1
|
Ouzon-Shubeita H, Barnes R, Schmaltz LF, Lee S. Structure of a DNA Glycosylase Bound to a Nicked T:G Mismatch-Containing DNA. Molecules 2025; 30:2083. [PMID: 40363888 PMCID: PMC12073362 DOI: 10.3390/molecules30092083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
Mismatched T:G base pairs can arise during de novo replication as well as base excision repair (BER). In particular, the action of the gap-filling polymerase β (Polβ) can generate a T:G pair as well as a nick in the DNA backbone. The processing of a nicked T:G mispair is poorly understood. We are interested in understanding whether the T:G-specific DNA glycosylase MBD4 can recognize and process nicked T:G mismatches. We have discovered that MBD4 binds a nicked T:G-containing DNA, but does not cleave thymine opposite guanine. To gain insight into this, we have determined a crystal structure of human MBD4 bound to a nicked T:G-containing DNA. This structure displayed the full insertion of thymine into the catalytic site and the recognition of thymine based on the catalytic site's amino acid residues. However, thymine excision did not occur, presumably due to the inactivation of the catalytic D560 carboxylate nucleophile via a polar interaction with the 5'-hydrogen phosphate of the nicked DNA. The nicked complex was greatly stabilized by an ordered water molecule that formed four hydrogen bonds with the nicked DNA and MBD4. Interestingly, the arginine finger R468 did not engage in the phosphate pinching that is commonly observed in T:G mismatch recognition complex structures. Instead, the guanidinium moiety of R468 made bifurcated hydrogen bonding interactions with O6 of guanine, thereby stabilizing the estranged guanine. These observations suggest that R468 may sense and disrupt T:G pairs within the DNA duplex and stabilize the flipped-out thymine. The structure described here would be a close mimic of an intermediate in the base extrusion pathway induced by DNA glycosylase.
Collapse
Affiliation(s)
| | | | | | - Seongmin Lee
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
2
|
Silveira AB, Houy A, Ganier O, Özemek B, Vanhuele S, Vincent-Salomon A, Cassoux N, Mariani P, Pierron G, Leyvraz S, Rieke D, Picca A, Bielle F, Yaspo ML, Rodrigues M, Stern MH. Base-excision repair pathway shapes 5-methylcytosine deamination signatures in pan-cancer genomes. Nat Commun 2024; 15:9864. [PMID: 39543136 PMCID: PMC11564873 DOI: 10.1038/s41467-024-54223-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
Transition of cytosine to thymine in CpG dinucleotides is the most frequent type of mutation in cancer. This increased mutability is commonly attributed to the spontaneous deamination of 5-methylcytosine (5mC), which is normally repaired by the base-excision repair (BER) pathway. However, the contribution of 5mC deamination in the increasing diversity of cancer mutational signatures remains poorly explored. We integrate mutational signatures analysis in a large series of tumor whole genomes with lineage-specific epigenomic data to draw a detailed view of 5mC deamination in cancer. We uncover tumor type-specific patterns of 5mC deamination signatures in CpG and non-CpG contexts. We demonstrate that the BER glycosylase MBD4 preferentially binds to active chromatin and early replicating DNA, which correlates with lower mutational burden in these domains. We validate our findings by modeling BER deficiencies in isogenic cell models. Here, we establish MBD4 as the main actor responsible for 5mC deamination repair in humans.
Collapse
Affiliation(s)
- André Bortolini Silveira
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Institut Curie, PSL Research University, Paris, France.
| | - Alexandre Houy
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Institut Curie, PSL Research University, Paris, France
| | - Olivier Ganier
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Institut Curie, PSL Research University, Paris, France
| | - Begüm Özemek
- Otto Warburg Laboratory "Gene Regulation and Systems Biology of Cancer", Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sandra Vanhuele
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Institut Curie, PSL Research University, Paris, France
| | - Anne Vincent-Salomon
- Department of Diagnostic and Theranostic Medicine, Institut Curie, PSL Research University, Paris, France
| | | | - Pascale Mariani
- Department of Surgical Oncology, Institut Curie, PSL Research University, Paris, France
| | - Gaelle Pierron
- Department of Genetics, Institut Curie, PSL Research University, Paris, France
| | - Serge Leyvraz
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Damian Rieke
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alberto Picca
- Service de Neuro-oncologie, Institut de Neurologie, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Franck Bielle
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
- Service de Neuropathologie, Laboratoire Escourolle, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Marie-Laure Yaspo
- Otto Warburg Laboratory "Gene Regulation and Systems Biology of Cancer", Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Manuel Rodrigues
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Institut Curie, PSL Research University, Paris, France
- Department of Medical Oncology, Institut Curie, PSL Research University, Paris, France
| | - Marc-Henri Stern
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Institut Curie, PSL Research University, Paris, France.
- Department of Genetics, Institut Curie, PSL Research University, Paris, France.
| |
Collapse
|
3
|
Li Z, Hu Y, Xu C, Zou Z, Sun Z, Gao Z, Xiao M, Guo S, Wang Y, Wang H, Wang Z, Li Q, Shen B, Song Y, Wu J. Prognostic Significance of Methyl-CpG Binding Domain4 Polymorphism rs140693 and Clinical Characteristics in Chinese Lung Cancer Patients. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:453-464. [PMID: 39723225 PMCID: PMC11666875 DOI: 10.1007/s43657-024-00171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 12/28/2024]
Abstract
Lung cancer remains the leading cause of death among cancer patients, and the five-year survival rate is less than 25%. However, Methyl-CpG Binding Domain (MBD)4 polymorphism rs140693 predicts the prognosis of lung cancer patients still needs further verification. Primary lung cancer patients (n = 839) were collected from two hospitals, genomic DNA was extracted from blood, and genotyping was performed using SNPcan technology. Kaplan-Meier technique and multivariate Cox proportional hazards model were used to analyze the prognosis association between MBD4 and clinical characteristics. Significantly conferred a poorer prognosis was associated with the CT genotype (CT vs. CC; adjusted hazard ratio [HR] = 1.21, 95% CI: 1.03-1.43, p = 0.023) and dominant CT + TT genotype (CT + TT vs. CC; HR = 1.19, 95% CI: 1.02-1.39, p = 0.029) of MBD4 polymorphism rs140693 for all lung cancer patients, compared with the CC genotype. Stratified analysis showed that polymorphism rs140693 CT and dominant CT + TT genotype conferred a significantly poorer prognosis in female and lung adenocarcinoma (ADC) cancer patients, compared with the CC genotype. Non-small cell lung cancer (NSCLC) patients with the CT genotype had a poorer prognosis than those with the CC genotype. Additionally, the allele T of small cell lung cancer (SCLC) patients compared with the allele C was associated with a poor prognosis, and the CT and recessive TT genotype of SCLC patients conferred a significantly poor prognosis. The MBD4 polymorphism rs140693 is a significant prognostic genetic marker for predicting the prognosis of lung cancer patients. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-024-00171-z.
Collapse
Affiliation(s)
- Zhengxing Li
- Department of Surgery, Navy Military Medical University Affiliated to Changhai Hospital, Shanghai, 200433 China
- Department of Outpatient, Chinese People’s Liberation Army 92914 Army Hospital, Hainan, 571833 China
| | - Yuewen Hu
- Department of Outpatient, Chinese People’s Liberation Army 92914 Army Hospital, Hainan, 571833 China
| | - Chang Xu
- Clinical College of Xiangnan University, Chenzhou, 423000 China
| | - Zixiu Zou
- School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Zhenyu Sun
- School of Basic Medicine, Navy Military Medical University, Shanghai, 200433 China
| | - Zhunyi Gao
- Department of Radiotherapy, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006 China
| | - Man Xiao
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, 571199 China
| | - Shicheng Guo
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yi Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Haijian Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Zhiping Wang
- Health Management Center, the First Affiliated Hospital of Navy Medical University, Shanghai, 200433 China
| | - Qiang Li
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, TongJi University, Shanghai, 200120 China
| | - Bo Shen
- The Affilated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, Jiangsu 210009 China
- Department of Oncology, The Dongtai Hospital of Nantong University, Dongtai, 224200 China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Junjie Wu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
- Department of Pulmonary and Critical Care Medicine, Shanghai Geriatric Medical Center, Shanghai, 201104 China
| |
Collapse
|
4
|
Lescano López I, Torres JR, Cecchini NM, Alvarez ME. Arabidopsis DNA glycosylase MBD4L improves recovery of aged seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2021-2032. [PMID: 38963754 DOI: 10.1111/tpj.16907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024]
Abstract
DNA glycosylases initiate the base excision repair (BER) pathway by catalyzing the removal of damaged or mismatched bases from DNA. The Arabidopsis DNA glycosylase methyl-CpG-binding domain protein 4 like (MBD4L) is a nuclear enzyme triggering BER in response to the genotoxic agents 5-fluorouracil and 5-bromouracil. To date, the involvement of MBD4L in plant physiological processes has not been analyzed. To address this, we studied the enzyme functions in seeds. We found that imbibition induced the MBD4L gene expression by generating two alternative transcripts, MBD4L.3 and MBD4L.4. Gene activation was stronger in aged than in non-aged seeds. Seeds from mbd4l-1 mutants displayed germination failures when maintained under control or ageing conditions, while 35S:MBD4L.3/mbd4l-1 and 35S:MBD4L.4/mbd4l-1 seeds reversed these phenotypes. Seed nuclear DNA repair, assessed by comet assays, was exacerbated in an MBD4L-dependent manner at 24 h post-imbibition. Under this condition, the BER genes ARP, APE1L, and LIG1 showed higher expression in 35S:MBD4L.3/mbd4l-1 and 35S:MBD4L.4/mbd4l-1 than in mbd4l-1 seeds, suggesting that these components could coordinate with MBD4L to repair damaged DNA bases in seeds. Interestingly, the ATM, ATR, BRCA1, RAD51, and WEE1 genes associated with the DNA damage response (DDR) pathway were activated in mbd4l-1, but not in 35S:MBD4L.3/mbd4l-1 or 35S:MBD4L.4/mbd4l-1 seeds. These results indicate that MBD4L is a key enzyme of a BER cascade that operates during seed imbibition, whose deficiency would cause genomic damage detected by DDR, generating a delay or reduction in germination.
Collapse
Affiliation(s)
- Ignacio Lescano López
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - José Roberto Torres
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Nicolás Miguel Cecchini
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - María Elena Alvarez
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| |
Collapse
|
5
|
Németh E, Szüts D. The mutagenic consequences of defective DNA repair. DNA Repair (Amst) 2024; 139:103694. [PMID: 38788323 DOI: 10.1016/j.dnarep.2024.103694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Multiple separate repair mechanisms safeguard the genome against various types of DNA damage, and their failure can increase the rate of spontaneous mutagenesis. The malfunction of distinct repair mechanisms leads to genomic instability through different mutagenic processes. For example, defective mismatch repair causes high base substitution rates and microsatellite instability, whereas homologous recombination deficiency is characteristically associated with deletions and chromosome instability. This review presents a comprehensive collection of all mutagenic phenotypes associated with the loss of each DNA repair mechanism, drawing on data from a variety of model organisms and mutagenesis assays, and placing greatest emphasis on systematic analyses of human cancer datasets. We describe the latest theories on the mechanism of each mutagenic process, often explained by reliance on an alternative repair pathway or the error-prone replication of unrepaired, damaged DNA. Aided by the concept of mutational signatures, the genomic phenotypes can be used in cancer diagnosis to identify defective DNA repair pathways.
Collapse
Affiliation(s)
- Eszter Németh
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Dávid Szüts
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
6
|
Saikia S, Postwala H, Athilingam VP, Anandan A, Padma VV, Kalita PP, Chorawala M, Prajapati B. Single Nucleotide Polymorphisms (SNPs) in the Shadows: Uncovering their Function in Non-Coding Region of Esophageal Cancer. Curr Pharm Biotechnol 2024; 25:1915-1938. [PMID: 38310451 DOI: 10.2174/0113892010265004231116092802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 02/05/2024]
Abstract
Esophageal cancer is a complex disease influenced by genetic and environmental factors. Single nucleotide polymorphisms (SNPs) in non-coding regions of the genome have emerged as crucial contributors to esophageal cancer susceptibility. This review provides a comprehensive overview of the role of SNPs in non-coding regions and their association with esophageal cancer. The accumulation of SNPs in the genome has been implicated in esophageal cancer risk. Various studies have identified specific locations in the genome where SNPs are more likely to occur, suggesting a location-specific response. Chromatin conformational studies have shed light on the localization of SNPs and their impact on gene transcription, posttranscriptional modifications, gene expression regulation, and histone modification. Furthermore, miRNA-related SNPs have been found to play a significant role in esophageal squamous cell carcinoma (ESCC). These SNPs can affect miRNA binding sites, thereby altering target gene regulation and contributing to ESCC development. Additionally, the risk of ESCC has been linked to base excision repair, suggesting that SNPs in this pathway may influence disease susceptibility. Somatic DNA segment alterations and modified expression quantitative trait loci (eQTL) have also been associated with ESCC. These alterations can lead to disrupted gene expression and cellular processes, ultimately contributing to cancer development and progression. Moreover, SNPs have been found to be associated with the long non-coding RNA HOTAIR, which plays a crucial role in ESCC pathogenesis. This review concludes with a discussion of the current and future perspectives in the field of SNPs in non-coding regions and their relevance to esophageal cancer. Understanding the functional implications of these SNPs may lead to the identification of novel therapeutic targets and the development of personalized approaches for esophageal cancer prevention and treatment.
