vulnerability to oxidative stress and metabolic challenges, Nrf2 is emerging as a key therapeutic target to enhance resilience against oxidative stress, inflammation, mitochondrial dysfunction, and demyelination, which are central to many neurodegenerative diseases.
Collapse
Affiliation(s)
- Elisa Navarro
- Neurochemistry Research Institute, Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Noemí Esteras
- Neurochemistry Research Institute, Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, 28040 Madrid, Spain
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
21
|
Wang W, He M, Rangji C, Yu S, Long P, Zhang Y, Wen X. Triphala ameliorates cognitive deficits and anxiety via activation of the Nrf2/HO-1 axis in chronic sleep-deprived mice. Int Immunopharmacol 2024; 142:113179. [PMID: 39298824 DOI: 10.1016/j.intimp.2024.113179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Triphala is renowned for its curative attributes and has been utilized for centuries to address diverse health ailments. Moreover, the active component of Triphala, polyphenols, is widely recognized for its excellent pharmacological activities, such as anti-inflammatory properties, and has been utilized as a potential natural remedy. However, the precise mechanism through which Triphala alleviates cognitive dysfunction and anxiety induced by chronic sleep deprivation (SD) remains restricted. The objective of this investigation is to examine and clarify the potential mechanism of action that underlies the therapeutic benefits of Triphala in addressing cognitive dysfunction and anxiety induced by chronic SD. Our results demonstrated that Triphala significantly alleviates chronic SD-induced behavioral abnormalities. Additionally, Triphala was highly effective at preventing histopathological or morphological damage to neurons located in the hippocampus. The therapeutic effects of Triphala in treating cognitive dysfunction and anxiety induced by chronic SD involve the modulation of several biological pathways, including inflammation and immune responses, oxidative stress, cell growth and differentiation, metabolism, and neurotransmitter communication. Moreover, our study illustrated that Triphala increased the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and significantly activated the Nrf2/hemeoxygenase-1 (HO-1) axis. Additionally, the neuroprotective properties of Triphala were found to be counteracted by the Nrf2 inhibitor ML385. Our study represented the first to unveil that Triphala exerts therapeutic benefits in alleviating chronic SD-induced cognitive deficits and anxiety by activation of the Nrf2/HO-1 axis. Triphala emerges as a promising nutraceutical ingredient for mitigating cognitive deficits and anxiety linked to chronic SD.
Collapse
Affiliation(s)
- Wenjun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Mengshan He
- The Academy of Chinese Health Risks, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Cai Rangji
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Shufu Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Pan Long
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, 610000, China.
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xudong Wen
- Department of Gastroenterology and Hepatology, Chengdu First People's Hospital, Chengdu 610021, China.
| |
Collapse
|
22
|
Cazalla E, Cuadrado A, García-Yagüe ÁJ. Role of the transcription factor NRF2 in maintaining the integrity of the Blood-Brain Barrier. Fluids Barriers CNS 2024; 21:93. [PMID: 39574123 PMCID: PMC11580557 DOI: 10.1186/s12987-024-00599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND The Blood-Brain Barrier (BBB) is a complex and dynamic interface that regulates the exchange of molecules and cells between the blood and the central nervous system. It undergoes structural and functional throughout oxidative stress and inflammation, which may compromise its integrity and contribute to the pathogenesis of neurodegenerative diseases. MAIN BODY Maintaining BBB integrity is of utmost importance in preventing a wide range of neurological disorders. NRF2 is the main transcription factor that regulates cellular redox balance and inflammation-related gene expression. It has also demonstrated a potential role in regulating tight junction integrity and contributing to the inhibition of ECM remodeling, by reducing the expression of several metalloprotease family members involved in maintaining BBB function. Overall, we review current insights on the role of NRF2 in addressing protection against the effects of BBB dysfunction, discuss its involvement in BBB maintenance in different neuropathological diseases, as well as, some of its potential activators that have been used in vitro and in vivo animal models for preventing barrier dysfunction. CONCLUSIONS Thus, emerging evidence suggests that upregulation of NRF2 and its target genes could suppress oxidative stress, and neuroinflammation, restore BBB integrity, and increase its protection.
Collapse
Affiliation(s)
- Eduardo Cazalla
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonio Cuadrado
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ángel Juan García-Yagüe
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain.
