1
|
Borkunov GV, Kirichuk NN, Chausova VE, Popov RS, Zhuravleva OI, Chingizova EA, Yurchenko EA, Isaeva MP, Yurchenko AN. Differences in Metabolite Profiles and Bioactivities of Intra-Strain Variants of Marine Fungus Penicillium antarcticum KMM 4668. Metabolites 2025; 15:77. [PMID: 39997702 PMCID: PMC11857625 DOI: 10.3390/metabo15020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Background: During the cultivation of the marine fungus KMM 4668 on solid agar medium, the morphological instability of the strain was observed. As a result of the selection work, five intra-strain variants, named KMM 4711, KMM 4712, KMM 4713, KMM 4714, and KMM 4715, were obtained. Methods: The main objectives of this work were to compare the parent strain and its intra-strain variants using multi-locus phylogenetic analysis and to study the UPLC MS metabolite profiles and cytotoxic activities of their extracts. Results: A study of the original strain, KMM 4668, and its intra-strain variants using multi-locus phylogenetic analysis showed that they are sequence identical and belong to Penicillium antarcticum. UPLC MS metabolite profiling of fungal extracts revealed 20 compounds, including cladosporin-related polyketides, carotane sesquiterpenoids, andrastine meroterpenoids, and alkaloids. It was shown that the intra-strain variants KMM 4713 and KMM 4714 differed most strongly from the others in the increased production of cladosporin-related compounds, carotanoids, and the alkaloid chrysogin. In addition, the influence of fungal extracts on the viability of four mammalian cell lines was investigated. Conclusions: It has been shown that the intra-strain variants of P. antarcticum KMM 4668 may be promising sources of bioactive secondary metabolites.
Collapse
Affiliation(s)
- Gleb V. Borkunov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok 690022, Russia (R.S.P.); (E.A.C.); (E.A.Y.); (M.P.I.)
- Laboratory of Biologically Active Compounds, Institute of High Technologies and Advanced Materials, Far Eastern Federal University, Vladivostok 690922, Russia
| | - Natalya N. Kirichuk
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok 690022, Russia (R.S.P.); (E.A.C.); (E.A.Y.); (M.P.I.)
| | - Viktoria E. Chausova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok 690022, Russia (R.S.P.); (E.A.C.); (E.A.Y.); (M.P.I.)
| | - Roman S. Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok 690022, Russia (R.S.P.); (E.A.C.); (E.A.Y.); (M.P.I.)
| | - Olesya I. Zhuravleva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok 690022, Russia (R.S.P.); (E.A.C.); (E.A.Y.); (M.P.I.)
| | - Ekaterina A. Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok 690022, Russia (R.S.P.); (E.A.C.); (E.A.Y.); (M.P.I.)
| | - Ekaterina A. Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok 690022, Russia (R.S.P.); (E.A.C.); (E.A.Y.); (M.P.I.)
| | - Marina P. Isaeva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok 690022, Russia (R.S.P.); (E.A.C.); (E.A.Y.); (M.P.I.)
| | - Anton N. Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok 690022, Russia (R.S.P.); (E.A.C.); (E.A.Y.); (M.P.I.)
| |
Collapse
|
2
|
Murante D, Hogan DA. Drivers of diversification in fungal pathogen populations. PLoS Pathog 2024; 20:e1012430. [PMID: 39264909 PMCID: PMC11392411 DOI: 10.1371/journal.ppat.1012430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
Abstract
To manage and treat chronic fungal diseases effectively, we require an improved understanding of their complexity. There is an increasing appreciation that chronic infection populations are often heterogeneous due to diversification and drift, even within a single microbial species. Genetically diverse populations can contribute to persistence and resistance to treatment by maintaining cells with different phenotypes capable of thriving in these dynamic environments. In chronic infections, fungal pathogens undergo prolonged challenges that can drive trait selection to convergent adapted states through restricted access to critical nutrients, assault by immune effectors, competition with other species, and antifungal drugs. This review first highlights the various genetic and epigenetic mechanisms that promote diversity in pathogenic fungal populations and provide an additional barrier to assessing the actual heterogeneity of fungal infections. We then review existing studies of evolution and genetic heterogeneity in fungal populations from lung infections associated with the genetic disease cystic fibrosis. We conclude with a discussion of open research questions that, once answered, may aid in diagnosing and treating chronic fungal infections.
Collapse
Affiliation(s)
- Daniel Murante
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Deborah Ann Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
3
|
Deng Y, Xu M, Li S, Bing J, Zheng Q, Huang G, Liao W, Pan W, Tao L. A single gene mutation underpins metabolic adaptation and acquisition of filamentous competence in the emerging fungal pathogen Candida auris. PLoS Pathog 2024; 20:e1012362. [PMID: 38976759 PMCID: PMC11257696 DOI: 10.1371/journal.ppat.1012362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/18/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
Filamentous cell growth is a vital property of fungal pathogens. The mechanisms of filamentation in the emerging multidrug-resistant fungal pathogen Candida auris are poorly understood. Here, we show that exposure of C. auris to glycerol triggers a rod-like filamentation-competent (RL-FC) phenotype, which forms elongated filamentous cells after a prolonged culture period. Whole-genome sequencing analysis reveals that all RL-FC isolates harbor a mutation in the C2H2 zinc finger transcription factor-encoding gene GFC1 (Gfc1 variants). Deletion of GFC1 leads to an RL-FC phenotype similar to that observed in Gfc1 variants. We further demonstrate that GFC1 mutation causes enhanced fatty acid β-oxidation metabolism and thereby promotes RL-FC/filamentous growth. This regulation is achieved through a Multiple Carbon source Utilizer (Mcu1)-dependent mechanism. Interestingly, both the evolved RL-FC isolates and the gfc1Δ mutant exhibit an enhanced ability to colonize the skin. Our results reveal that glycerol-mediated GFC1 mutations are beneficial during C. auris skin colonization and infection.
Collapse
Affiliation(s)
- Yuchen Deng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ming Xu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuaihu Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Bing
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiushi Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Guanghua Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Wanqing Liao
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Weihua Pan
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Li Tao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
4
|
Soll DR. White-opaque switching in Candida albicans: cell biology, regulation, and function. Microbiol Mol Biol Rev 2024; 88:e0004322. [PMID: 38546228 PMCID: PMC11332339 DOI: 10.1128/mmbr.00043-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024] Open
Abstract
SUMMARYCandida albicans remains a major fungal pathogen colonizing humans and opportunistically invading tissue when conditions are predisposing. Part of the success of C. albicans was attributed to its capacity to form hyphae that facilitate tissue invasion. However, in 1987, a second developmental program was discovered, the "white-opaque transition," a high-frequency reversible switching system that impacted most aspects of the physiology, cell architecture, virulence, and gene expression of C. albicans. For the 15 years following the discovery of white-opaque switching, its role in the biology of C. albicans remained elusive. Then in 2002, it was discovered that in order to mate, C. albicans had to switch from white to opaque, a unique step in a yeast mating program. In 2006, three laboratories simultaneously identified a putative master switch gene, which led to a major quest to elucidate the underlying mechanisms that regulate white-opaque switching. Here, the evolving discoveries related to this complicated phenotypic transition are reviewed in a quasi-chronological order not only to provide a historical perspective but also to highlight several unique characteristics of white-opaque switching, which are fascinating and may be important to the life history and virulence of this persistent pathogen. Many of these characteristics have not been fully investigated, in many cases, leaving intriguing questions unresolved. Some of these include the function of unique channeled pimples on the opaque cell wall, the capacity to form opaque cells in the absence of the master switch gene WOR1, the formation of separate "pathogenic" and "sexual" biofilms, and the possibility that a significant portion of natural strains colonizing the lower gastrointestinal tract may be in the opaque phase. This review addresses many of these characteristics with the intent of engendering interest in resolving questions that remain unanswered.
Collapse
Affiliation(s)
- David R. Soll
- Department of Biology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
5
|
Luo Z, Xiong D, Tian C. The Roles of Gti1/Pac2 Family Proteins in Fungal Growth, Morphogenesis, Stress Response, and Pathogenicity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:488-497. [PMID: 38427716 DOI: 10.1094/mpmi-11-23-0198-cr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Gti1/Pac2 is a fungal-specific transcription factor family with a stable and conserved N-terminal domain. Generally, there are two members in this family, named Gti1/Wor1/Rpy1/Mit1/Reg1/Ros1/Sge1 and Pac2, which are involved in fungal growth, development, stress response, spore production, pathogenicity, and so on. The Gti1/Pac2 family proteins share some conserved and distinct functions. For example, in Schizosaccharomyces pombe, Gti1 promotes the initiation of gluconate uptake during glucose starvation, while Pac2 controls the onset of sexual development in a pathway independent of the cAMP cascade. In the last two decades, more attention was focused on the Gti1 and its orthologs because of their significant effect on morphological switching and fungal virulence. By contrast, limited work was published on the functions of Pac2, which is required for stress responses and conidiation, but plays a minor role in fungal virulence. In this review, we present an overview of our current understanding of the Gti1/Pac2 proteins that contribute to fungal development and/or pathogenicity and of the regulation mechanisms during infection related development. Understanding the working networks of the conserved Gti1/Pac2 transcription factors in fungal pathogenicity not only advances our knowledge of the highly elaborate infection process but may also lead to the development of novel strategies for the control of plant disease. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Zheng Luo
- State Key laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Dianguang Xiong
- State Key laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Chengming Tian
- State Key laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
6
|
Woodruff AL, Berman J, Anderson M. Strain background of Candida albicans interacts with SIR2 to alter phenotypic switching. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001444. [PMID: 38446018 PMCID: PMC10999749 DOI: 10.1099/mic.0.001444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/15/2024] [Indexed: 03/07/2024]
Abstract
The genetic background between strains of a single species and within a single strain lineage can significantly impact the expression of biological traits. This genetic variation may also reshape epigenetic mechanisms of cell identity and environmental responses that are controlled by interconnected transcriptional networks and chromatin-modifying enzymes. Histone deacetylases, including sirtuins, are critical regulators of chromatin state and have been directly implicated in governing the phenotypic transition between the 'sterile' white state and the mating-competent opaque state in Candida albicans, a common fungal commensal and pathogen of humans. Here, we found that a previously ambiguous role for the sirtuin SIR2 in C. albicans phenotypic switching is likely linked to the genetic background of mutant strains produced in the RM lineage of SC5314. SIR2 mutants in a specific lineage of BWP17 displayed increased frequencies of switching to the opaque state compared to the wild-type. Loss of SIR2 in other SC5314-derived backgrounds, including newly constructed BWP17 sir2Δ/Δ mutants, failed to recapitulate the increased white-opaque switching frequencies observed in the original BWP17 sir2Δ/Δ mutant background. Whole-genome sequencing revealed the presence of multiple imbalanced chromosomes and large loss of heterozygosity tracts that likely interact with SIR2 to increase phenotypic switching in this BWP17 sir2Δ/Δ mutant lineage. These genomic changes are not found in other SC5314-derived sir2Δ/Δ mutants that do not display increased opaque cell formation. Thus, complex karyotypes can emerge during strain construction that modify mutant phenotypes and highlight the importance of validating strain background when interpreting phenotypes.
