1
|
Tziridis K, Rasheed J, Kwiatkowska M, Wright M, Schlingensiepen R. A Single Dose of AC102 Reverts Tinnitus by Restoring Ribbon Synapses in Noise-Exposed Mongolian Gerbils. Int J Mol Sci 2025; 26:5124. [PMID: 40507934 PMCID: PMC12154400 DOI: 10.3390/ijms26115124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/23/2025] [Accepted: 05/23/2025] [Indexed: 06/16/2025] Open
Abstract
A single intratympanic application of the small-molecule drug AC102 was previously shown to promote significant recovery of hearing thresholds in a noise-induced hearing loss model in guinea pigs. Here, we report the effects of AC102 to revert synaptopathy of inner hair cells (IHCs) and behavioral signs of tinnitus in Mongolian gerbils following mild noise trauma. This experimental protocol led to minor hearing threshold shifts with no loss of auditory hair cells (HCs) but induced synaptopathy and a sustained and significant tinnitus percept. Treatment by intratympanic application of AC102 was evaluated in two protocols: 1. three weekly injections or 2. a single application. We evaluated hearing threshold changes using the auditory brainstem response (ABR) and the development of a tinnitus percept using the gap prepulse inhibition of acoustic startle (GPIAS) behavioral response. The number of IHC ribbon synapses along the cochlear frequency map were counted by immunostaining for the synaptic ribbon protein carboxy-terminal binding protein 2 (CTBP2). AC102 strongly and significantly reduced behavioral signs of tinnitus, as reflected by altered GPIAS. Noise-induced loss of IHC ribbon synapses was significantly reduced by AC102 compared to vehicle-treated ears. These results demonstrate that a single application of AC102 restores ribbon synapses following mild noise trauma thereby promoting recovery from tinnitus-related behavioral responses in vivo.
Collapse
MESH Headings
- Animals
- Tinnitus/drug therapy
- Tinnitus/etiology
- Tinnitus/physiopathology
- Gerbillinae
- Synapses/drug effects
- Synapses/metabolism
- Synapses/pathology
- Hearing Loss, Noise-Induced/drug therapy
- Evoked Potentials, Auditory, Brain Stem/drug effects
- Noise/adverse effects
- Male
- Hair Cells, Auditory, Inner/drug effects
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/pathology
- Auditory Threshold/drug effects
- Disease Models, Animal
Collapse
Affiliation(s)
- Konstantin Tziridis
- Experimental Otolaryngology, ENT Clinic Head and Neck Surgery, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Jwan Rasheed
- Experimental Otolaryngology, ENT Clinic Head and Neck Surgery, University Hospital Erlangen, 91054 Erlangen, Germany
| | | | | | | |
Collapse
|
2
|
Kitama T, Nishiyama T, Hosoya M, Shimanuki MN, Ueno M, You F, Ozawa H, Oishi N. Noise-Induced Hearing Loss: Overview and Future Prospects for Research on Oxidative Stress. Int J Mol Sci 2025; 26:4927. [PMID: 40430068 PMCID: PMC12112397 DOI: 10.3390/ijms26104927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2025] [Revised: 05/18/2025] [Accepted: 05/20/2025] [Indexed: 05/29/2025] Open
Abstract
Noise-induced hearing loss (NIHL) is a common type of sensorineural hearing loss caused by exposure to high-intensity noise that leads to irreversible cochlear damage. Despite extensive research on cochlear pathophysiology, the precise mechanisms remain unclear, and no established treatment exists. This is due to the challenges in imaging and the inability to perform biopsies in human patients. Consequently, animal models, particularly mice, have been widely used to study NIHL. Clinically, NIHL presents as either a temporary threshold shift, in which hearing recovers, or a permanent threshold shift, which results in an irreversible loss. Histopathological studies have identified the key features of NIHL, including outer hair cell loss, auditory nerve degeneration, and synaptic impairment. Recent findings suggest that oxidative stress and inflammation are major contributors to NIHL, highlighting the potential for therapeutic interventions, such as antioxidants and anti-inflammatory agents. Given the increasing prevalence of NIHL owing to occupational noise exposure and personal audio device use, addressing this issue is a pressing public health challenge. This review summarizes the clinical features, underlying mechanisms, and emerging treatment strategies for NIHL while identifying current knowledge gaps and future research directions.