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
23
|
Wang T, Liu M, Li X, Zhang S, Gu H, Wei X, Wang X, Xu Z, Shen T. Naturally-derived modulators of the Nrf2 pathway and their roles in the intervention of diseases. Free Radic Biol Med 2024; 225:560-580. [PMID: 39368519 DOI: 10.1016/j.freeradbiomed.2024.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
Cumulative evidence has verified that persistent oxidative stress is involved in the development of various chronic diseases, including pulmonary, neurodegenerative, kidney, cardiovascular, and liver diseases, as well as cancers. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a pivotal role in regulating cellular oxidative stress and inflammatory reactions, making it a focal point for disease prevention and treatment strategies. Natural products are essential resources for discovering leading molecules for new drug research and development. In this review, we comprehensively outlined the progression of the knowledge on the Nrf2 pathway, Nrf2 activators in clinical trials, the naturally-derived Nrf2 modulators (particularly from 2014-present), as well as their effects on the pathogenesis of chronic diseases.
Collapse
Affiliation(s)
- Tian Wang
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Mingjie Liu
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xinyu Li
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Sen Zhang
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Haoran Gu
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xuan Wei
- Shandong Center for Food and Drug Evaluation and Inspection, Jinan, Shandong, PR China
| | - Xiaoning Wang
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Zhenpeng Xu
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| |
Collapse
|
24
|
Shao J, Deng Q, Feng S, Wu C, Liu X, Yang L. Role of astrocytes in Alzheimer's disease pathogenesis and the impact of exercise-induced remodeling. Biochem Biophys Res Commun 2024; 732:150418. [PMID: 39032410 DOI: 10.1016/j.bbrc.2024.150418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Alzheimer's disease (AD) is a prevalent and debilitating brain disorder that worsens progressively with age, characterized by cognitive decline and memory impairment. The accumulation of amyloid-beta (Aβ) leading to amyloid plaques and hyperphosphorylation of Tau, resulting in intracellular neurofibrillary tangles (NFTs), are primary pathological features of AD. Despite significant research investment and effort, therapies targeting Aβ and NFTs have proven limited in efficacy for treating or slowing AD progression. Consequently, there is a growing interest in non-invasive therapeutic strategies for AD prevention. Exercise, a low-cost and non-invasive intervention, has demonstrated promising neuroprotective potential in AD prevention. Astrocytes, among the most abundant glial cells in the brain, play essential roles in various physiological processes and are implicated in AD initiation and progression. Exercise delays pathological progression and mitigates cognitive dysfunction in AD by modulating astrocyte morphological and phenotypic changes and fostering crosstalk with other glial cells. This review aims to consolidate the current understanding of how exercise influences astrocyte dynamics in AD, with a focus on elucidating the molecular and cellular mechanisms underlying astrocyte remodeling. The review begins with an overview of the neuropathological changes observed in AD, followed by an examination of astrocyte dysfunction as a feature of the disease. Lastly, the review explores the potential therapeutic implications of exercise-induced astrocyte remodeling in the context of AD.
Collapse
Affiliation(s)
- Jie Shao
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Xiaocao Liu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
25
|
Yang X, Chen YH, Liu L, Gu Z, You Y, Hao JR, Sun N, Gao C. Regulation of glycolysis-derived L-lactate production in astrocytes rescues the memory deficits and Aβ burden in early Alzheimer's disease models. Pharmacol Res 2024; 208:107357. [PMID: 39159732 DOI: 10.1016/j.phrs.2024.107357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/17/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
Aberrant energy metabolism in the brain is a common pathological feature in the preclinical Alzheimer's Disease (AD). Recent studies have reported the early elevations of glycolysis-involved enzymes in AD brain and cerebrospinal fluid according to a large-scale proteomic analysis. It's well-known that astrocytes exhibit strong glycolytic metabolic ability and play a key role in the regulation of brain homeostasis. However, its relationship with glycolytic changes and cognitive deficits in early AD patients is unclear. Here, we investigated the mechanisms by which astrocyte glycolysis is involved in early AD and its potential as a therapeutic target. Our results suggest that Aβ-activated microglia can induce glycolytic-enhanced astrocytes in vitro, and that these processes are dependent on the activation of the AKT-mTOR-HIF-1α pathway. In early AD models, the increase in L-lactate produced by enhanced glycolysis of astrocytes leads to spatial cognitive impairment by disrupting synaptic plasticity and accelerating Aβ aggregation. Furthermore, we find rapamycin, the mTOR inhibitor, can rescue the impaired spatial memory and Aβ burden by inhibiting the glycolysis-derived L-lactate in the early AD models. In conclusion, we highlight that astrocytic glycolysis plays a critical role in the early onset of AD and that the modulation of glycolysis-derived L-lactate by rapamycin provides a new strategy for the treatment of AD.
