1
|
Hall J, Corton M, Fries FN, Obst J, Grünauer-Kloevekorn C, Seitz B, Waizel MDV, Jávorszky E, Tory K, Maka E, Amini M, Suiwal S, Stachon T, Szentmáry N. Comprehensive Analysis of Congenital Aniridia and Differential Diagnoses: Genetic Insights and Clinical Manifestations. Ophthalmol Ther 2025; 14:835-856. [PMID: 40138169 PMCID: PMC12006658 DOI: 10.1007/s40123-025-01122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
INTRODUCTION Congenital aniridia (CA) is a severe and complex disorder involving the entire eye, primarily characterized by iris anomalies alongside other clinical features that pose significant risks to vision. This study seeks to offer a comprehensive overview of CA by detailing its clinical presentations, genetic underpinnings, associated phenotypes, and differential diagnoses. Additionally, it proposes a diagnostic framework to distinguish CA from other conditions that present with similar iris abnormalities. METHODS We conducted a comprehensive literature review to compile and analyze clinical and genetic data related to CA and its differential diagnoses. We included all studies describing the clinical characteristics, pathogenic variants, and associated syndromes of congenital aniridia. RESULTS CA presents a wide range of ocular symptoms. Pathogenic variants in the PAX6 gene are the primary genetic cause of CA, though variations in other genes, including FOXC1, PITX2, CYP1B1, FOXD3, PITX3, CPAMD8, ITPR1, TENM3, TRIM44, COL4A1, CRYAA, and PXDN may also be implicated. The differential diagnosis of CA requires careful consideration of conditions with overlapping symptoms, such as WAGR syndrome (which involves deletions affecting the PAX6 and WT1 genes on chromosome 11p13, and potentially BDNF on 11p14.1), Axenfeld-Rieger syndrome (FOXC1/PITX2), ring-chromosome 6 syndrome (which involves FOXC1 microdeletion), COL4A1-related anterior segment dysgenesis, Gillespie syndrome (ITPR1 gene) or Peters anomaly. Accurate diagnosis can be achieved by evaluating specific clinical features-including iris anomalies, aniridia-associated keratopathy, cataracts, glaucoma, foveal hypoplasia, nystagmus, and optic nerve head abnormalities-supplemented by genetic testing. CONCLUSIONS Understanding the diverse clinical presentations and genetic basis of diseases associated with iris abnormalities is essential for accurate diagnosis and effective management. Integrating genetic diagnostics into the evaluation process enables the development of tailored treatment strategies, which can significantly improve patient outcomes.
Collapse
Affiliation(s)
- Jonathan Hall
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Kirrberger Str. 100, 66424, Homburg, Saar, Germany.
- Prof. Dr. Koss & Colleagues, Eye Center Nymphenburger Hoefe, Munich, Germany.
| | - Marta Corton
- Departamento de Genética, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
- Área de Genética & Genómica, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Fabian Norbert Fries
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Kirrberger Str. 100, 66424, Homburg, Saar, Germany
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Jessica Obst
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Clara Grünauer-Kloevekorn
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Kirrberger Str. 100, 66424, Homburg, Saar, Germany
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Maria Della Volpe Waizel
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Kirrberger Str. 100, 66424, Homburg, Saar, Germany
| | - Eszter Jávorszky
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Kálmán Tory
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Erika Maka
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Maryam Amini
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Kirrberger Str. 100, 66424, Homburg, Saar, Germany
| | - Shweta Suiwal
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Kirrberger Str. 100, 66424, Homburg, Saar, Germany
| | - Tanja Stachon
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Kirrberger Str. 100, 66424, Homburg, Saar, Germany
| | - Nóra Szentmáry
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Kirrberger Str. 100, 66424, Homburg, Saar, Germany
| |
Collapse
|
2
|