Collapse
Affiliation(s)
- Andrew L. Woodruff
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA
| | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, The George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Matthew Anderson
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
- Department of Medical Genetics, Laboratory of Genetics, University of Wisconsin – Madison, Madison, WI, 53706, USA
- Center for Genomic Science Innovation, University of Wisconsin – Madison, Madison, WI, 53706, USA
| |
Collapse
|
7
|
Alonso-Monge R, Cortés-Prieto I, Román E, Pla J. Morphogenetic transitions in the adaptation of Candida albicans to the mammalian gut. Microbes Infect 2024; 26:105253. [PMID: 37977323 DOI: 10.1016/j.micinf.2023.105253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/06/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Candida albicans is a pathobiont in humans that forms part of the mycobiota in healthy individuals and can cause different pathologies upon alterations of the host defenses. The mammalian gut is clinically relevant as this niche is the most common pool for bloodstream-derived infections. The ability of C. albicans to switch from yeast to hypha has been related to the commensal-to-pathogen transition and is, therefore, considered relevant in virulence. Recently, filaments have been implicated in the humoral response in the gut. C. albicans exhibits other morphologies that play different roles in pathogenicity and commensalism. This review focuses on the role of these morphological transitions in C. albicans proliferation and its establishment as a commensal in the mammalian gut, paying special attention to the transcription factors involved in their regulation.
Collapse
Affiliation(s)
- Rebeca Alonso-Monge
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Isabel Cortés-Prieto
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Elvira Román
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Jesús Pla
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.
| |
Collapse
|
8
|
Lohse MB, Ziv N, Johnson AD. Variation in transcription regulator expression underlies differences in white-opaque switching between the SC5314 reference strain and the majority of Candida albicans clinical isolates. Genetics 2023; 225:iyad162. [PMID: 37811798 PMCID: PMC10627253 DOI: 10.1093/genetics/iyad162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/26/2023] [Indexed: 10/10/2023] Open
Abstract
Candida albicans, a normal member of the human microbiome and an opportunistic fungal pathogen, undergoes several morphological transitions. One of these transitions is white-opaque switching, where C. albicans alternates between 2 stable cell types with distinct cellular and colony morphologies, metabolic preferences, mating abilities, and interactions with the innate immune system. White-to-opaque switching is regulated by mating type; it is repressed by the a1/α2 heterodimer in a/α cells, but this repression is lifted in a/a and α/α mating type cells (each of which are missing half of the repressor). The widely used C. albicans reference strain, SC5314, is unusual in that white-opaque switching is completely blocked when the cells are a/α; in contrast, most other C. albicans a/α strains can undergo white-opaque switching at an observable level. In this paper, we uncover the reason for this difference. We show that, in addition to repression by the a1/α2 heterodimer, SC5314 contains a second block to white-opaque switching: 4 transcription regulators of filamentous growth are upregulated in this strain and collectively suppress white-opaque switching. This second block is missing in the majority of clinical strains, and, although they still contain the a1/α2 heterodimer repressor, they exhibit a/α white-opaque switching at an observable level. When both blocks are absent, white-opaque switching occurs at very high levels. This work shows that white-opaque switching remains intact across a broad group of clinical strains, but the precise way it is regulated and therefore the frequency at which it occurs varies from strain to strain.
Collapse
Affiliation(s)
- Matthew B Lohse
- Department of Microbiology and Immunology, University of California - San Francisco, San Francisco, CA 94143, USA
| | - Naomi Ziv
- Department of Microbiology and Immunology, University of California - San Francisco, San Francisco, CA 94143, USA
| | - Alexander D Johnson
- Department of Microbiology and Immunology, University of California - San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
9
|
Guan G, Tao L, Li C, Xu M, Liu L, Bennett RJ, Huang G. Glucose depletion enables Candida albicans mating independently of the epigenetic white-opaque switch. Nat Commun 2023; 14:2067. [PMID: 37045865 PMCID: PMC10097730 DOI: 10.1038/s41467-023-37755-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
The human fungal pathogen Candida albicans can switch stochastically and heritably between a "white" phase and an "opaque" phase. Opaque cells are the mating-competent form of the species, whereas white cells are thought to be essentially "sterile". Here, we report that glucose depletion, a common nutrient stress, enables C. albicans white cells to undergo efficient sexual mating. The relative expression levels of pheromone-sensing and mating-associated genes (including STE2/3, MFA1, MFα1, FIG1, FUS1, and CEK1/2) are increased under glucose depletion conditions, while expression of mating repressors TEC1 and DIG1 is decreased. Cph1 and Tec1, factors that act downstream of the pheromone MAPK pathway, play opposite roles in regulating white cell mating as TEC1 deletion or CPH1 overexpression promotes white cell mating. Moreover, inactivation of the Cph1 repressor Dig1 increases white cell mating ~4000 fold in glucose-depleted medium relative to that in the presence of glucose. Our findings reveal that the white-to-opaque epigenetic switch may not be a prerequisite for sexual mating in C. albicans in nature.
Collapse
Affiliation(s)
- Guobo Guan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Tao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Chao Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ming Xu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Richard J Bennett
- Molecular Microbiology and Immunology Department, Brown University, Providence, RI, 02912, USA
| | - Guanghua Huang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China.
- Shanghai Huashen Institute of Microbes and Infections, Shanghai, 200052, China.
| |
Collapse
|
10
|
Prasad P, Tippana M. Morphogenic plasticity: the pathogenic attribute of Candida albicans. Curr Genet 2023; 69:77-89. [PMID: 36947241 DOI: 10.1007/s00294-023-01263-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 03/23/2023]
Abstract
Candida albicans is a commensal organism of the human gastrointestinal tract and a prevalent opportunistic pathogen. It exhibits different morphogenic forms to survive in different host niches with distinct environmental conditions (pH, temperature, oxidative stress, nutrients, serum, chemicals, radiation, etc.) and genetic factors (transcription factors and genes). The different morphogenic forms of C. albicans are yeast, hyphal, pseudohyphal, white, opaque, and transient gray cells, planktonic and biofilm forms of cells. These forms differ in the parameters like cellular phenotype, colony morphology, adhesion to solid surfaces, gene expression profile, and the virulent traits. Each form is functionally distinct and responds discretely to the host immune system and antifungal drugs. Hence, morphogenic plasticity is the key to virulence. In this review, we address the characteristics, the pathogenic potential of the different morphogenic forms and the conditions required for morphogenic transitions.
Collapse
Affiliation(s)
- Priya Prasad
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India.
| | - Meena Tippana
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India
| |
Collapse
|
11
|
Brenes LR, Johnson AD, Lohse MB. Farnesol and phosphorylation of the transcriptional regulator Efg1 affect Candida albicans white-opaque switching rates. PLoS One 2023; 18:e0280233. [PMID: 36662710 PMCID: PMC9858334 DOI: 10.1371/journal.pone.0280233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/24/2022] [Indexed: 01/21/2023] Open
Abstract
Candida albicans is a normal member of the human microbiome and an opportunistic fungal pathogen. This species undergoes several morphological transitions, and here we consider white-opaque switching. In this switching program, C. albicans reversibly alternates between two cell types, named "white" and "opaque," each of which is normally stable across thousands of cell divisions. Although switching under most conditions is stochastic and rare, certain environmental signals or genetic manipulations can dramatically increase the rate of switching. Here, we report the identification of two new inputs which affect white-to-opaque switching rates. The first, exposure to sub-micromolar concentrations of (E,E)-farnesol, reduces white-to-opaque switching by ten-fold or more. The second input, an inferred PKA phosphorylation of residue T208 on the transcriptional regulator Efg1, increases white-to-opaque switching ten-fold. Combining these and other environmental inputs results in a variety of different switching rates, indicating that a given rate represents the integration of multiple inputs.
Collapse
Affiliation(s)
- Lucas R. Brenes
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Alexander D. Johnson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America
| | - Matthew B. Lohse
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
12
|
Zaongo SD, Ouyang J, Isnard S, Zhou X, Harypursat V, Cui H, Routy JP, Chen Y. Candida albicans can foster gut dysbiosis and systemic inflammation during HIV infection. Gut Microbes 2023; 15:2167171. [PMID: 36722096 PMCID: PMC9897780 DOI: 10.1080/19490976.2023.2167171] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Candida albicans (C. albicans) is a ubiquitous fungal commensal component of the human microbiota, and under certain circumstances, such as during an immunocompromised state, it may initiate different types of infection. Moreover, C. albicans continuously and reciprocally interacts with the host immune system as well as with other elements of the gut microbiota, thus contributing significantly to both gut homeostasis and host immunity. People living with HIV (PLWH), including those receiving antiretroviral therapy, are characterized by a depletion of CD4 + T-cells and dysbiosis in their gut. C. albicans colonization is frequent in PLWH, causing both a high prevalence and high morbidity. Gut barrier damage and elevated levels of microbial translocation are also fairly common in this population. Herein, we take a closer look at the reciprocity among C. albicans, gut microbiota, HIV, and the host immune system, thus throwing some light on this complex interplay.
Collapse
Affiliation(s)
- Silvere D Zaongo
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China,Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Stéphane Isnard
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada,Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada,Canadian HIV Trials Network, Canadian Institutes for Health Research, Vancouver, British Columbia, Canada
| | - Xin Zhou
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Vijay Harypursat
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada,Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada,Division of Hematology, McGill University Health Centre, Montréal, QC, Canada
| | - Yaokai Chen
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China,Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China,CONTACT Yaokai Chen Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
13
|
Rao KH, Paul S, Natarajan K, Ghosh S. N-acetylglucosamine kinase, Hxk1is a multifaceted metabolic enzyme in model pathogenic yeast Candida albicans. Microbiol Res 2022; 263:127146. [DOI: 10.1016/j.micres.2022.127146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 10/16/2022]
|
14
|
Role of Cellular Metabolism during Candida-Host Interactions. Pathogens 2022; 11:pathogens11020184. [PMID: 35215128 PMCID: PMC8875223 DOI: 10.3390/pathogens11020184] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Microscopic fungi are widely present in the environment and, more importantly, are also an essential part of the human healthy mycobiota. However, many species can become pathogenic under certain circumstances, with Candida spp. being the most clinically relevant fungi. In recent years, the importance of metabolism and nutrient availability for fungi-host interactions have been highlighted. Upon activation, immune and other host cells reshape their metabolism to fulfil the energy-demanding process of generating an immune response. This includes macrophage upregulation of glucose uptake and processing via aerobic glycolysis. On the other side, Candida modulates its metabolic pathways to adapt to the usually hostile environment in the host, such as the lumen of phagolysosomes. Further understanding on metabolic interactions between host and fungal cells would potentially lead to novel/enhanced antifungal therapies to fight these infections. Therefore, this review paper focuses on how cellular metabolism, of both host cells and Candida, and the nutritional environment impact on the interplay between host and fungal cells.