Collapse
Affiliation(s)
- Tsubasa Kitama
- Department of Otorhinolaryngology Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (T.K.); (M.H.); (M.N.S.); (M.U.); (H.O.); (N.O.)
| | - Takanori Nishiyama
- Department of Otorhinolaryngology Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (T.K.); (M.H.); (M.N.S.); (M.U.); (H.O.); (N.O.)
| | - Makoto Hosoya
- Department of Otorhinolaryngology Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (T.K.); (M.H.); (M.N.S.); (M.U.); (H.O.); (N.O.)
| | - Marie N. Shimanuki
- Department of Otorhinolaryngology Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (T.K.); (M.H.); (M.N.S.); (M.U.); (H.O.); (N.O.)
| | - Masafumi Ueno
- Department of Otorhinolaryngology Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (T.K.); (M.H.); (M.N.S.); (M.U.); (H.O.); (N.O.)
| | - Fukka You
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Gifu 501-1193, Japan;
- Anti-Oxidant Research Laboratory, Louis Pasteur Center for Medical Research, Kyoto 606-8225, Japan
| | - Hiroyuki Ozawa
- Department of Otorhinolaryngology Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (T.K.); (M.H.); (M.N.S.); (M.U.); (H.O.); (N.O.)
| | - Naoki Oishi
- Department of Otorhinolaryngology Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (T.K.); (M.H.); (M.N.S.); (M.U.); (H.O.); (N.O.)
| |
Collapse
|
3
|
Maimaitikelimu X, Xuan Z, Ren H, Chen K, Zhang H, Wang H. Rational Design of Inner Ear Drug Delivery Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2410568. [PMID: 40344640 DOI: 10.1002/advs.202410568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 03/13/2025] [Indexed: 05/11/2025]
Abstract
The number of people with hearing loss disorders is enormous, causing great physical and mental stress to patients, as well as a huge social burden. Among these patients, hearing loss caused by inner ear lesions accounts for a large proportion. Therefore, treatment of the inner ear is important. Inner ear drug delivery systems, which can reduce the side effects of systemic drug administration by delivering drugs directly to the inner ear, are important in sensorineural hearing loss. Here, the development of inner ear drug delivery systems is focused, including the complex physiological structure that they face, types of drugs delivered, routes of administration, and forms of drug delivery carrier platforms. Recent studies in this process are presented and it is concluded with a summary and outlook on the problems faced and possible solutions.
Collapse
Affiliation(s)
| | - Zhiyan Xuan
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Haoyu Ren
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Keng Chen
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Hui Zhang
- School of Life Sciences and Technology, Southeast University, Nanjing, 210000, China
| | - Huan Wang
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| |
Collapse
|
4
|
Chen X, Chen Z, Li M, Guo W, Yuan S, Xu L, Lin C, Shi X, Chen W, Yang S. Tranylcypromine upregulates Sestrin 2 expression to ameliorate NLRP3-related noise-induced hearing loss. Neural Regen Res 2025; 20:1483-1494. [PMID: 39075914 PMCID: PMC11624888 DOI: 10.4103/nrr.nrr-d-24-00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/06/2024] [Accepted: 05/21/2024] [Indexed: 07/31/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202505000-00030/figure1/v/2024-07-28T173839Z/r/image-tiff Noise-induced hearing loss is the primary non-genetic factor contributing to auditory dysfunction. However, there are currently no effective pharmacological interventions for patients with noise-induced hearing loss. Here, we present evidence suggesting that the lysine-specific demethylase 1 inhibitor-tranylcypromine is an otoprotective agent that could be used to treat noise-induced hearing loss, and elucidate its underlying regulatory mechanisms. We established a mouse model of permanent threshold shift hearing loss by exposing the mice to white broadband noise at a sound pressure level of 120 dB for 4 hours. We found that tranylcypromine treatment led to the upregulation of Sestrin2 (SESN2) and activation of the autophagy