1
|
Matsuda KM, Kotani H, Sato S, Yoshizaki A. Unveiling the hidden syndrome: The enigma of anti-transcobalamin receptor autoantibodies. Immunol Lett 2025; 275:107028. [PMID: 40280282 DOI: 10.1016/j.imlet.2025.107028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 04/12/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
The transcobalamin receptor (CD320) functions as a critical mediator for vitamin B12 uptake in cells, with emerging evidence linking autoantibodies against CD320 to various autoimmune conditions. Pluvinage et al.'s recent study identified anti-CD320 autoantibodies as a cause of autoimmune vitamin B12 central deficiency, specifically affecting the central nervous system while sparing peripheral nerves. Their findings align with our previous work showing anti-CD320's role in cutaneous arteritis. Both studies identified overlapping CD320 epitopes targeted by autoantibodies and demonstrated the therapeutic efficacy of high-dose vitamin B12 supplementation in mitigating symptoms. Expanding on these findings, we observed anti-CD320 autoantibodies in other inflammatory disorders such as systemic sclerosis, suggesting a broader clinical relevance. The work by Pluvinage et al. and our group supports the concept of an "anti-CD320-associated syndrome," with high-dose B12 supplementation as a promising treatment strategy. Further research is needed to fully elucidate the tissue-specific mechanisms and pathophysiology underlying these autoimmune conditions.
Collapse
Affiliation(s)
- Kazuki M Matsuda
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hirohito Kotani
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
2
|
Kállai BM, Sawasaki T, Endo Y, Mészáros T. Half a Century of Progress: The Evolution of Wheat Germ-Based In Vitro Translation into a Versatile Protein Production Method. Int J Mol Sci 2025; 26:3577. [PMID: 40332070 PMCID: PMC12026531 DOI: 10.3390/ijms26083577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
The first demonstration of wheat germ extract (WGE)-based in vitro translation synthesising a protein from exogenously introduced messenger ribonucleic acid (mRNA) was published approximately fifty years ago. Since then, there have been numerous crucial improvements to the WGE-based in vitro translation, resulting in a significant increase in yield and the development of high-throughput protein-producing platforms. These developments have transformed the original setup into a versatile eukaryotic protein production method with broad applications. The present review explores the theoretical background of the implemented modifications and brings a panel of examples for WGE applications in high-throughput protein studies and synthesis of challenging-to-produce proteins such as protein complexes, extracellular proteins, and membrane proteins. It also highlights the unique advantages of in vitro translation as an open system for synthesising radioactively labelled proteins, as illustrated by numerous publications using WGE to meet the protein demands of these studies. This review aims to orientate readers in finding the most appropriate WGE arrangement for their specific needs and demonstrate that a deeper understanding of the system modifications will help them make further adjustments to the reaction conditions for synthesising difficult-to-express proteins.
Collapse
Affiliation(s)
- Brigitta M. Kállai
- Department of Molecular Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary;
| | - Tatsuya Sawasaki
- Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577, Japan;
| | - Yaeta Endo
- Ehime Prefectural University of Health Sciences, 543 Takooda, Tobe-cho 791-2101, Iyo-gun, Japan;
| | - Tamás Mészáros
- Department of Molecular Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary;
| |
Collapse
|
3
|
Takahashi H, Ikemoto Y, Ogawa A. Simultaneous Detection of Multiple Analytes at Ambient Temperature Using Eukaryotic Artificial Cells with Modular and Robust Synthetic Riboswitches. ACS Synth Biol 2025; 14:771-780. [PMID: 39729431 PMCID: PMC11934135 DOI: 10.1021/acssynbio.4c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/29/2024]
Abstract
Cell-free systems, which can express an easily detectable output (protein) with a DNA or mRNA template, are promising as foundations of biosensors devoid of cellular constraints. Moreover, by encasing them in membranes such as natural cells to create artificial cells, these systems can avoid the adverse effects of environmental inhibitory molecules. However, the bacterial systems generally used for this purpose do not function well at ambient temperatures. We here encapsulated a eukaryotic cell-free system consisting of wheat germ extract (WGE) and a DNA template encoding an analyte-responsive regulatory RNA (called a riboswitch) into giant unilamellar vesicles (GUVs) to create eukaryotic artificial cell-based sensors that function well at ambient temperature. First, we improved our previously reported eukaryotic synthetic riboswitches and WGE for use in GUVs by chimerizing two internal ribosome entry sites and optimizing magnesium concentrations, respectively, both of which increased the expression efficiency in GUVs several fold. Then, a DNA template encoding one of these riboswitches followed by a reporter protein was encapsulated with the optimized GUV-friendly WGE. Importantly, our previously established versatile method allowed for the rational design of highly efficient eukaryotic riboswitches that are responsive to a user-defined analyte. In fact, we utilized this method to successfully create three types of artificial cells, each of which responded to a specific, membrane-permeable analyte with wide-range, analyte-dose dependency and high sensitivity at ambient temperature. Finally, due to their orthogonality and robustness, we were able to mix a cocktail of these artificial cells to achieve simultaneous detection of the three analytes without significant barriers.
Collapse
Affiliation(s)
- Hajime Takahashi
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Yuri Ikemoto
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Atsushi Ogawa
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
4
|
Ogawa A, Fujikawa M, Tanimoto R, Matsuno K, Uehara R, Inoue H, Takahashi H. Cell-Free Multistep Gene Regulatory Cascades Using Eukaryotic ON-Riboswitches Responsive to in Situ Expressed Protein Ligands. ACS Synth Biol 2025; 14:909-918. [PMID: 39991792 DOI: 10.1021/acssynbio.4c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
One of the most pressing challenges in cell-free synthetic biology is to assemble well-controlled genetic circuits. However, no complex circuits have been reported in eukaryotic cell-free systems, unlike the case in bacterial ones, despite several unique advantages of the former. We here developed protein-responsive upregulating riboswitches (ON-riboswitches) that function in wheat germ extract to create multistep gene regulatory cascades. Although the initial two types of ON-riboswitches we first designed were less efficient than desired, we improved one of them by incorporating hybridization switches to successfully construct a pair of highly efficient, protein-responsive ON-riboswitches. Both upregulated expression up to 20-fold through self-cleavage by a hammerhead ribozyme (HHR) in response to the corresponding protein ligands expressed in situ. We then combined them with similar types of HHR-based, small-molecule-responsive ON-riboswitches regulating protein ligand expression, to create four kinds of two-step regulatory cascades. Due to the high orthogonality of all the riboswitches used, we also succeeded in regulating two-step cascades concurrently and even in creating three-step cascades. Interestingly, the switching efficiency of each multistep cascade constructed was equivalent to that of the worst step within it. Therefore, more complex cascades with additional steps could be constructed using other efficient and orthogonal, protein-responsive ON-riboswitches with minimal loss of total switching efficiency, although the reaction conditions must be optimized to prevent a reduction of expression efficiencies. Riboswitch-based cascades fashioned through our proposed strategy would aid in the construction of eukaryotic genetic circuits for programmed cell-free systems or artificial cells with functionalities surpassing those of natural cells.
Collapse
Affiliation(s)
- Atsushi Ogawa
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Masahiro Fujikawa
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Riku Tanimoto
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Kiho Matsuno
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Riko Uehara
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Honami Inoue
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Hajime Takahashi
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
5
|
Scalsky R, Dwivedi A, Stabler TC, Mbambo G, Ouattara A, Lyke KE, Takala-Harrison S, Silva JC. Whole-genome sieve analysis: Identification of protective malaria antigens by leveraging allele-specific vaccine efficacy. Vaccine 2025; 50:126783. [PMID: 39923546 DOI: 10.1016/j.vaccine.2025.126783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/11/2025]
Abstract
Discovery of new protective malaria antigens will enable the development of novel vaccine formulations with potentially higher efficacy. While several high-throughput experimental approaches enable the identification of novel immunogens, none so far has been designed to selectively identify protective antigens. Here, we propose that sieve analysis conducted on the whole genome (SAWG) can be used specifically for this purpose. We review available medium- to high-throughput methods for antigen identification and contextualize the need for the identification of protective antigens. We then provide the rationale for why SAWG is ideally suited for the identification of protective antigens in recombining pathogens with large genome size, describe conditions for optimal use, and discuss potential pitfalls. Most importantly, this approach can be applied to the discovery of new protective targets in any recombining organism for which there is a whole organism-based vaccine that can be safely deployed in a disease-endemic region.
Collapse
Affiliation(s)
- Ryan Scalsky
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA
| | - Ankit Dwivedi
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, USA
| | - Thomas C Stabler
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Gillian Mbambo
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA
| | - Amed Ouattara
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, USA
| | - Kirsten E Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, USA
| | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, USA
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, USA; Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (NOVA), Lisbon, Portugal.
| |
Collapse
|
6
|
Hunt A, Rasor BJ, Seki K, Ekas HM, Warfel KF, Karim AS, Jewett MC. Cell-Free Gene Expression: Methods and Applications. Chem Rev 2025; 125:91-149. [PMID: 39700225 PMCID: PMC11719329 DOI: 10.1021/acs.chemrev.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 12/21/2024]
Abstract
Cell-free gene expression (CFE) systems empower synthetic biologists to build biological molecules and processes outside of living intact cells. The foundational principle is that precise, complex biomolecular transformations can be conducted in purified enzyme or crude cell lysate systems. This concept circumvents mechanisms that have evolved to facilitate species survival, bypasses limitations on molecular transport across the cell wall, and provides a significant departure from traditional, cell-based processes that rely on microscopic cellular "reactors." In addition, cell-free systems are inherently distributable through freeze-drying, which allows simple distribution before rehydration at the point-of-use. Furthermore, as cell-free systems are nonliving, they provide built-in safeguards for biocontainment without the constraints attendant on genetically modified organisms. These features have led to a significant increase in the development and use of CFE systems over the past two decades. Here, we discuss recent advances in CFE systems and highlight how they are transforming efforts to build cells, control genetic networks, and manufacture biobased products.
Collapse
Affiliation(s)
- Andrew
C. Hunt
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Blake J. Rasor
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Kosuke Seki
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Holly M. Ekas
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S. Karim
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Robert
H. Lurie Comprehensive Cancer Center, Northwestern
University, Chicago, Illinois 60611, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
7
|
Kotani H, Matsuda KM, Yamaguchi K, Ono C, Kogo E, Ogawa K, Kobayashi Y, Hisamoto T, Kawanabe R, Kuzumi A, Fukasawa T, Yoshizaki‐Ogawa A, Goshima N, Sato S, Yoshizaki A. Diversity and Epitope Spreading of Anti-RNA Polymerase III Antibodies in Systemic Sclerosis: A Potential Biomarker for Skin and Lung Involvement. Arthritis Rheumatol 2025; 77:67-79. [PMID: 39219033 PMCID: PMC11684998 DOI: 10.1002/art.42975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/07/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Epitope spreading (ES), involving autoantibodies, plays a crucial role in the development and persistence of autoimmune reactions in various autoimmune diseases. This study aimed to investigate the relationship between ES of anti-RNA polymerase III (RNAP III) antibodies (ARAs) and the clinical manifestations of systemic sclerosis (SSc). METHODS We investigated whether intermolecular ES occurs in the subunits of the RNAP III complex and whether intramolecular ES targets the major antigen, RNA polymerase III subunit A (RPC1), in patients with SSc. To achieve this, we synthesized 17 full-length subunit proteins of the RNAP III complex and 5 truncated forms of RPC1 in vitro using a wheat germ cell-free translation system. Subsequently, we prepared antigen-binding plates and measured autoantibodies in the serum of patients with SSc. RESULTS Autoantibodies against different RNAP III complex subunits were found in patients who were ARA-positive with SSc. The intermolecular ES indicators significantly correlated with the modified Rodnan skin thickness score (mRSS) and surfactant protein-D, a biomarker of interstitial lung disease. However, the extent of disease on high-resolution computed tomography or pulmonary function tests did not show any significant correlation. Intramolecular ES indicator against RPC1 were significantly correlated with mRSS and renal crisis. Furthermore, longitudinal assessment of ES in RNAP III complex subunits correlated with mRSS and exhibited potential as a disease activity biomarker. CONCLUSION Our findings indicate a correlation between ES levels and the severity of skin sclerosis or the risk of other complications in SSc. This study suggests that measuring ES in SSc serves as a novel biomarker for disease activity.