Collapse
|
15
|
Dohn R, Xie B, Back R, Selewa A, Eckart H, Rao RP, Basu A. mDrop-Seq: Massively Parallel Single-Cell RNA-Seq of Saccharomyces cerevisiae and Candida albicans. Vaccines (Basel) 2021; 10:vaccines10010030. [PMID: 35062691 PMCID: PMC8779198 DOI: 10.3390/vaccines10010030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Advances in high-throughput single-cell RNA sequencing (scRNA-seq) have been limited by technical challenges such as tough cell walls and low RNA quantity that prevent transcriptomic profiling of microbial species at throughput. We present microbial Drop-seq or mDrop-seq, a high-throughput scRNA-seq technique that is demonstrated on two yeast species, Saccharomyces cerevisiae, a popular model organism, and Candida albicans, a common opportunistic pathogen. We benchmarked mDrop-seq for sensitivity and specificity and used it to profile 35,109 S. cerevisiae cells to detect variation in mRNA levels between them. As a proof of concept, we quantified expression differences in heat shock S. cerevisiae using mDrop-seq. We detected differential activation of stress response genes within a seemingly homogenous population of S. cerevisiae under heat shock. We also applied mDrop-seq to C. albicans cells, a polymorphic and clinically relevant species of yeast with a thicker cell wall compared to S. cerevisiae. Single-cell transcriptomes in 39,705 C. albicans cells were characterized using mDrop-seq under different conditions, including exposure to fluconazole, a common anti-fungal drug. We noted differential regulation in stress response and drug target pathways between C. albicans cells, changes in cell cycle patterns and marked increases in histone activity when treated with fluconazole. We demonstrate mDrop-seq to be an affordable and scalable technique that can quantify the variability in gene expression in different yeast species. We hope that mDrop-seq will lead to a better understanding of genetic variation in pathogens in response to stimuli and find immediate applications in investigating drug resistance, infection outcome and developing new drugs and treatment strategies.
Collapse
Affiliation(s)
- Ryan Dohn
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (B.X.); (R.B.); (A.S.); (H.E.); (A.B.)
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
- Correspondence:
| | - Bingqing Xie
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (B.X.); (R.B.); (A.S.); (H.E.); (A.B.)
| | - Rebecca Back
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (B.X.); (R.B.); (A.S.); (H.E.); (A.B.)
| | - Alan Selewa
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (B.X.); (R.B.); (A.S.); (H.E.); (A.B.)
- Biophysical Sciences Graduate Program, University of Chicago, Chicago, IL 60637, USA
| | - Heather Eckart
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (B.X.); (R.B.); (A.S.); (H.E.); (A.B.)
| | - Reeta Prusty Rao
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA;
| | - Anindita Basu
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (B.X.); (R.B.); (A.S.); (H.E.); (A.B.)
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
- Biophysical Sciences Graduate Program, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
16
|
Phenotypic Switching and Filamentation in Candida haemulonii, an Emerging Opportunistic Pathogen of Humans. Microbiol Spectr 2021; 9:e0077921. [PMID: 34878301 PMCID: PMC8653834 DOI: 10.1128/spectrum.00779-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Phenotypic plasticity is a common strategy adopted by fungal pathogens to adapt to diverse host environments. Candida haemulonii is an emerging multidrug-resistant human pathogen that is closely related to Candida auris. Until recently, it was assumed that C. haemulonii is incapable of phenotypic switching or filamentous growth. In this study, we report the identification of three distinct phenotypes in C. haemulonii: white, pink, and filament. The white and pink phenotypes differ in cellular size, colony morphology, and coloration on phloxine B- or CuSO4-containing agar. Switching between the white and pink cell types is heritable and reversible and is referred to as “the primary switching system.” The additional switch phenotype, filament, has been identified and exhibits obviously filamentous morphology when grown on glycerol-containing medium. Several unique characteristics of the filamentous phenotype suggest that switching from or to this phenotype poses as a second yeast-filament switching system. The yeast-filament switch is nonheritable and temperature-dependent. Low temperatures favor the filamentous phenotype, whereas high temperatures promote filament-yeast transition. We further demonstrated that numerous aspects of the distinct cell types differ in numerous biological aspects, including their high temperature response, specific gene expression, CuSO4 tolerance, secreted aspartyl protease (SAP) activity, and virulence. Therefore, transition among the three phenotypes could enable C. haemulonii to rapidly adapt to, survive, and thrive in certain host niches, thereby contributing to its virulence. IMPORTANCE The capacity to switch between distinct cell types, known as phenotypic switching, is a common strategy adopted by Candida species to adapt to diverse environments. Despite considerable studies on phenotypic plasticity of various Candida species, Candida haemulonii is considered to be incapable of phenotypic switching or filamentous growth. Here, we report and describe filamentation and three distinct phenotypes (white, pink, and filament) in C. haemulonii. The three cell types differ in cellular and colony appearance, gene expression profiles, CuSO4 tolerance, and virulence. C. haemulonii cells switch heritably and reversibly between white and pink cell types, which is referred to as the “primary switching system.” Switching between pink and filamentous phenotypes is nonheritable and temperature-dependent, representing a second switching system. As in other Candida species, switching among distinct morphological types may provide C. haemulonii with phenotypic plasticity for rapid responses to the changing host environment, and may contribute to its virulence.
Collapse
|
17
|
Abstract
During induced differentiation, the process often involves a commitment event, after which induced cells, when returned to noninducing conditions, continue to differentiate. The commitment event is rarely identified. Candida albicans differentiates from the white to opaque phenotype, a prerequisite for mating and a process accompanying colonization of the lower gastrointestinal tract and skin. In analyses of white cell populations induced to synchronously differentiate from the white to opaque phenotype, opaque commitment occurs at approximately the same time as evagination and chitin ring formation in the process of daughter cell formation, several hours after the master switch gene WOR1 is upregulated. Mutational analyses of transcription factor binding regions P1, P2, P3, P4, and P6 of the WOR1 promoter reveal that individual deletion of any of the five transcription factor binding regions does not eliminate morphological differentiation to the opaque cell phenotype under opaque-inducing conditions, but individual deletion of P2, P3, or P4, blocks opaque commitment and maintenance of the opaque phenotype after transition to noninducing conditions. These results suggest that commitment occurs at the level of the WOR1 promoter and that morphological differentiation can be dissociated from phenotypic commitment.
Collapse
|
18
|
Varahan S, Laxman S. Bend or break: how biochemically versatile molecules enable metabolic division of labor in clonal microbial communities. Genetics 2021; 219:iyab109. [PMID: 34849891 PMCID: PMC8633146 DOI: 10.1093/genetics/iyab109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/29/2021] [Indexed: 02/05/2023] Open
Abstract
In fluctuating nutrient environments, isogenic microbial cells transition into "multicellular" communities composed of phenotypically heterogeneous cells, showing functional specialization. In fungi (such as budding yeast), phenotypic heterogeneity is often described in the context of cells switching between different morphotypes (e.g., yeast to hyphae/pseudohyphae or white/opaque transitions in Candida albicans). However, more fundamental forms of metabolic heterogeneity are seen in clonal Saccharomyces cerevisiae communities growing in nutrient-limited conditions. Cells within such communities exhibit contrasting, specialized metabolic states, and are arranged in distinct, spatially organized groups. In this study, we explain how such an organization can stem from self-organizing biochemical reactions that depend on special metabolites. These metabolites exhibit plasticity in function, wherein the same metabolites are metabolized and utilized for distinct purposes by different cells. This in turn allows cell groups to function as specialized, interdependent cross-feeding systems which support distinct metabolic processes. Exemplifying a system where cells exhibit either gluconeogenic or glycolytic states, we highlight how available metabolites can drive favored biochemical pathways to produce new, limiting resources. These new resources can themselves be consumed or utilized distinctly by cells in different metabolic states. This thereby enables cell groups to sustain contrasting, even apparently impossible metabolic states with stable transcriptional and metabolic signatures for a given environment, and divide labor in order to increase community fitness or survival. We speculate on possible evolutionary implications of such metabolic specialization and division of labor in isogenic microbial communities.
Collapse
Affiliation(s)
- Sriram Varahan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru 560065, India
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru 560065, India
| |
Collapse
|
19
|
Lok B, Adam MAA, Kamal LZM, Chukwudi NA, Sandai R, Sandai D. The assimilation of different carbon sources in Candida albicans: Fitness and pathogenicity. Med Mycol 2021; 59:115-125. [PMID: 32944760 DOI: 10.1093/mmy/myaa080] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 01/31/2023] Open
Abstract
Candida albicans is a commensal yeast commonly found on the skin and in the body. However, in immunocompromised individuals, the fungi could cause local and systemic infections. The carbon source available plays an important role in the establishment of C. albicans infections. The fungi's ability to assimilate a variety of carbon sources plays a vital role in its colonization, and by extension, its fitness and pathogenicity, as it often inhabits niches that are glucose-limited but rich in alternative carbon sources. A difference in carbon sources affect the growth and mating of C. albicans, which contributes to its pathogenicity as proliferation helps the fungi colonize its environment. The carbon source also affects its metabolism and signaling pathways, which are integral parts of the fungi's fitness and pathogenicity. As a big percentage of the carbon assimilated by C. albicans goes to cell wall biogenesis, the availability of different carbon sources will result in cell walls with variations in rigidity, adhesion, and surface hydrophobicity. In addition to the biofilm formation of the fungi, the carbon source also influences whether the fungi grow in yeast- or mycelial-form. Both forms play different roles in C. albicans's infection process. A better understanding of the role of the carbon sources in C. albicans's pathogenicity would contribute to more effective treatment solutions for fungal infections.