Collapse
Affiliation(s)
- Surovi Saikia
- Department of Natural Product Chemistry, Translational Research Laboratory, Bharathiar University, Coimbatore - 641 046, Tamil Nadu, India
| | - Humzah Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, India
| | - Vishnu Prabhu Athilingam
- Department of Natural Product Chemistry, Translational Research Laboratory, Bharathiar University, Coimbatore - 641 046, Tamil Nadu, India
| | - Aparna Anandan
- Department of Natural Product Chemistry, Translational Research Laboratory, Bharathiar University, Coimbatore - 641 046, Tamil Nadu, India
| | - V Vijaya Padma
- Department of Natural Product Chemistry, Translational Research Laboratory, Bharathiar University, Coimbatore - 641 046, Tamil Nadu, India
| | - Partha P Kalita
- Program of Biotechnology, Assam Down Town University, Panikhaiti, Guwahati 781026, Assam, India
| | - Mehul Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, India
| | - Bhupendra Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree. S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat, India
| |
Collapse
|
7
|
Stendahl AM, Sanghvi R, Peterson S, Ray K, Lima AC, Rahbari R, Conrad DF. A naturally occurring variant of MBD4 causes maternal germline hypermutation in primates. Genome Res 2023; 33:2053-2059. [PMID: 37984997 PMCID: PMC10760519 DOI: 10.1101/gr.277977.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
As part of an ongoing genome sequencing project at the Oregon National Primate Research Center, we identified a rhesus macaque with a rare homozygous frameshift mutation in the gene methyl-CpG binding domain 4, DNA glycosylase (MBD4). MBD4 is responsible for the repair of C > T deamination mutations at CpG dinucleotides and has been linked to somatic hypermutation and cancer predisposition in humans. We show here that MBD4-associated hypermutation also affects the germline: The six offspring of the MBD4-null dam have a fourfold to sixfold increase in de novo mutation burden. This excess burden was predominantly C > T mutations at CpG dinucleotides consistent with MBD4 loss of function in the dam. There was also a significant excess of C > T at CpA sites, indicating an important, unappreciated role for MBD4 to repair deamination in CpA contexts. The MBD4-null dam developed sustained eosinophilia later in life, but we saw no other signs of neoplastic processes associated with MBD4 loss of function in humans nor any obvious disease in the hypermutated offspring. This work provides the first evidence for a genetic factor causing hypermutation in the maternal germline of a mammal and adds to the very small list of naturally occurring variants known to modulate germline mutation rates in mammals.
Collapse
Affiliation(s)
- Alexandra M Stendahl
- Division of Genetics, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | - Rashesh Sanghvi
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Samuel Peterson
- Division of Genetics, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | - Karina Ray
- Division of Genetics, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | - Ana C Lima
- Division of Genetics, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | - Raheleh Rahbari
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Donald F Conrad
- Division of Genetics, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA;
| |
Collapse
|
8
|
Fu TY, Ji SS, Tian YL, Lin YG, Chen YM, Zhong QE, Zheng SC, Xu GF. Methyl-CpG binding domain (MBD)2/3 specifically recognizes and binds to the genomic mCpG site with a β-sheet in the MBD to affect embryonic development in Bombyx mori. INSECT SCIENCE 2023; 30:1607-1621. [PMID: 36915030 DOI: 10.1111/1744-7917.13195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/06/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Methyl-CpG (mCpG) binding domain (MBD) proteins especially bind with methylated DNA, and are involved in many important biological processes; however, the binding mechanism between insect MBD2/3 and mCpG remains unclear. In this study, we identified 2 isoforms of the MBD2/3 gene in Bombyx mori, MBD2/3-S and MBD2/3-L. Binding analysis of MBD2/3-L, MBD2/3-S, and 7 mutant MBD2/3-L proteins deficient in β1-β6 or α1 in the MBD showed that β2-β3-turns in the β-sheet of the MBD are necessary for the formation of the MBD2/3-mCpG complex; furthermore, other secondary structures, namely, β4-β6 and an α-helix, play a role in stabilizing the β-sheet structure to ensure that the MBD is able to bind mCpG. In addition, sequence alignment and binding analyses of different insect MBD2/3s indicated that insect MBD2/3s have an intact and conserved MBD that binds to the mCpG of target genes. Furthermore, MBD2/3 RNA interference results showed that MBD2/3-L plays a role in regulating B. mori embryonic development, similar to that of DNA methylation; however, MBD2/3-S without β4-β6 and α-helix does not alter embryonic development. These results suggest that MBD2/3-L recognizes and binds to mCpG through the intact β-sheet structure in its MBD, thus ensuring silkworm embryonic development.
Collapse
Affiliation(s)
- Tong-Yu Fu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shuang-Shun Ji
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yu-Lin Tian
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yi-Guang Lin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yu-Mei Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qi-En Zhong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Si-Chun Zheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Guan-Feng Xu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
9
|
Papin C, Ibrahim A, Sabir JSM, Le Gras S, Stoll I, Albiheyri RS, Zari AT, Bahieldin A, Bellacosa A, Bronner C, Hamiche A. MBD4 loss results in global reactivation of promoters and retroelements with low methylated CpG density. J Exp Clin Cancer Res 2023; 42:301. [PMID: 37957685 PMCID: PMC10644448 DOI: 10.1186/s13046-023-02882-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Inherited defects in the base-excision repair gene MBD4 predispose individuals to adenomatous polyposis and colorectal cancer, which is characterized by an accumulation of C > T transitions resulting from spontaneous deamination of 5'-methylcytosine. METHODS Here, we have investigated the potential role of MBD4 in regulating DNA methylation levels using genome-wide transcriptome and methylome analyses. Additionally, we have elucidated its function through a series of in vitro experiments. RESULTS Here we show that the protein MBD4 is required for DNA methylation maintenance and G/T mismatch repair. Transcriptome and methylome analyses reveal a genome-wide hypomethylation of promoters, gene bodies and repetitive elements in the absence of MBD4 in vivo. Methylation mark loss is accompanied by a broad transcriptional derepression phenotype affecting promoters and retroelements with low methylated CpG density. MBD4 in vivo forms a complex with the mismatch repair proteins (MMR), which exhibits high bi-functional glycosylase/AP-lyase endonuclease specific activity towards methylated DNA substrates containing a G/T mismatch. Experiments using recombinant proteins reveal that the association of MBD4 with the MMR protein MLH1 is required for this activity. CONCLUSIONS Our data identify MBD4 as an enzyme specifically designed to repair deaminated 5-methylcytosines and underscores its critical role in safeguarding against methylation damage. Furthermore, it illustrates how MBD4 functions in normal and pathological conditions.
Collapse
Affiliation(s)
- Christophe Papin
- Institut de Génétique Et Biologie Moléculaire Et Cellulaire (IGBMC), UdS, CNRS, INSERM, Equipe Labélisée Ligue Contre Le Cancer, 1 Rue Laurent Fries, B.P. 10142, Illkirch, 67404, Cedex, France
| | - Abdulkhaleg Ibrahim
- Institut de Génétique Et Biologie Moléculaire Et Cellulaire (IGBMC), UdS, CNRS, INSERM, Equipe Labélisée Ligue Contre Le Cancer, 1 Rue Laurent Fries, B.P. 10142, Illkirch, 67404, Cedex, France
- National Research Centre for Tropical and Transboundary Diseases (NRCTTD), Alzentan, 99316, Libya
| | - Jamal S M Sabir
- Centre of Excellence in Bionanoscience, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Stéphanie Le Gras
- Institut de Génétique Et Biologie Moléculaire Et Cellulaire (IGBMC), UdS, CNRS, INSERM, Equipe Labélisée Ligue Contre Le Cancer, 1 Rue Laurent Fries, B.P. 10142, Illkirch, 67404, Cedex, France
| | - Isabelle Stoll
- Institut de Génétique Et Biologie Moléculaire Et Cellulaire (IGBMC), UdS, CNRS, INSERM, Equipe Labélisée Ligue Contre Le Cancer, 1 Rue Laurent Fries, B.P. 10142, Illkirch, 67404, Cedex, France
| | - Raed S Albiheyri
- Centre of Excellence in Bionanoscience, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ali T Zari
- Centre of Excellence in Bionanoscience, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Bahieldin
- Centre of Excellence in Bionanoscience, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alfonso Bellacosa
- Cancer Biology Program, Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Christian Bronner
- Institut de Génétique Et Biologie Moléculaire Et Cellulaire (IGBMC), UdS, CNRS, INSERM, Equipe Labélisée Ligue Contre Le Cancer, 1 Rue Laurent Fries, B.P. 10142, Illkirch, 67404, Cedex, France.
| | - Ali Hamiche
- Institut de Génétique Et Biologie Moléculaire Et Cellulaire (IGBMC), UdS, CNRS, INSERM, Equipe Labélisée Ligue Contre Le Cancer, 1 Rue Laurent Fries, B.P. 10142, Illkirch, 67404, Cedex, France.
| |
Collapse
|
10
|
Torres JR, Lescano López I, Ayala AM, Alvarez ME. The Arabidopsis DNA glycosylase MBD4L repairs the nuclear genome in vivo. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1633-1646. [PMID: 37278489 DOI: 10.1111/tpj.16344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
DNA glycosylases remove mispaired or modified bases from DNA initiating the base excision repair (BER) pathway. The DNA glycosylase MBD4 (methyl-CpG-binding domain protein 4) has been functionally characterized in mammals, but not yet in plants, where it is called MBD4-like (MBD4L). Mammalian MBD4 and Arabidopsis recombinant MBD4L excise U and T mispaired with G, as well as 5-fluorouracil (5-FU) and 5-bromouracil (5-BrU) in vitro. Here, we investigate the ability of Arabidopsis MBD4L to remove some of these substrates from the nuclear genome in vivo in coordination with uracil DNA glycosylase (AtUNG). We found that mbd4l mutants are hypersensitive to 5-FU and 5-BrU, as they displayed smaller size, less root growth, and higher cell death than control plants in both media. Using comet assays, we determined BER-associated DNA fragmentation in isolated nuclei and observed reduced DNA breaks in mbd4l plants under both conditions, but particularly with 5-BrU. The use of ung and ung x mbd4l mutants in these assays indicated that both MBD4L and AtUNG trigger nuclear DNA fragmentation in response to 5-FU. Consistently, we here report the nuclear localization of AtUNG based on the expression of AtUNG-GFP/RFP constructs in transgenic plants. Interestingly, MBD4L and AtUNG are transcriptionally coordinated but display not completely overlapping functions. MBD4L-deficient plants showed reduced expression of BER genes and enhanced expression of DNA damage response (DDR) gene markers. Overall, our findings indicate that Arabidopsis MBD4L is critical for maintaining nuclear genome integrity and preventing cell death under genotoxic stress conditions.
Collapse
Affiliation(s)
- José Roberto Torres
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Ignacio Lescano López
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Ana María Ayala
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - María Elena Alvarez
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| |
Collapse
|
11
|
Ottaiano A, Ianniello M, Santorsola M, Ruggiero R, Sirica R, Sabbatino F, Perri F, Cascella M, Di Marzo M, Berretta M, Caraglia M, Nasti G, Savarese G. From Chaos to Opportunity: Decoding Cancer Heterogeneity for Enhanced Treatment Strategies. BIOLOGY 2023; 12:1183. [PMID: 37759584 PMCID: PMC10525472 DOI: 10.3390/biology12091183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
Cancer manifests as a multifaceted disease, characterized by aberrant cellular proliferation, survival, migration, and invasion. Tumors exhibit variances across diverse dimensions, encompassing genetic, epigenetic, and transcriptional realms. This heterogeneity poses significant challenges in prognosis and treatment, affording tumors advantages through an increased propensity to accumulate mutations linked to immune system evasion and drug resistance. In this review, we offer insights into tumor heterogeneity as a crucial characteristic of cancer, exploring the difficulties associated with measuring and quantifying such heterogeneity from clinical and biological perspectives. By emphasizing the critical nature of understanding tumor heterogeneity, this work contributes to raising awareness about the importance of developing effective cancer therapies that target this distinct and elusive trait of cancer.
