1
|
Basta DW, Campbell IW, Sullivan EJ, Hotinger JA, Hullahalli K, Garg M, Waldor MK. Inducible transposon mutagenesis identifies bacterial fitness determinants during infection in mice. Nat Microbiol 2025; 10:1171-1183. [PMID: 40148565 PMCID: PMC12055562 DOI: 10.1038/s41564-025-01975-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
Transposon insertion sequencing (Tn-seq) is a powerful method for genome-scale forward genetics in bacteria. However, inefficient transposon delivery or stochastic loss of mutants due to population bottlenecks can limit its effectiveness. Here we have developed 'InducTn-seq', where an arabinose-inducible Tn5 transposase enables temporal control of mini-Tn5 transposition. InducTn-seq generated up to 1.2 million transposon mutants from a single colony of enterotoxigenic Escherichia coli, Salmonella typhimurium, Shigella flexneri and Citrobacter rodentium. This mutant diversity enabled more sensitive detection of subtle fitness defects and measurement of quantitative fitness effects for essential and non-essential genes. Applying InducTn-seq to C. rodentium in a mouse model of infectious colitis bypassed a highly restrictive host bottleneck, generating a diverse population of >5 × 105 unique transposon mutants compared to 10-102 recovered by traditional Tn-seq. This in vivo screen revealed that the C. rodentium type I-E CRISPR system is required to suppress a toxin otherwise activated during gut colonization. Our findings highlight the potential of InducTn-seq for genome-scale forward genetic screens in bacteria.
Collapse
Affiliation(s)
- David W Basta
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Ian W Campbell
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Emily J Sullivan
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Julia A Hotinger
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Karthik Hullahalli
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Mehek Garg
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
2
|
Wu J, Ye W, Yu J, Zhou T, Zhou N, K P Ng D, Li Z. Engineered bacteria and bacterial derivatives as advanced therapeutics for inflammatory bowel disease. Essays Biochem 2025; 69:EBC20253003. [PMID: 40014418 DOI: 10.1042/ebc20253003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 01/29/2025] [Indexed: 03/01/2025]
Abstract
Inflammatory bowel disease (IBD), a chronic and relapsing-remitting condition, is inadequately managed by conventional therapies that often lack targeting specificity and carry significant side effects, particularly failing to address intestinal barrier repair and microbial balance. Probiotics, with their strong colonization capabilities, present a novel approach to drug delivery. Various engineering strategies have been developed to enhance the targeting ability of probiotics to inflammation sites, enabling precise delivery or in situ synthesis of therapeutic molecules to expand their multifunctional potential. This review discusses the recent advancements in bacterial modifications, including surface physico-chemical and biological coating, genetic engineering, outer membrane vesicles, minicells, and bacterial ghosts, all of which can enhance therapeutic localization. We also outline critical preclinical considerations, such as delivery frequency, systemic distribution, immune evasion, and gene contamination risks, for clinical translation. These engineered bacteria and bacterial derivatives hold great promise for personalized and sustained IBD treatments, providing a new frontier for therapy tailored to the complex inflammatory environment of IBD.