Collapse
Affiliation(s)
- Bronwyn Lok
- Infectomics Cluster, Advance Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Mowaffaq Adam Ahmad Adam
- Infectomics Cluster, Advance Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Laina Zarisa Mohd Kamal
- Infectomics Cluster, Advance Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Nwakpa Anthony Chukwudi
- Infectomics Cluster, Advance Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Rosline Sandai
- Faculty of Languages and Communication, Universiti Pendidikan Sultan Idris, Perak Darul Ridzuan, Malaysia
| | - Doblin Sandai
- Infectomics Cluster, Advance Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
20
|
Jenull S, Mair T, Tscherner M, Penninger P, Zwolanek F, Silao FGS, de San Vicente KM, Riedelberger M, Bandari NC, Shivarathri R, Petryshyn A, Chauhan N, Zacchi LF, -Landmann SL, Ljungdahl PO, Kuchler K. The histone chaperone HIR maintains chromatin states to control nitrogen assimilation and fungal virulence. Cell Rep 2021; 36:109406. [PMID: 34289370 PMCID: PMC8493472 DOI: 10.1016/j.celrep.2021.109406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/10/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
Adaptation to changing environments and immune evasion is pivotal for fitness of pathogens. Yet, the underlying mechanisms remain largely unknown. Adaptation is governed by dynamic transcriptional re-programming, which is tightly connected to chromatin architecture. Here, we report a pivotal role for the HIR histone chaperone complex in modulating virulence of the human fungal pathogen Candida albicans. Genetic ablation of HIR function alters chromatin accessibility linked to aberrant transcriptional responses to protein as nitrogen source. This accelerates metabolic adaptation and increases the release of extracellular proteases, which enables scavenging of alternative nitrogen sources. Furthermore, HIR controls fungal virulence, as HIR1 deletion leads to differential recognition by immune cells and hypervirulence in a mouse model of systemic infection. This work provides mechanistic insights into chromatin-coupled regulatory mechanisms that fine-tune pathogen gene expression and virulence. Furthermore, the data point toward the requirement of refined screening approaches to exploit chromatin modifications as antifungal strategies.
Collapse
Affiliation(s)
- Sabrina Jenull
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, 1030 Vienna, Austria
| | - Theresia Mair
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, 1030 Vienna, Austria
| | - Michael Tscherner
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, 1030 Vienna, Austria
| | - Philipp Penninger
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, 1030 Vienna, Austria
| | - Florian Zwolanek
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, 1030 Vienna, Austria
| | - Fitz-Gerald S Silao
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Kontxi Martinez de San Vicente
- Section of Immunology, Vetsuisse Faculty, University of Zürich, 8006 Zürich, Switzerland; Institute of Experimental Immunology, University of Zürich, 8057 Zürich, Switzerland
| | - Michael Riedelberger
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, 1030 Vienna, Austria
| | - Naga C Bandari
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Raju Shivarathri
- Public Health Research Institute, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | - Andriy Petryshyn
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, 1030 Vienna, Austria
| | - Neeraj Chauhan
- Public Health Research Institute, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA; Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Lucia F Zacchi
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Salomé LeibundGut -Landmann
- Section of Immunology, Vetsuisse Faculty, University of Zürich, 8006 Zürich, Switzerland; Institute of Experimental Immunology, University of Zürich, 8057 Zürich, Switzerland
| | - Per O Ljungdahl
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Karl Kuchler
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, 1030 Vienna, Austria.
| |
Collapse
|
21
|
Padder SA, Ramzan A, Tahir I, Rehman RU, Shah AH. Metabolic flexibility and extensive adaptability governing multiple drug resistance and enhanced virulence in Candida albicans. Crit Rev Microbiol 2021; 48:1-20. [PMID: 34213983 DOI: 10.1080/1040841x.2021.1935447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Commensal fungus-Candida albicans turn pathogenic during the compromised immunity of the host, causing infections ranging from superficial mucosal to dreadful systemic ones. C. albicans has evolved various adaptive measures which collectively contribute towards its enhanced virulence. Among fitness attributes, metabolic flexibility and vigorous stress response are essential for its pathogenicity and virulence. Metabolic flexibility provides a means for nutrient assimilation and growth in diverse host microenvironments and reduces the vulnerability of the pathogen to various antifungals besides evading host immune response(s). Inside the host micro-environments, C. albicans efficiently utilizes the multiple fermentable and non-fermentable carbon sources to sustain and proliferate in glucose deficit conditions. The utilization of alternative carbon sources further highlights the importance of understanding these pathways as the attractive and potential therapeutic target. A thorough understanding of metabolic flexibility and adaptation to environmental stresses is warranted to decipher in-depth insights into virulence and molecular mechanisms of fungal pathogenicity. In this review, we have attempted to provide a detailed and recent understanding of some key aspects of fungal biology. Particular focus will be placed on processes like nutrient assimilation and utilization, metabolic adaptability, virulence factors, and host immune response in C. albicans leading to its enhanced pathogenicity.
Collapse
Affiliation(s)
- Sajad Ahmad Padder
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Asiya Ramzan
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Inayatullah Tahir
- Departments of Botany, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Reiaz Ul Rehman
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Abdul Haseeb Shah
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
22
|
Vico SH, Prieto D, Monge RA, Román E, Pla J. The Glyoxylate Cycle Is Involved in White-Opaque Switching in Candida albicans. J Fungi (Basel) 2021; 7:jof7070502. [PMID: 34202465 PMCID: PMC8304919 DOI: 10.3390/jof7070502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022] Open
Abstract
Candida albicans is a commensal yeast that inhabits the gastrointestinal tract of humans. The master regulator of the white-opaque transition WOR1 has been implicated in the adaptation to this commensal status. A proteomic analysis of cells overexpressing this transcription factor (WOR1OE) suggested an altered metabolism of carbon sources and a phenotypic analysis confirmed this alteration. The WOR1OE cells are deficient in using trehalose and xylose and are unable to use 2C sources, which is consistent with a reduction in the amount of Icl1, the isocitrate lyase enzyme. The icl1Δ/Δ mutants overexpressing WOR1 are deficient in the production of phloxine B positive cells, a main characteristic of opaque cells, a phenotype also observed in mating type hemizygous mtla1Δ icl1Δ/Δ cells, suggesting the involvement of Icl1 in the adaptation to the commensal state. In fact, icl1Δ/Δ cells have reduced fitness in mouse gastrointestinal tract as compared with essentially isogenic heterozygous ICL1/icl1Δ, but overproduction of WOR1 in an icl1Δ/Δ mutant does not restore fitness. These results implicate the glyoxylate shunt in the adaptation to commensalism of C. albicans by mechanisms that are partially independent of WOR1.
Collapse
|
23
|
Fourie R, Albertyn J, Sebolai O, Gcilitshana O, Pohl CH. Candida albicans SET3 Plays a Role in Early Biofilm Formation, Interaction With Pseudomonas aeruginosa and Virulence in Caenorhabditis elegans. Front Cell Infect Microbiol 2021; 11:680732. [PMID: 34178723 PMCID: PMC8223063 DOI: 10.3389/fcimb.2021.680732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/26/2021] [Indexed: 12/04/2022] Open
Abstract
The yeast Candida albicans exhibits multiple morphologies dependent on environmental cues. Candida albicans biofilms are frequently polymicrobial, enabling interspecies interaction through proximity and contact. The interaction between C. albicans and the bacterium, Pseudomonas aeruginosa, is antagonistic in vitro, with P. aeruginosa repressing the yeast-to-hyphal switch in C. albicans. Previous transcriptional analysis of C. albicans in polymicrobial biofilms with P. aeruginosa revealed upregulation of genes involved in regulation of morphology and biofilm formation, including SET3, a component of the Set3/Hos2 histone deacetylase complex (Set3C). This prompted the question regarding the involvement of SET3 in the interaction between C. albicans and P. aeruginosa, both in vitro and in vivo. We found that SET3 may influence early biofilm formation by C. albicans and the interaction between C. albicans and P. aeruginosa. In addition, although deletion of SET3 did not alter the morphology of C. albicans in the presence of P. aeruginosa, it did cause a reduction in virulence in a Caenorhabditis elegans infection model, even in the presence of P. aeruginosa.
Collapse
Affiliation(s)
- Ruan Fourie
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Jacobus Albertyn
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Olihile Sebolai
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Onele Gcilitshana
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Carolina H Pohl
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
24
|
Fourie R, Cason ED, Albertyn J, Pohl CH. Transcriptional response of Candida albicans to Pseudomonas aeruginosa in a polymicrobial biofilm. G3-GENES GENOMES GENETICS 2021; 11:6134339. [PMID: 33580263 PMCID: PMC8049422 DOI: 10.1093/g3journal/jkab042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/05/2021] [Indexed: 01/05/2023]
Abstract
Candida albicans is frequently co-isolated with the Gram-negative bacterium, Pseudomonas aeruginosa. In vitro, the interaction is complex, with both species influencing each other. Not only does the bacterium kill hyphal cells of C. albicans through physical interaction, it also affects C. albicans biofilm formation and morphogenesis, through various secreted factors and cell wall components. The present study sought to expand the current knowledge regarding the interaction between C. albicans and P. aeruginosa, using transcriptome analyses of early static biofilms. Under these conditions, a total of 2,537 open reading frames (approximately 40% of the C. albicans transcriptome) was differentially regulated in the presence of P. aeruginosa. Upon deeper analyses it became evident that the response of C. albicans toward P. aeruginosa was dominated by a response to hypoxia, and included those associated with stress as well as iron and zinc homeostasis. These conditions may also lead to the observed differential regulation of genes associated with cell membrane synthesis, morphology, biofilm formation and phenotypic switching. Thus, C. albicans in polymicrobial biofilms with P. aeruginosa have unique transcriptional profiles that may influence commensalism as well as pathogenesis.
Collapse
Affiliation(s)
- Ruan Fourie
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, 9301, South Africa
| | - Errol D Cason
- Department of Animal Wildlife and Grassland Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - Jacobus Albertyn
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, 9301, South Africa
| | - Carolina H Pohl
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, 9301, South Africa
| |
Collapse
|
25
|
Yang J, Feng W, Xi Z, Yang L, Zhao X, Ma Y, Ma Y. Virulence of "white-gray-opaque" tri-stable transformation in clinical Candida albicans in vitro and in vivo. Microb Pathog 2021; 154:104825. [PMID: 33689812 DOI: 10.1016/j.micpath.2021.104825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 10/22/2022]
Abstract
The study aimed to induce the white-opaque-gray tri-stable transformation in clinical C. albicans and to explore their potential pathogenicity. Sixty-four clinical strains were used to induce the white, opaque and gray cells of C. albicans. Secreted aspartyl proteinases (Sap) activity of the three phenotypes was then measured, and a vulvovaginal candidiasis (VVC) animal model was constructed. Of the 64 clinical strains, only 3 strains successfully underwent white-gray-opaque tri-stable transformation, and the three strains all belonged to MTL homozygous strains. Pz values in white, opaque and gray phenotypes were 0.834 ± 0.012, 0.707 ± 0.036, and 0.628 ± 0.002, respectively, which indicated that the cells with gray phenotype had higher Sap activity. After inoculation of different fungal suspension, the fungal colony count in descending order was as follows: gray phenotype, opaque phenotype and white phenotype. After treated with fluconazole for 3 days or 10 days, the fungal colony counts were significantly decreased compared with that before treatment (P < 0.05). The Sap activity and pathogenicity of gray cells in C. albicans were the strongest, followed by opaque cells and white cells. Additionally, white, gray and opaque phenotypic cells were all susceptible to fluconazole.