Collapse
Affiliation(s)
- Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (M.S.); (F.P.); (M.C.); (M.D.M.); (G.N.)
| | - Monica Ianniello
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy; (M.I.); (R.R.); (R.S.); (G.S.)
| | - Mariachiara Santorsola
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (M.S.); (F.P.); (M.C.); (M.D.M.); (G.N.)
| | - Raffaella Ruggiero
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy; (M.I.); (R.R.); (R.S.); (G.S.)
| | - Roberto Sirica
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy; (M.I.); (R.R.); (R.S.); (G.S.)
| | - Francesco Sabbatino
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy;
| | - Francesco Perri
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (M.S.); (F.P.); (M.C.); (M.D.M.); (G.N.)
| | - Marco Cascella
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (M.S.); (F.P.); (M.C.); (M.D.M.); (G.N.)
| | - Massimiliano Di Marzo
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (M.S.); (F.P.); (M.C.); (M.D.M.); (G.N.)
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via Luigi De Crecchio 7, 80138 Naples, Italy;
| | - Guglielmo Nasti
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (M.S.); (F.P.); (M.C.); (M.D.M.); (G.N.)
| | - Giovanni Savarese
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy; (M.I.); (R.R.); (R.S.); (G.S.)
| |
Collapse
|
12
|
Yano N, Fedulov AV. Targeted DNA Demethylation: Vectors, Effectors and Perspectives. Biomedicines 2023; 11:biomedicines11051334. [PMID: 37239005 DOI: 10.3390/biomedicines11051334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Aberrant DNA hypermethylation at regulatory cis-elements of particular genes is seen in a plethora of pathological conditions including cardiovascular, neurological, immunological, gastrointestinal and renal diseases, as well as in cancer, diabetes and others. Thus, approaches for experimental and therapeutic DNA demethylation have a great potential to demonstrate mechanistic importance, and even causality of epigenetic alterations, and may open novel avenues to epigenetic cures. However, existing methods based on DNA methyltransferase inhibitors that elicit genome-wide demethylation are not suitable for treatment of diseases with specific epimutations and provide a limited experimental value. Therefore, gene-specific epigenetic editing is a critical approach for epigenetic re-activation of silenced genes. Site-specific demethylation can be achieved by utilizing sequence-dependent DNA-binding molecules such as zinc finger protein array (ZFA), transcription activator-like effector (TALE) and clustered regularly interspaced short palindromic repeat-associated dead Cas9 (CRISPR/dCas9). Synthetic proteins, where these DNA-binding domains are fused with the DNA demethylases such as ten-eleven translocation (Tet) and thymine DNA glycosylase (TDG) enzymes, successfully induced or enhanced transcriptional responsiveness at targeted loci. However, a number of challenges, including the dependence on transgenesis for delivery of the fusion constructs, remain issues to be solved. In this review, we detail current and potential approaches to gene-specific DNA demethylation as a novel epigenetic editing-based therapeutic strategy.
Collapse
Affiliation(s)
- Naohiro Yano
- Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI 02903, USA
| | - Alexey V Fedulov
- Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI 02903, USA
| |
Collapse
|
13
|
Kaplanis J, Ide B, Sanghvi R, Neville M, Danecek P, Coorens T, Prigmore E, Short P, Gallone G, McRae J, Carmichael J, Barnicoat A, Firth H, O'Brien P, Rahbari R, Hurles M. Genetic and chemotherapeutic influences on germline hypermutation. Nature 2022; 605:503-508. [PMID: 35545669 PMCID: PMC9117138 DOI: 10.1038/s41586-022-04712-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 03/31/2022] [Indexed: 01/06/2023]
Abstract
Mutations in the germline generates all evolutionary genetic variation and is a cause of genetic disease. Parental age is the primary determinant of the number of new germline mutations in an individual's genome1,2. Here we analysed the genome-wide sequences of 21,879 families with rare genetic diseases and identified 12 individuals with a hypermutated genome with between two and seven times more de novo single-nucleotide variants than expected. In most families (9 out of 12), the excess mutations came from the father. Two families had genetic drivers of germline hypermutation, with fathers carrying damaging genetic variation in DNA-repair genes. For five of the families, paternal exposure to chemotherapeutic agents before conception was probably a key driver of hypermutation. Our results suggest that the germline is well protected from mutagenic effects, hypermutation is rare, the number of excess mutations is relatively modest and most individuals with a hypermutated genome will not have a genetic disease.
Collapse
Affiliation(s)
- Joanna Kaplanis
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Benjamin Ide
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Rashesh Sanghvi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Matthew Neville
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Petr Danecek
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Tim Coorens
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Elena Prigmore
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Patrick Short
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Jeremy McRae
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Jenny Carmichael
- East Anglian Medical Genetics Service, Cambridge University Hospitals, Cambridge, UK
| | - Angela Barnicoat
- North East Thames Regional Genetics Service, Great Ormond Street Hospital, London, UK
| | - Helen Firth
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- East Anglian Medical Genetics Service, Cambridge University Hospitals, Cambridge, UK
| | - Patrick O'Brien
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Raheleh Rahbari
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Matthew Hurles
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
14
|
Nishio M, Matsuura T, Hibi S, Ohta S, Oka C, Sasai N, Ishida Y, Matsuda E. Heterozygous loss of Zbtb38 leads to early embryonic lethality via the suppression of Nanog and Sox2 expression. Cell Prolif 2022; 55:e13215. [PMID: 35297517 PMCID: PMC9055898 DOI: 10.1111/cpr.13215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVES Mammalian DNA methyltransferases are essential to re-establish global DNA methylation patterns during implantation, which is critical for transmitting epigenetic information to the next generation. In contrast, the significance of methyl-CpG binding proteins (MBPs) that bind methylated CpG remains almost unknown at this stage. We previously demonstrated that Zbtb38 (also known as CIBZ)-a zinc finger type of MBP-is required for mouse embryonic stem (ES) cell proliferation by positively regulating Nanog expression. However, the physiological function of Zbtb38 in vivo remains unclear. MATERIALS AND METHODS This study used the Cre-loxP system to generate conditional Zbtb38 knockout mice. Cell proliferation and apoptosis were studied by immunofluorescence staining. Quantitative real-time PCR, immunoblotting and immunofluorescence were performed to investigate the molecular mechanisms. RESULTS Germline loss of the Zbtb38 single allele resulted in decreased epiblast cell proliferation and increased apoptosis shortly after implantation, leading to early embryonic lethality. Heterozygous loss of Zbtb38 reduced the expression of Nanog, Sox2, and the genes responsible for epiblast proliferation, differentiation, and cell viability. Although this early lethal phenotype, Zbtb38 is dispensable for ES cell establishment and identity. CONCLUSIONS These findings indicate that Zbtb38 is essential for early embryonic development via the suppression of Nanog and Sox2 expression.
Collapse
Affiliation(s)
- Miki Nishio
- Functional Genomics and MedicineNara Institute of Science and TechnologyIkomaJapan
- Cosmo Bio Co., Ltd.TokyoJapan
| | - Takuya Matsuura
- Functional Genomics and MedicineNara Institute of Science and TechnologyIkomaJapan
| | - Shunya Hibi
- Functional Genomics and MedicineNara Institute of Science and TechnologyIkomaJapan
| | - Shiomi Ohta
- Functional Genomics and MedicineNara Institute of Science and TechnologyIkomaJapan
| | - Chio Oka
- Functional Genomics and MedicineNara Institute of Science and TechnologyIkomaJapan
| | - Noriaki Sasai
- Development Biomedical ScienceNara Institute of Science and TechnologyIkomaJapan
| | - Yasumasa Ishida
- Functional Genomics and MedicineNara Institute of Science and TechnologyIkomaJapan
| | - Eishou Matsuda
- Functional Genomics and MedicineNara Institute of Science and TechnologyIkomaJapan
| |
Collapse
|
15
|
Proteins That Read DNA Methylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:269-293. [DOI: 10.1007/978-3-031-11454-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Wen J, Wang Y, Yuan M, Huang Z, Zou Q, Pu Y, Zhao B, Cai Z. Role of mismatch repair in aging. Int J Biol Sci 2021; 17:3923-3935. [PMID: 34671209 PMCID: PMC8495402 DOI: 10.7150/ijbs.64953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/07/2021] [Indexed: 01/10/2023] Open
Abstract
A common feature of aging is the accumulation of genetic damage throughout life. DNA damage can lead to genomic instability. Many diseases associated with premature aging are a result of increased accumulation of DNA damage. In order to minimize these damages, organisms have evolved a complex network of DNA repair mechanisms, including mismatch repair (MMR). In this review, we detail the effects of MMR on genomic instability and its role in aging emphasizing on the association between MMR and the other hallmarks of aging, serving to drive or amplify these mechanisms. These hallmarks include telomere attrition, epigenetic alterations, mitochondrial dysfunction, altered nutrient sensing and cell senescence. The close relationship between MMR and these markers may provide prevention and treatment strategies, to reduce the incidence of age-related diseases and promote the healthy aging of human beings.
Collapse
Affiliation(s)
- Jie Wen
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China.,Department and Institute of Neurology, Guangdong Medical University, Guangdong, 524001, China.,Guangdong Key Laboratory of aging related cardio cerebral diseases, Guangdong, 524001, China
| | - Yangyang Wang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China
| | - Minghao Yuan
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China
| | - Zhenting Huang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China
| | - Qian Zou
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China
| | - Yinshuang Pu
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China
| | - Bin Zhao
- Department and Institute of Neurology, Guangdong Medical University, Guangdong, 524001, China.,Guangdong Key Laboratory of aging related cardio cerebral diseases, Guangdong, 524001, China
| | - Zhiyou Cai
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China
| |
Collapse
|
17
|
Prasad R, Yen TJ, Bellacosa A. Active DNA demethylation-The epigenetic gatekeeper of development, immunity, and cancer. ADVANCED GENETICS (HOBOKEN, N.J.) 2021; 2:e10033. [PMID: 36618446 PMCID: PMC9744510 DOI: 10.1002/ggn2.10033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 01/11/2023]
Abstract
DNA methylation is a critical process in the regulation of gene expression with dramatic effects in development and continually expanding roles in oncogenesis. 5-Methylcytosine was once considered to be an inherited and stably repressive epigenetic mark, which can be only removed by passive dilution during multiple rounds of DNA replication. However, in the past two decades, physiologically controlled DNA demethylation and deamination processes have been identified, thereby revealing the function of cytosine methylation as a highly regulated and complex state-not simply a static, inherited signature or binary on-off switch. Alongside these fundamental discoveries, clinical studies over the past decade have revealed the dramatic consequences of aberrant DNA demethylation. In this review we discuss DNA demethylation and deamination in the context of 5-methylcytosine as critical processes for physiological and physiopathological transitions within three states-development, immune maturation, and oncogenic transformation; and we describe the expanding role of DNA demethylating drugs as therapeutic agents in cancer.
Collapse
Affiliation(s)
- Rahul Prasad
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer CenterPhiladelphiaPennsylvaniaUSA
| | - Timothy J. Yen
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer CenterPhiladelphiaPennsylvaniaUSA
| | - Alfonso Bellacosa
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer CenterPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
18
|
Ballotti R, Cheli Y, Bertolotto C. The complex relationship between MITF and the immune system: a Melanoma ImmunoTherapy (response) Factor? Mol Cancer 2020; 19:170. [PMID: 33276788 PMCID: PMC7718690 DOI: 10.1186/s12943-020-01290-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/29/2020] [Indexed: 12/18/2022] Open
Abstract
The clinical benefit of immune checkpoint inhibitory therapy (ICT) in advanced melanomas is limited by primary and acquired resistance. The molecular determinants of the resistance have been extensively studied, but these discoveries have not yet been translated into therapeutic benefits. As such, a paradigm shift in melanoma treatment, to surmount the therapeutic impasses linked to the resistance, is an important ongoing challenge.This review outlines the multifaceted interplay between microphthalmia-associated transcription factor (MITF), a major determinant of the biology of melanoma cells, and the immune system. In melanomas, MITF functions downstream oncogenic pathways and microenvironment stimuli that restrain the immune responses. We highlight how MITF, by controlling differentiation and genome integrity, may regulate melanoma-specific antigen expression by interfering with the endolysosomal pathway, KARS1, and antigen processing and presentation. MITF also modulates the expression of coinhibitory receptors, i.e., PD-L1 and HVEM, and the production of an inflammatory secretome, which directly affects the infiltration and/or activation of the immune cells.Furthermore, MITF is also a key determinant of melanoma cell plasticity and tumor heterogeneity, which are undoubtedly one of the major hurdles for an effective immunotherapy. Finally, we briefly discuss the role of MITF in kidney cancer, where it also plays a key role, and in immune cells, establishing MITF as a central mediator in the regulation of immune responses in melanoma and other cancers.We propose that a better understanding of MITF and immune system intersections could help in the tailoring of current ICT in melanomas and pave the way for clinical benefits and long-lasting responses.