Collapse
Affiliation(s)
| | | | | | | | - Emi Kogo
- ProteoBridge CorporationKoto‐kuJapan
| | | | | | | | | | | | | | | | - Naoki Goshima
- ProteoBridge Corporation and the University of MusashinoKoto‐kuJapan
| | | | | |
Collapse
|
8
|
Nemoto K. Applications of the wheat germ cell-free protein synthesis system in plant biochemical studies. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:325-334. [PMID: 40083572 PMCID: PMC11897732 DOI: 10.5511/plantbiotechnology.24.0501a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/01/2024] [Indexed: 03/16/2025]
Abstract
The development of cell-free protein synthesis technology has made it possible to easily and quickly synthesize recombinant proteins. Among cell-free protein synthesis systems, wheat germ cell-free protein synthesis using eukaryotic ribosomes is an efficient approach to synthesize proteins with diverse and complex structures and functions. However, to date, cell-free protein synthesis systems, including wheat germ cell-free systems, have not been widely used in plant research, and little is known about their applications. Here, I first introduce a basic overview of the cell-free protein synthesis system of wheat germ. Next, I will focus on our previous research examples on plants and present the applications in which the wheat germ cell-free system is used. We provide protein expression and protein function screening methods at the semi-genomic level and also introduce new approaches to enhance study of chemical biology by adapting the cell-free system of wheat germ. With this review, I would like to highlight the potential of the wheat germ cell-free system and position it as a widely used tool for the previously difficult task of recombinant protein preparation and functional analysis.
Collapse
Affiliation(s)
- Keiichirou Nemoto
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| |
Collapse
|
9
|
Woelbern AM, Ramm F. Circumventing the Impossible: Cell-Free Synthesis of Protein Toxins for Medical and Diagnostic Applications. Int J Mol Sci 2024; 25:13293. [PMID: 39769056 PMCID: PMC11675919 DOI: 10.3390/ijms252413293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Naturally occurring protein toxins can derive from bacteria, fungi, plants, and animal venom. Traditionally, toxins are known for their destructive effects on host cells. Despite, and sometimes even because of, these harmful effects, toxins have been used for medical benefits. The prerequisite for the development of toxin-based medications or treatments against toxins is thorough knowledge about the toxin and its underlying mechanism of action. Thus, the toxin of interest must be synthesized. Traditional cell-based production requires high laboratory safety standards and often results in a low total protein yield due to the toxin's harmful, cytotoxic nature. These drawbacks can be circumvented by using cell-free protein synthesis (CFPS), a highly adaptable platform technology relying on cell lysates rather than living cells. This review discusses the current advances in cell-free synthesis of protein toxins as well as their uses and applications for pharmaceutical and diagnostic purposes.
Collapse
Affiliation(s)
| | - Franziska Ramm
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| |
Collapse
|
10
|
Oikawa K, Fujisaki K, Shimizu M, Takeda T, Nemoto K, Saitoh H, Hirabuchi A, Hiraka Y, Miyaji N, Białas A, Langner T, Kellner R, Bozkurt TO, Cesari S, Kroj T, Banfield MJ, Kamoun S, Terauchi R. The blast pathogen effector AVR-Pik binds and stabilizes rice heavy metal-associated (HMA) proteins to co-opt their function in immunity. PLoS Pathog 2024; 20:e1012647. [PMID: 39556648 DOI: 10.1371/journal.ppat.1012647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/07/2024] [Indexed: 11/20/2024] Open
Abstract
Intracellular nucleotide-binding domain and leucine-rich repeat-containing (NLR) receptors play crucial roles in immunity across multiple domains of life. In plants, a subset of NLRs contain noncanonical integrated domains that are thought to have evolved from host targets of pathogen effectors to serve as pathogen baits. However, the functions of host proteins with similarity to NLR integrated domains and the extent to which they are targeted by pathogen effectors remain largely unknown. Here, we show that the blast fungus effector AVR-Pik binds a subset of related rice proteins containing a heavy metal-associated (HMA) domain, one of the domains that has repeatedly integrated into plant NLR immune receptors. We find that AVR-Pik binding stabilizes the rice small HMA (sHMA) proteins OsHIPP19 and OsHIPP20. Knockout of OsHIPP20 causes enhanced disease resistance towards the blast pathogen, indicating that OsHIPP20 is a susceptibility gene (S-gene). We propose that AVR-Pik has evolved to bind HMA domain proteins and co-opt their function to suppress immunity. Yet this binding carries a trade-off, it triggers immunity in plants carrying NLR receptors with integrated HMA domains.
Collapse
Affiliation(s)
- Kaori Oikawa
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Koki Fujisaki
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Motoki Shimizu
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Takumi Takeda
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | | | | | | | - Yukie Hiraka
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Naomi Miyaji
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Aleksandra Białas
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Thorsten Langner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Ronny Kellner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Tolga O Bozkurt
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Stella Cesari
- University of Montpellier, CIRAD, INRAE, Supagro, BGPI, Montpellier, France
| | - Thomas Kroj
- University of Montpellier, CIRAD, INRAE, Supagro, BGPI, Montpellier, France
| | - Mark J Banfield
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Ryohei Terauchi
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
- Laboratory of Crop Evolution, Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
Matsuda KM, Kotani H, Yamaguchi K, Ono C, Okumura T, Ogawa K, Miya A, Sato A, Uchino R, Yumi M, Matsunaka H, Kono M, Norimatsu Y, Hisamoto T, Kawanabe R, Kuzumi A, Fukasawa T, Yoshizaki-Ogawa A, Okamura T, Shoda H, Fujio K, Matsushita T, Goshima N, Sato S, Yoshizaki A. Autoantibodies to nuclear valosin-containing protein-like protein: systemic sclerosis-specific antibodies revealed by in vitro human proteome. Rheumatology (Oxford) 2024; 63:2865-2873. [PMID: 38290780 DOI: 10.1093/rheumatology/keae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/29/2023] [Accepted: 01/06/2024] [Indexed: 02/01/2024] Open
Abstract
OBJECTIVES To identify and characterize undescribed systemic sclerosis (SSc)-specific autoantibodies targeting nucleolar antigens and to assess their clinical significance. METHODS We conducted proteome-wide autoantibody screening (PWAS) against serum samples from SSc patients with nucleolar patterned anti-nuclear antibodies (NUC-ANAs) of specific antibodies (Abs) unknown, utilizing wet protein arrays fabricated from in vitro human proteome. Controls included SSc patients with already-known SSc-specific autoantibodies, patients with other connective tissue diseases and healthy subjects. The selection of nucleolar antigens was performed by database search in the Human Protein Atlas. The presence of autoantibodies was certified by immunoblots and immunoprecipitations. Indirect immunofluorescence assays on HEp-2 cells were also conducted. Clinical assessment was conducted by retrospective review of electronic medical records. RESULTS PWAS identified three candidate autoantibodies, including anti-nuclear valosin-containing protein-like (NVL) Ab. Additional measurements in disease controls revealed that only anti-NVL Abs are exclusively detected in SSc. Detection of anti-NVL Abs was reproduced by conventional assays such as immunoblotting and immunoprecipitation. Indirect immunofluorescence assays demonstrated homogeneous nucleolar patterns. Anti-NVL Ab-positive cases were characterized by significantly low prevalence of diffuse skin sclerosis and interstitial lung disease, compared with SSc cases with NUC-ANAs other than anti-NVL Abs, such as anti-U3-RNP and anti-Th/To Abs. CONCLUSION Anti-NVL Ab is an SSc-specific autoantibody associated with a unique combination of clinical features, including limited skin sclerosis and lack of lung involvement.
Collapse
Affiliation(s)
- Kazuki M Matsuda
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hirohito Kotani
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | - Rikako Uchino
- NOV Academic Research, TOKIWA Pharmaceutical Co., Ltd, Tokyo, Japan
| | - Murakami Yumi
- NOV Academic Research, TOKIWA Pharmaceutical Co., Ltd, Tokyo, Japan
| | | | - Masanori Kono
- Department of Allergy and Rheumatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yuta Norimatsu
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Teruyoshi Hisamoto
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ruriko Kawanabe
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ai Kuzumi
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takemichi Fukasawa
- Department of Clinical Cannabinoid Research, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Asako Yoshizaki-Ogawa
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tomohisa Okamura
- Department of Allergy and Rheumatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hirofumi Shoda
- Department of Allergy and Rheumatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takashi Matsushita
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | | | - Shinichi Sato
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
- Department of Clinical Cannabinoid Research, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Hu X, Zhang X, Sun W, Liu C, Deng P, Cao Y, Zhang C, Xu N, Zhang T, Zhang Y, Liu JJ, Wang H. Systematic discovery of DNA-binding tandem repeat proteins. Nucleic Acids Res 2024; 52:10464-10489. [PMID: 39189466 PMCID: PMC11417379 DOI: 10.1093/nar/gkae710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024] Open
Abstract
Tandem repeat proteins (TRPs) are widely distributed and bind to a wide variety of ligands. DNA-binding TRPs such as zinc finger (ZNF) and transcription activator-like effector (TALE) play important roles in biology and biotechnology. In this study, we first conducted an extensive analysis of TRPs in public databases, and found that the enormous diversity of TRPs is largely unexplored. We then focused our efforts on identifying novel TRPs possessing DNA-binding capabilities. We established a protein language model for DNA-binding protein prediction (PLM-DBPPred), and predicted a large number of DNA-binding TRPs. A subset was then selected for experimental screening, leading to the identification of 11 novel DNA-binding TRPs, with six showing sequence specificity. Notably, members of the STAR (Short TALE-like Repeat proteins) family can be programmed to target specific 9 bp DNA sequences with high affinity. Leveraging this property, we generated artificial transcription factors using reprogrammed STAR proteins and achieved targeted activation of endogenous gene sets. Furthermore, the members of novel families such as MOON (Marine Organism-Originated DNA binding protein) and pTERF (prokaryotic mTERF-like protein) exhibit unique features and distinct DNA-binding characteristics, revealing interesting biological clues. Our study expands the diversity of DNA-binding TRPs, and demonstrates that a systematic approach greatly enhances the discovery of new biological insights and tools.
Collapse
Affiliation(s)
- Xiaoxuan Hu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuechun Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen Sun
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chunhong Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Pujuan Deng
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuanwei Cao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Chenze Zhang
- National Key Laboratory of Efficacy and Mechanism on Chinese Medicine for Metabolic Diseases, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ning Xu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Tongtong Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong E Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun-Jie Gogo Liu
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haoyi Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| |
Collapse
|
13
|
Ogawa A, Fujikawa M, Onishi K, Takahashi H. Cell-Free Biosensors Based on Modular Eukaryotic Riboswitches That Function in One Pot at Ambient Temperature. ACS Synth Biol 2024; 13:2238-2245. [PMID: 38913391 DOI: 10.1021/acssynbio.4c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Artificial riboswitches responsive to user-defined analytes can be constructed by successfully inserting in vitro selected aptamers, which bind to the analytes, into untranslated regions of mRNA. Among them, eukaryotic riboswitches are more promising as biosensors than bacterial ones because they function well at ambient temperature. In addition, cell-free expression systems allow the broader use of these riboswitches as cell-free biosensors in an environmentally friendly manner without cellular limitations. The current best cell-free eukaryotic riboswitch regulates eukaryotic canonical translation initiation through self-cleavage mediated by an implanted analyte-responsive ribozyme (i.e., an aptazyme, an aptamer-ribozyme fusion). However, it has critical flaws as a sensor: due to the less-active ribozyme used, self-cleavage and translation reactions must be conducted separately and sequentially, and a different aptazyme has to be selected to change the analyte specificity, even if an aptamer for the next analyte is available. We here stepwise engineered novel types of cell-free eukaryotic riboswitches that harness highly active self-cleavage and thus require no reaction partitioning. Despite the single-step and one-pot reaction, these riboswitches showed higher analyte dose dependency and sensitivities than the current best cell-free eukaryotic riboswitch requiring multistep reactions. In addition, the analyte specificity can be changed in an extremely facile way, simply by aptamer substitution (and the subsequent simple fine-tuning for giant aptamers). Given that cell-free systems can be lyophilized for storage and transport, the present one-pot and thus easy-to-handle cell-free biosensors utilizing eukaryotic riboswitches are expected to be widely used for on-the-spot sensing of analytes at ambient temperature.