Collapse
Affiliation(s)
- Xiu Yang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yuan-Hao Chen
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Le Liu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Zheng Gu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yue You
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jing-Ru Hao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Nan Sun
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Can Gao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
26
|
Qin H, Zhou L, Haque FT, Martin-Jimenez C, Trang A, Benveniste EN, Wang Q. Diverse signaling mechanisms and heterogeneity of astrocyte reactivity in Alzheimer's disease. J Neurochem 2024; 168:3536-3557. [PMID: 37932959 PMCID: PMC11839148 DOI: 10.1111/jnc.16002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/08/2023]
Abstract
Alzheimer's disease (AD) affects various brain cell types, including astrocytes, which are the most abundant cell types in the central nervous system (CNS). Astrocytes not only provide homeostatic support to neurons but also actively regulate synaptic signaling and functions and become reactive in response to CNS insults through diverse signaling pathways including the JAK/STAT, NF-κB, and GPCR-elicited pathways. The advent of new technology for transcriptomic profiling at the single-cell level has led to increasing recognition of the highly versatile nature of reactive astrocytes and the context-dependent specificity of astrocyte reactivity. In AD, reactive astrocytes have long been observed in senile plaques and have recently been suggested to play a role in AD pathogenesis and progression. However, the precise contributions of reactive astrocytes to AD remain elusive, and targeting this complex cell population for AD treatment poses significant challenges. In this review, we summarize the current understanding of astrocyte reactivity and its role in AD, with a particular focus on the signaling pathways that promote astrocyte reactivity and the heterogeneity of reactive astrocytes. Furthermore, we explore potential implications for the development of therapeutics for AD. Our objective is to shed light on the complex involvement of astrocytes in AD and offer insights into potential therapeutic targets and strategies for treating and managing this devastating neurodegenerative disorder.
Collapse
Affiliation(s)
- Hongwei Qin
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA 35294
| | - Lianna Zhou
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA 35294
| | - Faris T. Haque
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA 35294
| | - Cynthia Martin-Jimenez
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA 30912
| | - Amy Trang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA 30912
| | - Etty N. Benveniste
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA 35294
| | - Qin Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA 30912
| |
Collapse
|
27
|
Lin L, Chen Y, He K, Metwally S, Jha R, Capuk O, Bhuiyan MIH, Singh G, Cao G, Yin Y, Sun D. Carotid artery vascular stenosis causes the blood-CSF barrier damage and neuroinflammation. J Neuroinflammation 2024; 21:220. [PMID: 39256783 PMCID: PMC11385148 DOI: 10.1186/s12974-024-03209-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND The choroid plexus (ChP) helps maintain the homeostasis of the brain by forming the blood-CSF barrier via tight junctions (TJ) at the choroid plexus epithelial cells, and subsequently preventing neuroinflammation by restricting immune cells infiltration into the central nervous system. However, whether chronic cerebral hypoperfusion causes ChP structural damage and blood-CSF barrier impairment remains understudied. METHODS The bilateral carotid stenosis (BCAS) model in adult male C57BL/6 J mice was used to induce cerebral hypoperfusion, a model for vascular contributions to cognitive impairment and dementia (VCID). BCAS-mediated changes of the blood-CSF barrier TJ proteins, apical secretory Na+-K+-Cl- cotransporter isoform 1 (NKCC1) protein and regulatory serine-threonine kinases SPAK, and brain infiltration of myeloid-derived immune cells were assessed. RESULTS BCAS triggered dynamic changes of TJ proteins (claudin 1, claudin 5) accompanied with stimulation of SPAK-NKCC1 complex and NF-κB in the ChP epithelial cells. These changes impacted the integrity of the blood-CSF barrier, as evidenced by ChP infiltration of macrophages/microglia, neutrophils and T cells. Importantly, pharmacological blockade of SPAK with its potent inhibitor ZT1a in BCAS mice attenuated brain immune cell infiltration and improved cognitive neurological function. CONCLUSIONS BCAS causes chronic ChP blood-CSF damage and immune cell infiltration. Our study sheds light on the SPAK-NKCC1 complex as a therapeutic target in neuroinflammation.
Collapse
Affiliation(s)
- Lin Lin
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, 116027, Liaoning, China
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yang Chen
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kai He
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shamseldin Metwally
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Roshani Jha
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
| | - Okan Capuk
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Gazal Singh
- Biomedical Masters Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Guodong Cao
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Research Service, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Yan Yin
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, 116027, Liaoning, China.
