1
|
Yang TT, Liu Y, Shao YT, Li L, Pan DD, Wang T, Jiang ZZ, Li BJ, Qian ST, Yan M, Zhu X, Heng C, Liu JJ, Lu Q, Yin XX. Activation of MST1 protects filtration barrier integrity of diabetic kidney disease in mice through restoring the tight junctions of glomerular endothelial cells. Acta Pharmacol Sin 2025; 46:1345-1360. [PMID: 39643641 PMCID: PMC12032108 DOI: 10.1038/s41401-024-01421-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/03/2024] [Indexed: 12/09/2024]
Abstract
As a pathological feature of diabetic kidney disease (DKD), dysregulated glomerular filtration barrier function could lead to the increased levels of proteinuria. The integrity of tight junctions (TJs) of glomerular endothelial cells (GECs) is a guarantee of physiological function of glomerular filtration barrier. Mammalian sterile 20-like kinase (MST1) is a key regulatory protein in the blood-brain barrier (BBB), and it regulates the expression of TJs-related proteins in cerebral vascular endothelial cells. Our previous study showed that MST1 was involved in renal tubulointerstitial fibrosis of DKD. In the present study we investigated the role of MST1 in barrier function of GECs of DKD, and explored its regulatory mechanisms. In kidney tissue section of DKD patients and db/db mice, and high glucose (HG)-cultured mouse glomerular endothelial cells (mGECs), we showed that MST1 was inactivated in the GECs of DKD accompanied by disrupted glomerular endothelial barrier. In db/db mice and HG-cultured mGECs, knockdown of MST1 increased proteinuria levels, and disrupted glomerular endothelial barrier through decreasing TJs-related proteins, whereas MST1 overexpression restored glomerular endothelial barrier through regaining TJs-related proteins. In db/db mice and HG-cultured mGECs, we demonstrated that MST1 inhibition induced TJs's disruption of GECs via activating YAP1/TEAD signaling. Verteporfin (an inhibitor of YAP1-TEAD interaction) and PY-60 (a YAP1 agonist) were used to verify the role of YAP1/TEAD signaling in the regulation effect of MST1 on barrier function of mGECs. In conclusion, MST1 activation recovers glomerular endothelial barrier of DKD by regaining TJs-related proteins via inhibiting YAP1/TEAD signaling. This study highlights the multiple regulation of MST1 activation on kidney injury.
Collapse
Affiliation(s)
- Ting-Ting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ying Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yu-Ting Shao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Lin Li
- Department of Pharmacy, Yuncheng Central Hospital affiliated to Shanxi Medical University, Yuncheng, 044000, China
| | - Dan-Dan Pan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Tao Wang
- Department of Pharmacy, The affiliated hospital of Xuzhou Medical University, Xuzhou, 221006, China
| | - Zhen-Zhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Bao-Jing Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Si-Tong Qian
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Meng Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Cai Heng
- Department of Pharmacy, JingJiang People's Hospital, Jingjiang, 214500, China
| | - Jun-Jie Liu
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, China.
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China.