Collapse
Affiliation(s)
- Atsushi Ogawa
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama ,Ehime 790-8577, Japan
| | - Masahiro Fujikawa
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama ,Ehime 790-8577, Japan
| | - Kazuki Onishi
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama ,Ehime 790-8577, Japan
| | - Hajime Takahashi
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama ,Ehime 790-8577, Japan
| |
Collapse
|
14
|
Matsuda KM, Sugimoto E, Ako Y, Kitamura M, Miyahara M, Kotani H, Norimatsu Y, Hisamoto T, Kuzumi A, Fukasawa T, Sato S, Yoshizaki A. Reliability, validity, and sensitivity of the Japanese version of the University of California Los Angeles scleroderma clinical trial consortium gastrointestinal tract instrument: Application to efficacy assessment of intravenous immunoglobulin administration. J Dermatol 2024; 51:741-751. [PMID: 38558171 PMCID: PMC11483899 DOI: 10.1111/1346-8138.17202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/23/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024]
Abstract
This study aimed to develop and assess the reliability, validity, and sensitivity of the Japanese version of the University of California Los Angeles Scleroderma Clinical Trial Consortium gastrointestinal tract (GIT) Instrument 2.0 (the GIT score), as an evaluation tool for GIT symptoms in systemic sclerosis (SSc). The Japanese version of the GIT score was constructed using the forward-backward method. The reliability and validity of this instrument were evaluated in a cohort of 38 SSc patients. Correlation analysis was conducted to assess the relationship between the GIT score and existing patient-reported outcome measures. Additionally, the sensitivity of the GIT score was examined by comparing GIT scores before and after intravenous immunoglobulin (IVIG) administration in 10 SSc-myositis overlap patients, as IVIG has recently demonstrated effectiveness in alleviating GIT symptoms of SSc. As a result, the Japanese version of the GIT score exhibited internal consistency and a significant association with the Frequency Scale for the Symptoms of Gastroesophageal Reflux Disease. Furthermore, the total GIT score, as well as the reflux and distention/bloating subscales, displayed moderate correlations with the EuroQol 5 dimensions (EQ-5D) pain/discomfort subscale and the Short Form-36 body pain subscale. Notably, following IVIG treatment, there was a statistically significant reduction in the total GIT score and multiple subscales. We first validated the Japanese version of the GIT score in Japanese SSc patients in real-world clinical settings. This instrument holds promise for application in future clinical trials involving this patient population.
Collapse
Affiliation(s)
- Kazuki M. Matsuda
- Department of Dermatology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Eiki Sugimoto
- Department of Dermatology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Yoshiaki Ako
- Department of Dermatology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Marie Kitamura
- Department of Dermatology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Mai Miyahara
- Department of Dermatology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Hirohito Kotani
- Department of Dermatology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Yuta Norimatsu
- Department of Dermatology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Teruyoshi Hisamoto
- Department of Dermatology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Ai Kuzumi
- Department of Dermatology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Takemichi Fukasawa
- Department of Dermatology, Graduate School of MedicineThe University of TokyoTokyoJapan
- Department of Clinical Cannabinoid Research, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Shinichi Sato
- Department of Dermatology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Ayumi Yoshizaki
- Department of Dermatology, Graduate School of MedicineThe University of TokyoTokyoJapan
- Department of Clinical Cannabinoid Research, Graduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
15
|
Castaño JD, El Khoury IV, Goering J, Evans JE, Zhang J. Unlocking the distinctive enzymatic functions of the early plant biomass deconstructive genes in a brown rot fungus by cell-free protein expression. Appl Environ Microbiol 2024; 90:e0012224. [PMID: 38567954 PMCID: PMC11205865 DOI: 10.1128/aem.00122-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/10/2024] [Indexed: 05/22/2024] Open
Abstract
Saprotrophic fungi that cause brown rot of woody biomass evolved a distinctive mechanism that relies on reactive oxygen species (ROS) to kick-start lignocellulosic polymers' deconstruction. These ROS agents are generated at incipient decay stages through a series of redox relays that shuttle electrons from fungus's central metabolism to extracellular Fenton chemistry. A list of genes has been suggested encoding the enzyme catalysts of the redox processes involved in ROS's function. However, navigating the functions of the encoded enzymes has been challenging due to the lack of a rapid method for protein synthesis. Here, we employed cell-free expression system to synthesize four redox or degradative enzymes, which were identified, by transcriptomic data, as conserved players of the ROS oxidation phase across brown rot fungal species. All four enzymes were successfully expressed and showed activities that enable confident assignment of function, namely, benzoquinone reductase (BQR), ferric reductase, α-L-arabinofuranosidase (ABF), and heme-thiolate peroxidase (HTP). Detailed analysis of their catalytic features within the context of brown rot environments allowed us to interpret their roles during ROS-driven wood decomposition. Specifically, we validated the functions of BQR as the driver redox enzyme of Fenton cycles and reconstructed its interactions with the co-occurring HTP or laccase and ABF. Taken together, this research demonstrated that the cell-free expression platform is adequate for synthesizing functional fungal enzymes and provided an alternative route for the rapid characterization of fungal proteins, escalating our understanding of the distinctive biocatalyst system for plant biomass conversion.IMPORTANCEBrown rot fungi are efficient wood decomposers in nature, and their unique degradative systems harbor untapped catalysts pursued by the biorefinery and bioremediation industries. While the use of "omics" platforms has recently uncovered the key "oxidative-hydrolytic" mechanisms that allow these fungi to attack lignocellulose, individual protein characterization is lagging behind due to the lack of a robust method for rapid synthesis of crucial fungal enzymes. This work delves into the studies of biochemical functions of brown rot enzymes using a rapid, cell-free expression platform, which allowed the successful depictions of enzymes' catalytic features, their interactions with Fenton chemistry, and their roles played during the incipient stage of brown rot when fungus sets off the reactive oxygen species for oxidative degradation. We expect this research could illuminate cell-free protein expression system's use to fulfill the increasing need for functional studies of fungal enzymes, advancing the discoveries of novel biomass-converting catalysts.
Collapse
Affiliation(s)
- Jesus D. Castaño
- Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, Minnesota, USA
| | - Irina V. El Khoury
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Joshua Goering
- Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, Minnesota, USA
| | - James E. Evans
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Jiwei Zhang
- Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
16
|
Matsuda T, Hori H, Yamagami R. Rational design of oligonucleotides for enhanced in vitro transcription of small RNA. RNA (NEW YORK, N.Y.) 2024; 30:710-727. [PMID: 38423625 PMCID: PMC11098460 DOI: 10.1261/rna.079923.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
All kinds of RNA molecules can be produced by in vitro transcription using T7 RNA polymerase using DNA templates obtained by solid-phase chemical synthesis, primer extension, PCR, or DNA cloning. The oligonucleotide design, however, is a challenge to nonexperts as this relies on a set of rules that have been established empirically over time. Here, we describe a Python program to facilitate the rational design of oligonucleotides, calculated with kinetic parameters for enhanced in vitro transcription (ROCKET). The Python tool uses thermodynamic parameters, performs folding-energy calculations, and selects oligonucleotides suitable for the polymerase extension reaction. These oligonucleotides improve yields of template DNA. With the oligonucleotides selected by the program, the tRNA transcripts can be prepared by a one-pot reaction of the DNA polymerase extension reaction and the transcription reaction. Also, the ROCKET-selected oligonucleotides provide greater transcription yields than that from oligonucleotides selected by Primerize, a leading software for designing oligonucleotides for in vitro transcription, due to the enhancement of template DNA synthesis. Apart from over 50 tRNA genes tested, an in vitro transcribed self-cleaving ribozyme was found to have catalytic activity. In addition, the program can be applied to the synthesis of mRNA, demonstrating the wide applicability of the ROCKET software.
Collapse
MESH Headings
- Transcription, Genetic
- Oligonucleotides/chemistry
- Oligonucleotides/genetics
- Oligonucleotides/chemical synthesis
- Software
- DNA-Directed RNA Polymerases/metabolism
- DNA-Directed RNA Polymerases/genetics
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Catalytic/chemistry
- Thermodynamics
- RNA, Transfer/genetics
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- Kinetics
- RNA, Messenger/genetics
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Teppei Matsuda
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Hiroyuki Hori
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Ryota Yamagami
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
17
|
Yuan S, Chen Y, Zou L, Lu X, Liu R, Zhang S, Zhang Y, Chen C, Cheng D, Chen L, Sun G. Functional prediction of the potential NGLY1 mutations associated with rare disease CDG. Heliyon 2024; 10:e28787. [PMID: 38628705 PMCID: PMC11016977 DOI: 10.1016/j.heliyon.2024.e28787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
Genetic diseases are currently diagnosed by functional mutations. However, only some mutations are associated with disease. It is necessary to establish a quick prediction model for clinical screening. Pathogenic mutations in NGLY1 cause a rare autosomal recessive disease known as congenital disorder of deglycosylation (NGLY1-CDDG). Although NGLY1-CDDG can be diagnosed through gene sequencing, clinical relevance of a detected mutation in NGLY1 needs to be further confirmed. In this study, taken NGLY1-CDDG as an example, a comprehensive and practical predictive model for pathogenic mutations on NGLY1 through an NGLY1/Glycopeptide complex model was constructed, the binding sites of NGLY1 and glycopeptides were simulated, and an in vitro enzymatic assay system was established to facilitate quick clinical decisions for NGLY1-CDDG patients. The docking model covers 42 % of reported NGLY1-CDDG missense mutations (5/12). All reported mutations were subjected to in vitro enzymatic assay in which 18 mutations were dysfunctional (18/30). In addition, a full spectrum of functional R328 mutations was assayed and 11 mutations were dysfunctional (11/19). In this study, a model of NGLY1 and glycopeptides was built for potential functional mutations in NGLY1. In addition, the effect of potential regulatory compounds, including N-acetyl-l-cysteine and dithiothreitol, on NGLY1 was examined. The established in vitro assay may serve as a standard protocol to facilitate rapid diagnosis of all mutations in NGLY1-CDDG. This method could also be applied as a comprehensive and practical predictive model for the other rare genetic diseases.
Collapse
Affiliation(s)
- Shuying Yuan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Yanwen Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Lin Zou
- Department of Medical Microbiology and Parasitology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xinrong Lu
- Department of Medical Microbiology and Parasitology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ruijie Liu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Shaoxing Zhang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Yuxin Zhang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Cuiying Chen
- Department of Research and Development, SysDiagno Biotech, Nanjing, 211800, Jiangsu Province, China
| | - Dongqing Cheng
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Li Chen
- Department of Medical Microbiology and Parasitology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Guiqin Sun
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| |
Collapse
|
18
|
Ueda R, Hashimoto R, Fujii Y, Menezes JCJMDS, Takahashi H, Takeda H, Sawasaki T, Motokawa T, Tokunaga K, Fujita H. Membrane-Associated Ubiquitin Ligase RING Finger Protein 152 Orchestrates Melanogenesis via Tyrosinase Ubiquitination. MEMBRANES 2024; 14:43. [PMID: 38392670 PMCID: PMC10890620 DOI: 10.3390/membranes14020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/24/2024]
Abstract
Lysosomal degradation of tyrosinase, a pivotal enzyme in melanin synthesis, negatively impacts melanogenesis in melanocytes. Nevertheless, the precise molecular mechanisms by which lysosomes target tyrosinase have remained elusive. Here, we identify RING (Really Interesting New Gene) finger protein 152 (RNF152) as a membrane-associated ubiquitin ligase specifically targeting tyrosinase for the first time, utilizing AlphaScreen technology. We observed that modulating RNF152 levels in B16 cells, either via overexpression or siRNA knockdown, resulted in decreased or increased levels of both tyrosinase and melanin, respectively. Notably, RNF152 and tyrosinase co-localized at the trans-Golgi network (TGN). However, upon treatment with lysosomal inhibitors, both proteins appeared in the lysosomes, indicating that tyrosinase undergoes RNF152-mediated lysosomal degradation. Through ubiquitination assays, we found the indispensable roles of both the RING and transmembrane (TM) domains of RNF152 in facilitating tyrosinase ubiquitination. In summary, our findings underscore RNF152 as a tyrosinase-specific ubiquitin ligase essential for regulating melanogenesis in melanocytes.
Collapse
Affiliation(s)
- Ryota Ueda
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo 859-3298, Japan
| | - Rina Hashimoto
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo 859-3298, Japan
| | - Yuki Fujii
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo 859-3298, Japan
| | - José C J M D S Menezes
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo 859-3298, Japan
- Esteem Industries Pvt Ltd., Bicholim 403529, Goa, India
| | | | - Hiroyuki Takeda
- Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan
| | - Tatsuya Sawasaki
- Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan
| | - Tomonori Motokawa
- Frontier Research Center, POLA Chemical Industries, Inc., Yokohama 244-0812, Japan
| | - Kenzo Tokunaga
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Hideaki Fujita
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo 859-3298, Japan
| |
Collapse
|
19
|
Fogeron ML, Callon M, Lecoq L, Böckmann A. Cell-Free Synthesis of Bunyavirales Proteins in View of Their Structural Characterization by Nuclear Magnetic Resonance. Methods Mol Biol 2024; 2824:105-120. [PMID: 39039409 DOI: 10.1007/978-1-0716-3926-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The Rift Valley fever virus is one of the bunyaviruses on the WHO's priority list of pathogens that may cause future pandemics. A better understanding of disease progression and viral pathogenesis is urgently needed to develop treatments. The non-structural proteins NSs and NSm of human pathogenic bunyaviruses represent promising therapeutic targets, as they are often key virulence factors. However, their function is still poorly understood, and their structure is yet unknown, mainly because no successful production of these highly complex proteins has been reported. Here we propose a powerful combination of wheat germ cell-free protein synthesis and NMR to study the structure of these proteins and in particular detail cell-free synthesis and lipid reconstitution methods that can be applied to complex membrane proteins.