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA.
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA.
- Research Service, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA.
| |
Collapse
|
28
|
Hu J, Huang B, Chen K. The impact of physical exercise on neuroinflammation mechanism in Alzheimer's disease. Front Aging Neurosci 2024; 16:1444716. [PMID: 39233828 PMCID: PMC11371602 DOI: 10.3389/fnagi.2024.1444716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Alzheimer's disease (AD), a major cause of dementia globally, imposes significant societal and personal costs. This review explores the efficacy of physical exercise as a non-pharmacological intervention to mitigate the impacts of AD. Methods This review draws on recent studies that investigate the effects of physical exercise on neuroinflammation and neuronal enhancement in individuals with AD. Results Consistent physical exercise alters neuroinflammatory pathways, enhances cognitive functions, and bolsters brain health among AD patients. It favorably influences the activation states of microglia and astrocytes, fortifies the integrity of the blood-brain barrier, and attenuates gut inflammation associated with AD. These changes are associated with substantial improvements in cognitive performance and brain health indicators. Discussion The findings underscore the potential of integrating physical exercise into comprehensive AD management strategies. Emphasizing the necessity for further research, this review advocates for the refinement of exercise regimens to maximize their enduring benefits in decelerating the progression of AD.
Collapse
Affiliation(s)
- Junhui Hu
- School of Physical Education, West Anhui University, Lu'an, China
| | - Baiqing Huang
- School of Physical Education, Yunnan Minzu University, Kunming, China
| | - Kang Chen
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| |
Collapse
|
29
|
Dmytriv TR, Duve KV, Storey KB, Lushchak VI. Vicious cycle of oxidative stress and neuroinflammation in pathophysiology of chronic vascular encephalopathy. Front Physiol 2024; 15:1443604. [PMID: 39161701 PMCID: PMC11330875 DOI: 10.3389/fphys.2024.1443604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
Chronic vascular encephalopathy (CVE) is a frequent cause of vascular mild cognitive impairment and dementia, which significantly worsens the quality of life, especially in the elderly population. CVE is a result of chronic cerebral hypoperfusion, characterized by prolonged limited blood flow to the brain. This causes insufficient oxygenation of the brain leading to hypoxia. The latter can trigger a series of events associated with the development of oxidative/reductive stresses and neuroinflammation. Addressing the gap in knowledge regarding oxidative and reductive stresses in the development of vascular disorders and neuroinflammation can give a start to new directions of research in the context of CVE. In this review, we consider the hypoxia-induced molecular challenges involved in the pathophysiology of CVE, focusing on oxidative stress and neuroinflammation, which are combined in a vicious cycle of neurodegeneration. We also briefly describe therapeutic approaches to the treatment of CVE and outline the prospects for the use of sulforaphane, an isothiocyanate common in cruciferous plants, and vitamin D to break the vicious cycle and alleviate the cognitive impairments characteristic of patients with CVE.
Collapse
Affiliation(s)
- Tetiana R. Dmytriv
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
- Research and Development University, Ivano-Frankivsk, Ukraine
| | - Khrystyna V. Duve
- Department of Neurology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | | | - Volodymyr I. Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
- Research and Development University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
30
|
Zhang F, Zhou J, Lu P, Zhang X, Yang L, Wu J, Zhang L, Zhang L, Pang J, Xie H, Xie B, Jiang Y, Peng J. Lactylation of histone by BRD4 regulates astrocyte polarization after experimental subarachnoid hemorrhage. J Neuroinflammation 2024; 21:186. [PMID: 39080649 PMCID: PMC11290164 DOI: 10.1186/s12974-024-03185-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024] Open
Abstract
Under subarachnoid hemorrhage (SAH) conditions, astrocytes undergo a marked intensification of glycolytic activity, resulting in the generation of substantial amounts of lactate to maintain the energy demand for neurons and other brain cells. Lactate has garnered increasing attention in recent years because of its emerging role in critical biological processes such as inflammation regulation and neuroprotection, particularly through its histone lactylation. Bromodomain-containing protein 4 (BRD4) plays a crucial role in maintaining neural development and promoting memory formation in the central nervous system. Nonetheless, the function and regulatory mechanism of BRD4 and histone lactylation in astrocytes following SAH remain elusive. Our findings indicate that BRD4, a crucial epigenetic regulator, plays a definitive role in histone lactylation. Both in vitro and in vivo, these results demonstrated that targeted silencing of BRD4 in astrocytes can significantly reduce H4K8la lactylation, thereby aggravating the A1 polarization of astrocytes and ultimately affecting the recovery of neural function and prognosis in mice after SAH. In summary, BRD4 plays a pivotal role in modulating astrocyte polarization following SAH via histone lactylation. Targeting this mechanism might offer an efficient therapeutic strategy for SAH.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, NO. 25 of Taiping Street, Luzhou, Sichuan, 646000, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jian Zhou
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, NO. 25 of Taiping Street, Luzhou, Sichuan, 646000, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Peng Lu
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, NO. 25 of Taiping Street, Luzhou, Sichuan, 646000, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Xianhui Zhang
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Lei Yang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, NO. 25 of Taiping Street, Luzhou, Sichuan, 646000, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jinpeng Wu
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, NO. 25 of Taiping Street, Luzhou, Sichuan, 646000, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Lihan Zhang
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Lifang Zhang
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jinwei Pang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, NO. 25 of Taiping Street, Luzhou, Sichuan, 646000, China
| | - Huangfan Xie
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Institute of Brain Science, Southwest Medical University, Luzhou, China
| | - Bingqing Xie
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Institute of Brain Science, Southwest Medical University, Luzhou, China
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, NO. 25 of Taiping Street, Luzhou, Sichuan, 646000, China.