markers light chain 3B and lysosome-associated membrane glycoprotein 1 in the cochleae of mice treated with tranylcypromine. The noise exposure group treated with tranylcypromine showed significantly lower average auditory brainstem response hearing thresholds at click, 4, 8, and 16 kHz frequencies compared with the noise exposure group treated with saline. These findings indicate that tranylcypromine treatment resulted in increased SESN2, light chain 3B, and lysosome-associated membrane glycoprotein 1 expression after noise exposure, leading to a reduction in levels of 4-hydroxynonenal and cleaved caspase-3, thereby reducing noise-induced hair cell loss. Additionally, immunoblot analysis demonstrated that treatment with tranylcypromine upregulated SESN2 expression via the autophagy pathway. Tranylcypromine treatment also reduced the production of NOD-like receptor family pyrin domain-containing 3 (NLRP3) production. In conclusion, our results showed that tranylcypromine treatment ameliorated cochlear inflammation by promoting the expression of SESN2, which induced autophagy, thereby restricting NLRP3-related inflammasome signaling, alleviating cochlear hair cell loss, and protecting hearing function. These findings suggest that inhibiting lysine-specific demethylase 1 is a potential therapeutic strategy for preventing hair cell loss and noise-induced hearing loss.
Collapse
Affiliation(s)
- Xihang Chen
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Zhifeng Chen
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
- Department of Otolaryngology Head and Neck Surgery, The 940 Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, Gansu Province, China
| | - Menghua Li
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Weiwei Guo
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Shuolong Yuan
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Liangwei Xu
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Chang Lin
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Xi Shi
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan Province, China
- Academician Workstation of Hainan University, School of Pharmaceutical Sciences, Yazhou Bay, Sanya, Hainan Province, China
| | - Wei Chen
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Shiming Yang
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| |
Collapse
|
5
|
Rodríguez-Izquierdo C, Herrera M, Avdiyuk A, Rodríguez-Ocaña D, Plaza G. Current Role of the Nonsteroid Treatment of Idiopathic Sudden Sensorineural Hearing Loss (ISSNHL): A Narrative Review. J Clin Med 2025; 14:2811. [PMID: 40283640 PMCID: PMC12028189 DOI: 10.3390/jcm14082811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/03/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Sudden sensorineural hearing loss (SSHNL) is an abruptly appearing hearing loss. The etiology remains unclear, although vascular pathologies, viral infections, or autoimmune disease contribute to the understanding of this pathology. Systematic steroids are often used as the first-line treatment because of their anti-inflammatory effect. However, there remains controversy about the use of steroids and other alternative treatments, as hyperbaric oxygen therapy (HBOT), exploratory tympanotomy, prostaglandin, N-acetylcysteine, or defibrinogenation therapy. In this study, we aim to review the various treatment options currently available for sudden hearing loss, with the objective of advancing our understanding of this condition and clarifying information to guide future clinical practice guidelines.
Collapse
Affiliation(s)
- Concepción Rodríguez-Izquierdo
- Otorhinolaryngology Department, Hospital Universitario de Fuenlabrada, 28042 Madrid, Spain; (M.H.); (A.A.); (D.R.-O.); (G.P.)
- Otorhinolaryngology Department, Hospital Universitario Sanitas La Zarzuela, 28023 Madrid, Spain
- Departamento de Especialidades Médicas y Salud Pública, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, 28933 Madrid, Spain
| | - Mayte Herrera
- Otorhinolaryngology Department, Hospital Universitario de Fuenlabrada, 28042 Madrid, Spain; (M.H.); (A.A.); (D.R.-O.); (G.P.)