Collapse
Affiliation(s)
- Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/Université de Lyon 1, Lyon, France.
| | | | | | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/Université de Lyon 1, Lyon, France.
| |
Collapse
|
20
|
Yamada K, Shioya R, Nishino K, Furihata H, Hijikata A, Kaneko MK, Kato Y, Shirai T, Kosako H, Sawasaki T. Proximity extracellular protein-protein interaction analysis of EGFR using AirID-conjugated fragment of antigen binding. Nat Commun 2023; 14:8301. [PMID: 38097606 PMCID: PMC10721602 DOI: 10.1038/s41467-023-43931-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Receptor proteins, such as epidermal growth factor receptor (EGFR), interact with other proteins in the extracellular region of the cell membrane to drive intracellular signalling. Therefore, analysis of extracellular protein-protein interactions (exPPIs) is important for understanding the biological function of receptor proteins. Here, we present an approach using a proximity biotinylation enzyme (AirID) fusion fragment of antigen binding (FabID) to analyse the proximity exPPIs of EGFR. AirID was C-terminally fused to the Fab fragment against EGFR (EGFR-FabID), which could then biotinylate the extracellular region of EGFR in several cell lines. Liquid Chromatography-Mass Spectrometry (LC-MS/MS) analysis indicated that many known EGFR interactors were identified as proximity exPPIs, along with many unknown candidate interactors, using EGFR-FabID. Interestingly, these proximity exPPIs were influenced by treatment with EGF ligand and its specific kinase inhibitor, gefitinib. These results indicate that FabID provides accurate proximity exPPI analysis of target receptor proteins on cell membranes with ligand and drug responses.
Collapse
Affiliation(s)
- Kohdai Yamada
- Division of Cell-Free Life Science, Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Ryouhei Shioya
- Division of Cell-Free Life Science, Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Kohei Nishino
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Hirotake Furihata
- Division of Cell-Free Life Science, Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Atsushi Hijikata
- Laboratory of Computational Genomics, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, 192-0392, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Tsuyoshi Shirai
- Department of Bioscience, Nagahama Institute of BioScience and Technology, 1266 Tamura, Nagahama, 526-0829, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan.
| | - Tatsuya Sawasaki
- Division of Cell-Free Life Science, Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan.
| |
Collapse
|
21
|
Maharjan A, Park JH. Cell-free protein synthesis system: A new frontier for sustainable biotechnology-based products. Biotechnol Appl Biochem 2023; 70:2136-2149. [PMID: 37735977 DOI: 10.1002/bab.2514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Cell-free protein synthesis (CFPS) system is an innovative technology with a wide range of potential applications that could challenge current thinking and provide solutions to environmental and health issues. CFPS system has been demonstrated to be a successful way of producing biomolecules in a variety of applications, including the biomedical industry. Although there are still obstacles to overcome, its ease of use, versatility, and capacity for integration with other technologies open the door for it to continue serving as a vital instrument in synthetic biology research and industry. In this review, we mainly focus on the cell-free based platform for various product productions. Moreover, the challenges in the bio-therapeutic aspect using cell-free systems and their future prospective for the improvement and sustainability of the cell free systems.
Collapse
Affiliation(s)
- Anoth Maharjan
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
22
|
Takahashi H, Fujikawa M, Ogawa A. Rational design of eukaryotic riboswitches that up-regulate IRES-mediated translation initiation with high switching efficiency through a kinetic trapping mechanism in vitro. RNA (NEW YORK, N.Y.) 2023; 29:1950-1959. [PMID: 37704221 PMCID: PMC10653380 DOI: 10.1261/rna.079778.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
In general, riboswitches functioning through a cotranscriptional kinetic trapping mechanism (kt-riboswitches) show higher switching efficiencies in response to practical concentrations of their ligand molecules than eq-riboswitches, which function by an equilibrium mechanism. However, the former have been much more difficult to design due to their more complex mechanism. We here successfully developed a rational strategy for constructing eukaryotic kt-riboswitches that ligand-dependently enhance translation initiation mediated by an internal ribosome entry site (IRES). This was achieved both by utilizing some predicted structural features of a highly efficient bacterial kt-riboswitch identified through screening and by completely decoupling an aptamer domain from the IRES. Three kt-riboswitches optimized through this strategy, each responding to a different ligand, exhibited three- to sevenfold higher induction ratios (up to ∼90) than previously optimized eq-riboswitches regulating the same IRES-mediated translation in wheat germ extract. Because the IRES used functions well in various eukaryotic expression systems, these types of kt-riboswitches are expected to serve as major eukaryotic gene regulators based on RNA. In addition, the present strategy could be applied to the rational construction of other types of kt-riboswitches, including those functioning in bacterial expression systems.
Collapse
Affiliation(s)
- Hajime Takahashi
- Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Masahiro Fujikawa
- Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Atsushi Ogawa
- Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
23
|
Li X, Nakashima K, Ito M, Matsuda M, Chida T, Sekihara K, Takahashi H, Kato T, Sawasaki T, Suzuki T. SRPKIN-1 as an inhibitor against hepatitis B virus blocking the viral particle formation and the early step of the viral infection. Antiviral Res 2023; 220:105756. [PMID: 37992764 DOI: 10.1016/j.antiviral.2023.105756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
New antiviral agents are needed for the treatment of hepatitis B virus (HBV) infection because currently available drugs do not completely eradicate chronic HBV in patients. Phosphorylation dynamics of the HBV core protein (HBc) regulate several processes in the HBV life cycle, including nucleocapsid formation, cell trafficking, and virus uncoating after entry. In this study, the SRPK inhibitors SPHINX31, SRPIN340, and SRPKIN-1 showed concentration-dependent anti-HBV activity. Detailed analysis of the effects of SRPKIN-1, which exhibited the strongest inhibitory activity, on the HBV replication process showed that it inhibits the formation of infectious particles by inhibiting pregenomic RNA packaging into capsids and nucleocapsid envelopment. Mass spectrometry analysis combined with cell-free translation system experiments revealed that hyperphosphorylation of the C-terminal domain of HBc is inhibited by SRPKIN-1. Further, SRPKIN-1 exhibited concentration-dependent inhibition of HBV infection not only in HepG2-hNTCP-C4 cells but also in fresh human hepatocytes (PXB cells) and in the single-round infection system. Treatment with SRPKIN-1 at the time of infection reduced the nuclease sensitivity of HBV DNA in the nuclear fraction. These results suggest that SRPKIN-1 has the potential to not only inhibit the HBV particle formation process but also impair the early stages of viral infection.
Collapse
Affiliation(s)
- Xiaofang Li
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Kenji Nakashima
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Masahiko Ito
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Mami Matsuda
- Department of Virology II, National Institute of Infectious Diseases, Musashi-murayama, Japan
| | - Takeshi Chida
- Department of Internal Medicine II, Hamamatsu University School of Medicine, Shizuoka, Japan; Department of Regional Medical Care Support, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Kazumasa Sekihara
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Hirotaka Takahashi
- Division of Cell-Free Science, Proteo-Science Center, Ehime University, Matsuyama, Ehime, Japan
| | - Takanobu Kato
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tatsuya Sawasaki
- Division of Cell-Free Science, Proteo-Science Center, Ehime University, Matsuyama, Ehime, Japan
| | - Tetsuro Suzuki
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan.
| |
Collapse
|
24
|
Sato M, Hariyama M, Komiya M, Suzuki K, Tozawa Y, Yamamoto H, Hirano-Iwata A. Model-free idealization: Adaptive integrated approach for idealization of ion-channel currents. Biophys J 2023; 122:3959-3975. [PMID: 37634080 PMCID: PMC10560676 DOI: 10.1016/j.bpj.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/21/2023] [Accepted: 08/24/2023] [Indexed: 08/28/2023] Open
Abstract
Single-channel electrophysiological recordings provide insights into transmembrane ion permeation and channel gating mechanisms. The first step in the analysis of the recorded currents involves an "idealization" process, in which noisy raw data are classified into two discrete levels corresponding to the open and closed states of channels. This provides valuable information on the gating kinetics of ion channels. However, the idealization step is often challenging in cases of currents with poor signal-to-noise ratios and baseline drifts, especially when the gating model of the target channel is not identified. We report herein on a highly robust model-free idealization method for achieving this goal. The algorithm, called adaptive integrated approach for idealization of ion-channel currents (AI2), is composed of Kalman filter and Gaussian mixture model clustering and functions without user input. AI2 automatically determines the noise reduction setting based on the degree of separation between the open and closed levels. We validated the method on pseudo-channel-current datasets that contain either computed or experimentally recorded noise. We also investigated the relationship between the noise reduction parameter of the Kalman filter and the cutoff frequency of the low-pass filter. The AI2 algorithm was then tested on actual experimental data for biological channels including gramicidin A, a voltage-gated sodium channel, and other unidentified channels. We compared the idealization results with those obtained by the conventional methods, including the 50%-threshold-crossing method.
Collapse
Affiliation(s)
- Madoka Sato
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Masanori Hariyama
- Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi, Japan.
| | - Maki Komiya
- Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai, Miyagi, Japan
| | - Kae Suzuki
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan; Epsilon Molecular Engineering, Inc, Open Innovation Center in Saitama University, Saitama, Japan
| | - Yuzuru Tozawa
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Hideaki Yamamoto
- Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai, Miyagi, Japan
| | - Ayumi Hirano-Iwata
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan; Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai, Miyagi, Japan; Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
25
|
Norimatsu Y, Matsuda KM, Yamaguchi K, Ono C, Okumura T, Kogo E, Kotani H, Hisamoto T, Kuzumi A, Fukasawa T, Yoshizaki-Ogawa A, Goshima N, Sato S, Yoshizaki A. The Autoantibody Array Assay: A Novel Autoantibody Detection Method. Diagnostics (Basel) 2023; 13:2929. [PMID: 37761295 PMCID: PMC10528021 DOI: 10.3390/diagnostics13182929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Systemic sclerosis (SSc) and dermatomyositis (DM) are autoimmune collagen diseases. Specific autoantibodies are known to be involved in their pathogeneses, each presenting with a different clinical manifestation. Although immunoprecipitation is the gold standard method for detecting autoantibodies, it is difficult to perform in all cases owing to the use of radioisotopes. In this study, we developed a new detection method for SSc and DM autoantibodies (A-cube) using cell-free protein synthesis and examined its validity. Proteins were synthesized using wheat germ cell-free protein synthesis. A total of 100 cases of SSc, 50 cases of DM, and 82 healthy controls were examined. The validity of the method was examined by a comparison with existing test results. Anti-centromere antibody, anti-topoisomerase I antibody, anti-RNA polymerase III antibody, anti-U1RNP anti-body, anti-Jo-1 antibody, anti-TIF1γ antibody, anti-Mi-2 antibody, and anti-ARS antibody were tested for. The results suggested that A-cube is comparable with existing testing methods or has a high sensitivity or specificity. In addition, there was a case in which the diagnosis was reconsidered using the A-cube. The quality of the A-cube was ensured, and its usefulness for a comprehensive analysis was demonstrated. The A-cube can therefore contribute to the clinical assessment and treatment of SSc and DM.
Collapse
Affiliation(s)
- Yuta Norimatsu
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan; (Y.N.); (T.F.); (A.Y.-O.)
- Department of Dermatology, International University of Health and Welfare Narita Hospital, Chiba 286-8520, Japan
| | - Kazuki Mitsuru Matsuda
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan; (Y.N.); (T.F.); (A.Y.-O.)
| | - Kei Yamaguchi
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 100-0013, Japan
- ProteoBridge Corporation, Tokyo 135-0064, Japan
| | - Chihiro Ono
- ProteoBridge Corporation, Tokyo 135-0064, Japan
| | | | - Emi Kogo
- ProteoBridge Corporation, Tokyo 135-0064, Japan
| | - Hirohito Kotani
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan; (Y.N.); (T.F.); (A.Y.-O.)
| | - Teruyoshi Hisamoto
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan; (Y.N.); (T.F.); (A.Y.-O.)
| | - Ai Kuzumi
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan; (Y.N.); (T.F.); (A.Y.-O.)
| | - Takemichi Fukasawa
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan; (Y.N.); (T.F.); (A.Y.-O.)