Collapse
Affiliation(s)
- Jing Yang
- The Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Wenli Feng
- The Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Zhiqin Xi
- The Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lu Yang
- The Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaoxia Zhao
- The Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yan Ma
- The Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yanping Ma
- The Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
26
|
Singh D, Bocci F, Kulkarni P, Jolly MK. Coupled Feedback Loops Involving PAGE4, EMT and Notch Signaling Can Give Rise to Non-genetic Heterogeneity in Prostate Cancer Cells. ENTROPY (BASEL, SWITZERLAND) 2021; 23:288. [PMID: 33652914 PMCID: PMC7996788 DOI: 10.3390/e23030288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
Non-genetic heterogeneity is emerging as a crucial factor underlying therapy resistance in multiple cancers. However, the design principles of regulatory networks underlying non-genetic heterogeneity in cancer remain poorly understood. Here, we investigate the coupled dynamics of feedback loops involving (a) oscillations in androgen receptor (AR) signaling mediated through an intrinsically disordered protein PAGE4, (b) multistability in epithelial-mesenchymal transition (EMT), and c) Notch-Delta-Jagged signaling mediated cell-cell communication, each of which can generate non-genetic heterogeneity through multistability and/or oscillations. Our results show how different coupling strengths between AR and EMT signaling can lead to monostability, bistability, or oscillations in the levels of AR, as well as propagation of oscillations to EMT dynamics. These results reveal the emergent dynamics of coupled oscillatory and multi-stable systems and unravel mechanisms by which non-genetic heterogeneity in AR levels can be generated, which can act as a barrier to most existing therapies for prostate cancer patients.
Collapse
Affiliation(s)
- Divyoj Singh
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India;
- Undergraduate Programme, Indian Institute of Science, Bangalore 560012, India
| | - Federico Bocci
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA;
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92697, USA
| | - Prakash Kulkarni
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India;
| |
Collapse
|
27
|
Dai B, Xu Y, Gao N, Chen J. Wor1-regulated ferroxidases contribute to pigment formation in opaque cells of Candida albicans. FEBS Open Bio 2021; 11:598-621. [PMID: 33350590 PMCID: PMC7931227 DOI: 10.1002/2211-5463.13070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/14/2020] [Accepted: 12/19/2020] [Indexed: 12/25/2022] Open
Abstract
Candida albicans is a harmless commensal resident in the human gut and a prevalent opportunistic pathogen. A key part of its commensalism and pathogenesis is its ability to switch between different morphological forms, including white‐to‐opaque switching. The Wor1 protein was previously identified as a master regulator of white‐to‐opaque switching in mating type locus (MTL) homozygous cells. The mechanisms by which the dark color of the opaque colonies is controlled and the pimpled surface of opaque cells is formed remain unknown. Candida albicans produces melanin pigment in vitro and during infection. However, the molecular mechanism underlying the regulation of melanin production is unclear. In this study, we demonstrated that ferroxidases (Fets) function as pigment multicopper oxidases and regulate the production of dark‐pigmented melanin in opaque cells. The FET genes presented distinct regulation patterns in response to different extracellular stimuli. In YPD (1% yeast extract, 2% peptone and 2% dextrose)‐rich medium, four of the five FET genes were up‐regulated by Wor1, especially at the human body temperature of 37 °C. In minimal medium with low ammonium concentrations, all five FET genes were up‐regulated by Wor1. However, at high ammonium concentrations, some FET genes were down‐regulated by Wor1. Wor1‐up‐regulated Fets contributed to dark pigment formation in opaque colonies, but not to the elongated shape of these opaque cells. Increased melanin externalization was associated with the pimpled surface of the opaque cells. Melanized C. albicans cells were more resistant to fungal clearance. Deletion of the five FET genes completely blocked melanin production in opaque cells and resulted in the generation of white elongated ‘opaque’ cells. In addition, the up‐regulated Fets are important for defense against oxidant attacks. The functional diversity of Fets may reflect the multiple strategies of C. albicans to rapidly adapt to diverse host niches.
Collapse
Affiliation(s)
- Baodi Dai
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yinxing Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Ning Gao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Jiangye Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
28
|
Beekman CN, Cuomo CA, Bennett RJ, Ene IV. Comparative genomics of white and opaque cell states supports an epigenetic mechanism of phenotypic switching in Candida albicans. G3 (BETHESDA, MD.) 2021; 11:6108101. [PMID: 33585874 PMCID: PMC8366294 DOI: 10.1093/g3journal/jkab001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/28/2020] [Indexed: 01/08/2023]
Abstract
Several Candida species can undergo a heritable and reversible transition from a 'white' state to a mating proficient 'opaque' state. This ability relies on highly interconnected transcriptional networks that control cell-type-specific gene expression programs over multiple generations. Candida albicans, the most prominent pathogenic Candida species, provides a well-studied paradigm for the white-opaque transition. In this species, a network of at least eight transcriptional regulators controls the balance between white and opaque states that have distinct morphologies, transcriptional profiles, and physiological properties. Given the reversible nature and the high frequency of white-opaque transitions, it is widely assumed that this switch is governed by epigenetic mechanisms that occur independently of any changes in DNA sequence. However, a direct genomic comparison between white and opaque cells has yet to be performed. Here, we present a whole-genome comparative analysis of C. albicans white and opaque cells. This analysis revealed rare genetic changes between cell states, none of which are linked to white-opaque switching. This result is consistent with epigenetic mechanisms controlling cell state differentiation in C. albicans and provides direct evidence against a role for genetic variation in mediating the switch.
Collapse
Affiliation(s)
- Chapman N Beekman
- Department of Molecular Microbiology and Immunology,
Brown University, Providence, RI 02912, USA
| | - Christina A Cuomo
- Infectious Disease and Microbiome Program, Broad
Institute, Cambridge, MA 02142, USA
| | - Richard J Bennett
- Department of Molecular Microbiology and Immunology,
Brown University, Providence, RI 02912, USA
| | - Iuliana V Ene
- Department of Molecular Microbiology and Immunology,
Brown University, Providence, RI 02912, USA
- Corresponding author:
| |
Collapse
|
29
|
Lew SQ, Lin CH. N-acetylglucosamine-mediated morphological transition in Candida albicans and Candida tropicalis. Curr Genet 2021; 67:249-254. [PMID: 33388851 DOI: 10.1007/s00294-020-01138-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
Morphological transitions in Candida species are key factors in facilitating invasion and adapting to environmental changes. N-acetylglucosamine (GlcNAc) is a monosaccharide signalling molecule that can regulate morphological transitions in Candida albicans and Candida tropicalis. Interestingly, although the uptake and metabolic pathways of GlcNAc and GlcNAc-mediated white-to-opaque cell switching are similar between the two Candida species, GlcNAc induces hyphal development in C. albicans, whereas it suppresses hyphal development in C. tropicalis. These findings indicate that the characteristics of C. albicans and C. tropicalis in response to GlcNAc are remarkably different. Here, we compare the conserved and divergent GlcNAc-mediated signalling pathways and catabolism between the two Candida species. Deletion of NGT1, a GlcNAc transportation gene, inhibited hyphal formation in C. albicans but promoted hyphal development in C. tropicalis. To further understand these opposite effects on filamentous growth in response to GlcNAc in the two Candida species, the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) signalling pathways in both C. albicans and C. tropicalis were compared. Interestingly, GlcNAc activated the cAMP/PKA signalling pathway of the two Candida species, suggesting that the hyphal development-regulated circuit is remarkably diverse between the two species. Indeed, the Ndt80-like gene REP1, which is critical for regulating GlcNAc catabolism, exhibits distinct roles in the hyphal development of C. albicans and C. tropicalis. These data suggest possible reasons for the divergent hyphal growth response in C. albicans and C. tropicalis upon GlcNAc induction.
Collapse
Affiliation(s)
- Shi Qian Lew
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ching-Hsuan Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
30
|
Rodriguez DL, Quail MM, Hernday AD, Nobile CJ. Transcriptional Circuits Regulating Developmental Processes in Candida albicans. Front Cell Infect Microbiol 2020; 10:605711. [PMID: 33425784 PMCID: PMC7793994 DOI: 10.3389/fcimb.2020.605711] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
Candida albicans is a commensal member of the human microbiota that colonizes multiple niches in the body including the skin, oral cavity, and gastrointestinal and genitourinary tracts of healthy individuals. It is also the most common human fungal pathogen isolated from patients in clinical settings. C. albicans can cause a number of superficial and invasive infections, especially in immunocompromised individuals. The ability of C. albicans to succeed as both a commensal and a pathogen, and to thrive in a wide range of environmental niches within the host, requires sophisticated transcriptional regulatory programs that can integrate and respond to host specific environmental signals. Identifying and characterizing the transcriptional regulatory networks that control important developmental processes in C. albicans will shed new light on the strategies used by C. albicans to colonize and infect its host. Here, we discuss the transcriptional regulatory circuits controlling three major developmental processes in C. albicans: biofilm formation, the white-opaque phenotypic switch, and the commensal-pathogen transition. Each of these three circuits are tightly knit and, through our analyses, we show that they are integrated together by extensive regulatory crosstalk between the core regulators that comprise each circuit.
