1
|
Cortada M, Levano S, Hall MN, Bodmer D. mTORC2 regulates auditory hair cell structure and function. iScience 2023; 26:107687. [PMID: 37694145 PMCID: PMC10484995 DOI: 10.1016/j.isci.2023.107687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/14/2023] [Accepted: 08/17/2023] [Indexed: 09/12/2023] Open
Abstract
mTOR broadly controls cell growth, but little is known about the role of mTOR complex 2 (mTORC2) in the inner ear. To investigate the role of mTORC2 in sensory hair cells (HCs), we generated HC-specific Rictor knockout (HC-RicKO) mice. HC-RicKO mice exhibited early-onset, progressive, and profound hearing loss. Increased DPOAE thresholds indicated outer HC dysfunction. HCs are lost, but this occurs after hearing loss. Ultrastructural analysis revealed stunted and absent stereocilia in outer HCs. In inner HCs, the number of synapses was significantly decreased and the remaining synapses displayed a disrupted actin cytoskeleton and disorganized Ca2+ channels. Thus, the mTORC2 signaling pathway plays an important role in regulating auditory HC structure and function via regulation of the actin cytoskeleton. These results provide molecular insights on a central regulator of cochlear HCs and thus hearing.
Collapse
Affiliation(s)
- Maurizio Cortada
- Department of Biomedicine, University of Basel, CH-4031 Basel, Switzerland
| | - Soledad Levano
- Department of Biomedicine, University of Basel, CH-4031 Basel, Switzerland
| | | | - Daniel Bodmer
- Department of Biomedicine, University of Basel, CH-4031 Basel, Switzerland
- Clinic for Otorhinolaryngology, Head and Neck Surgery, University of Basel Hospital, CH-4031 Basel, Switzerland
| |
Collapse
|
2
|
Ramkumar V, Sheth S, Dhukhwa A, Al Aameri R, Rybak L, Mukherjea D. Transient Receptor Potential Channels and Auditory Functions. Antioxid Redox Signal 2022; 36:1158-1170. [PMID: 34465184 PMCID: PMC9221156 DOI: 10.1089/ars.2021.0191] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Transient receptor potential (TRP) channels are cation-gated channels that serve as detectors of various sensory modalities, such as pain, heat, cold, and taste. These channels are expressed in the inner ear, suggesting that they could also contribute to the perception of sound. This review provides more details on the different types of TRP channels that have been identified in the cochlea to date, focusing on their cochlear distribution, regulation, and potential contributions to auditory functions. Recent Advances: To date, the effect of TRP channels on normal cochlear physiology in mammals is still unclear. These channels contribute, to a limited extent, to normal cochlear physiology such as the hair cell mechanoelectrical transduction channel and strial functions. More detailed information on a number of these channels in the cochlea awaits future studies. Several laboratories focusing on TRPV1 channels have shown that they are responsive to cochlear stressors, such as ototoxic drugs and noise, and regulate cytoprotective and/or cell death pathways. TRPV1 expression in the cochlea is under control of oxidative stress (produced primarily by NOX3 NADPH oxidase) as well as STAT1 and STAT3 transcription factors, which differentially modulate inflammatory and apoptotic signals in the cochlea. Inhibition of oxidative stress or inflammation reduces the expression of TRPV1 channels and protects against cochlear damage and hearing loss. Critical Issues: TRPV1 channels are activated by both capsaicin and cisplatin, which produce differential effects on the inner ear. How these differential actions are produced is yet to be determined. It is clear that TRPV1 is an essential component of cisplatin ototoxicity as knockdown of these channels protects against hearing loss. In contrast, activation of TRPV1 by capsaicin protected against subsequent hearing loss induced by cisplatin. The cellular targets that are influenced by these two drugs to account for their differential profiles need to be fully elucidated. Furthermore, the potential involvement of different TRP channels present in the cochlea in regulating cisplatin ototoxicity needs to be determined. Future Directions: TRPV1 has been shown to mediate the entry of aminoglycosides into the hair cells. Thus, novel otoprotective strategies could involve designing drugs to inhibit entry of aminoglycosides and possibly other ototoxins into cochlear hair cells. TRP channels, including TRPV1, are expressed on circulating and resident immune cells. These receptors modulate immune cell functions. However, whether they are activated by cochlear stressors to initiate cochlear inflammation and ototoxicity needs to be determined. A better understanding of the function and regulation of these TRP channels in the cochlea could enable development of novel treatments for treating hearing loss. Antioxid. Redox Signal. 36, 1158-1170.