- Otorhinolaryngology Department, Hospital Universitario Sanitas La Zarzuela, 28023 Madrid, Spain
| | - Anastasiya Avdiyuk
- Otorhinolaryngology Department, Hospital Universitario de Fuenlabrada, 28042 Madrid, Spain; (M.H.); (A.A.); (D.R.-O.); (G.P.)
| | - Daniel Rodríguez-Ocaña
- Otorhinolaryngology Department, Hospital Universitario de Fuenlabrada, 28042 Madrid, Spain; (M.H.); (A.A.); (D.R.-O.); (G.P.)
| | - Guillermo Plaza
- Otorhinolaryngology Department, Hospital Universitario de Fuenlabrada, 28042 Madrid, Spain; (M.H.); (A.A.); (D.R.-O.); (G.P.)
- Otorhinolaryngology Department, Hospital Universitario Sanitas La Zarzuela, 28023 Madrid, Spain
- Departamento de Especialidades Médicas y Salud Pública, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, 28933 Madrid, Spain
| |
Collapse
|
6
|
Lu X, Chen Y, Mo Y, Zeng Q, Cen S, Zeng L, Hu H, Li A, Gao X, Zhang B. Atomically dispersed copper(I) on tungstosilicic acid for catalytic protection against cisplatin-induced hearing loss. J Mater Chem B 2025; 13:3540-3552. [PMID: 39991827 DOI: 10.1039/d4tb02820a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The employment of platinum-based drugs for cancer chemotherapy, which might yield oxidative stress, is regarded as one main factor leading to hearing loss. The exact molecular mechanisms for cisplatin-induced hearing loss require further clarification, thus limiting the development of FDA-approved therapies. Herein, we mimicked the molecular structure of natural antioxidative enzymes to fabricate a four-oxygen-coordinating copper single-atom nanozyme (Cu SAN) exhibiting good superoxide dismutase and catalase activity, to alleviate the oxidative stress induced by platinum-based drugs. Notably, Cu SAN exhibited profound protective effects against cisplatin-induced hair cell damage with only 15 ng mL-1 of Cu species, successfully reversing cisplatin-induced hearing loss via oral administration. Due to its oxidation resistance, pretreatment with Cu SAN significantly improved cell viability and reduced ROS accumulation in cisplatin-triggered hair cell damage in HEI-OC1 cells and cochlear explants. Our results first demonstrated that cisplatin treatment induced cuproptosis in hair cells by modulating copper ion homeostasis. Further investigation revealed that Cu SAN nanozyme effectively alleviated hair cell cuproptosis by regulating FDX1 and reducing aggregated lipoacylated protein. This research underscores the promising potential of four-oxygen-coordinating Cu nanomaterials as a therapeutic approach to combat hearing loss, providing a new strategy for auditory protection.
Collapse
Affiliation(s)
- Xiaochan Lu
- Department of Otorhinolaryngology, Peking University Shenzhen Hospital, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, Shenzhen, 518036, China.
| | - Yin Chen
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China.
- Department of Otolaryngology and Head-and-Neck Surgery, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, 210008, China
| | - Yanmei Mo
- Department of Otorhinolaryngology, Peking University Shenzhen Hospital, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, Shenzhen, 518036, China.
| | - Qingdong Zeng
- Department of Otorhinolaryngology, Peking University Shenzhen Hospital, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, Shenzhen, 518036, China.
| | - Shaoqin Cen
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China.
- Department of Otolaryngology and Head-and-Neck Surgery, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, 210008, China
| | - Li Zeng
- Department of Otorhinolaryngology, Peking University Shenzhen Hospital, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, Shenzhen, 518036, China.
| | - Hongyi Hu
- Department of Otorhinolaryngology, Peking University Shenzhen Hospital, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, Shenzhen, 518036, China.
| | - Ao Li
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China.
- Department of Otolaryngology and Head-and-Neck Surgery, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, 210008, China
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China.