Collapse
Affiliation(s)
- Robert Ballotti
- Université Côte d'Azur, Nice, France
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2019, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Yann Cheli
- Université Côte d'Azur, Nice, France
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2019, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Corine Bertolotto
- Université Côte d'Azur, Nice, France.
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2019, Centre Méditerranéen de Médecine Moléculaire, Nice, France.
| |
Collapse
|
19
|
Khan AA, Patel K, Patil S, Babu N, Mangalaparthi KK, Solanki HS, Nanjappa V, Kumari A, Manoharan M, Karunakaran C, Murugan S, Nair B, Kumar RV, Biswas M, Sidransky D, Gupta R, Gupta R, Khanna-Gupta A, Kumar P, Chatterjee A, Gowda H. Multi-Omics Analysis to Characterize Cigarette Smoke Induced Molecular Alterations in Esophageal Cells. Front Oncol 2020; 10:1666. [PMID: 33251127 PMCID: PMC7675040 DOI: 10.3389/fonc.2020.01666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 07/28/2020] [Indexed: 12/29/2022] Open
Abstract
Though smoking remains one of the established risk factors of esophageal squamous cell carcinoma, there is limited data on molecular alterations associated with cigarette smoke exposure in esophageal cells. To investigate molecular alterations associated with chronic exposure to cigarette smoke, non-neoplastic human esophageal epithelial cells were treated with cigarette smoke condensate (CSC) for up to 8 months. Chronic treatment with CSC increased cell proliferation and invasive ability of non-neoplastic esophageal cells. Whole exome sequence analysis of CSC treated cells revealed several mutations and copy number variations. This included loss of high mobility group nucleosomal binding domain 2 (HMGN2) and a missense variant in mediator complex subunit 1 (MED1). Both these genes play an important role in DNA repair. Global proteomic and phosphoproteomic profiling of CSC treated cells lead to the identification of 38 differentially expressed and 171 differentially phosphorylated proteins. Bioinformatics analysis of differentially expressed proteins and phosphoproteins revealed that most of these proteins are associated with DNA damage response pathway. Proteomics data revealed decreased expression of HMGN2 and hypophosphorylation of MED1. Exogenous expression of HMGN2 and MED1 lead to decreased proliferative and invasive ability of smoke exposed cells. Immunohistochemical labeling of HMGN2 in primary ESCC tumor tissue sections (from smokers) showed no detectable expression while strong to moderate staining of HMGN2 was observed in normal esophageal tissues. Our data suggests that cigarette smoke perturbs expression of proteins associated with DNA damage response pathways which might play a vital role in development of ESCC.
Collapse
Affiliation(s)
- Aafaque Ahmad Khan
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Krishna Patel
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Shankargouda Patil
- Division of Oral Pathology, Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia.,Department of Medical Biotechnologies, School of Dental Medicine, University of Siena, Siena, Italy
| | - Niraj Babu
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Kiran K Mangalaparthi
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | | | | | | | | | | | | | - Bipin Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Rekha V Kumar
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Manjusha Biswas
- Department of Molecular Pathology, Mitra Biotech, Bangalore, India
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ravi Gupta
- Medgenome Labs Pvt. Ltd., Bangalore, India
| | | | | | - Prashant Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education, Manipal, India.,Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
20
|
Liu X, Qian D, Liu H, Abbruzzese JL, Luo S, Walsh KM, Wei Q. Genetic variants of the peroxisome proliferator-activated receptor (PPAR) signaling pathway genes and risk of pancreatic cancer. Mol Carcinog 2020; 59:930-939. [PMID: 32367578 PMCID: PMC7592725 DOI: 10.1002/mc.23208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/22/2020] [Accepted: 04/04/2020] [Indexed: 12/17/2022]
Abstract
Because the peroxisome proliferator-activated receptor (PPAR) signaling pathway is involved in development and progression of pancreatic cancer, we investigated associations between genetic variants of the PPAR pathway genes and pancreatic cancer risk by using three published genome-wide association study datasets including 8477 cases and 6946 controls of European ancestry. Expression quantitative trait loci (eQTL) analysis was also performed for correlations between genotypes of the identified genetic variants and messenger RNA (mRNA) expression levels of their genes by using available databases of the 1000 Genomes, TCGA, and GTEx projects. In the single-locus logistic regression analysis, we identified 1141 out of 17 532 significant single-nucleotide polymorphisms (SNPs) in 112 PPAR pathway genes. Further multivariate logistic regression analysis identified three independent, potentially functional loci (rs12947620 in MED1, rs11079651 in PRKCA, and rs34367566 in PRKCB) for pancreatic cancer risk (odds ratio [OR] = 1.11, 95% confidence interval [CI], [1.06-1.17], P = 5.46 × 10-5 ; OR = 1.10, 95% CI, [1.04-1.15], P = 1.99 × 10-4 ; and OR = 1.09, 95% CI, [1.04-1.14], P = 3.16 × 10-4 , respectively) among 65 SNPs that passed multiple comparison correction by false discovery rate (< 0.2). When risk genotypes of these three SNPs were combined, carriers with 2 to 3 unfavorable genotypes (NUGs) had a higher risk of pancreatic cancer than those with 0 to 1 NUGs. The eQTL analysis showed that rs34367566 A>AG was associated with decreased expression levels of PRKCB mRNA in 373 lymphoblastoid cell lines. Our findings indicate that genetic variants of the PPAR pathway genes, particularly MED1, PRKCA, and PRKCB, may contribute to susceptibility to pancreatic cancer.
Collapse
Affiliation(s)
- Xiaowen Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai 20032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Danwen Qian
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - James L. Abbruzzese
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kyle M. Walsh
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
21
|
Repo P, Jäntti JE, Järvinen R, Rantala ES, Täll M, Raivio V, Kivelä TT, Turunen JA. Germline loss‐of‐function variants in
MBD4
are rare in Finnish patients with uveal melanoma. Pigment Cell Melanoma Res 2020; 33:756-762. [DOI: 10.1111/pcmr.12892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/30/2020] [Accepted: 05/14/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Pauliina Repo
- Folkhälsan Research Center Biomedicum Helsinki Helsinki Finland
- Ocular Oncology Service Department of Ophthalmology Helsinki University Hospital University of Helsinki Helsinki Finland
| | | | - Reetta‐Stiina Järvinen
- Folkhälsan Research Center Biomedicum Helsinki Helsinki Finland
- Ocular Oncology Service Department of Ophthalmology Helsinki University Hospital University of Helsinki Helsinki Finland
| | - Elina S. Rantala
- Ocular Oncology Service Department of Ophthalmology Helsinki University Hospital University of Helsinki Helsinki Finland
| | - Martin Täll
- Ocular Oncology Service Department of Ophthalmology Helsinki University Hospital University of Helsinki Helsinki Finland
| | - Virpi Raivio
- Ocular Oncology Service Department of Ophthalmology Helsinki University Hospital University of Helsinki Helsinki Finland
| | - Tero T. Kivelä
- Ocular Oncology Service Department of Ophthalmology Helsinki University Hospital University of Helsinki Helsinki Finland
| | - Joni A. Turunen
- Folkhälsan Research Center Biomedicum Helsinki Helsinki Finland
- Ocular Oncology Service Department of Ophthalmology Helsinki University Hospital University of Helsinki Helsinki Finland
| |
Collapse
|
22
|
Stratigopoulou M, van Dam TP, Guikema JEJ. Base Excision Repair in the Immune System: Small DNA Lesions With Big Consequences. Front Immunol 2020; 11:1084. [PMID: 32547565 PMCID: PMC7272602 DOI: 10.3389/fimmu.2020.01084] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
The integrity of the genome is under constant threat of environmental and endogenous agents that cause DNA damage. Endogenous damage is particularly pervasive, occurring at an estimated rate of 10,000–30,000 per cell/per day, and mostly involves chemical DNA base lesions caused by oxidation, depurination, alkylation, and deamination. The base excision repair (BER) pathway is primary responsible for removing and repairing these small base lesions that would otherwise lead to mutations or DNA breaks during replication. Next to preventing DNA mutations and damage, the BER pathway is also involved in mutagenic processes in B cells during immunoglobulin (Ig) class switch recombination (CSR) and somatic hypermutation (SHM), which are instigated by uracil (U) lesions derived from activation-induced cytidine deaminase (AID) activity. BER is required for the processing of AID-induced lesions into DNA double strand breaks (DSB) that are required for CSR, and is of pivotal importance for determining the mutagenic outcome of uracil lesions during SHM. Although uracils are generally efficiently repaired by error-free BER, this process is surprisingly error-prone at the Ig loci in proliferating B cells. Breakdown of this high-fidelity process outside of the Ig loci has been linked to mutations observed in B-cell tumors and DNA breaks and chromosomal translocations in activated B cells. Next to its role in preventing cancer, BER has also been implicated in immune tolerance. Several defects in BER components have been associated with autoimmune diseases, and animal models have shown that BER defects can cause autoimmunity in a B-cell intrinsic and extrinsic fashion. In this review we discuss the contribution of BER to genomic integrity in the context of immune receptor diversification, cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Maria Stratigopoulou
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Tijmen P van Dam
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
23
|
Tillotson R, Bird A. The Molecular Basis of MeCP2 Function in the Brain. J Mol Biol 2020; 432:1602-1623. [PMID: 31629770 DOI: 10.1016/j.jmb.2019.10.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 12/14/2022]
Abstract
MeCP2 is a reader of the DNA methylome that occupies a large proportion of the genome due to its high abundance and the frequency of its target sites. It has been the subject of extensive study because of its link with 'MECP2-related disorders', of which Rett syndrome is the most prevalent. This review integrates evidence from patient mutation data with results of experimental studies using mouse models, cell lines and in vitro systems to critically evaluate our understanding of MeCP2 protein function. Recent evidence challenges the idea that MeCP2 is a multifunctional hub that integrates diverse processes to underpin neuronal function, suggesting instead that its primary role is to recruit the NCoR1/2 co-repressor complex to methylated sites in the genome, leading to dampening of gene expression.
Collapse
Affiliation(s)
- Rebekah Tillotson
- Genetics and Genome Biology Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada; Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | - Adrian Bird
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
24
|
Reading Targeted DNA Damage in the Active Demethylation Pathway: Role of Accessory Domains of Eukaryotic AP Endonucleases and Thymine-DNA Glycosylases. J Mol Biol 2020:S0022-2836(19)30720-X. [DOI: 10.1016/j.jmb.2019.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/24/2019] [Accepted: 12/05/2019] [Indexed: 01/07/2023]
|
25
|
Kim DV, Makarova AV, Miftakhova RR, Zharkov DO. Base Excision DNA Repair Deficient Cells: From Disease Models to Genotoxicity Sensors. Curr Pharm Des 2020; 25:298-312. [PMID: 31198112 DOI: 10.2174/1381612825666190319112930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/13/2019] [Indexed: 12/29/2022]
Abstract
Base excision DNA repair (BER) is a vitally important pathway that protects the cell genome from many kinds of DNA damage, including oxidation, deamination, and hydrolysis. It involves several tightly coordinated steps, starting from damaged base excision and followed by nicking one DNA strand, incorporating an undamaged nucleotide, and DNA ligation. Deficiencies in BER are often embryonic lethal or cause morbid diseases such as cancer, neurodegeneration, or severe immune pathologies. Starting from the early 1980s, when the first mammalian cell lines lacking BER were produced by spontaneous mutagenesis, such lines have become a treasure trove of valuable information about the mechanisms of BER, often revealing unexpected connections with other cellular processes, such as antibody maturation or epigenetic demethylation. In addition, these cell lines have found an increasing use in genotoxicity testing, where they provide increased sensitivity and representativity to cell-based assay panels. In this review, we outline current knowledge about BER-deficient cell lines and their use.