Collapse
Affiliation(s)
- Vickram Ramkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Sandeep Sheth
- Department of Pharmaceutical Sciences, Larkin University College of Pharmacy, Miami, Florida, USA
| | - Asmita Dhukhwa
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Raheem Al Aameri
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Leonard Rybak
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA.,Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Debashree Mukherjea
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| |
Collapse
|
3
|
Sommerlad S, McRae AF, McDonald B, Johnstone I, Cuttell L, Seddon JM, O'Leary CA. Congenital sensorineural deafness in Australian stumpy-tail cattle dogs is an autosomal recessive trait that maps to CFA10. PLoS One 2010; 5:e13364. [PMID: 20967282 PMCID: PMC2953516 DOI: 10.1371/journal.pone.0013364] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 09/14/2010] [Indexed: 11/18/2022] Open
Abstract
Background Congenital sensorineural deafness is an inherited condition found in many dog breeds, including Australian Stumpy-tail Cattle Dogs (ASCD). This deafness is evident in young pups and may affect one ear (unilateral) or both ears (bilateral). The genetic locus/loci involved is unknown for all dog breeds. The aims of this study were to determine incidence, inheritance mechanism, and possible association of congenital sensorineural deafness with coat colour in ASCD and to identify the genetic locus underpinning this disease. Methodology/Principal Findings A total of 315 ASCD were tested for sensorineural deafness using the brain stem auditory evoked response (BAER) test. Disease penetrance was estimated directly, using the ratio of unilaterally to bilaterally deaf dogs, and segregation analysis was performed using Mendel. A complete genome screen was undertaken using 325 microsatellites spread throughout the genome, on a pedigree of 50 BAER tested ASCD in which deafness was segregating. Fifty-six dogs (17.8%) were deaf, with 17 bilaterally and 39 unilaterally deaf. Unilaterally deaf dogs showed no significant left/right bias (p = 0.19) and no significant difference was observed in frequencies between the sexes (p = 0.18). Penetrance of deafness was estimated as 0.72. Testing the association of red/blue coat colour and deafness without accounting for pedigree structure showed that red dogs were 1.8 times more likely to be deaf (p = 0.045). The within family association between red/blue coat colour and deafness was strongly significant (p = 0.00036), with red coat colour segregating more frequently with deafness (COR = 0.48). The relationship between deafness and coat speckling approached significance (p = 0.07), with the lack of statistical significance possibly due to only four families co-segregating for both deafness and speckling. The deafness phenotype was mapped to CFA10 (maximum linkage peak on CFA10 −log10 p-value = 3.64), as was both coat colour and speckling. Fine mapping was then performed on 45 of these 50 dogs and a further 48 dogs (n = 93). Sequencing candidate gene Sox10 in 6 hearing ASCD, 2 unilaterally deaf ASCD and 2 bilaterally deaf ASCD did not reveal any disease-associated mutations. Conclusions Deafness in ASCD is an incompletely penetrant autosomal recessive inherited disease that maps to CFA10.
Collapse
Affiliation(s)
- Susan Sommerlad
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Allan F. McRae
- Queensland Statistical Genetics, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Brenda McDonald
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Isobel Johnstone
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Leigh Cuttell
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Jennifer M. Seddon
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Caroline A. O'Leary
- Centre for Companion Animal Health, The University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
4
|
The varitint-waddler mouse phenotypes and the TRPML3 ion channel mutation: cause and consequence. Pflugers Arch 2008; 457:463-73. [PMID: 18504603 DOI: 10.1007/s00424-008-0523-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 04/22/2008] [Indexed: 10/24/2022]
Abstract
The transient receptor potential mucolipins (TRPMLs) are the most recently discovered subfamily of TRP ion channel proteins. Positional cloning approach has identified two mutations in the TRPML3 (Mcoln3) gene that cause the varitint-waddler mouse phenotypes. Short for variable tint (diluted coat color), the varitint-waddler consists two phenotypes Va and Va ( J ). The mutation associated with the Va phenotype is an alanine to proline substitution at position 419 (A419P) within the predicted fifth transmembrane (TM5) domain of TRPML3. The second Va ( J ) mouse phenotype arose spontaneously from an isoleucine to threonine substitution at position 362 (I362T) that is proximal to the predicted TM3 domain in addition to the existing A419P mutation on TM5. Mice with the Va and Va ( J ) mutations exhibit a spectrum of disease phenotypes from diluted coat color to auditory and vestibular problems, depending on which alleles are present. It has been over 5 years since the discovery of these TRPML3 mutations, and it was just recently that the nature of these mutations has been characterized. In this review, we discuss the molecular and cell physiological effects of the two distinct TRPML3 mutations. We reveal the effects of proline substitution on transmembrane domain structure and channel function and discuss how the Va mutation confers its cytotoxicity, while the Va ( J ) mutation results in an apparent rescue phenotype. Finally, we briefly tackle molecular strategies that have been employed to neutralize the cytotoxic effect and constitutive channel activity of the Va mutation.