- Department of Clinical Cannabinoid Research, The University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan
| | - Asako Yoshizaki-Ogawa
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan; (Y.N.); (T.F.); (A.Y.-O.)
| | - Naoki Goshima
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 100-0013, Japan
- ProteoBridge Corporation, Tokyo 135-0064, Japan
| | - Shinichi Sato
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan; (Y.N.); (T.F.); (A.Y.-O.)
| | - Ayumi Yoshizaki
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan; (Y.N.); (T.F.); (A.Y.-O.)
- Department of Clinical Cannabinoid Research, The University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan
| |
Collapse
|
26
|
Kuzumi A, Norimatsu Y, Matsuda KM, Ono C, Okumura T, Kogo E, Goshima N, Fukasawa T, Fushida N, Horii M, Yamashita T, Yoshizaki-Ogawa A, Yamaguchi K, Matsushita T, Sato S, Yoshizaki A. Comprehensive autoantibody profiling in systemic autoimmunity by a highly-sensitive multiplex protein array. Front Immunol 2023; 14:1255540. [PMID: 37701440 PMCID: PMC10493387 DOI: 10.3389/fimmu.2023.1255540] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023] Open
Abstract
Comprehensive autoantibody evaluation is essential for the management of autoimmune disorders. However, conventional methods suffer from poor sensitivity, low throughput, or limited availability. Here, using a proteome-wide human cDNA library, we developed a novel multiplex protein assay (autoantibody array assay; A-Cube) covering 65 antigens of 43 autoantibodies that are associated with systemic sclerosis (SSc) and polymyositis/dermatomyositis (PM/DM). The performance of A-Cube was validated against immunoprecipitation and established enzyme-linked immunosorbent assay. Further, through an evaluation of serum samples from 357 SSc and 172 PM/DM patients, A-Cube meticulously illustrated a diverse autoantibody landscape in these diseases. The wide coverage and high sensitivity of A-Cube also allowed the overlap and correlation analysis between multiple autoantibodies. Lastly, reviewing the cases with distinct autoantibody profiles by A-Cube underscored the importance of thorough autoantibody detection. Together, these data highlighted the utility of A-Cube as well as the clinical relevance of autoantibody profiles in SSc and PM/DM.
Collapse
Affiliation(s)
- Ai Kuzumi
- Department of Dermatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yuta Norimatsu
- Department of Dermatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Kazuki M. Matsuda
- Department of Dermatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | - Emi Kogo
- ProteoBridge Corporation, Tokyo, Japan
| | - Naoki Goshima
- ProteoBridge Corporation, Tokyo, Japan
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Takemichi Fukasawa
- Department of Dermatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Department of Clinical Cannabinoid Research, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Natsumi Fushida
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Motoki Horii
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Takashi Yamashita
- Department of Dermatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Asako Yoshizaki-Ogawa
- Department of Dermatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Kei Yamaguchi
- ProteoBridge Corporation, Tokyo, Japan
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Takashi Matsushita
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Shinichi Sato
- Department of Dermatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Department of Clinical Cannabinoid Research, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
27
|
Yamanaka S, Furihata H, Yanagihara Y, Taya A, Nagasaka T, Usui M, Nagaoka K, Shoya Y, Nishino K, Yoshida S, Kosako H, Tanokura M, Miyakawa T, Imai Y, Shibata N, Sawasaki T. Lenalidomide derivatives and proteolysis-targeting chimeras for controlling neosubstrate degradation. Nat Commun 2023; 14:4683. [PMID: 37596276 PMCID: PMC10439208 DOI: 10.1038/s41467-023-40385-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 07/21/2023] [Indexed: 08/20/2023] Open
Abstract
Lenalidomide, an immunomodulatory drug (IMiD), is commonly used as a first-line therapy in many haematological cancers, such as multiple myeloma (MM) and 5q myelodysplastic syndromes (5q MDS), and it functions as a molecular glue for the protein degradation of neosubstrates by CRL4CRBN. Proteolysis-targeting chimeras (PROTACs) using IMiDs with a target protein binder also induce the degradation of target proteins. The targeted protein degradation (TPD) of neosubstrates is crucial for IMiD therapy. However, current IMiDs and IMiD-based PROTACs also break down neosubstrates involved in embryonic development and disease progression. Here, we show that 6-position modifications of lenalidomide are essential for controlling neosubstrate selectivity; 6-fluoro lenalidomide induced the selective degradation of IKZF1, IKZF3, and CK1α, which are involved in anti-haematological cancer activity, and showed stronger anti-proliferative effects on MM and 5q MDS cell lines than lenalidomide. PROTACs using these lenalidomide derivatives for BET proteins induce the selective degradation of BET proteins with the same neosubstrate selectivity. PROTACs also exert anti-proliferative effects in all examined cell lines. Thus, 6-position-modified lenalidomide is a key molecule for selective TPD using thalidomide derivatives and PROTACs.
Collapse
Affiliation(s)
- Satoshi Yamanaka
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, 790-8577, Japan
- Division of Proteo-Interactome, Proteo-Science Center, Ehime University, Matsuyama, 790-8577, Japan
| | - Hirotake Furihata
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, 790-8577, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Yuta Yanagihara
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, 791-0295, Japan
| | - Akihito Taya
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
| | - Takato Nagasaka
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
| | - Mai Usui
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
| | - Koya Nagaoka
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, 790-8577, Japan
| | - Yuki Shoya
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, 790-8577, Japan
| | - Kohei Nishino
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Shuhei Yoshida
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, 791-0295, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Yuuki Imai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, 791-0295, Japan
| | - Norio Shibata
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
| | - Tatsuya Sawasaki
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, 790-8577, Japan.
| |
Collapse
|
28
|
Ha NS, Onley JR, Deng K, Andeer P, Bowen BP, Gupta K, Kim PW, Kuch N, Kutschke M, Parker A, Song F, Fox B, Adams PD, de Raad M, Northen TR. A combinatorial droplet microfluidic device integrated with mass spectrometry for enzyme screening. LAB ON A CHIP 2023; 23:3361-3369. [PMID: 37401915 PMCID: PMC10484474 DOI: 10.1039/d2lc00980c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Mass spectrometry (MS) enables detection of different chemical species with a very high specificity; however, it can be limited by its throughput. Integrating MS with microfluidics has a tremendous potential to improve throughput and accelerate biochemical research. In this work, we introduce Drop-NIMS, a combination of a passive droplet loading microfluidic device and a matrix-free MS laser desorption ionization technique called nanostructure-initiator mass spectrometry (NIMS). This platform combines different droplets at random to generate a combinatorial library of enzymatic reactions that are deposited directly on the NIMS surface without requiring additional sample handling. The enzyme reaction products are then detected with MS. Drop-NIMS was used to rapidly screen enzymatic reactions containing low (on the order of nL) volumes of glycoside reactants and glycoside hydrolase enzymes per reaction. MS "barcodes" (small compounds with unique masses) were added to the droplets to identify different combinations of substrates and enzymes created by the device. We assigned xylanase activities to several putative glycoside hydrolases, making them relevant to food and biofuel industrial applications. Overall, Drop-NIMS is simple to fabricate, assemble, and operate and it has potential to be used with many other small molecule metabolites.
Collapse
Affiliation(s)
- Noel S Ha
- Joint BioEnergy Institute, Emeryville, CA, USA.
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jenny R Onley
- Joint BioEnergy Institute, Emeryville, CA, USA.
- Sandia National Laboratories, Livermore, California, USA
| | - Kai Deng
- Joint BioEnergy Institute, Emeryville, CA, USA.
- Sandia National Laboratories, Livermore, California, USA
| | - Peter Andeer
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Kshitiz Gupta
- Joint BioEnergy Institute, Emeryville, CA, USA.
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Peter W Kim
- Joint BioEnergy Institute, Emeryville, CA, USA.
- Sandia National Laboratories, Livermore, California, USA
| | - Nathaniel Kuch
- University of Wisconsin - Madison, Madison, WI, USA
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, WI, USA
| | | | - Alex Parker
- University of Wisconsin - Madison, Madison, WI, USA
| | - Fangchao Song
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Brian Fox
- University of Wisconsin - Madison, Madison, WI, USA
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, WI, USA
| | - Paul D Adams
- Joint BioEnergy Institute, Emeryville, CA, USA.
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- University of California, Berkeley, CA, USA
| | - Markus de Raad
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Trent R Northen
- Joint BioEnergy Institute, Emeryville, CA, USA.
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
29
|
Yamada K, Soga F, Tokunaga S, Nagaoka H, Ozawa T, Kishi H, Takashima E, Sawasaki T. GATS tag system is compatible with biotin labelling methods for protein analysis. Sci Rep 2023; 13:10243. [PMID: 37353572 PMCID: PMC10290147 DOI: 10.1038/s41598-023-36858-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/11/2023] [Indexed: 06/25/2023] Open
Abstract
Polypeptide tags and biotin labelling technologies are widely used for protein analyses in biochemistry and cell biology. However, many peptide tag epitopes contain lysine residues (or amino acids) that are masked after biotinylation. Here, we propose the GATS tag system without a lysine residue and with high sensitivity and low non-specific binding using a rabbit monoclonal antibody against Plasmodium falciparum glycosylphosphatidylinositol (GPI)-anchored micronemal antigen (PfGAMA). From 14 monoclonal clones, an Ra3 clone was selected as it recognized an epitope-TLSVGVQNTF-without a lysine residue; this antibody and epitope tag set was called the GATS tag system. Surface plasmon resonance analysis showed that the tag system had a high affinity of 8.71 × 10-9 M. GATS tag indicated a very low background with remarkably high sensitivity and specificity in immunoblotting using the lysates of mammalian cells. It also showed a high sensitivity for immunoprecipitation and immunostaining of cultured human cells. The tag system was highly sensitive in both biotin labelling methods for proteins using NHS-Sulfo-biotin and BioID (proximity-dependent biotin identification) in the human cells, as opposed to a commercially available tag system having lysine residues, which showed reduced sensitivity. These results showed that the GATS tag system is suitable for methods such as BioID involving labelling lysine residues.
Collapse
Affiliation(s)
- Kohdai Yamada
- Division of Cell-Free Life Science, Proteo-Science Center, Ehime University, 3 Bunkyo-Cho, Matsuyama, Ehime, 790-8577, Japan
| | - Fumiya Soga
- Division of Cell-Free Life Science, Proteo-Science Center, Ehime University, 3 Bunkyo-Cho, Matsuyama, Ehime, 790-8577, Japan
| | - Soh Tokunaga
- Division of Cell-Free Life Science, Proteo-Science Center, Ehime University, 3 Bunkyo-Cho, Matsuyama, Ehime, 790-8577, Japan
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, 3 Bunkyo-Cho, Matsuyama, Ehime, 790-8577, Japan
| | - Tatsuhiko Ozawa
- Department of Immunology, Faculty of Medicine, Academic Assembly, Advanced Antibody Drug Development Center, University of Toyama, Toyama, 930-0194, Japan
| | - Hiroyuki Kishi
- Department of Immunology, Faculty of Medicine, Academic Assembly, Advanced Antibody Drug Development Center, University of Toyama, Toyama, 930-0194, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, 3 Bunkyo-Cho, Matsuyama, Ehime, 790-8577, Japan
| | - Tatsuya Sawasaki
- Division of Cell-Free Life Science, Proteo-Science Center, Ehime University, 3 Bunkyo-Cho, Matsuyama, Ehime, 790-8577, Japan.
| |
Collapse
|
30
|
Matsuda KM, Kotani H, Yamaguchi K, Okumura T, Fukuda E, Kono M, Hisamoto T, Kawanabe R, Norimatsu Y, Kuzumi A, Fukayama M, Fukasawa T, Ebata S, Yoshizaki-Ogawa A, Okamura T, Shoda H, Fujio K, Goshima N, Sato S, Yoshizaki A. Significance of anti-transcobalamin receptor antibodies in cutaneous arteritis revealed by proteome-wide autoantibody screening. J Autoimmun 2023; 135:102995. [PMID: 36724643 DOI: 10.1016/j.jaut.2023.102995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 02/03/2023]
Abstract
Cutaneous arteritis (CA) is a single-organ vasculitis that exclusively affects the small to medium-sized arteries of the skin. Diagnosis depends on a histological investigation with skin biopsy, which could be burdensome for both patients and clinicians. Moreover, the pathogenesis of CA remains unstudied, and treatment has not yet been established. Herein, we applied our proteome-wide autoantibody screening method to explore autoantibodies in the serum of CA patients. As a result, anti-transcobalamin receptor (TCblR) antibodies (Abs) were specifically detected in 24% of CA patients. Patients with positive anti-TCblR Abs were spared from peripheral neuropathy compared to those with negative anti-TCblR Abs, showing characteristics as CA confined to the skin. In addition, we revealed that anti-TCblR Abs trigger the autocrine loop of interleukin-6 mediated by tripartite motif-containing protein 21 in human endothelial cells and induce periarterial inflammation in murine skin. Furthermore, we demonstrated that methylcobalamin, a ligand of TCblR, ameliorates inflammation caused by anti-TCblR Abs both in vitro and in vivo. Collectively, our investigation unveils the pathologic significance of anti-TCblR Abs in CA and their potential as a diagnostic marker and a pathophysiology-oriented therapeutic target.