Collapse
Affiliation(s)
- Daria V Kim
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russian Federation
| | - Alena V Makarova
- RAS Institute of Molecular Genetics, 2 Kurchatova Sq., Moscow 123182, Russian Federation
| | - Regina R Miftakhova
- Kazan Federal University, 18 Kremlevsakaya St., Kazan 420008, Russian Federation
| | - Dmitry O Zharkov
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russian Federation.,SB RAS Institute of Chemical Biology and Fu ndamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russian Federation
| |
Collapse
|
26
|
Koliadenko V, Wilanowski T. Additional functions of selected proteins involved in DNA repair. Free Radic Biol Med 2020; 146:1-15. [PMID: 31639437 DOI: 10.1016/j.freeradbiomed.2019.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022]
Abstract
Protein moonlighting is a phenomenon in which a single polypeptide chain can perform a number of different unrelated functions. Here we present our analysis of moonlighting in the case of selected DNA repair proteins which include G:T mismatch-specific thymine DNA glycosylase (TDG), methyl-CpG-binding domain protein 4 (MBD4), apurinic/apyrimidinic endonuclease 1 (APE1), AlkB homologs, poly (ADP-ribose) polymerase 1 (PARP-1) and single-strand selective monofunctional uracil DNA glycosylase 1 (SMUG1). Most of their additional functions are not accidental and clear patterns are emerging. Participation in RNA metabolism is not surprising as bases occurring in RNA are the same or very similar to those in DNA. Other common additional function involves regulation of transcription. This is not unexpected as these proteins bind to specific DNA regions for DNA repair, hence they can also be recruited to regulate transcription. Participation in demethylation and replication of DNA appears logical as well. Some of the multifunctional DNA repair proteins play major roles in many diseases, including cancer. However, their moonlighting might prove a major difficulty in the development of new therapies because it will not be trivial to target a single protein function without affecting its other functions that are not related to the disease.
Collapse
Affiliation(s)
- Vlada Koliadenko
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096, Warsaw, Poland
| | - Tomasz Wilanowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
27
|
Steele CD, Pillay N. The genomics of undifferentiated sarcoma of soft tissue: Progress, challenges and opportunities. Semin Cancer Biol 2019; 61:42-55. [PMID: 31866474 DOI: 10.1016/j.semcancer.2019.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/23/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022]
Abstract
Undifferentiated sarcoma of soft tissue (USTS) are aggressive sarcomas that remain a diagnosis of exclusion and show extreme genomic complexity. Many advances in diagnostic criteria have resulted in several revisions in the definition of this rare cancer type. Recent sequencing efforts have illuminated the nature of the genome complexity and have revealed extensive copy number heterogeneity and multiple evolutionary patterns of development. This review places these recent advances into their historical and translational context and covers the changes in nomenclature, molecular classification, and the promise of personalised medicine.
Collapse
Affiliation(s)
- Christopher D Steele
- Research Department of Pathology, Cancer Institute, University College London, London, WC1E 6BT, UK
| | - Nischalan Pillay
- Research Department of Pathology, Cancer Institute, University College London, London, WC1E 6BT, UK; Department of Cellular and Molecular Pathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex, HA7 4LP, UK
| |
Collapse
|
28
|
Abstract
Cancer arises from a single cell through a series of acquired mutations and epigenetic alterations. Tumors gradually develop into a complex tissue comprised of phenotypically heterogeneous cancer cell populations, as well as noncancer cells that make up the tumor microenvironment. The phenotype, or state, of each cancer and stromal cell is influenced by a plethora of cell-intrinsic and cell-extrinsic factors. The diversity of these cellular states promotes tumor progression, enables metastasis, and poses a challenge for effective cancer treatments. Thus, the identification of strategies for the therapeutic manipulation of tumor heterogeneity would have significant clinical implications. A major barrier in the field is the difficulty in functionally investigating heterogeneity in tumors in cancer patients. Here we review how mouse models of human cancer can be leveraged to interrogate tumor heterogeneity and to help design better therapeutic strategies.
Collapse
Affiliation(s)
- Tuomas Tammela
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Julien Sage
- Department of Pediatrics and Department of Genetics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
29
|
Sannai M, Doneddu V, Giri V, Seeholzer S, Nicolas E, Yip SC, Bassi MR, Mancuso P, Cortellino S, Cigliano A, Lurie R, Ding H, Chernoff J, Sobol RW, Yen TJ, Bagella L, Bellacosa A. Modification of the base excision repair enzyme MBD4 by the small ubiquitin-like molecule SUMO1. DNA Repair (Amst) 2019; 82:102687. [PMID: 31476572 PMCID: PMC6785017 DOI: 10.1016/j.dnarep.2019.102687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/21/2019] [Accepted: 08/08/2019] [Indexed: 10/26/2022]
Abstract
The base excision repair DNA N-glycosylase MBD4 (also known as MED1), an interactor of the DNA mismatch repair protein MLH1, plays a central role in the maintenance of genomic stability of CpG sites by removing thymine and uracil from G:T and G:U mismatches, respectively. MBD4 is also involved in DNA damage response and transcriptional regulation. The interaction with other proteins is likely critical for understanding MBD4 functions. To identify novel proteins that interact with MBD4, we used tandem affinity purification (TAP) from HEK-293 cells. The MBD4-TAP fusion and its co-associated proteins were purified sequentially on IgG and calmodulin affinity columns; the final eluate was shown to contain MLH1 by western blotting, and MBD4-associated proteins were identified by mass spectrometry. Bands with molecular weight higher than that expected for MBD4 (˜66 kD) yielded peptides corresponding to MBD4 itself and the small ubiquitin-like molecule-1 (SUMO1), suggesting that MBD4 is sumoylated in vivo. MBD4 sumoylation was validated by co-immunoprecipitation in HEK-293 and MCF7 cells, and by an in vitrosumoylation assay. Sequence and mutation analysis identified three main sumoylation sites: MBD4 is sumoylated preferentially on K137, with additional sumoylation at K215 and K377. Patterns of MBD4 sumoylation were altered, in a DNA damage-specific way, by the anti-metabolite 5-fluorouracil, the alkylating agent N-Methyl-N-nitrosourea and the crosslinking agent cisplatin. MCF7 extract expressing sumoylated MBD4 displays higher thymine glycosylase activity than the unmodified species. Of the 67 MBD4 missense mutations reported in The Cancer Genome Atlas, 14 (20.9%) map near sumoylation sites. These results indicate that MBD4 is sumoylated in vivo in a DNA damage-specific manner, and suggest that sumoylation serves to regulate its repair activity and could be compromised in cancer. This study expands the role played by sumoylation in fine-tuning DNA damage response and repair.
Collapse
Affiliation(s)
- Mara Sannai
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Valentina Doneddu
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA; Department of Biomedical Sciences, University of Sassari, Sassari, 07100, Italy
| | - Veda Giri
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Steven Seeholzer
- Proteomics Core, The Children's Hospital of Philadelphia, Philadelphia PA, 19104, USA
| | - Emmanuelle Nicolas
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Shu-Chin Yip
- Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Maria Rosaria Bassi
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Pietro Mancuso
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Salvatore Cortellino
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Antonio Cigliano
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Rebecca Lurie
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Hua Ding
- Proteomics Core, The Children's Hospital of Philadelphia, Philadelphia PA, 19104, USA
| | - Jonathan Chernoff
- Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Robert W Sobol
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Timothy J Yen
- Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Luigi Bagella
- Department of Biomedical Sciences, University of Sassari, Sassari, 07100, Italy; Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Alfonso Bellacosa
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.
| |
Collapse
|
30
|
Mahmood N, Rabbani SA. DNA Methylation Readers and Cancer: Mechanistic and Therapeutic Applications. Front Oncol 2019; 9:489. [PMID: 31245293 PMCID: PMC6579900 DOI: 10.3389/fonc.2019.00489] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
DNA methylation is a major epigenetic process that regulates chromatin structure which causes transcriptional activation or repression of genes in a context-dependent manner. In general, DNA methylation takes place when methyl groups are added to the appropriate bases on the genome by the action of "writer" molecules known as DNA methyltransferases. How these methylation marks are read and interpreted into different functionalities represents one of the main mechanisms through which the genes are switched "ON" or "OFF" and typically involves different types of "reader" proteins that can recognize and bind to the methylated regions. A tightly balanced regulation exists between the "writers" and "readers" in order to mediate normal cellular functions. However, alterations in normal methylation pattern is a typical hallmark of cancer which alters the way methylation marks are written, read and interpreted in different disease states. This unique characteristic of DNA methylation "readers" has identified them as attractive therapeutic targets. In this review, we describe the current state of knowledge on the different classes of DNA methylation "readers" identified thus far along with their normal biological functions, describe how they are dysregulated in cancer, and discuss the various anti-cancer therapies that are currently being developed and evaluated for targeting these proteins.
Collapse
Affiliation(s)
- Niaz Mahmood
- Department of Medicine, McGill University Health Centre, Montréal, QC, Canada
| | - Shafaat A Rabbani
- Department of Medicine, McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
31
|
Dow BJ, Malik SS, Drohat AC. Defining the Role of Nucleotide Flipping in Enzyme Specificity Using 19F NMR. J Am Chem Soc 2019; 141:4952-4962. [PMID: 30841696 DOI: 10.1021/jacs.9b00146] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A broad range of proteins employ nucleotide flipping to recognize specific sites in nucleic acids, including DNA glycosylases, which remove modified nucleobases to initiate base excision repair. Deamination, a pervasive mode of damage, typically generates lesions that are recognized by glycosylases as being foreign to DNA. However, deamination of 5-methylcytosine (mC) generates thymine, a canonical DNA base, presenting a challenge for damage recognition. Nevertheless, repair of mC deamination is important because the resulting G·T mispairs cause C → T transition mutations, and mC is abundant in all three domains of life. Countering this threat are three types of glycosylases that excise thymine from G·T mispairs, including thymine DNA glycosylase (TDG). These enzymes must minimize excision of thymine that is not generated by mC deamination, in A·T pairs and in polymerase-generated G·T mispairs. TDG preferentially removes thymine from DNA contexts in which cytosine methylation is prevalent, including CG and one non-CG site. This remarkable context specificity could be attained through modulation of nucleotide flipping, a reversible step that precedes base excision. We tested this idea using fluorine NMR and DNA containing 2'-fluoro-substituted nucleotides. We find that dT nucleotide flipping depends on DNA context and is efficient only in contexts known to feature cytosine methylation. We also show that a conserved Ala residue limits thymine excision by hindering nucleotide flipping. A linear free energy correlation reveals that TDG attains context specificity for thymine excision through modulation of nucleotide flipping. Our results provide a framework for characterizing nucleotide flipping in nucleic acids using 19F NMR.