Collapse
|
5
|
Cabraja M, Bäurle J. Vestibular ganglion neurons survive hair cell defects in jerker, shaker, and Varitint-waddler mutants and downregulate calretinin expression. J Comp Neurol 2007; 504:418-26. [PMID: 17663432 DOI: 10.1002/cne.21453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Bipolar neurons (BNs) in the vestibular ganglion (VG) connect vestibular hair cells with the central nervous system (CNS). Disturbed function and cell loss in central vestibular target areas or in the vestibular periphery involve BNs either retro- or anterogradely. However, the impact of central vestibular disturbances or hair cell defects on the maintenance of BNs is poorly understood. In the present study the volume of the VG, the size and total number of BNs, and the number of BNs expressing the calcium-binding protein calretinin (Calr) were quantified stereologically in the cerebellar mutants purkinje cell degeneration (pcd/pcd), weaver (wv/wv), and Lurcher (Lc/+), and in the vestibular mutants jerker (je/je), shaker-1 (sh/sh), and Varitint-waddler (Va/+). In all the different mutant mice investigated the total number of BNs did not differ from that of wildtypes. In contrast, the number of Calr-positive BNs was significantly reduced in je/je (23%) and sh/sh (33%) mutants. Reduced cell size was apparent in sh/sh mutants and the volume of the VG significantly decreased in je/je mice. Calr was virtually absent from calyx endings in the vestibular periphery of je/je, sh/sh, and Va/+ mutants, whereas in wildtypes and cerebellar mutants many calyces displayed intense Calr labeling. These results imply that the survival of BNs is apparently unaffected by the peripheral and central target defects found in the mutants investigated. Whether the decrease in Calr expression may reflect biochemical adaptations in response to input disturbances or a specific loss of large BNs is discussed.
Collapse
Affiliation(s)
- Mario Cabraja
- Department of Physiology, Charité, Universitätsmedizin Berlin, Campus Benjamin Franklin, D-14195 Berlin, Germany
| | | |
Collapse
|
6
|
Nilius B, Owsianik G, Voets T, Peters JA. Transient receptor potential cation channels in disease. Physiol Rev 2007; 87:165-217. [PMID: 17237345 DOI: 10.1152/physrev.00021.2006] [Citation(s) in RCA: 1056] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The transient receptor potential (TRP) superfamily consists of a large number of cation channels that are mostly permeable to both monovalent and divalent cations. The 28 mammalian TRP channels can be subdivided into six main subfamilies: the TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin), and the TRPA (ankyrin) groups. TRP channels are expressed in almost every tissue and cell type and play an important role in the regulation of various cell functions. Currently, significant scientific effort is being devoted to understanding the physiology of TRP channels and their relationship to human diseases. At this point, only a few channelopathies in which defects in TRP genes are the direct cause of cellular dysfunction have been identified. In addition, mapping of TRP genes to susceptible chromosome regions (e.g., translocations, breakpoint intervals, increased frequency of polymorphisms) has been considered suggestive of the involvement of these channels in hereditary diseases. Moreover, strong indications of the involvement of TRP channels in several diseases come from correlations between levels of channel expression and disease symptoms. Finally, TRP channels are involved in some systemic diseases due to their role as targets for irritants, inflammation products, and xenobiotic toxins. The analysis of transgenic models allows further extrapolations of TRP channel deficiency to human physiology and disease. In this review, we provide an overview of the impact of TRP channels on the pathogenesis of several diseases and identify several TRPs for which a causal pathogenic role might be anticipated.
Collapse
Affiliation(s)
- Bernd Nilius
- Department of Physiology, Campus Gasthuisberg, KULeuven, Leuven, Belgium.
| | | | | | | |
Collapse
|
7
|
Atiba-Davies M, Noben-Trauth K. TRPML3 and hearing loss in the varitint-waddler mouse. Biochim Biophys Acta Mol Basis Dis 2007; 1772:1028-31. [PMID: 17329082 DOI: 10.1016/j.bbadis.2007.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 01/16/2007] [Accepted: 01/17/2007] [Indexed: 10/23/2022]
Abstract
TRPML3 (also known as mucolipin-3, MCOLN3) belongs to the small family of TRPML ion channel proteins. The mammalian Trpml3 gene encodes a protein of 553 amino acids with short amino and carboxy termini and a transient receptor potential motif spanning from the third to the sixth trans membrane domain. Dominant mutant alleles of Trpml3 cause hearing loss, circling behaviour, pigmentation defects and embryonic lethality in the varitint-waddler (Va) mouse. In the inner ear these mutations cause a reduction or loss of endocochlear potentials, compound action potentials, and auditory-evoked brain stem responses. The hearing phenotype is associated with defects in the cochlea that include disorganization and fusion of stereocilia, distortions at the apical and distal regions of inner and outer hair cells, and loss of pigmented intermediate cells in the stria vascularis. In hair cells the TRPML3 protein is targeted to cytoplasmic vesicles and to the plasma membrane of stereocilia. Both the sub-cellular localization of TRPML3 and the mutant phenotype suggest that TRPML3 is critical for stereocilia bundle formation during development and may function during endocytosis or exocytosis.