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Xiao-Xing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
2
|
Zhu Y, Ji T, San Z, Cao R, Hayashi T, Mizuno K, Hattori S, Fujisaki H, Liu W, Ikejima T. Binding of collagen I to integrins alleviates UVB-caused mitochondrial disorders in human keratinocytes HaCaT through enhancement of F-actin polymerization. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2025; 268:113170. [PMID: 40328195 DOI: 10.1016/j.jphotobiol.2025.113170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/10/2025] [Accepted: 04/26/2025] [Indexed: 05/08/2025]
Abstract
Collagen I is one of the major components of the extracellular matrix in human skin, and is frequently used in skin cares and medications. Previously, we revealed that human keratinocytes HaCaT cells grown on collagen I (Col)-coated dishes gain resistance against UVB damages owing to the restored mitophagy. In this study, we further investigate the mechanisms by which collagen I modulates mitophagy. UVB irradiation causes loss of integrin β1 and collapse of F-actin cytoskeleton. Considering the requirement of actin skeleton in various cellular processes, we are curious about the participation of F-actin collapse in UVB damage. Integrin β1, whose activation enhances F-actin assembly, is a potential target for Col in UVB-treated cells. Notably, inhibiting integrin by adding an inhibitor RGDS or siRNA attenuates the effect of Col against UVB damages, confirming the participation of integrin in cell protection. The collapse of F-actin is rescued by Col, accompanying increases in the mRNA of F-actin polymerization-associated proteins and decreases in the mRNA of depolymerization-associated proteins. Inhibiting actin polymerization by using cytochalasin D represses the protective effect of Col, confirming the cytoprotective role of F-actin in UVB-treated cells. Remarkably, mitophagy in UVB-treated cells restored by Col-coating is inhibited by adding cytochalasin D or RGDS, as shown by the decreases of lysosomes, mitochondrial ubiquitin proteins, and co-localization of autophagosomes and mitochondria, resulting in accumulation of damaged mitochondria, which stresses the importance of F-actin and integrin in mitophagy. In summary, integrins and F-actin are required for mitophagy in UVB-irradiated HaCaT cells, and their enhancements by Col-coating facilitate timely elimination of damaged mitochondria caused by UVB, finally contributing to cell survival.
Collapse
Affiliation(s)
- Yuying Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Tianyu Ji
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Zhao San
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Ruiyi Cao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Toshihiko Hayashi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China; Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China.
| | - Takashi Ikejima
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China.
| |
Collapse
|
3
|
Patten J, Halligan P, Bashiri G, Kegel M, Bonadio JD, Wang K. EDA Fibronectin Microarchitecture and YAP Translocation during Wound Closure. ACS Biomater Sci Eng 2025; 11:2249-2262. [PMID: 40029610 DOI: 10.1021/acsbiomaterials.4c02019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Fibronectin (Fn) is an extracellular matrix glycoprotein with mechanosensitive structure-function. Extra domain A (EDA) Fn, a Fn isoform, is not present in adult tissue but is required for tissue repair. Curiously, EDA Fn is linked to both regenerative and fibrotic tissue repair. Given that Fn mechanoregulates cell behavior, EDA Fn organization during wound closure might play a role in mediating these differing responses. One mechanism by which cells sense and respond to their microenvironment is by activating a transcriptional coactivator, yes-associated protein (YAP). Interestingly, YAP activity is not only required for wound closure but similarly linked to both regenerative and fibrotic repair. Therefore, this study aims to evaluate how, during normal and fibrotic wound closure, EDA Fn organization might modulate YAP translocation by culturing human dermal fibroblasts on polydimethylsiloxane substrates mimicking normal (soft: 18 kPa) and fibrotic (stiff: 146 kPa) wounded skin. On stiffer substrates mimicking fibrotic wounds, fibroblasts assembled an aligned EDA Fn matrix comprising thinner fibers, suggesting increased microenvironmental tension. To evaluate if cell binding to the EDA domain of Fn was essential to overall matrix organization, fibroblasts were treated with Irigenin, which inhibits binding to the EDA domain within Fn. Blocking adhesion to EDA led to randomly organized EDA Fn matrices with thicker fibers, suggesting reduced microenvironmental tension even during fibrotic wound closure. To evaluate whether YAP signaling plays a role in EDA Fn organization, fibroblasts were treated with CA3, which suppresses YAP activity in a dose-dependent manner. Treatment with CA3 also led to randomly organized EDA Fn matrices with thicker fibers, suggesting a potential connected mechanism of reducing tension during fibrotic wound closure. Next, YAP activity was assessed to evaluate the impact of EDA Fn organization. Interestingly, fibroblasts migrating on softer substrates mimicking normal wounds increased YAP activity, but on stiffer substrates, they decreased YAP activity. When fibroblasts on stiffer substrates were treated with Irigenin or CA3, fibroblasts increased YAP activity. These results suggest that there may be disrupted signaling between EDA Fn organization and YAP translocation during fibrotic wound closure that could be restored when reestablishing normal EDA Fn matrix organization to instead drive regenerative wound repair.