- Department of Otolaryngology and Head-and-Neck Surgery, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, 210008, China
| | - Bin Zhang
- Department of Otorhinolaryngology, Peking University Shenzhen Hospital, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, Shenzhen, 518036, China.
| |
Collapse
|
7
|
Huo Q, Chen C, Liao J, Zeng Q, Nie G, Zhang B. Application of self-assembly palladium single-atom nanozyme over polyoxometalates in protection against neomycin-induced hearing loss by inhibiting ferroptosis. Biomaterials 2024; 311:122665. [PMID: 38875882 DOI: 10.1016/j.biomaterials.2024.122665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Deafness mainly results from irreversible impairment of hair cells (HCs), which may relate to oxidative stress, yet therapeutical solutions is lacked due to limited understanding on the exact molecular mechanism. Herein, mimicking the molecular structure of natural enzymes, a palladium (Pd) single-atom nanozyme (SAN) was fabricated, exhibiting superoxide dismutase and catalase activity, transforming reactive oxygen species (ROS) into O2 and H2O. We examined the involvement of Pd in neomycin-induced HCs loss in vitro and in vivo over zebrafish. Our results revealed that neomycin treatment induced apoptosis in HCs, resulting in substantial of ROS elevation in HEI-OC1 cells, decrease in mitochondrial membrane potential, and increase in lipid peroxidation and iron accumulation, ultimately leading to iron-mediated cell death. Noteworthy, Pd SAN treatment exhibited significant protective effects against HCs damage and impaired HCs function in zebrafish by inhibiting ferroptosis. Furthermore, the application of iron death inducer RSL3 resulted in notable exacerbation of neomycin-induced harm, which was mitigated by Pd administration. Our investigation demonstrates that antioxidants is promising for inhibiting ferroptosis and repairing of mitochondrial function in HCs and the enzyme-mimic SAN provides a good strategy for designing drugs alleviating neomycin-induced ototoxicity.
Collapse
Affiliation(s)
- Qin Huo
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Medical School, Shenzhen University, Shenzhen, 518035, China
| | - Chen Chen
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Medical School, Shenzhen University, Shenzhen, 518035, China
| | - Jiahao Liao
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Medical School, Shenzhen University, Shenzhen, 518035, China
| | - Qingdong Zeng
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Medical School, Shenzhen University, Shenzhen, 518035, China
| | - Guohui Nie
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Medical School, Shenzhen University, Shenzhen, 518035, China.
| | - Bin Zhang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Medical School, Shenzhen University, Shenzhen, 518035, China.
| |
Collapse
|
8
|
Nieratschker M, Mistrik P, Petrasek Z, Yildiz E, Gadenstaetter AJ, Gerlitz M, Kramer AM, Kwiatkowska M, Braun S, Schlingensiepen R, Honeder C, Arnoldner C. Silicone-based AC102-loaded cochlear implant coatings protect residual hearing in an animal model of cochlear implantation. Hear Res 2024; 454:109150. [PMID: 39549622 DOI: 10.1016/j.heares.2024.109150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/22/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
Cochlear implant users with residual hearing benefit synergistically from combined electrical stimulation via the cochlear implant and preserved residual hearing after surgery. However, direct mechanical trauma and subsequent inflammation may deteriorate hearing function. AC102, a novel otoprotective pyridoindole with anti-apoptotic and anti-oxidative properties significantly improved hearing recovery following cochlear implantation when administered intratympanically prior to surgery. Additionally, AC102 exerts neurotrophic effects, possibly aiding in the preservation of auditory nerve fibers and spiral ganglion neurons. Rapid clearance of the drug, however, might be a limiting factor to further attenuate the inflammatory response and maintain neuronal health. The aim of the current study was to design an AC102-loaded electrode array for sustained drug delivery and investigate its effects in hearing preservation cochlear implantation. First, the release-kinetics of AC102 were investigated in vitro and modelled by the Higuchi equation of drug release. An electrode array coated with 10 % AC102 was manufactured, its release kinetics evaluated, and subsequently tested in vivo. 20 normal hearing Mongolian gerbils were unilaterally implanted with an AC102-loaded or an unloaded control electrode. Compound action potentials were measured prior to cochlear implantation and serially over 28 days. Hair cells, inner hair cell synapses, and auditory nerve fibers were quantified in cochlear whole-mounts by immunofluorescence staining. AC102 release from silicone coating could be predictably modelled by the Higuchi equation of drug release. The electrode array with an AC102-silicone depot enabled non-linear sustained drug release with initially higher release concentrations. In vivo, the AC102-loaded electrode array significantly recovered auditory threshold shifts near the maximum insertion depth over 28 days. In the apical region, a significant recovery was noticed only until day 14, after which threshold shifts aligned between groups. Histologically, AC102-loaded electrodes significantly preserved outer hair cells apical of the maximum insertion depth and inner hair cells and neuronal structures at the tip of the inserted electrode. In conclusion, the drug-loaded electrode arrays could predictably release AC102 over a period of 28 days. AC102 enabled the restoration of auditory thresholds near the area of maximum insertion, which is the desired region to be preserved in cochlear implant recipients with residual hearing.