Collapse
Affiliation(s)
- Kazuki M Matsuda
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hirohito Kotani
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Kei Yamaguchi
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan; ProteoBridge Corporation, Tokyo, Japan
| | - Taishi Okumura
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan; ProteoBridge Corporation, Tokyo, Japan
| | - Eriko Fukuda
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Masanori Kono
- Department of Allergy and Rheumatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Teruyoshi Hisamoto
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ruriko Kawanabe
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yuta Norimatsu
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ai Kuzumi
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Maiko Fukayama
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takemichi Fukasawa
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Satoshi Ebata
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Asako Yoshizaki-Ogawa
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tomohisa Okamura
- Department of Allergy and Rheumatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hirofumi Shoda
- Department of Allergy and Rheumatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Naoki Goshima
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan; ProteoBridge Corporation, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | - Ayumi Yoshizaki
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
31
|
Ogawa A, Inoue H, Itoh Y, Takahashi H. Facile Expansion of the Variety of Orthogonal Ligand/Aptamer Pairs for Artificial Riboswitches. ACS Synth Biol 2023; 12:35-42. [PMID: 36566430 DOI: 10.1021/acssynbio.2c00475] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An RNA aptamer that induces suitable conformational changes upon binding to a user-defined ligand allows us to artificially construct a riboswitch, a ligand-dependent and cis-acting gene regulatory RNA. Although such an aptamer can be obtained through in vitro selection, it is still challenging to rationally expand the variety of orthogonal ligand/aptamer (ligand/riboswitch) pairs. To achieve this in a facile, selection-free way, we herein focused on a specific type of ligand, 6-nt nanosized DNA (nDNA) and its aptamer that was previously selected to construct a eukaryotic artificial riboswitch. Specifically, we merely mutated one or more possible Watson-Crick base pairs in the nDNA/aptamer (nDNA/riboswitch) interactions into another base pair or pairs. Using two sets that each had 16 comprehensive mutations, we obtained three groups of several orthogonal nDNA/riboswitch pairs. These pairs could be used to create complex gene circuits, including multiple simultaneous and/or multistep cascading regulations in synthetic biology.
Collapse
Affiliation(s)
- Atsushi Ogawa
- Proteo-Science Center, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Honami Inoue
- Proteo-Science Center, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Yu Itoh
- Proteo-Science Center, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Hajime Takahashi
- Proteo-Science Center, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
32
|
Andongma BT, Huang Y, Chen F, Tang Q, Yang M, Chou SH, Li X, He J. In silico design of a promiscuous chimeric multi-epitope vaccine against Mycobacterium tuberculosis. Comput Struct Biotechnol J 2023; 21:991-1004. [PMID: 36733703 PMCID: PMC9883148 DOI: 10.1016/j.csbj.2023.01.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
Tuberculosis (TB) is a global health threat, killing approximately 1.5 million people each year. The eradication of Mycobacterium tuberculosis, the main causative agent of TB, is increasingly challenging due to the emergence of extensive drug-resistant strains. Vaccination is considered an effective way to protect the host from pathogens, but the only clinically approved TB vaccine, Bacillus Calmette-Guérin (BCG), has limited protection in adults. Multi-epitope vaccines have been found to enhance immunity to diseases by selectively combining epitopes from several candidate proteins. This study aimed to design a multi-epitope vaccine against TB using an immuno-informatics approach. Through functional enrichment, we identified eight proteins secreted by M. tuberculosis that are either required for pathogenesis, secreted into extracellular space, or both. We then analyzed the epitopes of these proteins and selected 16 helper T lymphocyte epitopes with interferon-γ inducing activity, 15 cytotoxic T lymphocyte epitopes, and 10 linear B-cell epitopes, and conjugated them with adjuvant and Pan HLA DR-binding epitope (PADRE) using appropriate linkers. Moreover, we predicted the tertiary structure of this vaccine, its potential interaction with Toll-Like Receptor-4 (TLR4), and the immune response it might elicit. The results showed that this vaccine had a strong affinity for TLR4, which could significantly stimulate CD4+ and CD8+ cells to secrete immune factors and B lymphocytes to secrete immunoglobulins, so as to obtain good humoral and cellular immunity. Overall, this multi-epitope protein was predicted to be stable, safe, highly antigenic, and highly immunogenic, which has the potential to serve as a global vaccine against TB.
Collapse
Affiliation(s)
- Binda T. Andongma
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yazheng Huang
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Fang Chen
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Qing Tang
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Min Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430070, PR China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xinfeng Li
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China,CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China,Correspondence to: The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan, Hubei 430070, PR China.
| | - Jin He
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China,Correspondence to: The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
33
|
Chloride Intracellular Channel Protein 2 Promotes Microglial Invasion: A Link to Microgliosis in the Parkinson's Disease Brain. Brain Sci 2022; 13:brainsci13010055. [PMID: 36672037 PMCID: PMC9857073 DOI: 10.3390/brainsci13010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Activated microglia potentially cause neurodegeneration in Parkinson's disease (PD). Matrix metalloproteinase (MMP)-9 plays a crucial role in the pathogenesis of PD, but the modulator of microglial release of MMP-9 remains obscure. Given the modulatory effect of chloride intracellular channel protein 2 (CLIC2) on MMPs, we aimed to determine the role of CLIC2 in regulating microglial MMP expression and activation. We found that CLIC2 is expressed in microglia and neurons in rat brain tissue and focused on the function of CLIC2 in primary cultured microglia. Exposure to recombinant CLIC2 protein enhanced microglial invasion activity, and its knockdown abolished this activity. Moreover, increased activation of MMP-9 was confirmed by the addition of the CLIC2 protein, and CLIC2 knockdown eliminated this activation. Additionally, increased expression of CLIC2 was observed in PD-modeled tissue. In conclusion, CLIC2 increases MMP-9 activity in the microglia, which are involved in PD pathogenesis.
Collapse
|
34
|
Cell-free protein crystallization for nanocrystal structure determination. Sci Rep 2022; 12:16031. [PMID: 36192567 PMCID: PMC9530169 DOI: 10.1038/s41598-022-19681-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/01/2022] [Indexed: 11/08/2022] Open
Abstract
In-cell protein crystallization (ICPC) has been investigated as a technique to support the advancement of structural biology because it does not require protein purification and a complicated crystallization process. However, only a few protein structures have been reported because these crystals formed incidentally in living cells and are insufficient in size and quality for structure analysis. Here, we have developed a cell-free protein crystallization (CFPC) method, which involves direct protein crystallization using cell-free protein synthesis. We have succeeded in crystallization and structure determination of nano-sized polyhedra crystal (PhC) at a high resolution of 1.80 Å. Furthermore, nanocrystals were synthesized at a reaction scale of only 20 μL using the dialysis method, enabling structural analysis at a resolution of 1.95 Å. To further demonstrate the potential of CFPC, we attempted to determine the structure of crystalline inclusion protein A (CipA), whose structure had not yet been determined. We added chemical reagents as a twinning inhibitor to the CFPC solution, which enabled us to determine the structure of CipA at 2.11 Å resolution. This technology greatly expands the high-throughput structure determination method of unstable, low-yield, fusion, and substrate-biding proteins that have been difficult to analyze with conventional methods.
Collapse
|
35
|
Characterization and Utilization of Disulfide-Bonded SARS-CoV-2 Receptor Binding Domain of Spike Protein Synthesized by Wheat Germ Cell-Free Production System. Viruses 2022; 14:v14071461. [PMID: 35891441 PMCID: PMC9321213 DOI: 10.3390/v14071461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 02/05/2023] Open
Abstract
The spike protein (SP) of SARS-CoV-2 is an important target for COVID-19 therapeutics and vaccines as it binds to the ACE2 receptor and enables viral infection. Rapid production and functional characterization of properly folded SP is of the utmost importance for studying the immunogenicity and receptor-binding activity of this protein considering the emergence of highly infectious viral variants. In this study, we attempted to express the receptor-binding region (RBD) of SARS-CoV-2 SP containing disulfide bonds using the wheat germ cell-free protein synthesis system. By adding protein disulfide isomerase (PDI) and endoplasmic reticulum oxidase (ERO1α) to the translational reaction mixture, we succeeded in synthesizing a functionally intact RBD protein that can interact with ACE2. Using this RBD protein, we have developed a high-throughput AlphaScreen assay to evaluate the RBD–ACE2 interaction, which can be applied for drug screening and mutation analysis. Thus, our method sheds new light on the structural and functional properties of SARS-CoV-2 SP and has the potential to contribute to the development of new COVID-19 therapeutics.
Collapse
|
36
|
Valea I, Motegi A, Kawamura N, Kawamoto K, Miyao A, Ozawa R, Takabayashi J, Gomi K, Nemoto K, Nozawa A, Sawasaki T, Shinya T, Galis I, Miyamoto K, Nojiri H, Okada K. The rice wound-inducible transcription factor RERJ1 sharing same signal transduction pathway with OsMYC2 is necessary for defense response to herbivory and bacterial blight. PLANT MOLECULAR BIOLOGY 2022; 109:651-666. [PMID: 34476681 DOI: 10.1007/s11103-021-01186-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
This study describes biological functions of the bHLH transcription factor RERJ1 involved in the jasmonate response and the related defense-associated metabolic pathways in rice, with particular focus on deciphering the regulatory mechanisms underlying stress-induced volatile emission and herbivory resistance. RERJ1 is rapidly and drastically induced by wounding and jasmonate treatment but its biological function remains unknown as yet. Here we provide evidence of the biological function of RERJ1 in plant defense, specifically in response to herbivory and pathogen attack, and offer insights into the RERJ1-mediated regulation of metabolic pathways of specialized defense compounds, such as monoterpene linalool, in possible collaboration with OsMYC2-a well-known master regulator in jasmonate signaling. In rice (Oryza sativa L.), the basic helix-loop-helix (bHLH) family transcription factor RERJ1 is induced under environmental stresses, such as wounding and drought, which are closely linked to jasmonate (JA) accumulation. Here, we investigated the biological function of RERJ1 in response to biotic stresses, such as herbivory and pathogen infection, using an RERJ1-defective mutant. Transcriptome analysis of the rerj1-Tos17 mutant revealed that RERJ1 regulated the expression of a typical family of conserved JA-responsive genes (e.g., terpene synthases, proteinase inhibitors, and jasmonate ZIM domain proteins). Upon exposure to armyworm attack, the rerj1-Tos17 mutant exhibited more severe damage than the wildtype, and significant weight gain of the larvae fed on the mutant was observed. Upon Xanthomonas oryzae infection, the rerj1-Tos17 mutant developed more severe symptoms than the wildtype. Among RERJ1-regulated terpene synthases, linalool synthase expression was markedly disrupted and linalool emission after wounding was significantly decreased in the rerj1-Tos17 mutant. RERJ1 appears to interact with OsMYC2-a master regulator of JA signaling-and many OsJAZ proteins, although no obvious epistatic interaction was detected between them at the transcriptional level. These results indicate that RERJ1 is involved in the transcriptional induction of JA-mediated stress-responsive genes via physical association with OsMYC2 and mediates defense against herbivory and bacterial infection through JA signaling.