Ceroni F, Cicekdal MB, Holt R, Sorokina E, Chassaing N, Clokie S, Naert T, Talbot LV, Muheisen S, Bax DA, Kesim Y, Kivuva EC, Vincent-Delorme C, Lienkamp SS, Plaisancié J, De Baere E, Calvas P, Vleminckx K, Semina EV, Ragge NK. Deletion upstream of MAB21L2 highlights the importance of evolutionarily conserved non-coding sequences for eye development. Nat Commun 2024; 15:9245. [PMID: 39455595 PMCID: PMC11511899 DOI: 10.1038/s41467-024-53553-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Anophthalmia, microphthalmia and coloboma (AMC) comprise a spectrum of developmental eye disorders, accounting for approximately 20% of childhood visual impairment. While non-coding regulatory sequences are increasingly recognised as contributing to disease burden, characterising their impact on gene function and phenotype remains challenging. Furthermore, little is known of the nature and extent of their contribution to AMC phenotypes. We report two families with variants in or near MAB21L2, a gene where genetic variants are known to cause AMC in humans and animal models. The first proband, presenting with microphthalmia and coloboma, has a likely pathogenic missense variant (c.338 G > C; p.[Trp113Ser]), segregating within the family. The second individual, presenting with microphthalmia, carries an ~ 113.5 kb homozygous deletion 19.38 kb upstream of MAB21L2. Modelling of the deletion results in transient small lens and coloboma as well as midbrain anomalies in zebrafish, and microphthalmia and coloboma in Xenopus tropicalis. Using conservation analysis, we identify 15 non-coding conserved elements (CEs) within the deleted region, while ChIP-seq data from mouse embryonic stem cells demonstrates that two of these (CE13 and 14) bind Otx2, a protein with an established role in eye development. Targeted disruption of CE14 in Xenopus tropicalis recapitulates an ocular coloboma phenotype, supporting its role in eye development. Together, our data provides insights into regulatory mechanisms underlying eye development and highlights the importance of non-coding sequences as a source of genetic diagnoses in AMC.
Collapse
Affiliation(s)
- Fabiola Ceroni
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Munevver B Cicekdal
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Richard Holt
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Elena Sorokina
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, USA
| | - Nicolas Chassaing
- Centre de Référence des Affections Rares en Génétique Ophtalmologique CARGO, Site Constitutif, CHU Toulouse, Toulouse, France
- Service de Génétique Médicale, Hôpital Purpan, CHU de Toulouse, Toulouse, France
| | - Samuel Clokie
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Thomas Naert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
- Zurich Kidney Center, University of Zurich, Zurich, Switzerland
| | - Lidiya V Talbot
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Sanaa Muheisen
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, USA
| | - Dorine A Bax
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Yesim Kesim
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
- Centre for Human Genetics, University of Oxford, Old Road Campus, Oxford, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Emma C Kivuva
- Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | | | - Soeren S Lienkamp
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
- Zurich Kidney Center, University of Zurich, Zurich, Switzerland
| | - Julie Plaisancié
- Centre de Référence des Affections Rares en Génétique Ophtalmologique CARGO, Site Constitutif, CHU Toulouse, Toulouse, France
- Service de Génétique Médicale, Hôpital Purpan, CHU de Toulouse, Toulouse, France
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Patrick Calvas
- Centre de Référence des Affections Rares en Génétique Ophtalmologique CARGO, Site Constitutif, CHU Toulouse, Toulouse, France
- Service de Génétique Médicale, Hôpital Purpan, CHU de Toulouse, Toulouse, France
| | - Kris Vleminckx
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Elena V Semina
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, USA.
| | - Nicola K Ragge
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK.
- West Midlands Regional Clinical Genetics Service, Birmingham Women's and Children's NHS Foundation Trust and Birmingham Health Partners, Birmingham, UK.