Collapse
Affiliation(s)
- Jennifer Patten
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Patrick Halligan
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Ghazal Bashiri
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Michael Kegel
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Jacob D Bonadio
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Karin Wang
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
4
|
Cherkashina O, Tsitrina A, Abolin D, Morgun E, Kosykh A, Sabirov M, Vorotelyak E, Kalabusheva E. The Recovery of Epidermal Proliferation Pattern in Human Skin Xenograft. Cells 2025; 14:448. [PMID: 40136697 PMCID: PMC11941497 DOI: 10.3390/cells14060448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
Abnormalities in epidermal keratinocyte proliferation are a characteristic feature of a range of dermatological conditions. These include hyperproliferative states in psoriasis and dermatitis as well as hypoproliferative states in chronic wounds. This emphasises the importance of investigating the proliferation kinetics under conditions of healthy skin and identifying the key regulators of epidermal homeostasis, maintenance, and recovery following wound healing. Animal models contribute to our understanding of human epidermal self-renewal. Human skin xenografting overcomes the ethical limitations of studying human skin during regeneration. The application of this approach has allowed for the identification of a single population of stem cells and both slowly and rapidly cycling progenitors within the epidermal basal layer and the mapping of their location in relation to rete ridges and hair follicles. Furthermore, we have traced the dynamics of the proliferation pattern reorganization that occurs during epidermal regeneration, underlining the role of YAP activity in epidermal relief formation.
Collapse
Affiliation(s)
- Olga Cherkashina
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia (E.K.)
| | - Alexandra Tsitrina
- Ilse Katz Institute of Nanoscale Science, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Danila Abolin
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia (E.K.)
| | - Elena Morgun
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia (E.K.)
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Anastasiya Kosykh
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Marat Sabirov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia (E.K.)
| | - Ekaterina Vorotelyak
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia (E.K.)
| | - Ekaterina Kalabusheva
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia (E.K.)
| |
Collapse
|
5
|
Kong Z, Zhou P, Xu J, Zhang Y, Wang Y. RFX2 downregulates RASSF1 expression and YAP phosphorylation through Hippo signaling to promote immune escape in lung adenocarcinoma. Cell Div 2025; 20:7. [PMID: 40069841 PMCID: PMC11895337 DOI: 10.1186/s13008-025-00147-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/27/2025] [Indexed: 03/15/2025] Open
Abstract
OBJECTIVE Regulatory Factor X (RFX) transcription factors have been implicated in different cancers. Ras association domain family (RASSF) has been shown clinical significance in lung cancer. This paper was to investigate the interaction of RFX2 and RASSF1 in lung adenocarcinoma (LUAD). METHODS The transcriptome differences of LUAD patients in GSE32863, GSE43458, and GSE21933 datasets were analyzed. A-549 and NCI-H358 cell lines after overexpression of RFX2 were co-cultured with activated CD8+ T cells, and the release of IFN-γ, GZMB, PRF1 by CD8+ T cells, and PD-L1 in the LUAD cells were detected. Cell viability, invasion, and apoptosis were analyzed by CCK-8, Transwell, and TUNEL assays. Dual-luciferase assay and ChIP were conducted to detect the interaction between RFX2 and RASSF1 promoter. An in vivo tumor model was constructed to monitor tumor growth. YAP protein levels and phosphorylation were measured. A-549 and NCI-H358 cells treated with DMSO or PY-60 after RFX2 overexpression were co-cultured with activated CD8+ T cells. RESULTS RFX2 was notably downregulated in LUAD. RFX2 overexpression increased infiltrating CD8+ T cells within transplanted tumors and inhibited immune escape, proliferation, and invasion of LUAD cells. RFX2 was enriched in the RASSF1 promoter, and RFX2 activated RASSF1 transcription by binding to the RASSF1 promoter. RASSF1 knockdown reversed the ability of RFX2 overexpression to inhibit immune escape. RFX2 depletion downregulated RASSF1, which reduced YAP phosphorylation, thus affecting the Hippo pathway to promote the immune escape. CONCLUSION RFX2 Loss in LUAD downregulates RASSF1 expression and YAP phosphorylation, thereby promoting immune escape through Hippo signaling.