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China.
- Institute of Brain Science, Southwest Medical University, Luzhou, China.
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China.
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, NO. 25 of Taiping Street, Luzhou, Sichuan, 646000, China.
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China.
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou, China.
| |
Collapse
|
31
|
Tsuji A, Kotani E, Inoue YH. Sesamin Exerts an Antioxidative Effect by Activating the Nrf2 Transcription Factor in the Glial Cells of the Central Nervous System in Drosophila Larvae. Antioxidants (Basel) 2024; 13:787. [PMID: 39061856 PMCID: PMC11274309 DOI: 10.3390/antiox13070787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Sesame seeds are abundant in sesamin, which exerts health-promoting effects such as extending the lifespan of adult Drosophila and suppressing oxidative stress by activating the Nrf2 transcription factor. Here, we investigated whether sesamin activated Nrf2 in larval tissues and induced the expression of Nrf2 target genes. In the sesamin-fed larvae, Nrf2 was activated in the central nervous system (CNS), gut, and salivary glands. The ectopic expression of Keap1 in glial cells inhibited sesamin-induced Nrf2 activation in the whole CNS more than in the neurons, indicating that sesamin activates Nrf2 in glia efficiently. We labeled the astrocytes as well as cortex and surface glia with fluorescence to identify the glial cell types in which Nrf2 was activated; we observed their activation in both cell types. These data suggest that sesamin may stimulate the expression of antioxidative genes in glial cells. Among the 17 candidate Nrf2 targets, the mRNA levels of Cyp6a2 and Cyp6g1 in cytochrome P450 were elevated in the CNS, gut, and salivary glands of the sesamin-fed larvae. However, this elevation did not lead to resistance against imidacloprid, which is detoxified by these enzymes. Our results suggest that sesamin may exert similar health-promoting effects on the human CNS and digestive tissues.
Collapse
Affiliation(s)
| | | | - Yoshihiro H. Inoue
- Biomedical Research Center, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-0962, Japan; (A.T.); (E.K.)
| |
Collapse
|
32
|
Abd El-Aal SA, El-Sayyad SM, El-Gazar AA, Salaheldin Abdelhamid Ibrahim S, Essa MA, Abostate HM, Ragab GM. Boswellic acid and apigenin alleviate methotrexate-provoked renal and hippocampal alterations in rats: Targeting autophagy, NOD-2/NF-κB/NLRP3, and connexin-43. Int Immunopharmacol 2024; 134:112147. [PMID: 38718656 DOI: 10.1016/j.intimp.2024.112147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 06/03/2024]
Abstract
The neuronal and renal deteriorations observed in patients exposed to methotrexate (MTX) therapy highlight the need for medical interventions to counteract these complications. Boswellic acid (BA) and apigenin (APG) are natural phytochemicals with prominent neuronal and renal protective impacts in various ailments. However, their impacts on MTX-provoked renal and hippocampal toxicity have not been reported. Thus, the present work is tailored to clarify the ability of BA and APG to counteract MTX-provoked hippocampal and renal toxicity. BA (250 mg/kg) or APG (20 mg/kg) were administered orally in rats once a day for 10 days, while MTX (20 mg/kg, i.p.) was administered once on the sixth day of the study. At the histopathological level, BA and APG attenuated MTX-provoked renal and hippocampal aberrations. They also inhibited astrocyte activation, as proven by the inhibition of glial fibrillary acidic protein (GFAP). These impacts were partially mediated via the activation of autophagy flux, as proven by the increased expression of beclin1, LC3-II, and the curbing of p62 protein, alongside the regulation of the p-AMPK/mTOR nexus. In addition, BA and APG displayed anti-inflammatory features as verified by the damping of NOD-2 and p-NF-κB p65 to reduce TNF-α, IL-6, and NLRP3/IL-1β cue. These promising effects were accompanied with a notable reduction in one of the gap junction proteins, connexin-43 (Conx-43). These positive impacts endorse BA and APG as adjuvant modulators to control MTX-driven hippocampal and nephrotoxicity.