Collapse
Affiliation(s)
- Blaine J Dow
- Department of Biochemistry and Molecular Biology , University of Maryland School of Medicine , Baltimore , Maryland 21201 , United States
| | - Shuja S Malik
- Department of Biochemistry and Molecular Biology , University of Maryland School of Medicine , Baltimore , Maryland 21201 , United States
| | - Alexander C Drohat
- Department of Biochemistry and Molecular Biology , University of Maryland School of Medicine , Baltimore , Maryland 21201 , United States
| |
Collapse
|
32
|
Rodrigues M, Mobuchon L, Houy A, Derrien AC, Fiévet A, Stern MH. [Role of MBD4 in hypermutator phenotype and malignant transformation]. Med Sci (Paris) 2018; 34:925-927. [PMID: 30526825 DOI: 10.1051/medsci/2018226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Manuel Rodrigues
- Institut Curie, Université de recherche PSL, Inserm U830, DNA repair and uveal melanoma (D.R.U.M.), Équipe labellisée par la Ligue nationale contre le cancer, Paris, 75248, France - Département d'oncologie médicale, Institut Curie, Université de recherche PSL, Paris, 75248, France
| | - Lenha Mobuchon
- Institut Curie, Université de recherche PSL, Inserm U830, DNA repair and uveal melanoma (D.R.U.M.), Équipe labellisée par la Ligue nationale contre le cancer, Paris, 75248, France
| | - Alexandre Houy
- Institut Curie, Université de recherche PSL, Inserm U830, DNA repair and uveal melanoma (D.R.U.M.), Équipe labellisée par la Ligue nationale contre le cancer, Paris, 75248, France
| | - Anne-Céline Derrien
- Institut Curie, Université de recherche PSL, Inserm U830, DNA repair and uveal melanoma (D.R.U.M.), Équipe labellisée par la Ligue nationale contre le cancer, Paris, 75248, France
| | - Alice Fiévet
- Département de génétique, Institut Curie, Université de recherche PSL, Paris, 75248, France
| | - Marc-Henri Stern
- Institut Curie, Université de recherche PSL, Inserm U830, DNA repair and uveal melanoma (D.R.U.M.), Équipe labellisée par la Ligue nationale contre le cancer, Paris, 75248, France - Département de génétique, Institut Curie, Université de recherche PSL, Paris, 75248, France
| |
Collapse
|
33
|
An X, Ma H, Han P, Zhu C, Cao B, Bai Y. Genome-wide differences in DNA methylation changes in caprine ovaries between oestrous and dioestrous phases. J Anim Sci Biotechnol 2018; 9:85. [PMID: 30524725 PMCID: PMC6277999 DOI: 10.1186/s40104-018-0301-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/22/2018] [Indexed: 12/22/2022] Open
Abstract
Background DNA methylation plays a vital role in reproduction. Entire genome DNA methylation changes during the oestrous phase (ES) and dioestrous phase (DS) in the ovaries of Guanzhong dairy goats were investigated using bisulphite sequencing to understand the molecular biological mechanisms of these goats’ oestrous cycle. Results We discovered distinct genome-wide DNA methylation patterns in ES and DS ovaries. A total of 26,910 differentially methylated regions were upregulated and 21,453 differentially methylated regions were downregulated in the ES samples compared with the DS samples (P-values ≤0.05 and fold change of methylation ratios ≥2). Differentially methylated region analysis showed hypomethylation in the gene body regions and hypermethylation in the joining region between upstream regions and gene bodies. The methylation ratios of the STAR, FGF2, FGF12, BMP5 and SMAD6 genes in the ES samples were lower than those of the DS samples (P-values ≤0.05 and fold change of methylation ratios ≥2). Conversely, the methylation ratios of the EGFR, TGFBR2, IGF2BP1 and MMD2 genes increased in the ES samples compared with the DS samples. In addition, 223 differentially methylated genes were found in the GnRH signalling pathway (KO04912), ovarian steroidogenesis pathway (KO04913), oestrogen signalling pathway (KO04915), oxytocin signalling pathway (KO04921), insulin secretion pathway (KO04911) and MAPK signalling pathway (KO04010). Conclusions This study is the first large-scale comparison of the high-resolution DNA methylation landscapes of oestrous and dioestrous ovaries from dairy goats. Previous studies and our investigations have shown that the NR5A2, STAR, FGF2 and BMP5 genes might have potential application value in regulating caprine oestrus. Electronic supplementary material The online version of this article (10.1186/s40104-018-0301-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaopeng An
- 1College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100 People's Republic of China
| | - Haidong Ma
- 1College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100 People's Republic of China
| | - Peng Han
- 1College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100 People's Republic of China
| | - Chao Zhu
- 1College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100 People's Republic of China
| | - Binyun Cao
- 1College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100 People's Republic of China
| | - Yueyu Bai
- Animal Health Supervision Institute of Henan Province, No. 91 Jingsan Road, Zhengzhou, Henan 450008 People's Republic of China
| |
Collapse
|
34
|
Sanders MA, Chew E, Flensburg C, Zeilemaker A, Miller SE, Al Hinai AS, Bajel A, Luiken B, Rijken M, Mclennan T, Hoogenboezem RM, Kavelaars FG, Fröhling S, Blewitt ME, Bindels EM, Alexander WS, Löwenberg B, Roberts AW, Valk PJM, Majewski IJ. MBD4 guards against methylation damage and germ line deficiency predisposes to clonal hematopoiesis and early-onset AML. Blood 2018; 132:1526-1534. [PMID: 30049810 PMCID: PMC6172562 DOI: 10.1182/blood-2018-05-852566] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/18/2018] [Indexed: 02/07/2023] Open
Abstract
The tendency of 5-methylcytosine (5mC) to undergo spontaneous deamination has had a major role in shaping the human genome, and this methylation damage remains the primary source of somatic mutations that accumulate with age. How 5mC deamination contributes to cancer risk in different tissues remains unclear. Genomic profiling of 3 early-onset acute myeloid leukemias (AMLs) identified germ line loss of MBD4 as an initiator of 5mC-dependent hypermutation. MBD4-deficient AMLs display a 33-fold higher mutation burden than AML generally, with >95% being C>T in the context of a CG dinucleotide. This distinctive signature was also observed in sporadic cancers that acquired biallelic mutations in MBD4 and in Mbd4 knockout mice. Sequential sampling of germ line cases demonstrated repeated expansion of blood cell progenitors with pathogenic mutations in DNMT3A, a key driver gene for both clonal hematopoiesis and AML. Our findings reveal genetic and epigenetic factors that shape the mutagenic influence of 5mC. Within blood cells, this links methylation damage to the driver landscape of clonal hematopoiesis and reveals a conserved path to leukemia. Germ line MBD4 deficiency enhances cancer susceptibility and predisposes to AML.
Collapse
Affiliation(s)
- Mathijs A Sanders
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Edward Chew
- Division of Cancer and Haematology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Clinical Hematology, Peter MacCallum Cancer Center, Royal Melbourne Hospital, Parkville, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Christoffer Flensburg
- Division of Cancer and Haematology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Annelieke Zeilemaker
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sarah E Miller
- Division of Cancer and Haematology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Adil S Al Hinai
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
- National Genetic Center, Royal Hospital, Ministry of Health, Muscat, Sultanate of Oman
| | - Ashish Bajel
- Clinical Hematology, Peter MacCallum Cancer Center, Royal Melbourne Hospital, Parkville, VIC, Australia
- Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Bram Luiken
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Melissa Rijken
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tamara Mclennan
- Division of Molecular Medicine, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Remco M Hoogenboezem
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - François G Kavelaars
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Stefan Fröhling
- Division of Translational Oncology, National Center for Tumor Diseases Heidelberg and German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany; and
- Section for Personalized Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marnie E Blewitt
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- Division of Molecular Medicine, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Eric M Bindels
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Warren S Alexander
- Division of Cancer and Haematology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Bob Löwenberg
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Andrew W Roberts
- Division of Cancer and Haematology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Clinical Hematology, Peter MacCallum Cancer Center, Royal Melbourne Hospital, Parkville, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Peter J M Valk
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ian J Majewski
- Division of Cancer and Haematology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
35
|
Yu AM, Calvo JA, Muthupalani S, Samson LD. The Mbd4 DNA glycosylase protects mice from inflammation-driven colon cancer and tissue injury. Oncotarget 2017; 7:28624-36. [PMID: 27086921 PMCID: PMC5053750 DOI: 10.18632/oncotarget.8721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/28/2016] [Indexed: 12/12/2022] Open
Abstract
Much of the global cancer burden is associated with longstanding inflammation accompanied by release of DNA-damaging reactive oxygen and nitrogen species. Here, we report that the Mbd4 DNA glycosylase is protective in the azoxymethane/dextran sodium sulfate (AOM/DSS) mouse model of inflammation-driven colon cancer. Mbd4 excises T and U from T:G and U:G mismatches caused by deamination of 5-methylcytosine and cytosine. Since the rate of deamination is higher in inflamed tissues, we investigated the role of Mbd4 in inflammation-driven tumorigenesis. In the AOM/DSS assay, Mbd4-/- mice displayed more severe clinical symptoms, decreased survival, and a greater tumor burden than wild-type (WT) controls. The increased tumor burden in Mbd4-/- mice did not arise from impairment of AOM-induced apoptosis in the intestinal crypt. Histopathological analysis indicated that the colonic epithelium of Mbd4-/- mice is more vulnerable than WT to DSS-induced tissue damage. We investigated the role of the Mbd4-/- immune system in AOM/DSS-mediated carcinogenesis by repeating the assay on WT and Mbd4-/- mice transplanted with WT bone marrow. Mbd4-/- mice with WT bone marrow behaved similarly to Mbd4-/- mice. Together, our results indicate that the colonic epithelium of Mbd4-/- mice is more vulnerable to DSS-induced injury, which exacerbates inflammation-driven tissue injury and cancer.
Collapse
Affiliation(s)
- Amy Marie Yu
- Biological Engineering Department, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts, USA
| | - Jennifer A Calvo
- Biological Engineering Department, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts, USA.,Biology Department, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts, USA
| | - Suresh Muthupalani
- Department of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts, USA
| | - Leona D Samson
- Biological Engineering Department, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts, USA.,Biology Department, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts, USA.,Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts, USA
| |
Collapse
|
36
|
Poulos RC, Olivier J, Wong JWH. The interaction between cytosine methylation and processes of DNA replication and repair shape the mutational landscape of cancer genomes. Nucleic Acids Res 2017; 45:7786-7795. [PMID: 28531315 PMCID: PMC5737810 DOI: 10.1093/nar/gkx463] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/15/2017] [Indexed: 12/31/2022] Open
Abstract
Methylated cytosines (5mCs) are frequently mutated in the genome. However, no studies have yet comprehensively analysed mutation–methylation associations across cancer types. Here we analyse 916 cancer genomes, together with tissue type-specific methylation and replication timing data. We describe a strong mutation–methylation association across colorectal cancer subtypes, most interestingly in samples with microsatellite instability (MSI) or Polymerase epsilon (POLE) exonuclease domain mutations. By analysing genomic regions with differential mismatch repair (MMR) efficiency, we suggest a possible role for MMR in the correction of 5mC deamination events, potentially accounting for the high rate of 5mC mutation accumulation in MSI tumours. Additionally, we propose that mutant POLE asserts a mutator phenotype specifically at 5mCs, and we find coding mutation hotspots in POLE-mutant cancers at highly-methylated CpGs in the tumour-suppressor genes APC and TP53. Finally, using multivariable regression models, we demonstrate that different cancers exhibit distinct mutation–methylation associations, with DNA repair influencing such associations in certain cancer genomes. Taken together, we find differential associations with methylation that are vital for accurately predicting expected mutation loads across cancer types. Our findings reveal links between methylation and common mutation and repair processes, with these mechanisms defining a key part of the mutational landscape of cancer genomes.
Collapse
Affiliation(s)
- Rebecca C Poulos
- Prince of Wales Clinical School and Lowy Cancer Research Centre, UNSW Sydney, NSW 2052, Australia
| | - Jake Olivier
- School of Mathematics and Statistics, The Red Centre, UNSW Sydney, NSW 2052, Australia
| | - Jason W H Wong
- Prince of Wales Clinical School and Lowy Cancer Research Centre, UNSW Sydney, NSW 2052, Australia
| |
Collapse
|
37
|
Xu J, Cortellino S, Tricarico R, Chang WC, Scher G, Devarajan K, Slifker M, Moore R, Bassi MR, Caretti E, Clapper M, Cooper H, Bellacosa A. Thymine DNA Glycosylase (TDG) is involved in the pathogenesis of intestinal tumors with reduced APC expression. Oncotarget 2017; 8:89988-89997. [PMID: 29163805 PMCID: PMC5685726 DOI: 10.18632/oncotarget.21219] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/21/2017] [Indexed: 12/22/2022] Open
Abstract
Thymine DNA Glycosylase (TDG) is a base excision repair enzyme that acts as a thymine and uracil DNA N-glycosylase on G:T and G:U mismatches, thus protecting CpG sites in the genome from mutagenesis by deamination. In addition, TDG has an epigenomic function by removing the novel cytosine derivatives 5-formylcytosine and 5-carboxylcytosine (5caC) generated by Ten-Eleven Translocation (TET) enzymes during active DNA demethylation. We and others previously reported that TDG is essential for mammalian development. However, its involvement in tumor formation is unknown. To study the role of TDG in tumorigenesis, we analyzed the effects of its inactivation in a well-characterized model of tumor predisposition, the ApcMin mouse strain. Mice bearing a conditional Tdgflox allele were crossed with Fabpl::Cre transgenic mice, in the context of the ApcMin mutation, in order to inactivate Tdg in the small intestinal and colonic epithelium. We observed an approximately 2-fold increase in the number of small intestinal adenomas in the test Tdg-mutant ApcMin mice in comparison to control genotypes (p=0.0001). This increase occurred in female mice, and is similar to the known increase in intestinal adenoma formation due to oophorectomy. In the human colorectal cancer (CRC) TCGA database, the subset of patients with TDG and APC expression in the lowest quartile exhibits an excess of female cases. We conclude that TDG inactivation plays a role in intestinal tumorigenesis initiated by mutation/underexpression of APC. Our results also indicate that TDG may be involved in sex-specific protection from CRC.