Collapse
Affiliation(s)
- Ioana Valea
- Agro-Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Atsushi Motegi
- Agro-Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Naoko Kawamura
- Agro-Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Koichi Kawamoto
- Agro-Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Akio Miyao
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8518, Japan
| | - Rika Ozawa
- Center for Ecological Research, Kyoto University, Otsu, Shiga, 520-2113, Japan
| | - Junji Takabayashi
- Center for Ecological Research, Kyoto University, Otsu, Shiga, 520-2113, Japan
| | - Kenji Gomi
- Graduate School of Agriculture, Kagawa University, Kita-gun, Kagawa, 761-0795, Japan
| | - Keiichirou Nemoto
- Proteo-Science Center, Ehime University, Matsuyama, Ehime, 790-8577, Japan
| | - Akira Nozawa
- Proteo-Science Center, Ehime University, Matsuyama, Ehime, 790-8577, Japan
| | - Tatsuya Sawasaki
- Proteo-Science Center, Ehime University, Matsuyama, Ehime, 790-8577, Japan
| | - Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Koji Miyamoto
- Graduate School of Science and Engineering, Teikyo University, Utsunomiya, Tochigi, 320-8551, Japan
| | - Hideaki Nojiri
- Agro-Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kazunori Okada
- Agro-Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
37
|
Matsuda KM, Yoshizaki A, Yamaguchi K, Fukuda E, Okumura T, Ogawa K, Ono C, Norimatsu Y, Kotani H, Hisamoto T, Kawanabe R, Kuzumi A, Fukasawa T, Ebata S, Miyagawa T, Yoshizaki-Ogawa A, Goshima N, Sato S. Autoantibody Landscape Revealed by Wet Protein Array: Sum of Autoantibody Levels Reflects Disease Status. Front Immunol 2022; 13:893086. [PMID: 35603173 PMCID: PMC9114879 DOI: 10.3389/fimmu.2022.893086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Autoantibodies are found in various pathological conditions such as autoimmune diseases, infectious diseases, and malignant tumors. However their clinical implications have not yet been fully elucidated. Herein, we conducted proteome-wide autoantibody screening and quantification with wet protein arrays consisting of proteins synthesized from proteome-wide human cDNA library (HuPEX) maintaining their three-dimensional structure. A total of 565 autoantibodies were identified from the sera of three representative inflammatory disorders (systemic sclerosis, psoriasis, and cutaneous arteritis). Each autoantibody level either positively or negatively correlated with serum levels of C-reactive protein, the best-recognized indicator of inflammation. In particular, we discovered total levels of a subset of autoantibodies correlates with the severity of clinical symptoms. From the sera of malignant melanoma, 488 autoantibodies were detected. Notably, patients with metastases had increased overall autoantibody production compared to those with tumors limiting to the primary site. Collectively, proteome-wide screening of autoantibodies using the in vitro proteome can reveal the "autoantibody landscape" of human subjects and may provide novel clinical biomarkers.
Collapse
Affiliation(s)
- Kazuki M Matsuda
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Kei Yamaguchi
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan.,ProteoBridge Corporation, Tokyo, Japan
| | - Eriko Fukuda
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Taishi Okumura
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan.,ProteoBridge Corporation, Tokyo, Japan
| | - Koji Ogawa
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan.,ProteoBridge Corporation, Tokyo, Japan
| | - Chihiro Ono
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan.,ProteoBridge Corporation, Tokyo, Japan
| | - Yuta Norimatsu
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hirohito Kotani
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Teruyoshi Hisamoto
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ruriko Kawanabe
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ai Kuzumi
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takemichi Fukasawa
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Satoshi Ebata
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takuya Miyagawa
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Asako Yoshizaki-Ogawa
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Naoki Goshima
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan.,ProteoBridge Corporation, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
38
|
Highly efficient protein expression of Plasmodium vivax surface antigen, Pvs25, by silkworm and its biochemical analysis. Protein Expr Purif 2022; 195-196:106096. [PMID: 35460871 DOI: 10.1016/j.pep.2022.106096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 11/20/2022]
Abstract
Plasmodium vivax ookinete surface protein, Pvs25, is a candidate for a transmission-blocking vaccine (TBV) for malaria. Pvs25 has four EGF-like domains containing 22 cysteine residues forming 11 intramolecular disulfide bonds, a structural feature that makes its recombinant protein expression difficult. In this study, we report the high expression of recombinant Pvs25 as a soluble form in silkworm, Bombyx mori. The Pvs25 protein was purified from hemolymphs of larvae and pupae by affinity chromatography. In the Pvs25 expressed by silkworm, no isoforms with inappropriate disulfide bonds were found, requiring no further purification step, which is necessary in the case of Pichia pastoris-based expression systems. The Pvs25 from silkworm was confirmed to be molecularly uniform by sodium dodecyl sulfate gel electrophoresis and size-exclusion chromatography. To examine the immunogenicity, the Pvs25 from B. mori was administered to BALB/c mice subcutaneously with oil adjuvant. The Pvs25 produced by silkworm induced potent and robust immune responses, and the induced antisera correctly recognized P. vivax ookinetes in vitro, demonstrating the potency of Pvs25 from silkworm as a candidate for a malaria TBV. To the best of our knowledge, this is the first study to construct a system for mass-producing malaria TBV antigens using silkworm.
Collapse
|
39
|
Ramm F, Dondapati SK, Trinh HA, Wenzel D, Walter RM, Zemella A, Kubick S. The Potential of Eukaryotic Cell-Free Systems as a Rapid Response to Novel Zoonotic Pathogens: Analysis of SARS-CoV-2 Viral Proteins. Front Bioeng Biotechnol 2022; 10:896751. [PMID: 35519622 PMCID: PMC9061942 DOI: 10.3389/fbioe.2022.896751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
The ongoing pandemic caused by the novel coronavirus (SARS-CoV-2) has led to more than 445 million infections and the underlying disease, COVID-19, resulted in more than 6 million deaths worldwide. The scientific world is already predicting future zoonotic diseases. Hence, rapid response systems are needed to tackle future epidemics and pandemics. Here, we present the use of eukaryotic cell-free systems for the rapid response to novel zoonotic diseases represented by SARS-CoV-2. Non-structural, structural and accessory proteins encoded by SARS-CoV-2 were synthesized by cell-free protein synthesis in a fast and efficient manner. The inhibitory effect of the non-structural protein 1 on protein synthesis could be shown in vitro. Structural proteins were quantitatively detected by commercial antibodies, therefore facilitating cell-free systems for the validation of available antibodies. The cytotoxic envelope protein was characterized in electrophysiological planar lipid bilayer measurements. Hence, our study demonstrates the potential of eukaryotic cell-free systems as a rapid response mechanism for the synthesis, functional characterization and antibody validation against a viral pathogen.
Collapse
Affiliation(s)
- Franziska Ramm
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Srujan K. Dondapati
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Hoai Anh Trinh
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Department of Applied Biochemistry, Institute of Biotechnology, Technical University Berlin, Berlin, Germany
| | - Dana Wenzel
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Ruben M. Walter
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Department of Applied Biochemistry, Institute of Biotechnology, Technical University Berlin, Berlin, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus–Senftenberg, The Brandenburg Medical School Theodor Fontane, The University of Potsdam, Potsdam, Germany
- *Correspondence: Stefan Kubick,
| |
Collapse
|
40
|
Fogeron ML, Lecoq L, Cole L, Montserret R, David G, Page A, Delolme F, Nassal M, Böckmann A. Phosphorylation of the Hepatitis B Virus Large Envelope Protein. Front Mol Biosci 2022; 8:821755. [PMID: 35282608 PMCID: PMC8904964 DOI: 10.3389/fmolb.2021.821755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/22/2021] [Indexed: 01/05/2023] Open
Abstract
We here establish the phosphorylation sites in the human hepatitis B virus (HBV) large envelope protein (L). L is involved in several functionally important interactions in the viral life cycle, including with the HBV cellular receptor, HBV capsid, Hsc70 chaperone, and cellular membranes during fusion. We have recently shown that cell-free synthesis of the homologous L protein of duck HBV in wheat germ extract results in very similar phosphorylation events to those previously observed in animal cells. Here, we used mass spectrometry and NMR to establish the phosphorylation patterns of human HBV L protein produced by both in vitro cell-free synthesis and in E. coli with the co-expression of the human MAPK14 kinase. While in the avian virus the phosphorylation of L has been shown to be dispensable for infectivity, the identified locations in the human virus protein, both in the PreS1 and PreS2 domains, raise the intriguing possibility that they might play a functional role, since they are found at strategic sites predicted to be involved in L interactions. This would warrant the further investigation of a possible function in virion formation or cell entry.
Collapse
Affiliation(s)
- Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Laura Cole
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Roland Montserret
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Guillaume David
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Adeline Page
- Protein Science Facility, SFR BioSciences CNRS UAR 3444, Inserm US8, UCBL, ENS de Lyon, Lyon, France
| | - Frédéric Delolme
- Protein Science Facility, SFR BioSciences CNRS UAR 3444, Inserm US8, UCBL, ENS de Lyon, Lyon, France
| | - Michael Nassal
- Department of Medicine II / Molecular Biology, Medical Center, University Hospital Freiburg, University of Freiburg, Freiburg im Breisgau, Germany
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
- *Correspondence: Anja Böckmann,
| |
Collapse
|
41
|
ILF2 enhances the DNA cytosine deaminase activity of tumor mutator APOBEC3B in multiple myeloma cells. Sci Rep 2022; 12:2278. [PMID: 35145187 PMCID: PMC8831623 DOI: 10.1038/s41598-022-06226-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/19/2022] [Indexed: 11/08/2022] Open
Abstract
DNA cytosine deaminase APOBEC3B (A3B) is an endogenous source of mutations in many human cancers, including multiple myeloma. A3B proteins form catalytically inactive high molecular mass (HMM) complexes in nuclei, however, the regulatory mechanisms of A3B deaminase activity in HMM complexes are still unclear. Here, we performed mass spectrometry analysis of A3B-interacting proteins from nuclear extracts of myeloma cell lines and identified 30 putative interacting proteins. These proteins are involved in RNA metabolism, including RNA binding, mRNA splicing, translation, and regulation of gene expression. Except for SAFB, these proteins interact with A3B in an RNA-dependent manner. Most of these interacting proteins are detected in A3B HMM complexes by density gradient sedimentation assays. We focused on two interacting proteins, ILF2 and SAFB. We found that overexpressed ILF2 enhanced the deaminase activity of A3B by 30%, while SAFB did not. Additionally, siRNA-mediated knockdown of ILF2 suppressed A3B deaminase activity by 30% in HEK293T cell lysates. Based on these findings, we conclude that ILF2 can interact with A3B and enhance its deaminase activity in HMM complexes.
Collapse
|
42
|
Shioya R, Yamada K, Kido K, Takahashi H, Nozawa A, Kosako H, Sawasaki T. A simple method for labeling proteins and antibodies with biotin using the proximity biotinylation enzyme TurboID. Biochem Biophys Res Commun 2022; 592:54-59. [DOI: 10.1016/j.bbrc.2021.12.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022]
|
43
|
Wei DX, Zhang XW. Biosynthesis, Bioactivity, Biosafety and Applications of Antimicrobial Peptides for Human Health. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
44
|
Yamanaka S, Horiuchi Y, Matsuoka S, Kido K, Nishino K, Maeno M, Shibata N, Kosako H, Sawasaki T. A proximity biotinylation-based approach to identify protein-E3 ligase interactions induced by PROTACs and molecular glues. Nat Commun 2022; 13:183. [PMID: 35013300 PMCID: PMC8748630 DOI: 10.1038/s41467-021-27818-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
Proteolysis-targeting chimaeras (PROTACs) as well as molecular glues such as immunomodulatory drugs (IMiDs) and indisulam are drugs that induce interactions between substrate proteins and an E3 ubiquitin ligases for targeted protein degradation. Here, we develop a workflow based on proximity-dependent biotinylation by AirID to identify drug-induced neo-substrates of the E3 ligase cereblon (CRBN). Using AirID-CRBN, we detect IMiD-dependent biotinylation of CRBN neo-substrates in vitro and identify biotinylated peptides of well-known neo-substrates by mass spectrometry with high specificity and selectivity. Additional analyses reveal ZMYM2 and ZMYM2-FGFR1 fusion protein-responsible for the 8p11 syndrome involved in acute myeloid leukaemia-as CRBN neo-substrates. Furthermore, AirID-DCAF15 and AirID-CRBN biotinylate neo-substrates targeted by indisulam and PROTACs, respectively, suggesting that this approach has the potential to serve as a general strategy for characterizing drug-inducible protein-protein interactions in cells.