Collapse
Affiliation(s)
- Sarah A Abd El-Aal
- Department of Pharmacy, Kut University College, Al Kut, Wasit 52001, Iraq.
| | - Shorouk M El-Sayyad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| | - Amira A El-Gazar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| | | | - Marwa A Essa
- Department of Biochemistry, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| | - Heba M Abostate
- Department of Microbiology and Immunology, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11562, Egypt
| | - Ghada M Ragab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology, Giza 12585, Egypt
| |
Collapse
|
33
|
Li Z, Jiang YY, Long C, Peng X, Tao J, Pu Y, Yue R. Bridging metabolic syndrome and cognitive dysfunction: role of astrocytes. Front Endocrinol (Lausanne) 2024; 15:1393253. [PMID: 38800473 PMCID: PMC11116704 DOI: 10.3389/fendo.2024.1393253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Metabolic syndrome (MetS) and cognitive dysfunction pose significant challenges to global health and the economy. Systemic inflammation, endocrine disruption, and autoregulatory impairment drive neurodegeneration and microcirculatory damage in MetS. Due to their unique anatomy and function, astrocytes sense and integrate multiple metabolic signals, including peripheral endocrine hormones and nutrients. Astrocytes and synapses engage in a complex dialogue of energetic and immunological interactions. Astrocytes act as a bridge between MetS and cognitive dysfunction, undergoing diverse activation in response to metabolic dysfunction. This article summarizes the alterations in astrocyte phenotypic characteristics across multiple pathological factors in MetS. It also discusses the clinical value of astrocytes as a critical pathologic diagnostic marker and potential therapeutic target for MetS-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Zihan Li
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya-yi Jiang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caiyi Long
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xi Peng
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiajing Tao
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueheng Pu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rensong Yue
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
34
|
Syvänen V, Koistinaho J, Lehtonen Š. Identification of the abnormalities in astrocytic functions as potential drug targets for neurodegenerative disease. Expert Opin Drug Discov 2024; 19:603-616. [PMID: 38409817 DOI: 10.1080/17460441.2024.2322988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
INTRODUCTION Historically, astrocytes were seen primarily as a supportive cell population within the brain; with neurodegenerative disease research focusing exclusively on malfunctioning neurons. However, astrocytes perform numerous tasks that are essential for maintenance of the central nervous system`s complex processes. Disruption of these functions can have negative consequences; hence, it is unsurprising to observe a growing amount of evidence for the essential role of astrocytes in the development and progression of neurodegenerative diseases. Targeting astrocytic functions may serve as a potential disease-modifying drug therapy in the future. AREAS COVERED The present review emphasizes the key astrocytic functions associated with neurodegenerative diseases and explores the possibility of pharmaceutical interventions to modify these processes. In addition, the authors provide an overview of current advancement in this field by including studies of possible drug candidates. EXPERT OPINION Glial research has experienced a significant renaissance in the last quarter-century. Understanding how disease pathologies modify or are caused by astrocyte functions is crucial when developing treatments for brain diseases. Future research will focus on building advanced models that can more precisely correlate to the state in the human brain, with the goal of routinely testing therapies in these models.