Collapse
Affiliation(s)
- Michael Nieratschker
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | | | - Zdenek Petrasek
- Graz University of Technology, Institute of Biotechnology and Biochemical Engineering, Graz, Austria
| | - Erdem Yildiz
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Anselm J Gadenstaetter
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Matthias Gerlitz
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Anne-Margarethe Kramer
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria
| | | | | | | | - Clemens Honeder
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Christoph Arnoldner
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
9
|
Huang M, Mao S, Pan Y, Zhang Z, Gui F, Tan X, Hong Y, Chen R. Pesticide metabolite 3, 5, 6-trichloro-2-pyridinol causes massive damage to the cochlea resulting in hearing loss in adult mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124691. [PMID: 39134170 DOI: 10.1016/j.envpol.2024.124691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/08/2024] [Accepted: 08/05/2024] [Indexed: 08/25/2024]
Abstract
Pesticides are a group of extensively used man-made chemicals with high toxicity and strong residues, which are closely related to hearing health. Pesticide metabolite 3, 5, 6-Trichloro-2-pyridinol (TCP) exposure leads to neurotoxicity and auditory cell toxicity. However, whether TCP causes damage to hearing in adult mice is not clear. In this study, adult male C57BL/6 mice continuously exposed to TCP for 21 days showed a dose-dependent elevation of hearing threshold. Outer hair cells and spiral neuron cells were lost in a dose-dependent manner. Type I and V of spiral ligament were severely shrunk and stria vascularis were thinned in mice after 50 and 150 mg/kg TCP exposure. Similarly, ROS levels in the cochlea were significantly increased whereas the activities of anti-oxidation enzymes were decreased after TCP exposure. The expression level of Na+/K+ ATPase was decreased, resulting in cochlear potential disruption. Levels of inflammatory factors (TNF-α and IL-1β), γ-H2AX, and pro-apoptotic-related factors (Bax and cleaved-Caspase 3) were elevated, respectively. These results suggest that TCP can cause oxidative stress, inflammation, and imbalance of cochlear potential in the cochlea, induce cochlear DNA damage and apoptosis, and cause cochlear morphological changes, eventually leading to impaired hearing function.