Collapse
Affiliation(s)
- Jingyuan Wu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| | - Wanlin Ye
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| | - Jie Yu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Tuoyu Zhou
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
- The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Guangdong, 518172, P. R. China
| | - Nuo Zhou
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, P. R. China
| | - Zhaoting Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| |
Collapse
|
3
|
Leitner DR, Zingl FG, Morano AA, Zhang H, Waldor MK. The Mla pathway promotes Vibrio cholerae re-expansion from stationary phase. mBio 2025; 16:e0343324. [PMID: 39714184 PMCID: PMC11796348 DOI: 10.1128/mbio.03433-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
Bacteria have evolved diverse strategies to ensure survival under nutrient-limited conditions, where rapid energy generation is not achievable. Here, we performed a transposon insertion site sequencing loss-of-function screen to identify Vibrio cholerae genes that promote pathogen fitness in stationary phase. We discovered that the maintenance of lipid asymmetry (Mla) pathway, which is crucial for transferring phospholipids from the outer to the inner membrane, is critical for stationary phase fitness. Competition experiments with barcoded and fluorophore labeled wild-type (WT) and mlaE mutant V. cholerae revealed that the Mla pathway promotes re-expansion from 48 h stationary phase cultures. The mutant defect in transitioning out of stationary phase into active growth (culturability) was also observed in monocultures at 48 h. However, by 96 h the culturability of the WT and mutant strains were equivalent. By monitoring the abundances of genomically barcoded libraries of WT and ∆mlaE strains, we observed that a few barcodes dominated the mutant culture at 96 h, suggesting that the similarity of the population sizes at this time was caused by expansion of a subpopulation containing a mutation that suppressed the defect of ∆mlaE. Whole genome sequencing revealed that mlaE suppressors inactivated flagellar biosynthesis. Additional mechanistic studies support the idea that the Mla pathway is critical for maintaining the culturability of V. cholerae because it promotes energy homeostasis, likely due to its role in regulating outer membrane vesicle shedding. Together our findings provide insights into the cellular processes that control re-expansion from stationary phase and demonstrate a previously undiscovered role for the Mla pathway. IMPORTANCE Bacteria regularly encounter conditions with nutrient scarcity, where cell growth and division are minimal. Knowledge of the pathways that enable re-growth following nutrient restriction is limited. Here, using the cholera pathogen, we uncovered a role for the Mla pathway, a system that enables phospholipid re-cycling, in promoting Vibrio cholerae re-expansion from stationary phase cultures. Cells labeled with DNA barcodes or fluorophores were useful to demonstrate that though the abundances of wild-type and Mla mutant cells were similar in stationary phase cultures, they had marked differences in their capacities to regrow on plates. Of note, Mla mutant cells lose cell envelope components including high-energy phospholipids due to OMV shedding. Our findings suggest that the defects in cellular energy homeostasis that emerge in the absence of the Mla pathway underlie its importance in maintaining V. cholerae culturability.
Collapse
Affiliation(s)
- Deborah R. Leitner
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Franz G. Zingl
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexander A. Morano
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hailong Zhang
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Holmes CL, Dailey KG, Hullahalli K, Wilcox AE, Mason S, Moricz BS, Unverdorben LV, Balazs GI, Waldor MK, Bachman MA. Patterns of Klebsiella pneumoniae bacteremic dissemination from the lung. Nat Commun 2025; 16:785. [PMID: 39824859 PMCID: PMC11742683 DOI: 10.1038/s41467-025-56095-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/06/2025] [Indexed: 01/20/2025] Open
Abstract
Bacteremia, a leading cause of death, generally arises after bacteria establish infection in a particular tissue and transit to secondary sites. Studying dissemination from primary sites by solely measuring bacterial burdens does not capture the movement of individual clones. By barcoding Klebsiella pneumoniae, a leading cause of bacteremia, we track pathogen dissemination following pneumonia. Variability in organ bacterial burdens is attributable to two distinct dissemination patterns distinguished by the degree of similarity between the lung and systemic sites. In metastatic dissemination, lung bacterial clones undergo heterogeneous expansion and the dominant clones spread to secondary organs, leading to greater similarity between sites. In direct dissemination, bacterial clones exit the lungs without clonal expansion, leading to lower burdens in systemic sites and more dissimilarity from the lung. We uncover bacterial and host factors that influence the dynamics of clonal sharing and expansion. Here, our data reveal unexpected heterogeneity in Klebsiella bacteremia dynamics and define a framework for understanding within-host bacterial dissemination.