Collapse
Affiliation(s)
- Zhenzhen Kong
- Department of Laboratory, Wujin Hospital Affiliated With Jiangsu University, No. 2 of Yongning North Road, Changzhou, 213002, Jiangsu, People's Republic of China
- The Wujin Clinical College of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, People's Republic of China
| | - Ping Zhou
- Department of Medical Laboratory, Xuzhou Mining Group General Hospital, Xuzhou, 221011, Jiangsu, People's Republic of China
| | - Jiahao Xu
- Department of Laboratory, Wujin Hospital Affiliated With Jiangsu University, No. 2 of Yongning North Road, Changzhou, 213002, Jiangsu, People's Republic of China
- The Wujin Clinical College of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, People's Republic of China
| | - Ying Zhang
- Department of Laboratory, Wujin Hospital Affiliated With Jiangsu University, No. 2 of Yongning North Road, Changzhou, 213002, Jiangsu, People's Republic of China
- The Wujin Clinical College of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, People's Republic of China
| | - Yong Wang
- Department of Laboratory, Wujin Hospital Affiliated With Jiangsu University, No. 2 of Yongning North Road, Changzhou, 213002, Jiangsu, People's Republic of China.
- The Wujin Clinical College of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, People's Republic of China.
| |
Collapse
|
6
|
Loffredo LF, Kustagi A, Ringham OR, Li F, de Los Santos-Alexis K, Saqi A, Arpaia N. Heparan sulfate regulates amphiregulin programming of tissue reparative lung mesenchymal cells during influenza A virus infection in mice. Nat Commun 2025; 16:2129. [PMID: 40032825 PMCID: PMC11876457 DOI: 10.1038/s41467-025-57362-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025] Open
Abstract
Amphiregulin (Areg), a growth factor produced by regulatory T (Treg) cells to facilitate tissue repair, contains a heparan sulfate (HS) binding domain. How HS, a highly sulfated glycan subtype that alters growth factor signaling, influences Areg repair functions is unclear. Here we report that inhibition of HS in various cell lines and primary lung mesenchymal cells (LMC) qualitatively alters Areg downstream signaling. Utilization of a panel of cell lines with targeted deletions in HS synthesis-related genes identifies the glypican family of HS proteoglycans as critical for Areg signaling. In the context of influenza A virus (IAV) infection in vivo, an Areg-responsive subset of reparative LMC upregulate glypican-4 and HS; conditional deletion of HS primarily within this LMC subset results in reduced repair characteristics following IAV infection. This study demonstrates that HS on a specific lung mesenchymal population is a mediator of Treg cell-derived Areg reparative signaling.
Collapse
Affiliation(s)
- Lucas F Loffredo
- Department of Microbiology & Immunology, Columbia University, New York, NY, USA
| | - Anmol Kustagi
- Department of Microbiology & Immunology, Columbia University, New York, NY, USA
| | - Olivia R Ringham
- Department of Microbiology & Immunology, Columbia University, New York, NY, USA
| | - Fangda Li
- Department of Microbiology & Immunology, Columbia University, New York, NY, USA
| | | | - Anjali Saqi
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Nicholas Arpaia
- Department of Microbiology & Immunology, Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
| |
Collapse
|
7
|
Guo P, Wan S, Guan KL. The Hippo pathway: Organ size control and beyond. Pharmacol Rev 2025; 77:100031. [PMID: 40148032 DOI: 10.1016/j.pharmr.2024.100031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 03/29/2025] Open
Abstract
The Hippo signaling pathway is a highly conserved signaling network for controlling organ size, tissue homeostasis, and regeneration. It integrates a wide range of intracellular and extracellular signals, such as cellular energy status, cell density, hormonal signals, and mechanical cues, to modulate the activity of YAP/TAZ transcriptional coactivators. A key aspect of Hippo pathway regulation involves its spatial organization at the plasma membrane, where upstream regulators localize to specific membrane subdomains to regulate the assembly and activation of the pathway components. This spatial organization is critical for the precise control of Hippo signaling, as it dictates the dynamic interactions between pathway components and their regulators. Recent studies have also uncovered the role of biomolecular condensation in regulating Hippo signaling, adding complexity to its control mechanisms. Dysregulation of the Hippo pathway is implicated in various pathological conditions, particularly cancer, where alterations in YAP/TAZ activity contribute to tumorigenesis and drug resistance. Therapeutic strategies targeting the Hippo pathway have shown promise in both cancer treatment, by inhibiting YAP/TAZ signaling, and regenerative medicine, by enhancing YAP/TAZ activity to promote tissue repair. The development of small molecule inhibitors targeting the YAP-TEAD interaction and other upstream regulators offers new avenues for therapeutic intervention. SIGNIFICANCE STATEMENT: The Hippo signaling pathway is a key regulator of organ size, tissue homeostasis, and regeneration, with its dysregulation linked to diseases such as cancer. Understanding this pathway opens new possibilities for therapeutic approaches in regenerative medicine and oncology, with the potential to translate basic research into improved clinical outcomes.