| |
Collapse
|
3
|
Reis LM, Seese SE, Costakos D, Semina EV. Congenital anterior segment ocular disorders: Genotype-phenotype correlations and emerging novel mechanisms. Prog Retin Eye Res 2024; 102:101288. [PMID: 39097141 PMCID: PMC11392650 DOI: 10.1016/j.preteyeres.2024.101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Development of the anterior segment of the eye requires reciprocal sequential interactions between the arising tissues, facilitated by numerous genetic factors. Disruption of any of these processes results in congenital anomalies in the affected tissue(s) leading to anterior segment disorders (ASD) including aniridia, Axenfeld-Rieger anomaly, congenital corneal opacities (Peters anomaly, cornea plana, congenital primary aphakia), and primary congenital glaucoma. Current understanding of the genetic factors involved in ASD remains incomplete, with approximately 50% overall receiving a genetic diagnosis. While some genes are strongly associated with a specific clinical diagnosis, the majority of known factors are linked with highly variable phenotypic presentations, with pathogenic variants in FOXC1, CYP1B1, and PITX2 associated with the broadest spectrum of ASD conditions. This review discusses typical clinical presentations including associated systemic features of various forms of ASD; the latest functional data and genotype-phenotype correlations related to 25 ASD factors including newly identified genes; promising novel candidates; and current and emerging treatments for these complex conditions. Recent developments of interest in the genetics of ASD include identification of phenotypic expansions for several factors, discovery of multiple modes of inheritance for some genes, and novel mechanisms including a growing number of non-coding variants and alleles affecting specific domains/residues and requiring further studies.
Collapse
Affiliation(s)
- Linda M Reis
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Sarah E Seese
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Deborah Costakos
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Elena V Semina
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin and Children's Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
4
|
Hall HN, Parry D, Halachev M, Williamson KA, Donnelly K, Campos Parada J, Bhatia S, Joseph J, Holden S, Prescott TE, Bitoun P, Kirk EP, Newbury-Ecob R, Lachlan K, Bernar J, van Heyningen V, FitzPatrick DR, Meynert A. Short-read whole genome sequencing identifies causative variants in most individuals with previously unexplained aniridia. J Med Genet 2024; 61:250-261. [PMID: 38050128 PMCID: PMC7615962 DOI: 10.1136/jmg-2023-109181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 09/25/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Classic aniridia is a highly penetrant autosomal dominant disorder characterised by congenital absence of the iris, foveal hypoplasia, optic disc anomalies and progressive opacification of the cornea. >90% of cases of classic aniridia are caused by heterozygous, loss-of-function variants affecting the PAX6 locus. METHODS Short-read whole genome sequencing was performed on 51 (39 affected) individuals from 37 different families who had screened negative for mutations in the PAX6 coding region. RESULTS Likely causative mutations were identified in 22 out of 37 (59%) families. In 19 out of 22 families, the causative genomic changes have an interpretable deleterious impact on the PAX6 locus. Of these 19 families, 1 has a novel heterozygous PAX6 frameshift variant missed on previous screens, 4 have single nucleotide variants (SNVs) (one novel) affecting essential splice sites of PAX6 5' non-coding exons and 2 have deep intronic SNV (one novel) resulting in gain of a donor splice site. In 12 out of 19, the causative variants are large-scale structural variants; 5 have partial or whole gene deletions of PAX6, 3 have deletions encompassing critical PAX6 cis-regulatory elements, 2 have balanced inversions with disruptive breakpoints within the PAX6 locus and 2 have complex rearrangements disrupting PAX6. The remaining 3 of 22 families have deletions encompassing FOXC1 (a known cause of atypical aniridia). Seven of the causative variants occurred de novo and one cosegregated with familial aniridia. We were unable to establish inheritance status in the remaining probands. No plausibly causative SNVs were identified in PAX6 cis-regulatory elements. CONCLUSION Whole genome sequencing proves to be an effective diagnostic test in most individuals with previously unexplained aniridia.