Collapse
Affiliation(s)
- Caitlyn L Holmes
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Katherine G Dailey
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Karthik Hullahalli
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Alexis E Wilcox
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sophia Mason
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Bridget S Moricz
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lavinia V Unverdorben
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - George I Balazs
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Matthew K Waldor
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Michael A Bachman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Leitner DR, Zingl FG, Morano AA, Zhang H, Waldor MK. The Mla pathway promotes Vibrio cholerae re-expansion from stationary phase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622497. [PMID: 39574722 PMCID: PMC11580980 DOI: 10.1101/2024.11.07.622497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
Bacteria have evolved diverse strategies to ensure survival under nutrient-limited conditions, where rapid energy generation is not achievable. Here, we performed a transposon insertion site sequencing loss-of-function screen to identify Vibrio cholerae genes that promote the pathogen's fitness in stationary phase. We discovered that the Mla (maintenance of lipid asymmetry) pathway, which is crucial for transferring phospholipids from the outer to the inner membrane, is critical for stationary phase fitness. Competition experiments with barcoded and fluorophore labeled wild-type and mlaE mutant V. cholerae revealed that the Mla pathway promotes re-expansion from 48h stationary phase cultures. The mutant's defect in transitioning out of stationary phase into active growth (culturability) was also observed in monocultures at 48h. However, by 96h the culturability of the mutant and wild-type strains were equivalent. By monitoring the abundances of genomically barcoded libraries of wild-type and ∆mlaE strains, we observed that a few barcodes dominated the mutant culture at 96h, suggesting that the similarity of the population sizes at this time was caused by expansion of a subpopulation containing a mutation that suppressed the mlaE mutant's defect. Whole genome sequencing revealed that mlaE suppressors inactivated flagellar biosynthesis. Additional mechanistic studies support the idea that the Mla pathway is critical for the maintenance of V. cholerae's culturability as it promotes energy homeostasis, likely due to its role in regulating outer membrane vesicle shedding. Together our findings provide insights into the cellular processes that control re-expansion from stationary phase and demonstrate a previously undiscovered role for the Mla pathway.
Collapse
Affiliation(s)
- Deborah R. Leitner
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Franz G. Zingl
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexander A. Morano
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hailong Zhang
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Basta DW, Campbell IW, Sullivan EJ, Hotinger JA, Hullahalli K, Waldor MK. Inducible transposon mutagenesis for genome-scale forward genetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595064. [PMID: 38826325 PMCID: PMC11142078 DOI: 10.1101/2024.05.21.595064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Transposon insertion sequencing (Tn-seq) is a powerful method for genome-scale functional genetics in bacteria. However, its effectiveness is often limited by a lack of mutant diversity, caused by either inefficient transposon delivery or stochastic loss of mutants due to population bottlenecks. Here, we introduce "InducTn-seq", which leverages inducible mutagenesis for temporal control of transposition. InducTn-seq generates millions of transposon mutants from a single colony, enabling the sensitive detection of subtle fitness defects and transforming binary classifications of gene essentiality into a quantitative fitness measurement across both essential and non-essential genes. Using a mouse model of infectious colitis, we show that InducTn-seq bypasses a highly restrictive host bottleneck to generate a diverse transposon mutant population from the few cells that initiate infection, revealing the role of oxygen-related metabolic plasticity in pathogenesis. Overall, InducTn-seq overcomes the limitations of traditional Tn-seq, unlocking new possibilities for genome-scale forward genetic screens in bacteria.
Collapse
Affiliation(s)
- David W. Basta
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ian W. Campbell
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Emily J. Sullivan
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Julia A Hotinger
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Karthik Hullahalli
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| |
Collapse
|
7
|
Chevée V, Hullahalli K, Dailey KG, Güereca L, Zhang C, Waldor MK, Portnoy DA. Temporal and spatial dynamics of Listeria monocytogenes central nervous system infection in mice. Proc Natl Acad Sci U S A 2024; 121:e2320311121. [PMID: 38635627 PMCID: PMC11046682 DOI: 10.1073/pnas.2320311121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/22/2024] [Indexed: 04/20/2024] Open
Abstract
Listeria monocytogenes is a bacterial pathogen that can cause life-threatening central nervous system (CNS) infections. While mechanisms by which L. monocytogenes and other pathogens traffic to the brain have been studied, a quantitative understanding of the underlying dynamics of colonization and replication within the brain is still lacking. In this study, we used barcoded L. monocytogenes to quantify the bottlenecks and dissemination patterns that lead to cerebral infection. Following intravenous (IV) inoculation, multiple independent invasion events seeded all parts of the CNS from the blood, however, only one clone usually became dominant in the brain. Sequential IV inoculations and intracranial inoculations suggested that clones that had a temporal advantage (i.e., seeded the CNS first), rather than a spatial advantage (i.e., invaded a particular brain region), were the main drivers of clonal dominance. In a foodborne model of cerebral infection with immunocompromised mice, rare invasion events instead led to a highly infected yet monoclonal CNS. This restrictive bottleneck likely arose from pathogen transit into the blood, rather than directly from the blood to the brain. Collectively, our findings provide a detailed quantitative understanding of the L. monocytogenes population dynamics that lead to CNS infection and a framework for studying the dynamics of other cerebral infections.