Collapse
Affiliation(s)
- Pengfei Guo
- School of Life Sciences, Westlake University, Hangzhou, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| | - Sicheng Wan
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Kun-Liang Guan
- School of Life Sciences, Westlake University, Hangzhou, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| |
Collapse
|
8
|
Yang MY, Quan HY, Li DL, Ruan J, Fan HY. Targeting TEAD would be a potential strategy for scarless wound repair: A preliminary study. Acta Histochem 2025; 127:152223. [PMID: 39667304 DOI: 10.1016/j.acthis.2024.152223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/10/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
Despite of decades of efforts, novel approaches are still limited to attenuate or prevent skin scarring. A previous report published in Science demonstrated that inhibition of YAP promotes scarless wound repair by regeneration. Due to the difficult drugability of targeting YAP, we speculated that inhibition of TEAD, a partner molecule of YAP, might exist similar therapeutic potential. Therefore, the aim of the study was to evaluate therapeutical effect of a novel inhibitor of TEAD auto-palmitoylation, VT107, on scar formation in a cutaneous wound healing model. Our findings confirmed VT107 exhibited favorable effect on preventing scarring, manifesting as reducing fibroblast proliferation and collagen denaturation, decreasing TGF-β1 and collagen deposition, as well as connective tissue growth factor (CTGF) expression. These findings provide a novel insight for the development of anti-scarring strategies. TEAD would become an ideal target for the treatment of scars.
Collapse
Affiliation(s)
- Ming-Yan Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, No. 32 Qingquan Road, Laishan District, Yantai, Shandong 264005, China
| | - Hong-Yuan Quan
- Guangxi University, No. 100 Daxue East Road, Nanning, Guangxi 530004, China
| | - Da-Lei Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, No. 32 Qingquan Road, Laishan District, Yantai, Shandong 264005, China
| | - Jian Ruan
- Yantai Center for Food and Drug Control, Yantai 264000, China.
| | - Hua-Ying Fan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, No. 32 Qingquan Road, Laishan District, Yantai, Shandong 264005, China.
| |
Collapse
|
9
|
Jungwirth U, Walko G. Boosting Skin Wound Healing by Agrin-Mediated YAP/TAZ Activation. J Invest Dermatol 2025; 145:6-8. [PMID: 39283286 DOI: 10.1016/j.jid.2024.06.1291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 12/09/2024]
Affiliation(s)
- Ute Jungwirth
- Newcastle Drug Discovery Group, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
| | - Gernot Walko
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Queen Mary University of London, London, United Kingdom; Barts Centre for Squamous Cancer, Institute of Dentistry, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
10
|
Martin P, Pardo-Pastor C, Jenkins RG, Rosenblatt J. Imperfect wound healing sets the stage for chronic diseases. Science 2024; 386:eadp2974. [PMID: 39636982 PMCID: PMC7617408 DOI: 10.1126/science.adp2974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
Although the age of the genome gave us much insight about how our organs fail with disease, it also suggested that diseases do not arise from mutations alone; rather, they develop as we age. In this Review, we examine how wound healing might act to ignite disease. Wound healing works well when we are younger, repairing damage from accidents, environmental assaults, and battles with pathogens. Yet, with age and accumulation of mutations and tissue damage, the repair process can devolve, leading to inflammation, fibrosis, and neoplastic signaling. We discuss healthy wound responses and how our bodies might misappropriate these pathways in disease. Although we focus predominantly on epithelial-based (lung and skin) diseases, similar pathways might operate in cardiac, muscle, and neuronal diseases.