Collapse
Affiliation(s)
- Satoshi Yamanaka
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, 790-8577, Japan
| | - Yuto Horiuchi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, 790-8577, Japan
| | - Saya Matsuoka
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, 790-8577, Japan
| | - Kohki Kido
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, 790-8577, Japan
| | - Kohei Nishino
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Mayaka Maeno
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Tatsuya Sawasaki
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, 790-8577, Japan.
| |
Collapse
|
45
|
Takaoka Y, Suzuki K, Nozawa A, Takahashi H, Sawasaki T, Ueda M. Protein-protein interactions between jasmonate-related master regulator MYC and transcriptional mediator MED25 depend on a short binding domain. J Biol Chem 2021; 298:101504. [PMID: 34929168 PMCID: PMC8752898 DOI: 10.1016/j.jbc.2021.101504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/14/2022] Open
Abstract
A network of protein–protein interactions (PPI) is involved in the activation of (+)-7-iso-jasmonoyl-L-isoleucine (JA-Ile), a plant hormone that regulates plant defense responses as well as plant growth and development. In the absence of JA-Ile, inhibitory protein jasmonate-ZIM-domain (JAZ) represses JA-related transcription factors, including a master regulator, MYC. In contrast, when JA-Ile accumulates in response to environmental stresses, PPI occurs between JAZ and the F-box protein COI1, which triggers JAZ degradation, resulting in derepressed MYC that can interact with the transcriptional mediator MED25 and upregulate JA-Ile-related gene expression. Activated JA signaling is eventually suppressed through the catabolism of JA-Ile and feedback suppression by JAZ splice variants containing a cryptic MYC-interacting domain (CMID). However, the detailed structural basis of some PPIs involved in JA-Ile signaling remains unclear. Herein, we analyzed PPI between MYC3 and MED25, focusing on the key interactions that activate the JA-Ile signaling pathway. Biochemical assays revealed that a short binding domain of MED25 (CMIDM) is responsible for the interaction with MYC, and that a bipartite interaction is critical for the formation of a stable complex. We also show the mode of interaction between MED25 and MYC is closely related to that of CMID and MYC. In addition, quantitative analyses on the binding of MYC3-JAZs and MYC3-MED25 revealed the order of binding affinity as JAZJas < MED25CMIDM < JAZCMID, suggesting a mechanism for how the transcriptional machinery causes activation and negative feedback regulation during jasmonate signaling. These results further illuminate the transcriptional machinery responsible for JA-Ile signaling.
Collapse
Affiliation(s)
- Yousuke Takaoka
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Kaho Suzuki
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Akira Nozawa
- Proteo-Science Center (PROS), Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Hirotaka Takahashi
- Proteo-Science Center (PROS), Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Tatsuya Sawasaki
- Proteo-Science Center (PROS), Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Minoru Ueda
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan; Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
46
|
Takahashi H, Ogawa A. Coupled in vitro transcription/translation based on wheat germ extract for efficient expression from PCR-generated templates in short-time batch reactions. Bioorg Med Chem Lett 2021; 52:128412. [PMID: 34634474 DOI: 10.1016/j.bmcl.2021.128412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
We successfully constructed a coupled in vitro transcription/translation (cIVTT) system based on wheat germ extract (WGE) for efficient expression from PCR-generated DNA templates in short-time (∼3-h) batch reactions. The productivity of this system under optimized conditions was 85 μg (2.8 nmol) per 1 mL of reaction solution (corresponding to 425 μg per 1 mL of WGE), which was about 9-fold higher than that by the conventional batch method using mRNA as a template. The DNA template concentration required for efficient cIVTT was as low as 2.5 nM, which is much lower than those required for other eukaryotic cIVTT systems to maximize their productivity (30-50 nM). The productivity of the present system with a 2.5 nM template was 80-fold and 4-fold higher than that of a commercially available WGE-based cIVTT system with a 2.5 nM and a 40 nM template, respectively. In addition, the present system functioned well in a liposome (i.e., in an artificial cell) without a loss of productivity. Given that WGE-based systems have the advantage of being suitable for the expression of a broad range of proteins, the present cIVTT system is expected to be widely used in future cell-free synthetic biology.
Collapse
Affiliation(s)
- Hajime Takahashi
- Proteo-Science Center, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Atsushi Ogawa
- Proteo-Science Center, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
47
|
Tabuchi T, Yokobayashi Y. Cell-free riboswitches. RSC Chem Biol 2021; 2:1430-1440. [PMID: 34704047 PMCID: PMC8496063 DOI: 10.1039/d1cb00138h] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/26/2021] [Indexed: 12/16/2022] Open
Abstract
The emerging community of cell-free synthetic biology aspires to build complex biochemical and genetic systems with functions that mimic or even exceed those in living cells. To achieve such functions, cell-free systems must be able to sense and respond to the complex chemical signals within and outside the system. Cell-free riboswitches can detect chemical signals via RNA-ligand interaction and respond by regulating protein synthesis in cell-free protein synthesis systems. In this article, we review synthetic cell-free riboswitches that function in both prokaryotic and eukaryotic cell-free systems reported to date to provide a current perspective on the state of cell-free riboswitch technologies and their limitations.
Collapse
Affiliation(s)
- Takeshi Tabuchi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University Onna Okinawa 904-0495 Japan
| | - Yohei Yokobayashi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University Onna Okinawa 904-0495 Japan
| |
Collapse
|
48
|
Characterization of Phosphorylation Status and Kinase Activity of Src Family Kinases Expressed in Cell-Based and Cell-Free Protein Expression Systems. Biomolecules 2021; 11:biom11101448. [PMID: 34680080 PMCID: PMC8533471 DOI: 10.3390/biom11101448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 11/25/2022] Open
Abstract
The production of heterologous proteins is an important procedure for biologists in basic and applied sciences. A variety of cell-based and cell-free protein expression systems are available to achieve this. The expression system must be selected carefully, especially for target proteins that require post-translational modifications. In this study, human Src family kinases were prepared using six different protein expression systems: 293 human embryonic kidney cells, Escherichia coli, and cell-free expression systems derived from rabbit reticulocytes, wheat germ, insect cells, or Escherichia coli. The phosphorylation status of each kinase was analyzed by Phos-tag SDS-PAGE. The kinase activities were also investigated. In the eukaryotic systems, multiple phosphorylated forms of the expressed kinases were observed. In the rabbit reticulocyte lysate system and 293 cells, differences in phosphorylation status between the wild-type and kinase-dead mutants were observed. Whether the expressed kinase was active depended on the properties of both the kinase and each expression system. In the prokaryotic systems, Src and Hck were expressed in autophosphorylated active forms. Clear differences in post-translational phosphorylation among the protein expression systems were revealed. These results provide useful information for preparing functional proteins regulated by phosphorylation.
Collapse
|
49
|
Ozaki S, Umakoshi A, Yano H, Ohsumi S, Sumida Y, Hayase E, Usa E, Islam A, Choudhury ME, Nishi Y, Yamashita D, Ohtsuka Y, Nishikawa M, Inoue A, Suehiro S, Kuwabara J, Watanabe H, Takada Y, Watanabe Y, Nakano I, Kunieda T, Tanaka J. Chloride intracellular channel protein 2 is secreted and inhibits MMP14 activity, while preventing tumor cell invasion and metastasis. Neoplasia 2021; 23:754-765. [PMID: 34229297 PMCID: PMC8260957 DOI: 10.1016/j.neo.2021.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/02/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
CLIC2 is highly expressed in benign, less invasive and less metastatic tumors. Forced expression of CLIC2 prevents metastasis and invasion in animal tumor models. CLIC2 is associated with decreased vascular permeability in tumor masses. CLIC2, a secretable soluble protein, can bind to and inhibit MMP14. Extracellular CLIC2 can suppress malignant cell invasion.
The abilities to invade surrounding tissues and metastasize to distant organs are the most outstanding features that distinguish malignant from benign tumors. However, the mechanisms preventing the invasion and metastasis of benign tumor cells remain unclear. By using our own rat distant metastasis model, gene expression of cells in primary tumors was compared with that in metastasized tumors. Among many distinct gene expressions, we have focused on chloride intracellular channel protein 2 (CLIC2), an ion channel protein of as-yet unknown function, which was predominantly expressed in the primary tumors. We created CLIC2 overexpressing rat glioma cell line and utilized benign human meningioma cells with naturally high CLIC2 expression. CLIC2 was expressed at higher levels in benign human brain tumors than in their malignant counterparts. Moreover, its high expression was associated with prolonged survival in the rat metastasis and brain tumor models as well as with progression-free survival in patients with brain tumors. CLIC2 was also correlated with the decreased blood vessel permeability likely by increased contents of cell adhesion molecules. We found that CLIC2 was secreted extracellularly, and bound to matrix metalloproteinase (MMP) 14. Furthermore, CLIC2 prevented the localization of MMP14 in the plasma membrane, and inhibited its enzymatic activity. Indeed, overexpressing CLIC2 and recombinant CLIC2 protein effectively suppressed malignant cell invasion, whereas CLIC2 knockdown reversed these effects. Thus, CLIC2 suppress invasion and metastasis of benign tumors at least partly by inhibiting MMP14 activity.
Collapse
Affiliation(s)
- Saya Ozaki
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Japan
| | - Akihiro Umakoshi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Hajime Yano
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Shota Ohsumi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Yutaro Sumida
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Erika Hayase
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Eika Usa
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Afsana Islam
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Mohammed E Choudhury
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Yusuke Nishi
- Department of Hepato-biliary Pancreatic Surgery and Breast Surgery, Graduate School of Medicine, Ehime University, Japan
| | - Daisuke Yamashita
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Japan
| | - Yoshihiro Ohtsuka
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Japan
| | - Masahiro Nishikawa
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Japan
| | - Akihiro Inoue
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Japan
| | - Satoshi Suehiro
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Japan
| | - Jun Kuwabara
- Department of Gastrointestinal Surgery and Surgical Oncology, Graduate School of Medicine, Ehime University, Japan
| | - Hideaki Watanabe
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Japan
| | - Yasutsugu Takada
- Department of Hepato-biliary Pancreatic Surgery and Breast Surgery, Graduate School of Medicine, Ehime University, Japan
| | - Yuji Watanabe
- Department of Gastrointestinal Surgery and Surgical Oncology, Graduate School of Medicine, Ehime University, Japan
| | - Ichiro Nakano
- Research and Development Center for Precision Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan.
| |
Collapse
|
50
|
Nishiyama K, Maekawa M, Nakagita T, Nakayama J, Kiyoi T, Chosei M, Murakami A, Kamei Y, Takeda H, Takada Y, Higashiyama S. CNKSR1 serves as a scaffold to activate an EGFR phosphatase via exclusive interaction with RhoB-GTP. Life Sci Alliance 2021; 4:4/9/e202101095. [PMID: 34187934 PMCID: PMC8321701 DOI: 10.26508/lsa.202101095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
CNKSR1 functions as a scaffold protein for activation of an EGFR phosphatase, PTPRH, at the plasma membrane through the exclusive interaction with RhoB-GTP which is constitutively degraded by the CUL3/KCTD10 E3 complex. Epidermal growth factor receptor (EGFR) and human EGFR 2 (HER2) phosphorylation drives HER2-positive breast cancer cell proliferation. Enforced activation of phosphatases for those receptors could be a therapeutic option for HER2-positive breast cancers. Here, we report that degradation of an endosomal small GTPase, RhoB, by the ubiquitin ligase complex cullin-3 (CUL3)/KCTD10 is essential for both EGFR and HER2 phosphorylation in HER2-positive breast cancer cells. Using human protein arrays produced in a wheat cell-free protein synthesis system, RhoB-GTP, and protein tyrosine phosphatase receptor type H (PTPRH) were identified as interacting proteins of connector enhancer of kinase suppressor of Ras1 (CNKSR1). Mechanistically, constitutive degradation of RhoB, which is mediated by the CUL3/KCTD10 E3 complex, enabled CNKSR1 to interact with PTPRH at the plasma membrane resulting in inactivation of EGFR phosphatase activity. Depletion of CUL3 or KCTD10 led to the accumulation of RhoB-GTP at the plasma membrane followed by its interaction with CNKSR1, which released activated PTPRH from CNKSR1. This study suggests a mechanism of PTPRH activation through the exclusive binding of RhoB-GTP to CNKSR1.
Collapse
Affiliation(s)
- Kanako Nishiyama
- Department of Hepato-Biliary-Pancreatic Surgery and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Japan.,Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Japan
| | - Masashi Maekawa
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Japan .,Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Japan
| | - Tomoya Nakagita
- Division of Proteo-Drug-Discovery Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Jun Nakayama
- Division of Cellular Signaling, National Cancer Center Research Institute, Chuo-ku, Japan
| | - Takeshi Kiyoi
- Division of Analytical Bio-medicine, Advanced Research Support Center, Ehime University, Toon, Japan
| | - Mami Chosei
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Japan
| | - Akari Murakami
- Department of Hepato-Biliary-Pancreatic Surgery and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Yoshiaki Kamei
- Department of Hepato-Biliary-Pancreatic Surgery and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Hiroyuki Takeda
- Division of Proteo-Drug-Discovery Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Yasutsugu Takada
- Department of Hepato-Biliary-Pancreatic Surgery and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Shigeki Higashiyama
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Japan .,Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Japan.,Department of Molecular and Cellular Biology, Osaka International Cancer Institute, Chuo-ku, Osaka, Japan
| |
Collapse
|