Collapse
Affiliation(s)
- Jinfei Xu
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Salvatore Cortellino
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Rossella Tricarico
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Wen-Chi Chang
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Gabrielle Scher
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Karthik Devarajan
- Department of Biostatistics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Michael Slifker
- Department of Biostatistics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Robert Moore
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Maria Rosaria Bassi
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Elena Caretti
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Margie Clapper
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Harry Cooper
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Alfonso Bellacosa
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
38
|
Alsøe L, Sarno A, Carracedo S, Domanska D, Dingler F, Lirussi L, SenGupta T, Tekin NB, Jobert L, Alexandrov LB, Galashevskaya A, Rada C, Sandve GK, Rognes T, Krokan HE, Nilsen H. Uracil Accumulation and Mutagenesis Dominated by Cytosine Deamination in CpG Dinucleotides in Mice Lacking UNG and SMUG1. Sci Rep 2017; 7:7199. [PMID: 28775312 PMCID: PMC5543110 DOI: 10.1038/s41598-017-07314-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/23/2017] [Indexed: 12/30/2022] Open
Abstract
Both a DNA lesion and an intermediate for antibody maturation, uracil is primarily processed by base excision repair (BER), either initiated by uracil-DNA glycosylase (UNG) or by single-strand selective monofunctional uracil DNA glycosylase (SMUG1). The relative in vivo contributions of each glycosylase remain elusive. To assess the impact of SMUG1 deficiency, we measured uracil and 5-hydroxymethyluracil, another SMUG1 substrate, in Smug1−/− mice. We found that 5-hydroxymethyluracil accumulated in Smug1−/− tissues and correlated with 5-hydroxymethylcytosine levels. The highest increase was found in brain, which contained about 26-fold higher genomic 5-hydroxymethyluracil levels than the wild type. Smug1−/− mice did not accumulate uracil in their genome and Ung−/− mice showed slightly elevated uracil levels. Contrastingly, Ung−/−Smug1−/− mice showed a synergistic increase in uracil levels with up to 25-fold higher uracil levels than wild type. Whole genome sequencing of UNG/SMUG1-deficient tumours revealed that combined UNG and SMUG1 deficiency leads to the accumulation of mutations, primarily C to T transitions within CpG sequences. This unexpected sequence bias suggests that CpG dinucleotides are intrinsically more mutation prone. In conclusion, we showed that SMUG1 efficiently prevent genomic uracil accumulation, even in the presence of UNG, and identified mutational signatures associated with combined UNG and SMUG1 deficiency.
Collapse
Affiliation(s)
- Lene Alsøe
- Department of Clinical Molecular Biology, Ahus Campus, University of Oslo, Oslo, Norway.,Akershus University Hospital, Lørenskog, Norway
| | - Antonio Sarno
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,The Liaison Committee for Education, Research and Innovation in Central Norway, Trondheim, Norway
| | - Sergio Carracedo
- Department of Clinical Molecular Biology, Ahus Campus, University of Oslo, Oslo, Norway.,Akershus University Hospital, Lørenskog, Norway
| | - Diana Domanska
- Department of Informatics, University of Oslo, PO Box 1080 Blindern, NO-0316, Oslo, Norway
| | | | - Lisa Lirussi
- Department of Clinical Molecular Biology, Ahus Campus, University of Oslo, Oslo, Norway.,Akershus University Hospital, Lørenskog, Norway
| | - Tanima SenGupta
- Department of Clinical Molecular Biology, Ahus Campus, University of Oslo, Oslo, Norway.,Akershus University Hospital, Lørenskog, Norway
| | - Nuriye Basdag Tekin
- Department of Clinical Molecular Biology, Ahus Campus, University of Oslo, Oslo, Norway.,Akershus University Hospital, Lørenskog, Norway
| | - Laure Jobert
- Department of Clinical Molecular Biology, Ahus Campus, University of Oslo, Oslo, Norway.,Akershus University Hospital, Lørenskog, Norway.,LifeTechnologies AS, Ullernschauseen 52, 0379, Oslo, Norway
| | - Ludmil B Alexandrov
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.,Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.,University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, 87102, USA
| | - Anastasia Galashevskaya
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Geir Kjetil Sandve
- Department of Informatics, University of Oslo, PO Box 1080 Blindern, NO-0316, Oslo, Norway
| | - Torbjørn Rognes
- Department of Informatics, University of Oslo, PO Box 1080 Blindern, NO-0316, Oslo, Norway.,Department of Microbiology, Oslo University Hospital, Rikshospitalet, PO Box 4950 Nydalen, NO-0424, Oslo, Norway
| | - Hans E Krokan
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, Ahus Campus, University of Oslo, Oslo, Norway. .,Akershus University Hospital, Lørenskog, Norway.
| |
Collapse
|
39
|
D'Errico M, Parlanti E, Pascucci B, Fortini P, Baccarini S, Simonelli V, Dogliotti E. Single nucleotide polymorphisms in DNA glycosylases: From function to disease. Free Radic Biol Med 2017; 107:278-291. [PMID: 27932076 DOI: 10.1016/j.freeradbiomed.2016.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/25/2016] [Accepted: 12/02/2016] [Indexed: 02/08/2023]
Abstract
Oxidative stress is associated with a growing number of diseases that span from cancer to neurodegeneration. Most oxidatively induced DNA base lesions are repaired by the base excision repair (BER) pathway which involves the action of various DNA glycosylases. There are numerous genome wide studies attempting to associate single-nucleotide polymorphisms (SNPs) with predispositions to various types of disease; often, these common variants do not have significant alterations in their biochemical function and do not exhibit a convincing phenotype. Nevertheless several lines of evidence indicate that SNPs in DNA repair genes may modulate DNA repair capacity and contribute to risk of disease. This overview provides a convincing picture that SNPs of DNA glycosylases that remove oxidatively generated DNA lesions are susceptibility factors for a wide disease spectrum that includes besides cancer (particularly lung, breast and gastrointestinal tract), cochlear/ocular disorders, myocardial infarction and neurodegenerative disorders which can be all grouped under the umbrella of oxidative stress-related pathologies.
Collapse
Affiliation(s)
- Mariarosaria D'Errico
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Eleonora Parlanti
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Barbara Pascucci
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Salaria, Km 29,300, 00016 Monterotondo Stazione, Rome, Italy
| | - Paola Fortini
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Sara Baccarini
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Valeria Simonelli
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Eugenia Dogliotti
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
40
|
Talhaoui I, Matkarimov BT, Tchenio T, Zharkov DO, Saparbaev MK. Aberrant base excision repair pathway of oxidatively damaged DNA: Implications for degenerative diseases. Free Radic Biol Med 2017; 107:266-277. [PMID: 27890638 DOI: 10.1016/j.freeradbiomed.2016.11.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 02/06/2023]
Abstract
In cellular organisms composition of DNA is constrained to only four nucleobases A, G, T and C, except for minor DNA base modifications such as methylation which serves for defence against foreign DNA or gene expression regulation. Interestingly, this severe evolutionary constraint among other things demands DNA repair systems to discriminate between regular and modified bases. DNA glycosylases specifically recognize and excise damaged bases among vast majority of regular bases in the base excision repair (BER) pathway. However, the mismatched base pairs in DNA can occur from a spontaneous conversion of 5-methylcytosine to thymine and DNA polymerase errors during replication. To counteract these mutagenic threats to genome stability, cells evolved special DNA repair systems that target the non-damaged DNA strand in a duplex to remove mismatched regular DNA bases. Mismatch-specific adenine- and thymine-DNA glycosylases (MutY/MUTYH and TDG/MBD4, respectively) initiated BER and mismatch repair (MMR) pathways can recognize and remove normal DNA bases in mismatched DNA duplexes. Importantly, in DNA repair deficient cells bacterial MutY, human TDG and mammalian MMR can act in the aberrant manner: MutY and TDG removes adenine and thymine opposite misincorporated 8-oxoguanine and damaged adenine, respectively, whereas MMR removes thymine opposite to O6-methylguanine. These unusual activities lead either to mutations or futile DNA repair, thus indicating that the DNA repair pathways which target non-damaged DNA strand can act in aberrant manner and introduce genome instability in the presence of unrepaired DNA lesions. Evidences accumulated showing that in addition to the accumulation of oxidatively damaged DNA in cells, the aberrant DNA repair can also contribute to cancer, brain disorders and premature senescence. For example, the aberrant BER and MMR pathways for oxidized guanine residues can lead to trinucleotide expansion that underlies Huntington's disease, a severe hereditary neurodegenerative syndrome. This review summarises the present knowledge about the aberrant DNA repair pathways for oxidized base modifications and their possible role in age-related diseases.
Collapse
Affiliation(s)
- Ibtissam Talhaoui
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Université Paris-Sud, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France
| | - Bakhyt T Matkarimov
- National laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Thierry Tchenio
- LBPA, UMR8113 ENSC - CNRS, Ecole Normale Supérieure de Cachan, Cachan, France
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Murat K Saparbaev
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Université Paris-Sud, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France.
| |
Collapse
|
41
|
Pan F, Wingo TS, Zhao Z, Gao R, Makishima H, Qu G, Lin L, Yu M, Ortega JR, Wang J, Nazha A, Chen L, Yao B, Liu C, Chen S, Weeks O, Ni H, Phillips BL, Huang S, Wang J, He C, Li GM, Radivoyevitch T, Aifantis I, Maciejewski JP, Yang FC, Jin P, Xu M. Tet2 loss leads to hypermutagenicity in haematopoietic stem/progenitor cells. Nat Commun 2017; 8:15102. [PMID: 28440315 PMCID: PMC5414116 DOI: 10.1038/ncomms15102] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 02/27/2017] [Indexed: 12/12/2022] Open
Abstract
TET2 is a dioxygenase that catalyses multiple steps of 5-methylcytosine oxidation. Although TET2 mutations frequently occur in various types of haematological malignancies, the mechanism by which they increase risk for these cancers remains poorly understood. Here we show that Tet2-/- mice develop spontaneous myeloid, T- and B-cell malignancies after long latencies. Exome sequencing of Tet2-/- tumours reveals accumulation of numerous mutations, including Apc, Nf1, Flt3, Cbl, Notch1 and Mll2, which are recurrently deleted/mutated in human haematological malignancies. Single-cell-targeted sequencing of wild-type and premalignant Tet2-/- Lin-c-Kit+ cells shows higher mutation frequencies in Tet2-/- cells. We further show that the increased mutational burden is particularly high at genomic sites that gained 5-hydroxymethylcytosine, where TET2 normally binds. Furthermore, TET2-mutated myeloid malignancy patients have significantly more mutational events than patients with wild-type TET2. Thus, Tet2 loss leads to hypermutagenicity in haematopoietic stem/progenitor cells, suggesting a novel TET2 loss-mediated mechanism of haematological malignancy pathogenesis.
Collapse
Affiliation(s)
- Feng Pan
- Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 411, Gautier Building, MC R629, Miami, Florida 33136, USA.,Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.,Department of Biological Sciences, Florida International University, Miami, Florida 33199, USA
| | - Thomas S Wingo
- Departments of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30307, USA.,Neurology, Emory University School of Medicine, Atlanta, Georgia 30307, USA.,Division of Neurology, Department of Veterans Affairs Medical Center, Atlanta, Georgia 30033, USA
| | - Zhigang Zhao
- Department of Hematology and Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Rui Gao
- Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 411, Gautier Building, MC R629, Miami, Florida 33136, USA
| | - Hideki Makishima
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Guangbo Qu
- Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 411, Gautier Building, MC R629, Miami, Florida 33136, USA.,Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Li Lin
- Departments of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30307, USA
| | - Miao Yu
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
| | - Janice R Ortega
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California 90033, USA
| | - Jiapeng Wang
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Aziz Nazha
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Li Chen
- Departments of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30307, USA
| | - Bing Yao
- Departments of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30307, USA
| | - Can Liu
- Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 411, Gautier Building, MC R629, Miami, Florida 33136, USA
| | - Shi Chen
- Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 411, Gautier Building, MC R629, Miami, Florida 33136, USA
| | - Ophelia Weeks
- Department of Biological Sciences, Florida International University, Miami, Florida 33199, USA
| | - Hongyu Ni
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Brittany Lynn Phillips
- Department of Biochemistry and Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30307, USA
| | - Suming Huang
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32611, USA
| | - Jianlong Wang
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
| | - Guo-Min Li
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California 90033, USA
| | - Tomas Radivoyevitch
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Iannis Aifantis
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, New York 10016, USA.,NYU Cancer Institute and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, New York 10016, USA
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Feng-Chun Yang
- Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 411, Gautier Building, MC R629, Miami, Florida 33136, USA.,Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Peng Jin
- Departments of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30307, USA
| | - Mingjiang Xu
- Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 411, Gautier Building, MC R629, Miami, Florida 33136, USA.,Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| |
Collapse
|
42
|
Matkarimov BT, Saparbaev MK. Aberrant DNA glycosylase-initiated repair pathway of free radicals in-duced DNA damage: implications for age-related diseases and natural aging. ACTA ACUST UNITED AC 2017. [DOI: 10.7124/bc.000943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
43
|
Wang X, Dong C, Yin J, Tang W, Shen Z. Tagging polymorphisms of methyl-CpG binding domain 4 and gastric cardiac adenocarcinoma risk in a Chinese population. Dis Esophagus 2017; 30:1-6. [PMID: 27868291 DOI: 10.1111/dote.12500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Potential effects of genetic factors on carcinogenesis of gastric cardiac adenocarcinoma (GCA) may exist. The present experiment specifically evaluated the genetic influence of single nucleotide in methyl-CpG binding domain 4 (MBD4) on GCA tumorigenesis. A case-control experiment based on hospital recruited 330 GCA patients and 608 non-cancer patients was carried out. We employed ligation detection reaction method to detect the genotypes. The results revealed that MBD4 rs3138373, rs2005618, and rs3138355 mutations had no significant association with the risk of GCA. However, a lower risk of GCA presented in male patients who carried the MBD4 rs3138355 G>A polymorphic loci by the stratified analyses. In general, The MBD4 gene polymorphism could not influence GCA hereditary predisposition. Nevertheless, whether the finding learned from our experiment could apply to other ethnic groups will remain vague until future multicenter studies further test and verify our conclusions.