Collapse
Affiliation(s)
- Paul Martin
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Carlos Pardo-Pastor
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - R Gisli Jenkins
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart & Lung Institute, NIHR Imperial Biomedical Research Centre, Imperial College London, London, UK
| | - Jody Rosenblatt
- The Randall and Cancer Centres King's College London, London, UK
- The Francis Crick Institute, London, UK
| |
Collapse
|
11
|
Pankratova MD, Riabinin AA, Butova EA, Selivanovskiy AV, Morgun EI, Ulianov SV, Vorotelyak EA, Kalabusheva EP. YAP/TAZ Signalling Controls Epidermal Keratinocyte Fate. Int J Mol Sci 2024; 25:12903. [PMID: 39684613 DOI: 10.3390/ijms252312903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/24/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
The paralogues Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) control cell proliferation and cell fate determination from embryogenesis to ageing. In the skin epidermis, these proteins are involved in both homeostatic cell renewal and injury-induced regeneration and also drive carcinogenesis and other pathologies. YAP and TAZ are usually considered downstream of the Hippo pathway. However, they are the central integrating link for the signalling microenvironment since they are involved in the interplay with signalling cascades induced by growth factors, cytokines, and physical parameters of the extracellular matrix. In this review, we summarise the evidence on how YAP and TAZ are activated in epidermal keratinocytes; how YAP/TAZ-mediated signalling cooperates with other signalling molecules at the plasma membrane, cytoplasmic, and nuclear levels; and how YAP/TAZ ultimately controls transcription programmes, defining epidermal cell fate.
Collapse
Affiliation(s)
- Maria D Pankratova
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Andrei A Riabinin
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elizaveta A Butova
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Arseniy V Selivanovskiy
- Laboratory of Structural-Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Elena I Morgun
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Sergey V Ulianov
- Laboratory of Structural-Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ekaterina A Vorotelyak
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Ekaterina P Kalabusheva
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
12
|
Li X, Li N, Wang Y, Han Q, Sun B. Research Progress of Fibroblasts in Human Diseases. Biomolecules 2024; 14:1478. [PMID: 39595654 PMCID: PMC11591654 DOI: 10.3390/biom14111478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Fibroblasts, which originate from embryonic mesenchymal cells, are the predominant cell type seen in loose connective tissue. As the main components of the internal environment that cells depend on for survival, fibroblasts play an essential role in tissue development, wound healing, and the maintenance of tissue homeostasis. Furthermore, fibroblasts are also involved in several pathological processes, such as fibrosis, cancers, and some inflammatory diseases. In this review, we analyze the latest research progress on fibroblasts, summarize the biological characteristics and physiological functions of fibroblasts, and delve into the role of fibroblasts in disease pathogenesis and explore treatment approaches for fibroblast-related diseases.
Collapse
Affiliation(s)
| | | | | | | | - Boshi Sun
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; (X.L.); (N.L.); (Y.W.); (Q.H.)
| |
Collapse
|
13
|
Viragova S, Li D, Klein OD. Activation of fetal-like molecular programs during regeneration in the intestine and beyond. Cell Stem Cell 2024; 31:949-960. [PMID: 38971147 PMCID: PMC11235077 DOI: 10.1016/j.stem.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 07/08/2024]
Abstract
Tissue regeneration after damage is generally thought to involve the mobilization of adult stem cells that divide and differentiate into progressively specialized progeny. However, recent studies indicate that tissue regeneration can be accompanied by reversion to a fetal-like state. During this process, cells at the injury site reactivate programs that operate during fetal development but are typically absent in adult homeostasis. Here, we summarize our current understanding of the molecular signals and epigenetic mediators that orchestrate "fetal-like reversion" during intestinal regeneration. We also explore evidence for this phenomenon in other organs and species and highlight open questions that merit future examination.