Collapse
Affiliation(s)
- Margaret Atiba-Davies
- Section on Neurogenetics, Laboratory of Molecular Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, 5 Research Court, Rockville, MD 20850, USA
| | | |
Collapse
|
8
|
Cuajungco MP, Grimm C, Heller S. TRP channels as candidates for hearing and balance abnormalities in vertebrates. Biochim Biophys Acta Mol Basis Dis 2007; 1772:1022-7. [PMID: 17300924 PMCID: PMC1961624 DOI: 10.1016/j.bbadis.2007.01.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 01/05/2007] [Accepted: 01/09/2007] [Indexed: 12/19/2022]
Abstract
In this review, we summarize the potential functional roles of transient receptor potential (TRP) channels in the vertebrate inner ear. The history of TRP channels in hearing and balance is characterized at great length by the hunt for the elusive transduction channel of sensory hair cells. Such pursuit has not resulted in unequivocal identification of the transduction channel, but nevertheless revealed a number of candidates, such as TRPV4, TRPN1, TRPA1, and TRPML3. Much of the circumstantial evidence indicates that these TRP channels potentially play significant roles in inner ear physiology. Based on mutations in the corresponding mouse genes, TRPV4 and TRPML3 are possible candidates for human hearing, and potentially also balance disorders. We further discuss the role of the invertebrate TRP channels Nanchung, Inactive, and TRPN1 and how the functional analysis of these channels provides a link to vertebrate hearing and balance. In summary, only a few TRP channels have been analyzed thus far for a prospective role in the inner ear, and this makes the search for additional TRPs associated with inner ear function quite a tantalizing endeavor.
Collapse
Affiliation(s)
| | | | - Stefan Heller
- *Corresponding Author Mailing Address: Stanford University School of Medicine, Department of Otolaryngology – Head & Neck Surgery, 801 Welch Road, Stanford CA 94305, Tel: 650-724-8086,
| |
Collapse
|
9
|
Abstract
The mammalian TRP (transient receptor potential) family consists of six main subfamilies termed the TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin), and TRPA (ankyrin) groups. These subfamilies encompass 28 ion channels that function as diverse cellular sensors. All of the channels are permeable to monovalent cations, and most are also permeable to Ca(2+). There are strong indications that TRP channels are involved in many diseases. At this point, four channelopathies have been identified in which a defect in a TRP channel-encoding gene is the direct cause of disease. TRPs are also involved in some systemic diseases because of their role as receptors for irritants, inflammation products, and xenobiotic toxins. Other indications of the involvement of TRPs in several diseases come from correlations between the levels of channel expression and disease symptoms or from the mapping of TRP-encoding genes to susceptible chromosome regions. Finally, the phenotypes of TRP knockout mice and other transgenic models allow a degree of extrapolation to human diseases. We present an overview of current knowledge about the role of TRP channels in human disease and highlight some TRP "suspects" for which a role in disease can be anticipated. An understanding of the genetics of disease may lead to the development of targeted new therapies.
Collapse
Affiliation(s)
- Bernd Nilius
- Department of Physiology, Campus Gasthuisberg Katholieke Universiteit, Leuven, Belgium.
| | | | | |
Collapse
|
10
|
Abstract
Given the unique biological requirements of sound transduction and the selective advantage conferred upon a species capable of sensitive sound detection, it is not surprising that up to 1% of the approximately 30,000 or more human genes are necessary for hearing. There are hundreds of monogenic disorders for which hearing loss is one manifestation of a syndrome or the only disorder and therefore is nonsyndromic. Herein we review the supporting evidence for identifying over 30 genes for dominantly and recessively inherited, nonsyndromic, sensorineural deafness. The state of knowledge concerning their biological roles is discussed in the context of the controversies within an evolving understanding of the intricate molecular machinery of the inner ear.
Collapse
Affiliation(s)
- Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland 20850, USA.
| | | |
Collapse
|
11
|
Abstract
Despite extensive biophysical characterization and the superb example of the bacterial MscL channel, molecular identification of eukaryotic mechanosensitive channels has been slow. New members of the TRP superfamily have emerged as candidate channels to mediate touch, hearing, fluid flow, and osmosensation in sensory and nonsensory cells. Distinguishing between direct mechanical activation and indirect second messenger activation is still a challenge.
Collapse
Affiliation(s)
- David P Corey
- Howard Hughes Medical Institute, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Affiliation(s)
- Elizabeth Quint
- MRC Institute of Hearing Research, University Park, Nottingham NG7 2RD, United Kingdom
| | | |
Collapse
|