Collapse
Affiliation(s)
- Xu Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital, Institute for Cardiovascular Science of Soochow University, Soochow
| | - Changqing Dong
- Department of Cardiovascular Surgery of the First Affiliated Hospital, Institute for Cardiovascular Science of Soochow University, Soochow
| | - Jun Yin
- Department of Cardiothoracic Surgery of Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Weifeng Tang
- Department of Cardiothoracic Surgery of Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital, Institute for Cardiovascular Science of Soochow University, Soochow
| |
Collapse
|
44
|
Hsu CW, Sowers ML, Hsu W, Eyzaguirre E, Qiu S, Chao C, Mouton CP, Fofanov Y, Singh P, Sowers LC. How does inflammation drive mutagenesis in colorectal cancer? TRENDS IN CANCER RESEARCH 2017; 12:111-132. [PMID: 30147278 PMCID: PMC6107301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Colorectal cancer (CRC) is a major health challenge worldwide. Factors thought to be important in CRC etiology include diet, microbiome, exercise, obesity, a history of colon inflammation and family history. Interventions, including the use of non-steroidal anti-Inflammatory drugs (NSAIDs) and anti-inflammatory agents, have been shown to decrease incidence in some settings. However, our current understanding of the mechanistic details that drive CRC are insufficient to sort out the complex and interacting factors responsible for cancer-initiating events. It has been known for some time that the development of CRC involves mutations in key genes such as p53 and APC, and the sequence in which these mutations occur can determine tumor presentation. Observed recurrent mutations are dominated by C to T transitions at CpG sites, implicating the deamination of 5-methylcytosine (5mC) as a key initiating event in cancer-driving mutations. While it has been widely assumed that inflammation-mediated oxidation drives mutations in CRC, oxidative damage to DNA induces primarily G to T transversions, not C to T transitions. In this review, we discuss this unresolved conundrum, and specifically, we elucidate how the known nucleotide excision repair (NER) and base excision repair (BER) pathways, which are partially redundant and potentially competing, might provide a critical link between oxidative DNA damage and C to T mutations. Studies using recently developed next-generation DNA sequencing technologies have revealed the genetic heterogeneity in human tissues including tumors, as well as the presence of DNA damage. The capacity to follow DNA damage, repair and mutagenesis in human tissues using these emerging technologies could provide a mechanistic basis for understanding the role of oxidative damage in CRC tumor initiation. The application of these technologies could identify mechanism-based biomarkers useful in earlier diagnosis and aid in the development of cancer prevention strategies.
Collapse
Affiliation(s)
- Chia Wei Hsu
- MD/PhD program, University of Texas Medical Branch, Galveston, Texas
| | - Mark L Sowers
- MD/PhD program, University of Texas Medical Branch, Galveston, Texas
| | - Willie Hsu
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas
| | - Eduardo Eyzaguirre
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Suimin Qiu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Celia Chao
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Charles P Mouton
- Department of Family Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Yuri Fofanov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas
- Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, Texas
| | - Pomila Singh
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas
| | - Lawrence C Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas
- Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, Texas
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
45
|
Involvement of MBD4 inactivation in mismatch repair-deficient tumorigenesis. Oncotarget 2016; 6:42892-904. [PMID: 26503472 PMCID: PMC4767479 DOI: 10.18632/oncotarget.5740] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/18/2015] [Indexed: 12/14/2022] Open
Abstract
The DNA glycosylase gene MBD4 safeguards genomic stability at CpG sites and is frequently mutated at coding poly-A tracks in mismatch repair (MMR)-defective colorectal tumors (CRC). Mbd4 biallelic inactivation in mice provided conflicting results as to its role in tumorigenesis. Thus, it is unclear whether MBD4 alterations are only secondary to MMR defects without functional consequences or can contribute to the mutator phenotype. We investigated MBD4 variants in a large series of hereditary/familial and sporadic CRC cases. Whereas MBD4 frameshifts were only detected in tumors, missense variants were found in both normal and tumor DNA. In CRC with double-MBD4/MMR and single-MBD4 variants, transition mutation frequency was increased, indicating that MBD4 defects may affect the mutational landscape independently of MMR defect. Mbd4-deficient mice showed reduced survival when combined with Mlh1−/− genotype. Taken together, these data suggest that MBD4 inactivation may contribute to tumorigenesis, acting as a modifier of MMR-deficient cancer phenotype.
Collapse
|
46
|
Abstract
5-methylcytosine (5mC) was long thought to be the only enzymatically created modified DNA base in mammalian cells. The discovery of 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine as reaction products of the TET family 5mC oxidases has prompted extensive searches for proteins that specifically bind to these oxidized bases. However, only a few of such "reader" proteins have been identified and verified so far. In this review, we discuss potential biological functions of oxidized 5mC as well as the role the presumed reader proteins may play in interpreting the genomic signals of 5mC oxidation products.
Collapse
Affiliation(s)
- Jikui Song
- Department of Biochemistry, University of California Riverside, Riverside, CA, USA.
| | - Gerd P Pfeifer
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA.
| |
Collapse
|
47
|
Suzuki S, Iwaizumi M, Tseng-Rogenski S, Hamaya Y, Miyajima H, Kanaoka S, Sugimoto K, Carethers JM. Production of truncated MBD4 protein by frameshift mutation in DNA mismatch repair-deficient cells enhances 5-fluorouracil sensitivity that is independent of hMLH1 status. Cancer Biol Ther 2016; 17:760-8. [PMID: 27115207 PMCID: PMC4970528 DOI: 10.1080/15384047.2016.1178430] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 04/11/2016] [Indexed: 01/12/2023] Open
Abstract
Methyl-CpG binding domain protein 4 (MBD4) is a DNA glycosylase that can remove 5-fluorodeoxyuracil from DNA as well as repair T:G or U:G mismatches. MBD4 is a target for frameshift mutation with DNA mismatch repair (MMR) deficiency, creating a truncated MBD4 protein (TruMBD4) that lacks its glycosylase domain. Here we show that TruMBD4 plays an important role for enhancing 5-fluorouracil (5FU) sensitivity in MMR-deficient colorectal cancer cells. We found biochemically that TruMBD4 binds to 5FU incorporated into DNA with higher affinity than MBD4. TruMBD4 reduced the 5FU affinity of the MMR recognition complexes that determined 5FU sensitivity by previous reports, suggesting other mechanisms might be operative to trigger cytotoxicity. To analyze overall 5FU sensitivity with TruMBD4, we established TruMBD4 overexpression in hMLH1-proficient or -deficient colorectal cancer cells followed by treatment with 5FU. 5FU-treated TruMBD4 cells demonstrated diminished growth characteristics compared to controls, independently of hMLH1 status. Flow cytometry revealed more 5FU-treated TruMBD4 cells in S phase than controls. We conclude that patients with MMR-deficient cancers, which show characteristic resistance to 5FU therapy, may be increased for 5FU sensitivity via secondary frameshift mutation of the base excision repair gene MBD4.
Collapse
Affiliation(s)
- Satoshi Suzuki
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Moriya Iwaizumi
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
- Division of Gastroenterology, Department of Internal Medicine and Department of Human Genetics, University of Michigan, Ann Arbor, MA, USA
| | - Stephanie Tseng-Rogenski
- Division of Gastroenterology, Department of Internal Medicine and Department of Human Genetics, University of Michigan, Ann Arbor, MA, USA
| | - Yasushi Hamaya
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
- Division of Gastroenterology, Department of Internal Medicine and Department of Human Genetics, University of Michigan, Ann Arbor, MA, USA
| | - Hiroaki Miyajima
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Shigeru Kanaoka
- Department of Gastroenterology, Hamamatsu Medical Center, Shizuoka, Japan
| | - Ken Sugimoto
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - John M. Carethers
- Division of Gastroenterology, Department of Internal Medicine and Department of Human Genetics, University of Michigan, Ann Arbor, MA, USA
| |
Collapse
|
48
|
Shimbo T, Wade PA. Proteins That Read DNA Methylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:303-320. [PMID: 27826844 DOI: 10.1007/978-3-319-43624-1_13] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covalent modification of DNA via deposition of a methyl group at the 5' position on cytosine residues alters the chemical groups available for interaction in the major groove of DNA. The information content inherent in this modification alters the affinity and the specificity of DNA binding; some proteins favor interaction with methylated DNA, and others disfavor it. Molecular recognition of cytosine methylation by proteins often initiates sequential regulatory events which impact gene expression and chromatin structure. The known methyl-DNA-binding proteins have unique domains responsible for DNA methylation recognition: (1) the methyl-CpG-binding domain (MBD), (2) the C2H2 zinc finger domain, and (3) the SET- and RING finger-associated (SRA) domain. Structural analyses have revealed that each domain has a characteristic methylated DNA-binding pattern, and this difference in the recognition mechanism renders the DNA methylation mark able to transmit complicated biological information. Recent genetic and genomic studies have revealed novel functions of methyl-DNA-binding proteins. These emerging data have also provided glimpses into how methyl-DNA-binding proteins possess unique features and, presumably, functions. In this review, we summarize structural and biochemical analyses elucidating the mechanism for recognition of DNA methylation and correlate this information with emerging genomic and functional data.
Collapse
Affiliation(s)
- Takashi Shimbo
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Paul A Wade
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA.
| |
Collapse
|
49
|
Meng H, Harrison DJ, Meehan RR. MBD4 interacts with and recruits USP7 to heterochromatic foci. J Cell Biochem 2015; 116:476-85. [PMID: 25358258 PMCID: PMC4964934 DOI: 10.1002/jcb.25001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/23/2014] [Indexed: 12/19/2022]
Abstract
MBD4 is the only methyl‐CpG binding protein that possesses a C‐terminal glycosylase domain. It has been associated with a number of nuclear pathways including DNA repair, DNA damage response, the initiation of apoptosis, transcriptional repression, and DNA demethylation. However, the precise contribution of MBD4 to these processes in development and relevant diseases remains elusive. We identified UHRF1 and USP7 as two new interaction partners for MBD4. Both UHRF1, a E3 ubiquitin ligase, and USP7, a de‐ubiquinating enzyme, regulate the stability of the DNA maintenance methyltransferase, Dnmt1. The ability of MBD4 to directly interact with and recruit USP7 to chromocenters implicates it as an additional factor that can potentially regulate Dnmt1 activity during cell proliferation. J. Cell. Biochem. 116: 476–485, 2015. © 2014 The Authors. Journal of Cellular Biochemistry published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Huan Meng
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK; Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | | | | |
Collapse
|
50
|
Du Q, Luu PL, Stirzaker C, Clark SJ. Methyl-CpG-binding domain proteins: readers of the epigenome. Epigenomics 2015; 7:1051-73. [DOI: 10.2217/epi.15.39] [Citation(s) in RCA: 265] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
How DNA methylation is interpreted and influences genome regulation remains largely unknown. Proteins of the methyl-CpG-binding domain (MBD) family are primary candidates for the readout of DNA methylation as they recruit chromatin remodelers, histone deacetylases and methylases to methylated DNA associated with gene repression. MBD protein binding requires both functional MBD domains and methyl-CpGs; however, some MBD proteins also bind unmethylated DNA and active regulatory regions via alternative regulatory domains or interaction with the nucleosome remodeling deacetylase (NuRD/Mi-2) complex members. Mutations within MBD domains occur in many diseases, including neurological disorders and cancers, leading to loss of MBD binding specificity to methylated sites and gene deregulation. Here, we summarize the current state of knowledge about MBD proteins and their role as readers of the epigenome.
Collapse
Affiliation(s)
- Qian Du
- Epigenetics Research Laboratory, Genomics & Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Phuc-Loi Luu
- Epigenetics Research Laboratory, Genomics & Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Clare Stirzaker
- Epigenetics Research Laboratory, Genomics & Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- St Vincent's Clinical School, University of NSW, Darlinghurst, NSW 2010, Australia
| | - Susan J Clark
- Epigenetics Research Laboratory, Genomics & Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- St Vincent's Clinical School, University of NSW, Darlinghurst, NSW 2010, Australia
| |
Collapse
|