Collapse
Affiliation(s)
- Diana L. Rodriguez
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California—Merced, Merced, CA, United States
- Quantitative and Systems Biology Graduate Program, University of California—Merced, Merced, CA, United States
| | - Morgan M. Quail
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California—Merced, Merced, CA, United States
- Quantitative and Systems Biology Graduate Program, University of California—Merced, Merced, CA, United States
| | - Aaron D. Hernday
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California—Merced, Merced, CA, United States
- Health Sciences Research Institute, University of California - Merced, Merced, CA, United States
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California—Merced, Merced, CA, United States
- Health Sciences Research Institute, University of California - Merced, Merced, CA, United States
| |
Collapse
|
31
|
Lohse MB, Brenes LR, Ziv N, Winter MB, Craik CS, Johnson AD. An Opaque Cell-Specific Expression Program of Secreted Proteases and Transporters Allows Cell-Type Cooperation in Candida albicans. Genetics 2020; 216:409-429. [PMID: 32839241 PMCID: PMC7536846 DOI: 10.1534/genetics.120.303613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/20/2020] [Indexed: 11/18/2022] Open
Abstract
An unusual feature of the opportunistic pathogen Candida albicans is its ability to switch stochastically between two distinct, heritable cell types called white and opaque. Here, we show that only opaque cells, in response to environmental signals, massively upregulate a specific group of secreted proteases and peptide transporters, allowing exceptionally efficient use of proteins as sources of nitrogen. We identify the specific proteases [members of the secreted aspartyl protease (SAP) family] needed for opaque cells to proliferate under these conditions, and we identify four transcriptional regulators of this specialized proteolysis and uptake program. We also show that, in mixed cultures, opaque cells enable white cells to also proliferate efficiently when proteins are the sole nitrogen source. Based on these observations, we suggest that one role of white-opaque switching is to create mixed populations where the different phenotypes derived from a single genome are shared between two distinct cell types.
Collapse
Affiliation(s)
- Matthew B Lohse
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143
| | - Lucas R Brenes
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143
| | - Naomi Ziv
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143
| | - Michael B Winter
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143
| | - Alexander D Johnson
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143
| |
Collapse
|
32
|
Abstract
Candida albicans, a pervasive opportunistic pathogen, undergoes a unique phenotypic transition from a "white" phenotype to an "opaque" phenotype. The switch to opaque impacts gene expression, cell morphology, wall structure, metabolism, biofilm formation, mating, virulence, and colonization of the skin and gastrointestinal (GI) tract. Although the regulation of switching is complex, a paradigm has evolved from a number of studies, in which, in its simplest form, the transcription factors Efg1 and Wor1 play central roles. When EFG1 is upregulated under physiological conditions, it represses WOR1, an activator of white-to-opaque switching, and the cell expresses the white phenotype; when EFG1 is downregulated, WOR1 is derepressed and activates expression of the opaque phenotype. Deletion of either EFG1 or WOR1 supports this yin-yang model of regulation. Here, we demonstrate that this simple model is insufficient, since strains in which WOR1 and EFG1 are simultaneously deleted can still be induced to switch en masse from white to opaque. Opaque cells of double mutants (efg1-/- wor1-/- ) are enlarged and elongate, form an enlarged vacuole, upregulate mCherry under the control of an opaque-specific promoter, form opaque cell wall pimples, express the opaque phenotype in lower GI colonization, and, if MTL homozygous, form conjugation tubes in response to pheromone and mate. These results can be explained if the basic and simplified model is expanded to include a WOR1-independent alternative opaque pathway repressed by EFG1 IMPORTANCE The switch from white to opaque in Candida albicans was discovered 33 years ago, but it is still unclear how it is regulated. A regulatory paradigm has emerged in which two transacting factors, Efg1 and Wor1, play central roles, Efg1 as a repressor of WOR1, which encodes an activator of the transition to the opaque phenotype. However, we show here that if both EFG1 and WOR1 are deleted simultaneously, bona fide opaque cells can still be induced en masse These results are not compatible with the simple paradigm, suggesting that an alternative opaque pathway (AOP) exists, which can activate expression of opaque and, like WOR1, is repressed by EFG1.
Collapse
|
33
|
N-Acetylglucosamine (GlcNAc) Sensing, Utilization, and Functions in Candida albicans. J Fungi (Basel) 2020; 6:jof6030129. [PMID: 32784532 PMCID: PMC7558947 DOI: 10.3390/jof6030129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022] Open
Abstract
The sensing and efficient utilization of environmental nutrients are critical for the survival of microorganisms in environments where nutrients are limited, such as within mammalian hosts. Candida albicans is a common member of the human microbiota as well as an opportunistic fungal pathogen. The amide derivative sugar N-acetlyglucosamine (GlcNAc) is an important signaling molecule for C. albicans that could be a major nutrient source for this fungus in host settings. In this article, we review progress made over the past two decades on GlcNAc utilization, sensing, and functions in C. albicans and its related fungal species. GlcNAc sensing and catabolic pathways have been intensively studied in C. albicans. The C. albicans protein Ngt1 represents the first identified GlcNAc-specific transporter in eukaryotic organisms. In C. albicans, GlcNAc not only induces morphological transitions including the yeast to hyphal transition and the white to opaque phenotypic switch, but it also promotes fungal cell death. The Ras-cAMP/PKA signaling pathway plays critical roles in regulating these processes. Given the importance of GlcNAc sensing and utilization in C. albicans, targeting GlcNAc associated pathways and key pathway components could be promising in the development of new antifungal strategies.
Collapse
|
34
|
Zheng Q, Guan G, Cao C, Li Q, Huang G. The PHO pathway regulates white-opaque switching and sexual mating in the human fungal pathogen Candida albicans. Curr Genet 2020; 66:1155-1162. [PMID: 32761264 DOI: 10.1007/s00294-020-01100-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/08/2020] [Accepted: 07/30/2020] [Indexed: 11/27/2022]
Abstract
The opportunistic fungal pathogen Candida albicans is able to switch among several morphological phenotypes in response to environmental changes. White-opaque transition is a typical phenotypic switching system involved in the regulation of pathogenesis and sexual reproduction in C. albicans. Under regular laboratory culture conditions, to undergo white-to-opaque switching, cells must first undergo homozygosis at the mating-type locus (MTLa/a or α/α) since the a1/α2 heterodimer represses the expression of the Wor1 master regulator of switching in MTLa/α heterozygous strains. In this study, we report the roles of the PHO pathway of phosphate metabolism in the regulation of white-opaque switching and sexual mating in C. albicans. We find that deletion of the PHO pathway genes PHO81, PHO80, PHO2, and PHO4 induces the opaque phenotype in MTLa/α heterozygous cells. Low concentrations of external phosphate are conducive for the opaque phenotype in both MTL homozygous and heterozygous strains. Moreover, phosphate starvation can also increase the mating efficiency in C. albicans. Consistently, the pho80/pho80 mutant mimics an artificial phosphate starvation state and mates efficiently at both lower and higher phosphate concentrations. Our study establishes a link between the PHO pathway and white-opaque epigenetic switching in C. albicans.
Collapse
Affiliation(s)
- Qiushi Zheng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of Infectious Diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Guobo Guan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chengjun Cao
- Department of Infectious Diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Qi Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guanghua Huang
- Department of Infectious Diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
35
|
A Set of Diverse Genes Influence the Frequency of White-Opaque Switching in Candida albicans. G3-GENES GENOMES GENETICS 2020; 10:2593-2600. [PMID: 32487674 PMCID: PMC7407467 DOI: 10.1534/g3.120.401249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The fungal species Candida albicans is both a member of the human microbiome and a fungal pathogen. C. albicans undergoes several different morphological transitions, including one called white-opaque switching. Here, cells reversibly switch between two states, “white” and “opaque,” and each state is heritable through many cell generations. Each cell type has a distinct cellular and colony morphology and they differ in many other properties including mating, nutritional specialization, and interactions with the innate immune system. Previous genetic screens to gain insight into white-opaque switching have focused on certain classes of genes (for example transcriptional regulators or chromatin modifying enzymes). In this paper, we examined 172 deletion mutants covering a broad range of cell functions. We identified 28 deletion mutants with at least a fivefold effect on switching frequencies; these cover a wide variety of functions ranging from membrane sensors to kinases to proteins of unknown function. In agreement with previous reports, we found that components of the pheromone signaling cascade affect white-to-opaque switching; however, our results suggest that the major effect of Cek1 on white-opaque switching occurs through the cell wall damage response pathway. Most of the genes we identified have not been previously implicated in white-opaque switching and serve as entry points to understand new aspects of this morphological transition.
Collapse
|
36
|
Chromatin Structure and Drug Resistance in Candida spp. J Fungi (Basel) 2020; 6:jof6030121. [PMID: 32751495 PMCID: PMC7559719 DOI: 10.3390/jof6030121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 12/14/2022] Open
Abstract
Anti-microbial resistance (AMR) is currently one of the most serious threats to global human health and, appropriately, research to tackle AMR garnishes significant investment and extensive attention from the scientific community. However, most of this effort focuses on antibiotics, and research into anti-fungal resistance (AFR) is vastly under-represented in comparison. Given the growing number of vulnerable, immunocompromised individuals, as well as the positive impact global warming has on fungal growth, there is an immediate urgency to tackle fungal disease, and the disturbing rise in AFR. Chromatin structure and gene expression regulation play pivotal roles in the adaptation of fungal species to anti-fungal stress, suggesting a potential therapeutic avenue to tackle AFR. In this review we discuss both the genetic and epigenetic mechanisms by which chromatin structure can dictate AFR mechanisms and will present evidence of how pathogenic yeast, specifically from the Candida genus, modify chromatin structure to promote survival in the presence of anti-fungal drugs. We also discuss the mechanisms by which anti-chromatin therapy, specifically lysine deacetylase inhibitors, influence the acquisition and phenotypic expression of AFR in Candida spp. and their potential as effective adjuvants to mitigate against AFR.
Collapse
|
37
|
Brimacombe CA, Sierocinski T, Dahabieh MS. A white-to-opaque-like phenotypic switch in the yeast Torulaspora microellipsoides. Commun Biol 2020; 3:86. [PMID: 32111968 PMCID: PMC7048803 DOI: 10.1038/s42003-020-0815-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
Torulaspora microellipsoides is an under-characterized budding yeast of the Saccharomycetaceae family that is primarily associated with viticulture. Here we report for the first time to our knowledge that T. microellipsoides undergoes a low-frequency morphological switch from small budding haploid (white) yeast to larger, higher ploidy (opaque) yeast. Comparison of transcriptomes by mRNA-seq revealed 511 differentially regulated genes, with white cells having greater expression of genes involved in stress resistance and complex carbohydrate utilization, and opaque cells up-regulating genes involved in ribosome biogenesis. Growth assays showed that white cells are physiologically more resistant to stationary-phase conditions and oxidative stress, whereas opaque cells exhibited greater cold tolerance. We propose that phenotypic switching in T. microellipsoides is an ecological adaptation, as has been suggested for similar morphological switching in distantly related species like Candida albicans, and we propose that this switching is a more broadly utilized biological strategy among yeasts than previously thought.