Collapse
Affiliation(s)
- Victoria Chevée
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Karthik Hullahalli
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA02115
- Department of Microbiology, Harvard Medical School, Boston, MA02115
- HHMI, Bethesda, MD20815
| | - Katherine G. Dailey
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA02115
- Department of Microbiology, Harvard Medical School, Boston, MA02115
- HHMI, Bethesda, MD20815
| | - Leslie Güereca
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Chenyu Zhang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA02115
- Department of Microbiology, Harvard Medical School, Boston, MA02115
- HHMI, Bethesda, MD20815
| | - Daniel A. Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720
| |
Collapse
|
8
|
Hullahalli K, Dailey KG, Hasegawa Y, Torres E, Suzuki M, Zhang H, Threadgill DW, Navarro VM, Waldor MK. Genetic and immune determinants of E. coli liver abscess formation. Proc Natl Acad Sci U S A 2023; 120:e2310053120. [PMID: 38096412 PMCID: PMC10743367 DOI: 10.1073/pnas.2310053120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Systemic infections can yield distinct outcomes in different tissues. In mice, intravenous inoculation of Escherichia coli leads to bacterial replication within liver abscesses, while other organs such as the spleen clear the pathogen. Abscesses are macroscopic necrotic regions that comprise the vast majority of the bacterial burden in the animal, yet little is known about the processes underlying their formation. Here, we characterize E. coli liver abscesses and identify host determinants of abscess susceptibility. Spatial transcriptomics revealed that liver abscesses are associated with heterogenous immune cell clusters comprised of macrophages, neutrophils, dendritic cells, innate lymphoid cells, and T-cells that surround necrotic regions of the liver. Abscess susceptibility is heightened in the C57BL lineage, particularly in C57BL/6N females. Backcross analyses demonstrated that abscess susceptibility is a polygenic trait inherited in a sex-dependent manner without direct linkage to sex chromosomes. As early as 1 d post infection, the magnitude of E. coli replication in the liver distinguishes abscess-susceptible and abscess-resistant strains of mice, suggesting that the immune pathways that regulate abscess formation are induced within hours. We characterized the early hepatic response with single-cell RNA sequencing and found that mice with reduced activation of early inflammatory responses, such as those lacking the LPS receptor TLR4 (Toll-like receptor 4), are resistant to abscess formation. Experiments with barcoded E. coli revealed that TLR4 mediates a tradeoff between abscess formation and bacterial clearance. Together, our findings define hallmarks of E. coli liver abscess formation and suggest that hyperactivation of the hepatic innate immune response drives liver abscess susceptibility.
Collapse
Affiliation(s)
- Karthik Hullahalli
- Department of Microbiology, Harvard Medical School, Boston, MA02115
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, MA02115
| | - Katherine G. Dailey
- Department of Microbiology, Harvard Medical School, Boston, MA02115
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, MA02115
| | - Yuko Hasegawa
- Department of Microbiology, Harvard Medical School, Boston, MA02115
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, MA02115
| | - Encarnacion Torres
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Masataka Suzuki
- Department of Microbiology, Harvard Medical School, Boston, MA02115
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, MA02115
| | - Hailong Zhang
- Department of Microbiology, Harvard Medical School, Boston, MA02115
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, MA02115
| | - David W. Threadgill
- Department of Cell Biology and Genetics, Texas A&M University, College Station, TX76549
- Department of Nutrition, Texas A&M University, College Station, TX76549
| | - Victor M. Navarro
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Matthew K. Waldor
- Department of Microbiology, Harvard Medical School, Boston, MA02115
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, MA02115
| |
Collapse
|
9
|
Kagan JC. Innate immunity decreases pathogen diversity during infection. Proc Natl Acad Sci U S A 2023; 120:e2314237120. [PMID: 37729173 PMCID: PMC10556549 DOI: 10.1073/pnas.2314237120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Affiliation(s)
- Jonathan C. Kagan
- Division of Gastroenterology, Boston Children’s Hospital and Harvard Medical School, Boston, MA02115
| |
Collapse
|