Collapse
Affiliation(s)
- Valtteri Syvänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Koistinaho
- Neuroscience Center, Helsinki Institute of Life Science, and Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
| | - Šárka Lehtonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
35
|
Xu Y, Jia B, Li J, Li Q, Luo C. The Interplay between Ferroptosis and Neuroinflammation in Central Neurological Disorders. Antioxidants (Basel) 2024; 13:395. [PMID: 38671843 PMCID: PMC11047682 DOI: 10.3390/antiox13040395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Central neurological disorders are significant contributors to morbidity, mortality, and long-term disability globally in modern society. These encompass neurodegenerative diseases, ischemic brain diseases, traumatic brain injury, epilepsy, depression, and more. The involved pathogenesis is notably intricate and diverse. Ferroptosis and neuroinflammation play pivotal roles in elucidating the causes of cognitive impairment stemming from these diseases. Given the concurrent occurrence of ferroptosis and neuroinflammation due to metabolic shifts such as iron and ROS, as well as their critical roles in central nervous disorders, the investigation into the co-regulatory mechanism of ferroptosis and neuroinflammation has emerged as a prominent area of research. This paper delves into the mechanisms of ferroptosis and neuroinflammation in central nervous disorders, along with their interrelationship. It specifically emphasizes the core molecules within the shared pathways governing ferroptosis and neuroinflammation, including SIRT1, Nrf2, NF-κB, Cox-2, iNOS/NO·, and how different immune cells and structures contribute to cognitive dysfunction through these mechanisms. Researchers' findings suggest that ferroptosis and neuroinflammation mutually promote each other and may represent key factors in the progression of central neurological disorders. A deeper comprehension of the common pathway between cellular ferroptosis and neuroinflammation holds promise for improving symptoms and prognosis related to central neurological disorders.
Collapse
Affiliation(s)
- Yejia Xu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Bowen Jia
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Jing Li
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Qianqian Li
- NHC Key Laboratory of Drug Addiction Medicine, Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
- School of Forensic Medicine, Wannan Medical College, Wuhu 241002, China
| | - Chengliang Luo
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- NHC Key Laboratory of Drug Addiction Medicine, Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
36
|
Go J, Maeng SY, Chang DH, Park HY, Min KS, Kim JE, Choi YK, Noh JR, Ro H, Kim BC, Kim KS, Lee CH. Agathobaculum butyriciproducens improves ageing-associated cognitive impairment in mice. Life Sci 2024; 339:122413. [PMID: 38219919 DOI: 10.1016/j.lfs.2024.122413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/10/2023] [Accepted: 01/03/2024] [Indexed: 01/16/2024]
Abstract
AIMS The gut microbiota is increasingly recognised as a pivotal regulator of immune system homeostasis and brain health. Recent research has implicated the gut microbiota in age-related cognitive impairment and dementia. Agathobaculum butyriciproducens SR79 T (SR79), which was identified in the human gut, has been reported to be beneficial in addressing cognitive deficits and pathophysiologies in a mouse model of Alzheimer's disease. However, it remains unknown whether SR79 affects age-dependent cognitive impairment. MAIN METHOD To explore the effects of SR79 on cognitive function during ageing, we administered SR79 to aged mice. Ageing-associated behavioural alterations were examined using the open field test (OFT), tail suspension test (TST), novel object recognition test (NORT), Y-maze alternation test (Y-maze), and Morris water maze test (MWM). We investigated the mechanisms of action in the gut and brain using molecular and histological analyses. KEY FINDINGS Administration of SR79 improved age-related cognitive impairment without altering general locomotor activity or depressive behaviour in aged mice. Furthermore, SR79 increased mature dendritic spines in the pyramidal cells of layer III and phosphorylation of CaMKIIα in the cortex of aged mice. Age-related activation of astrocytes in the cortex of layers III-V of the aged brain was reduced following SR79 administration. Additionally, SR79 markedly increased IL-10 production and Foxp3 and Muc2 mRNA expression in the colons of aged mice. SIGNIFICANCE These findings suggest that treatment with SR79 may be a beneficial microbial-based approach for enhancing cognitive function during ageing.
Collapse
Affiliation(s)
- Jun Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - So-Young Maeng
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea; College of Biosciences & Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Dong-Ho Chang
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Hye-Yeon Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Kyeong-Seon Min
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Ju-Eun Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Young-Keun Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Jung-Ran Noh
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Hyunju Ro
- College of Biosciences & Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Byoung-Chan Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea; HealthBiome, Inc., Daejeon, Republic of Korea
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Functional Genomics, KRIBB School, University of Science and Technology (UST), 217 Gajeong-ro, Youseong-gu, Daejeon, Republic of Korea.