Collapse
Affiliation(s)
- Cedric A Brimacombe
- Renaissance BioScience Corporation, 410-2389 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.,Department of Microbiology and Immunology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Thomas Sierocinski
- Renaissance BioScience Corporation, 410-2389 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Matthew S Dahabieh
- Renaissance BioScience Corporation, 410-2389 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
38
|
Abstract
Close to half of a collection of 27 clinical a/α isolates of Candida albicans underwent white-to-opaque switching. Complementation experiments revealed that while approximately half of the a/α switchers were due to EFG1 mutations, the remaining half were due to mutations in other genes. In addition, the results of competition experiments in a mouse GI tract colonization model support previous observations that efg1/efg1 cells rapidly outcompete EFG1/EFG1 strains, but direct microscopic analysis reveals that the major colonizing cells were opaque, not gray. The transcription factor EFG1 functions as a suppressor of white-to-opaque and white-to-gray switching in a/α strains of Candida albicans. In a collection of 27 clinical isolates, 4 of the 17 EFG1/EFG1 strains, 1 of the 2 EFG1/efg1 strains, and all 8 of the efg1/efg1 strains underwent white-to-opaque switching. The four EFG1/EFG1 strains, the one EFG1/efg1 strain, and one of the eight efg1/efg1 strains that underwent switching to opaque did not switch to gray and could not be complemented with a copy of EFG1. Competition experiments in a mouse model for gastrointestinal (GI) colonization confirmed that efg1/efg1 cells rapidly outcompete EFG1/EFG1 cells, and in plating experiments, formed colonies containing both gray and opaque cells. Direct microscopic analysis of live cells in the feces, however, revealed that the great majority of cells were opaque, suggesting opaque, not gray, may be the dominant phenotype at the site of colonization. IMPORTANCE Close to half of a collection of 27 clinical a/α isolates of Candida albicans underwent white-to-opaque switching. Complementation experiments revealed that while approximately half of the a/α switchers were due to EFG1 mutations, the remaining half were due to mutations in other genes. In addition, the results of competition experiments in a mouse GI tract colonization model support previous observations that efg1/efg1 cells rapidly outcompete EFG1/EFG1 strains, but direct microscopic analysis reveals that the major colonizing cells were opaque, not gray.
Collapse
|
39
|
Romo JA, Kumamoto CA. On Commensalism of Candida. J Fungi (Basel) 2020; 6:E16. [PMID: 31963458 PMCID: PMC7151168 DOI: 10.3390/jof6010016] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 01/09/2023] Open
Abstract
Candida species are both opportunistic fungal pathogens and common members of the human mycobiome. Over the years, the main focus of the fungal field has been on understanding the pathogenic potential and disease manifestation of these organisms. Therefore, understanding of their commensal lifestyle, interactions with host epithelial barriers, and initial transition into pathogenesis is less developed. In this review, we will describe the current knowledge on the commensal lifestyle of these fungi, how they are able to adhere to and colonize host epithelial surfaces, compete with other members of the microbiota, and interact with the host immune response, as well as their transition into opportunistic pathogens by invading the gastrointestinal epithelium.
Collapse
Affiliation(s)
| | - Carol A. Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA;
| |
Collapse
|
40
|
Perry AM, Hernday AD, Nobile CJ. Unraveling How Candida albicans Forms Sexual Biofilms. J Fungi (Basel) 2020; 6:jof6010014. [PMID: 31952361 PMCID: PMC7151012 DOI: 10.3390/jof6010014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
Biofilms, structured and densely packed communities of microbial cells attached to surfaces, are considered to be the natural growth state for a vast majority of microorganisms. The ability to form biofilms is an important virulence factor for most pathogens, including the opportunistic human fungal pathogen Candida albicans. C. albicans is one of the most prevalent fungal species of the human microbiota that asymptomatically colonizes healthy individuals. However, C. albicans can also cause severe and life-threatening infections when host conditions permit (e.g., through alterations in the host immune system, pH, and resident microbiota). Like many other pathogens, this ability to cause infections depends, in part, on the ability to form biofilms. Once formed, C. albicans biofilms are often resistant to antifungal agents and the host immune response, and can act as reservoirs to maintain persistent infections as well as to seed new infections in a host. The majority of C. albicans clinical isolates are heterozygous (a/α) at the mating type-like (MTL) locus, which defines Candida mating types, and are capable of forming robust biofilms when cultured in vitro. These “conventional” biofilms, formed by MTL-heterozygous (a/α) cells, have been the primary focus of C. albicans biofilm research to date. Recent work in the field, however, has uncovered novel mechanisms through which biofilms are generated by C. albicans cells that are homozygous or hemizygous (a/a, a/Δ, α/α, or α/Δ) at the MTL locus. In these studies, the addition of pheromones of the opposite mating type can induce the formation of specialized “sexual” biofilms, either through the addition of synthetic peptide pheromones to the culture, or in response to co-culturing of cells of the opposite mating types. Although sexual biofilms are generally less robust than conventional biofilms, they could serve as a protective niche to support genetic exchange between mating-competent cells, and thus may represent an adaptive mechanism to increase population diversity in dynamic environments. Although conventional and sexual biofilms appear functionally distinct, both types of biofilms are structurally similar, containing yeast, pseudohyphal, and hyphal cells surrounded by an extracellular matrix. Despite their structural similarities, conventional and sexual biofilms appear to be governed by distinct transcriptional networks and signaling pathways, suggesting that they may be adapted for, and responsive to, distinct environmental conditions. Here we review sexual biofilms and compare and contrast them to conventional biofilms of C. albicans.
Collapse
Affiliation(s)
- Austin M. Perry
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA; (A.M.P.); (A.D.H.)
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Aaron D. Hernday
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA; (A.M.P.); (A.D.H.)
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA; (A.M.P.); (A.D.H.)
- Correspondence: ; Tel.: +1-209-228-2427
| |
Collapse
|
41
|
A population shift between two heritable cell types of the pathogen Candida albicans is based both on switching and selective proliferation. Proc Natl Acad Sci U S A 2019; 116:26918-26924. [PMID: 31822605 DOI: 10.1073/pnas.1908986116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Differentiated cell types often retain their characteristics through many rounds of cell division. A simple example is found in Candida albicans, a member of the human microbiota and also the most prevalent fungal pathogen of humans; here, two distinct cell types (white and opaque) exist, and each one retains its specialized properties across many cell divisions. Switching between the two cell types is rare in standard laboratory medium (2% glucose) but can be increased by signals in the environment, for example, certain sugars. When these signals are removed, switching ceases and cells remain in their present state, which is faithfully passed on through many generations of daughter cells. Here, using an automated flow cytometry assay to monitor white-opaque switching over 96 different sugar concentrations, we observed a wide range of opaque-to-white switching that varied continuously across different sugar compositions of the medium. By also measuring white cell proliferation rates under each condition, we found that both opaque-to-white switching and selective white cell proliferation are required for entire populations to shift from opaque to white. Moreover, the switching frequency correlates with the preference of the resulting cell type for the growth medium; that is, the switching is adjusted to increase in environments that favor white cell proliferation. The widely adjustable, all-or-none nature of the switch, combined with the long-term heritability of each state, is distinct from conventional forms of gene regulation, and we propose that it represents a strategy used by C. albicans to efficiently colonize different niches of its human host.
Collapse
|
42
|
Takagi J, Singh-Babak SD, Lohse MB, Dalal CK, Johnson AD. Candida albicans white and opaque cells exhibit distinct spectra of organ colonization in mouse models of infection. PLoS One 2019; 14:e0218037. [PMID: 31170229 PMCID: PMC6553767 DOI: 10.1371/journal.pone.0218037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 05/23/2019] [Indexed: 12/13/2022] Open
Abstract
Candida albicans, a species of fungi, can thrive in diverse niches of its mammalian hosts; it is a normal resident of the GI tract and mucosal surfaces but it can also enter the bloodstream and colonize internal organs causing serious disease. The ability of C. albicans to thrive in these different host environments has been attributed, at least in part, to its ability to assume different morphological forms. In this work, we examine one such morphological change known as white-opaque switching. White cells are the default state of C. albicans, and most animal studies have been carried out exclusively with white cells. Here, we compared the proliferation of white and opaque cells in two murine models of infection and also monitored, using specially constructed strains, switching between the two states in the host. We found that white cells outcompeted opaque cells in many niches; however, we show for the first time that in some organs (specifically, the heart and spleen), opaque cells competed favorably with white cells and, when injected on their own, could colonize these organs. In environments where the introduced white cells outcompeted the introduced opaque cells, we observed high rates of opaque-to-white switching. We did not observe white-to-opaque switching in any of the niches we examined.
Collapse
Affiliation(s)
- Julie Takagi
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States of America
| | - Sheena D. Singh-Babak
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States of America
| | - Matthew B. Lohse
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States of America
| | - Chiraj K. Dalal
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States of America
- * E-mail: (ADJ); (CKD)
| | - Alexander D. Johnson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States of America
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States of America
- * E-mail: (ADJ); (CKD)
| |
Collapse
|
43
|
|
44
|
Liu L, Dalal CK, Heineike BM, Abate AR. High throughput gene expression profiling of yeast colonies with microgel-culture Drop-seq. LAB ON A CHIP 2019; 19:1838-1849. [PMID: 31020292 PMCID: PMC7909483 DOI: 10.1039/c9lc00084d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Yeast can be engineered into "living foundries" for non-natural chemical production by reprogramming them via a "design-build-test" cycle. While methods for "design" and "build" are relatively scalable and efficient, "test" remains a bottleneck, limiting the effectiveness of the procedure. Here we describe isogenic colony sequencing (ICO-seq), a massively-parallel strategy to assess the gene expression, and thus engineered pathway efficacy, of large numbers of genetically distinct yeast colonies. We use the approach to characterize opaque-white switching in 658 C. albicans colonies. By profiling the transcriptomes of 1642 engineered S. cerevisiae strains, we assess gene expression heterogeneity in a protein mutagenesis library. Our approach will accelerate synthetic biology by allowing facile and cost-effective transcriptional profiling of large numbers of genetically distinct yeast strains.
Collapse
Affiliation(s)
- Leqian Liu
- Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| | | | | | | |
Collapse
|
45
|
Fourie R, Pohl CH. Beyond Antagonism: The Interaction Between Candida Species and Pseudomonas aeruginosa. J Fungi (Basel) 2019; 5:jof5020034. [PMID: 31010211 PMCID: PMC6617365 DOI: 10.3390/jof5020034] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 12/11/2022] Open
Abstract
There are many examples of the interaction between prokaryotes and eukaryotes. One such example is the polymicrobial colonization/infection by the various opportunistic pathogenic yeasts belonging to the genus Candida and the ubiquitous bacterium, Pseudomonas aeruginosa. Although this interaction has simplistically been characterized as antagonistic to the yeast, this review highlights the complexity of the interaction with various factors influencing both microbes. The first section deals with the interactions in vitro, looking specifically at the role of cell wall components, quorum sensing molecules, phenazines, fatty acid metabolites and competition for iron in the interaction. The second part of this review places all these interactions in the context of various infection or colonization sites, i.e., lungs, wounds, and the gastrointestinal tract. Here we see that the role of the host, as well as the methodology used to establish co-infection, are important factors, influencing the outcome of the disease. Suggested future perspectives for the study of this interaction include determining the influence of newly identified participants of the QS network of P. aeruginosa, oxylipin production by both species, as well as the genetic and phenotypic plasticity of these microbes, on the interaction and outcome of co-infection.