Collapse
Affiliation(s)
- Sara Viragova
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Dong Li
- Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Loffredo LF, Surpur A, Ringham OR, Li F, de Los Santos-Alexis K, Arpaia N. Heparan sulfate regulates amphiregulin signaling towards reparative lung mesenchymal cells during influenza A infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591175. [PMID: 38712053 PMCID: PMC11071614 DOI: 10.1101/2024.04.25.591175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Amphiregulin (Areg), a growth factor produced by regulatory T (Treg) cells to facilitate tissue repair/regeneration, contains a heparan sulfate (HS) binding domain. How HS, a highly sulfated glycan subtype that alters growth factor signaling, influences Areg repair/regeneration functions is unclear. Here we report that inhibition of HS in various cell lines and primary lung mesenchymal cells (LMC) qualitatively alters downstream signaling and highlights the existence of HS-dependent vs. -independent Areg transcriptional signatures. Utilizing a panel of cell lines with targeted deletions in HS synthesis-related genes, we found that the presence of the glypican family of heparan sulfate proteoglycans is critical for Areg signaling and confirmed this dependency in primary LMC by siRNA-mediated knockdown. Furthermore, in the context of influenza A (IAV) infection in vivo , we found that an Areg-responsive subset of reparative LMC upregulate glypican-4 and HS. Conditional deletion of HS primarily within this LMC subset resulted in reduced blood oxygen saturation following infection with IAV, with no changes in viral load. Finally, we found that co-culture of HS-knockout LMC with IAV-induced Treg cells results in reduced LMC responses. Collectively, this study reveals the essentiality of HS on a specific lung mesenchymal population as a mediator of Treg cell-derived Areg reparative signaling during IAV infection.
Collapse
|
15
|
Martin JF. Regeneration and rejuvenation of skin by a topical YAP activator. Proc Natl Acad Sci U S A 2023; 120:e2309991120. [PMID: 37494422 PMCID: PMC10410698 DOI: 10.1073/pnas.2309991120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023] Open
Affiliation(s)
- James F. Martin
- The Texas Heart Institute, Houston, TX77030
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX77030
- Center for Organ Repair and Renewal, Baylor College of Medicine, Houston, TX77030
| |
Collapse
|
16
|
Grzelak EM, Elshan NGRD, Shao S, Bulos ML, Joseph SB, Chatterjee AK, Chen JJ, Nguyên-Trân V, Schultz PG, Bollong MJ. Pharmacological YAP activation promotes regenerative repair of cutaneous wounds. Proc Natl Acad Sci U S A 2023; 120:e2305085120. [PMID: 37399395 PMCID: PMC10334740 DOI: 10.1073/pnas.2305085120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/26/2023] [Indexed: 07/05/2023] Open
Abstract
Chronic cutaneous wounds remain a persistent unmet medical need that decreases life expectancy and quality of life. Here, we report that topical application of PY-60, a small-molecule activator of the transcriptional coactivator Yes-associated protein (YAP), promotes regenerative repair of cutaneous wounds in pig and human models. Pharmacological YAP activation enacts a reversible pro-proliferative transcriptional program in keratinocytes and dermal cells that results in accelerated re-epithelization and regranulation of the wound bed. These results demonstrate that transient topical administration of a YAP activating agent may represent a generalizable therapeutic approach to treating cutaneous wounds.
Collapse
Affiliation(s)
- Edyta M. Grzelak
- Department of Chemistry, The Scripps Research Institute, San Diego, CA92037
| | | | - Sida Shao
- Department of Chemistry, The Scripps Research Institute, San Diego, CA92037
| | - Maya L. Bulos
- Department of Chemistry, The Scripps Research Institute, San Diego, CA92037
| | - Sean B. Joseph
- Calibr, A Division of Scripps Research, San Diego, CA92037
| | | | | | | | - Peter G. Schultz
- Department of Chemistry, The Scripps Research Institute, San Diego, CA92037
- Calibr, A Division of Scripps Research, San Diego, CA92037
| | - Michael J. Bollong
- Department of Chemistry, The Scripps Research Institute, San Diego, CA92037
| |
Collapse
|