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Functional Genomics, KRIBB School, University of Science and Technology (UST), 217 Gajeong-ro, Youseong-gu, Daejeon, Republic of Korea.
| |
Collapse
|
37
|
Muñoz-Castro C, Serrano-Pozo A. Astrocyte-Neuron Interactions in Alzheimer's Disease. ADVANCES IN NEUROBIOLOGY 2024; 39:345-382. [PMID: 39190082 DOI: 10.1007/978-3-031-64839-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Besides its two defining misfolded proteinopathies-Aβ plaques and tau neurofibrillary tangles-Alzheimer's disease (AD) is an exemplar of a neurodegenerative disease with prominent reactive astrogliosis, defined as the set of morphological, molecular, and functional changes that astrocytes suffer as the result of a toxic exposure. Reactive astrocytes can be observed in the vicinity of plaques and tangles, and the relationship between astrocytes and these AD neuropathological lesions is bidirectional so that each AD neuropathological hallmark causes specific changes in astrocytes, and astrocytes modulate the severity of each neuropathological feature in a specific manner. Here, we will review both how astrocytes change as a result of their chronic exposure to AD neuropathology and how those astrocytic changes impact each AD neuropathological feature. We will emphasize the repercussions that AD-associated reactive astrogliosis has for the astrocyte-neuron interaction and highlight areas of uncertainty and priorities for future research.
Collapse
Affiliation(s)
- Clara Muñoz-Castro
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Departamento de Bioquímica y Biología Molecular, Universidad de Sevilla, Seville, Spain
| | - Alberto Serrano-Pozo
- Massachusetts General Hospital Neurology Department, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
38
|
Luo Y, Liu J, Hong Y, Peng S, Meng S. Sevoflurane-induced hypotension causes cognitive dysfunction and hippocampal inflammation in mice. Behav Brain Res 2023; 455:114672. [PMID: 37716552 DOI: 10.1016/j.bbr.2023.114672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Sevoflurane commonly adopted for anesthetic in clinical practice, however, its influences on cerebral blood flow and cognitive function remain controversial. Herein, the sevoflurane-induced hypotension on arterial blood pressure, cerebral blood flow, cognitive function, and hippocampal inflammation was investigated in mice. A significant decrease in arterial blood pressure and cerebral blood flow was indicated by the sevoflurane anesthesia treatment. Moreover, sevoflurane-induced hypotension was associated with the impaired cognitive function and the increased levels of NLRP3 inflammasome activation and oxidative stress in hippocampus. These findings suggest that sevoflurane-induced hypotension may lead to the cognitive dysfunction and hippocampal inflammation.
Collapse
Affiliation(s)
- Yuelian Luo
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jiayi Liu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yu Hong
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Shuling Peng
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Shiyu Meng
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
39
|
Nakano-Kobayashi A, Canela A, Yoshihara T, Hagiwara M. Astrocyte-targeting therapy rescues cognitive impairment caused by neuroinflammation via the Nrf2 pathway. Proc Natl Acad Sci U S A 2023; 120:e2303809120. [PMID: 37549281 PMCID: PMC10438385 DOI: 10.1073/pnas.2303809120] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/06/2023] [Indexed: 08/09/2023] Open
Abstract
Neuroinflammation is a common feature of neurodegenerative disorders such as Alzheimer's disease (AD). Neuroinflammation is induced by dysregulated glial activation, and astrocytes, the most abundant glial cells, become reactive upon neuroinflammatory cytokines released from microglia and actively contribute to neuronal loss. Therefore, blocking reactive astrocyte functions is a viable strategy to manage neurodegenerative disorders. However, factors or therapeutics directly regulating astrocyte subtypes remain unexplored. Here, we identified transcription factor NF-E2-related factor 2 (Nrf2) as a therapeutic target in neurotoxic reactive astrocytes upon neuroinflammation. We found that the absence of Nrf2 promoted the activation of reactive astrocytes in the brain tissue samples obtained from AD model 5xFAD mice, whereas enhanced Nrf2 expression blocked the induction of reactive astrocyte gene expression by counteracting NF-κB subunit p65 recruitment. Neuroinflammatory astrocytes robustly up-regulated genes associated with type I interferon and the antigen-presenting pathway, which were suppressed by Nrf2 pathway activation. Moreover, impaired cognitive behaviors observed in AD mice were rescued upon ALGERNON2 treatment, which potentiated the Nrf2 pathway and reduced the induction of neurotoxic reactive astrocytes. Thus, we highlight the potential of astrocyte-targeting therapy by promoting the Nrf2 pathway signaling for neuroinflammation-triggered neurodegeneration.
Collapse
Affiliation(s)
- Akiko Nakano-Kobayashi
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Andres Canela
- The Hakubi Center for Advanced Research and Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto606-8501, Japan
| | - Toru Yoshihara
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| |
Collapse
|