Collapse
Affiliation(s)
- Ruan Fourie
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein 9301, South Africa.
| | - Carolina H Pohl
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein 9301, South Africa.
| |
Collapse
|
46
|
Grainha TRR, Jorge PADS, Pérez-Pérez M, Pérez Rodríguez G, Pereira MOBO, Lourenço AMG. Exploring anti-quorum sensing and anti-virulence based strategies to fight Candida albicans infections: an in silico approach. FEMS Yeast Res 2019. [PMID: 29518242 DOI: 10.1093/femsyr/foy022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The complex virulence attributes of Candida albicans are an attractive target to exploit in the development of new antifungals and anti-virulence strategies to combat C. albicans infections. Particularly, quorum sensing (QS) has been reported as critical for virulence regulation in C. albicans. This work presents two knowledge networks with up-to-date information about QS regulation and experimentally tested anti-QS and anti-virulence agents for C. albicans. A semi-automatic bioinformatics workflow that combines literature mining and expert curation was used to retrieve otherwise scattered information from the scientific literature. The network representation offers an innovative and continuously updatable means for the Candida research community to query QS and virulence data systematically and in a user-friendly way. Notably, the reconstructed networks show the complexity of QS regulation and the impact that some molecules have on the inhibition of virulence mechanisms responsible for infection establishment (e.g. hyphal development) and perseverance (e.g. biofilm formation). In the future, the compiled knowledge may be used to build decision-making models that help infer new knowledge of practical significance. The knowledge networks are publicly available at http://pcquorum.org/. This Web platform enables the exploration of fungal virulence cues as well as reported inhibitors in a user-friendly fashion.
Collapse
Affiliation(s)
- Tânia Raquel Rodrigues Grainha
- CEB-Centre of Biological Engineering, LIBRO-Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Paula Alexandra da Silva Jorge
- CEB-Centre of Biological Engineering, LIBRO-Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Martín Pérez-Pérez
- ESEI-Department of Computer Science, University of Vigo, Edificio Politecnico, s/n Campus As Lagoas, 32004 Ourense, Spain.,CINBIO-Centro de Investigaciones Biomédicas, University of Vigo, Campus Universitario Lagoas-Marcosende, 36310 Vigo, Spain
| | - Gael Pérez Rodríguez
- ESEI-Department of Computer Science, University of Vigo, Edificio Politecnico, s/n Campus As Lagoas, 32004 Ourense, Spain.,CINBIO-Centro de Investigaciones Biomédicas, University of Vigo, Campus Universitario Lagoas-Marcosende, 36310 Vigo, Spain
| | - Maria Olívia Baptista Oliveira Pereira
- CEB-Centre of Biological Engineering, LIBRO-Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Anália Maria Garcia Lourenço
- ESEI-Department of Computer Science, University of Vigo, Edificio Politecnico, s/n Campus As Lagoas, 32004 Ourense, Spain.,CINBIO-Centro de Investigaciones Biomédicas, University of Vigo, Campus Universitario Lagoas-Marcosende, 36310 Vigo, Spain.,Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
47
|
Liang SH, Anderson MZ, Hirakawa MP, Wang JM, Frazer C, Alaalm LM, Thomson GJ, Ene IV, Bennett RJ. Hemizygosity Enables a Mutational Transition Governing Fungal Virulence and Commensalism. Cell Host Microbe 2019; 25:418-431.e6. [PMID: 30824263 DOI: 10.1016/j.chom.2019.01.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 10/03/2018] [Accepted: 01/14/2019] [Indexed: 12/21/2022]
Abstract
Candida albicans is a commensal fungus of human gastrointestinal and reproductive tracts, but also causes life-threatening systemic infections. The balance between colonization and pathogenesis is associated with phenotypic plasticity, with alternative cell states producing different outcomes in a mammalian host. Here, we reveal that gene dosage of a master transcription factor regulates cell differentiation in diploid C. albicans cells, as EFG1 hemizygous cells undergo a phenotypic transition inaccessible to "wild-type" cells with two functional EFG1 alleles. Notably, clinical isolates are often EFG1 hemizygous and thus licensed to undergo this transition. Phenotypic change corresponds to high-frequency loss of the functional EFG1 allele via de novo mutation or gene conversion events. This phenomenon also occurs during passaging in the gastrointestinal tract with the resulting cell type being hypercompetitive for commensal and systemic infections. A "two-hit" genetic model therefore underlies a key phenotypic transition in C. albicans that enables adaptation to host niches.
Collapse
Affiliation(s)
- Shen-Huan Liang
- Molecular Microbiology and Immunology Department, Brown University, Providence, RI 02912, USA
| | - Matthew Z Anderson
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew P Hirakawa
- Molecular Microbiology and Immunology Department, Brown University, Providence, RI 02912, USA
| | - Joshua M Wang
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Corey Frazer
- Molecular Microbiology and Immunology Department, Brown University, Providence, RI 02912, USA
| | - Leenah M Alaalm
- Molecular Microbiology and Immunology Department, Brown University, Providence, RI 02912, USA
| | - Gregory J Thomson
- Molecular Microbiology and Immunology Department, Brown University, Providence, RI 02912, USA
| | - Iuliana V Ene
- Molecular Microbiology and Immunology Department, Brown University, Providence, RI 02912, USA
| | - Richard J Bennett
- Molecular Microbiology and Immunology Department, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
48
|
Lang SN, Germerodt S, Glock C, Skerka C, Zipfel PF, Schuster S. Molecular crypsis by pathogenic fungi using human factor H. A numerical model. PLoS One 2019; 14:e0212187. [PMID: 30779817 PMCID: PMC6380567 DOI: 10.1371/journal.pone.0212187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 01/29/2019] [Indexed: 02/02/2023] Open
Abstract
Molecular mimicry is the formation of specific molecules by microbial pathogens to avoid recognition and attack by the immune system of the host. Several pathogenic Ascomycota and Zygomycota show such a behaviour by utilizing human complement factor H to hide in the blood stream. We call this type of mimicry molecular crypsis. Such a crypsis can reach a point where the immune system can no longer clearly distinguish between self and non-self cells. Thus, a trade-off between attacking disguised pathogens and erroneously attacking host cells has to be made. Based on signalling theory and protein-interaction modelling, we here present a mathematical model of molecular crypsis of pathogenic fungi using the example of Candida albicans. We tackle the question whether perfect crypsis is feasible, which would imply that protection of human cells by complement factors would be useless. The model identifies pathogen abundance relative to host cell abundance as the predominant factor influencing successful or unsuccessful molecular crypsis. If pathogen cells gain a (locally) quantitative advantage over host cells, even autoreactivity may occur. Our new model enables insights into the mechanisms of candidiasis-induced sepsis and complement-associated autoimmune diseases.
Collapse
Affiliation(s)
- Stefan N. Lang
- Dept. of Bioinformatics, Friedrich Schiller University Jena, Jena, Germany
| | | | - Christina Glock
- Dept. of Bioinformatics, Friedrich Schiller University Jena, Jena, Germany
| | - Christine Skerka
- Dept. of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Peter F. Zipfel
- Dept. of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Stefan Schuster
- Dept. of Bioinformatics, Friedrich Schiller University Jena, Jena, Germany
- * E-mail:
| |
Collapse
|
49
|
Abstract
Fungi are prone to phenotypic instability, that is, the vegetative phase of these organisms, be they yeasts or molds, undergoes frequent switching between two or more behaviors, often with different morphologies, but also sometime having different physiologies without any obvious morphological outcome. In the context of industrial utilization of fungi, this can have a negative impact on the maintenance of strains and/or on their productivity. Instabilities have been shown to result from various mechanisms, either genetic or epigenetic. This chapter will review different types of instabilities and discuss some lesser-known ones, mostly in filamentous fungi, while it will direct readers to additional literature in the case of well-known phenomena such as the amyloid prions or fungal senescence. It will present in depth the "white/opaque" switch of Candida albicans and the "crippled growth" degeneration of the model fungus Podospora anserina. These are two of the most thoroughly studied epigenetic phenotypic switches. I will also discuss the "sectors" presented by many filamentous ascomycetes, for which a prion-based model exists but is not demonstrated. Finally, I will also describe intriguing examples of phenotypic instability for which an explanation has yet to be provided.
Collapse
|
50
|
Yue H, Bing J, Zheng Q, Zhang Y, Hu T, Du H, Wang H, Huang G. Filamentation in Candida auris, an emerging fungal pathogen of humans: passage through the mammalian body induces a heritable phenotypic switch. Emerg Microbes Infect 2018; 7:188. [PMID: 30482894 PMCID: PMC6258701 DOI: 10.1038/s41426-018-0187-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/22/2018] [Accepted: 10/25/2018] [Indexed: 01/08/2023]
Abstract
Morphological plasticity has historically been an indicator of increased virulence among fungal pathogens, allowing rapid adaptation to changing environments. Candida auris has been identified as an emerging multidrug-resistant human pathogen of global importance. Since the discovery of this species, it has been thought that C. auris is incapable of filamentous growth. Here, we report the discovery of filamentation and three distinct cell types in C. auris: typical yeast, filamentation-competent (FC) yeast, and filamentous cells. These cell types form a novel phenotypic switching system that contains a heritable (typical yeast-filament) and a nonheritable (FC-filament) switch. Intriguingly, the heritable switch between the typical yeast and the FC/filamentous phenotype is triggered by passage through a mammalian body, whereas the switch between the FC and filamentous phenotype is nonheritable and temperature-dependent. Low temperatures favor the filamentous phenotype, whereas high temperatures promote the FC yeast phenotype. Systemic in vivo and in vitro investigations were used to characterize phenotype-specific variations in global gene expression, secreted aspartyl proteinase (SAP) activity, and changes in virulence, indicating potential for niche-specific adaptations. Taken together, our study not only sheds light on the pathogenesis and biology of C. auris but also provides a novel example of morphological and epigenetic switching in fungi.
Collapse
Affiliation(s)
- Huizhen Yue
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Bing
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiushi Zheng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yulong Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianren Hu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Du
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Guanghua Huang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|