Collapse
Affiliation(s)
- Mao Huang
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Shuangshuang Mao
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yunfei Pan
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Ziying Zhang
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Fei Gui
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Xiaohua Tan
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yu Hong
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Rong Chen
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
10
|
Salt AN, Turner JG. Drug selection for inner ear therapy. Front Pharmacol 2024; 15:1452927. [PMID: 39484167 PMCID: PMC11525065 DOI: 10.3389/fphar.2024.1452927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Introduction One of the primary tenets in pharmacotherapy is that the applied drug must reach the target tissue at therapeutic concentration. For many therapies intended to treat hearing disorders it has become apparent that we have failed to achieve this goal, contributing to poor outcomes in several important clinical trials. The crux of the delivery problem is that small lipophilic molecules pass with relative ease through membranous boundaries of the body. This initially seems advantageous when the drug is applied intratympanically, enabling entry into perilymph through the round window membrane. Unfortunately, the same property also allows the drug to pass through endothelial cells of blood capillaries, allowing it to be eliminated from perilymph. Drugs that are eliminated rapidly as they diffuse along the cochlear scalae will only treat basal high-frequency cochlear regions and will not reach therapeutic concentrations in the apical regions of the human cochlea. Methods We have used the FluidSim program, a computer model of the inner ear fluids, to derive perilymph elimination properties for 15 molecules from published and archival data sets, which are compared with calculated molecular properties. Results Smaller, lipophilic drugs are shown to be eliminated from perilymph more rapidly, with half-times as fast as 17 min, compared to larger, polar ones, with half-times as long as 1,304 min (21.7 h). Discussion Based on their molecular properties' drugs can be identified that distribute well along the cochlea when applied intratympanically. This excludes many drugs that have been used for, or are currently in development for, inner ear therapy. On the other hand, it opens a vast array of less-studied, larger molecules, many of which would be unsuitable for oral delivery (characterized as "not druglike") but representing promising candidates for local inner ear therapy. In the earliest stages of consideration, drugs need to be selected based on the properties which govern their ability to reach the appropriate target site and not whether they are efficacious in small animals or have high potency in vitro. Confirmation that the selected drug is reaching the target site(s) in a large animal model should ideally precede expensive clinical trials.
Collapse
Affiliation(s)
- Alec N. Salt
- Turner Scientific, Jacksonville, IL, United States
| | | |
Collapse
|
11
|
Nieratschker M, Yildiz E, Gerlitz M, Bera S, Gadenstaetter AJ, Kramer AM, Kwiatkowska M, Mistrik P, Landegger LD, Braun S, Schlingensiepen R, Honeder C, Arnoldner C, Rommelspacher H. A preoperative dose of the pyridoindole AC102 improves the recovery of residual hearing in a gerbil animal model of cochlear implantation. Cell Death Dis 2024; 15:531. [PMID: 39060244 PMCID: PMC11282255 DOI: 10.1038/s41419-024-06854-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024]
Abstract
Sensorineural hearing loss (SNHL) is the most common sensory deficit worldwide. Due to the heterogeneity of causes for SNHL, effective treatment options remain scarce, creating an unmet need for novel drugs in the field of otology. Cochlear implantation (CI) currently is the only established method to restore hearing function in profound SNHL and deaf patients. The cochlear implant bypasses the non-functioning sensory hair cells (HCs) and electrically stimulates the neurons of the cochlear nerve. CI also benefits patients with residual hearing by combined electrical and auditory stimulation. However, the insertion of an electrode array into the cochlea induces an inflammatory response, characterized by the expression of pro-inflammatory cytokines, upregulation of reactive oxygen species, and apoptosis and necrosis of HCs, putting residual hearing at risk. Here, we characterize the small molecule AC102, a pyridoindole, for its protective effects on residual hearing in CI. In a gerbil animal model of CI, AC102 significantly improves the recovery of hearing thresholds across multiple frequencies and confines the cochlear trauma to the directly mechanically injured area. In addition, AC102 significantly preserves auditory nerve fibers and inner HC synapses throughout the whole cochlea. In vitro experiments in an ethanol challenged HT22 cell-line revealed significant and dose-responsive anti-apoptotic effects following the treatment of with AC102. Further, AC102 treatment resulted in significant downregulation of the expression of pro-inflammatory cytokines in an organotypic ex vivo model of electrode insertion trauma (EIT). These results suggest that AC102's effects are likely elicited during the inflammatory phase of EIT and mediated by anti-apoptotic and anti-inflammatory properties, highlighting AC102 as a promising compound for hearing preservation during CI. Moreover, since the inflammatory response in CI shares similarities to that in other etiologies of SNHL, AC102 may be inferred as a potential general treatment option for various inner ear conditions.
Collapse
Affiliation(s)
- Michael Nieratschker
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Erdem Yildiz
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Matthias Gerlitz
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | | | - Anselm J Gadenstaetter
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Anne-Margarethe Kramer
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria
| | | | | | - Lukas D Landegger
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | | | | | - Clemens Honeder
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Christoph Arnoldner
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria.
| | | |
Collapse
|