Collapse
Affiliation(s)
- Hildegard Nikki Hall
- Institute of Genetics and Cancer, The University of Edinburgh MRC Human Genetics Unit, Edinburgh, UK
| | - David Parry
- Institute of Genetics and Cancer, The University of Edinburgh MRC Human Genetics Unit, Edinburgh, UK
- Illumina United Kingdom, Edinburgh, UK
| | - Mihail Halachev
- Institute of Genetics and Cancer, The University of Edinburgh MRC Human Genetics Unit, Edinburgh, UK
| | - Kathleen A Williamson
- Institute of Genetics and Cancer, The University of Edinburgh MRC Human Genetics Unit, Edinburgh, UK
| | - Kevin Donnelly
- Institute of Genetics and Cancer, The University of Edinburgh MRC Human Genetics Unit, Edinburgh, UK
| | - Jose Campos Parada
- Institute of Genetics and Cancer, The University of Edinburgh MRC Human Genetics Unit, Edinburgh, UK
| | - Shipra Bhatia
- Institute of Genetics and Cancer, The University of Edinburgh MRC Human Genetics Unit, Edinburgh, UK
| | - Jeffrey Joseph
- MRC Human Genetics Unit, The University of Edinburgh, Edinburgh, UK
| | - Simon Holden
- East Anglia Regional Genetics Service, Addenbrooke's Hospital, Cambridge, UK
| | - Trine E Prescott
- Department of Medical Genetics, Telemark Hospital, Skien, Norway
| | - Pierre Bitoun
- Consultations de Génétique médicale, Service de Pédiatrie, CHU Paris-Nord, Hôpital Jean Verdier, Bondy, France
| | - Edwin P Kirk
- Centre for Clinical Genetics, Sydney Children's Hospital Randwick, Randwick, New South Wales, Australia
| | - Ruth Newbury-Ecob
- Department of Clinical Genetics, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Katherine Lachlan
- University Hospital Southampton, NHS Foundation Trust Wessex Clinical Genetics Service, Southampton, UK
| | - Juan Bernar
- Department of Genetics, Hospital Ruber Internacional, Madrid, Spain
| | - Veronica van Heyningen
- MRC Human Genetics Unit, The University of Edinburgh, Edinburgh, UK
- Institute of Ophthalmology, University College London, London, UK
| | - David R FitzPatrick
- Institute of Genetics and Cancer, The University of Edinburgh MRC Human Genetics Unit, Edinburgh, UK
| | - Alison Meynert
- Institute of Genetics and Cancer, The University of Edinburgh MRC Human Genetics Unit, Edinburgh, UK
| |
Collapse
|
5
|
Liu X, Chen M, Qu X, Liu W, Dou Y, Liu Q, Shi D, Jiang M, Li H. Cis-Regulatory Elements in Mammals. Int J Mol Sci 2023; 25:343. [PMID: 38203513 PMCID: PMC10779164 DOI: 10.3390/ijms25010343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
In cis-regulatory elements, enhancers and promoters with complex molecular interactions are used to coordinate gene transcription through physical proximity and chemical modifications. These processes subsequently influence the phenotypic characteristics of an organism. An in-depth exploration of enhancers and promoters can substantially enhance our understanding of gene regulatory networks, shedding new light on mammalian development, evolution and disease pathways. In this review, we provide a comprehensive overview of the intrinsic structural attributes, detection methodologies as well as the operational mechanisms of enhancers and promoters, coupled with the relevant novel and innovative investigative techniques used to explore their actions. We further elucidated the state-of-the-art research on the roles of enhancers and promoters in the realms of mammalian development, evolution and disease, and we conclude with forward-looking insights into prospective research avenues.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mingsheng Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| |
Collapse
|
6
|
Uttley K, Papanastasiou AS, Lahne M, Brisbane JM, MacDonald RB, Bickmore WA, Bhatia S. Unique activities of two overlapping PAX6 retinal enhancers. Life Sci Alliance 2023; 6:e202302126. [PMID: 37643867 PMCID: PMC10465922 DOI: 10.26508/lsa.202302126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
Enhancers play a critical role in development by precisely modulating spatial, temporal, and cell type-specific gene expression. Sequence variants in enhancers have been implicated in diseases; however, establishing the functional consequences of these variants is challenging because of a lack of understanding of precise cell types and developmental stages where the enhancers are normally active. PAX6 is the master regulator of eye development, with a regulatory landscape containing multiple enhancers driving the expression in the eye. Whether these enhancers perform additive, redundant or distinct functions is unknown. Here, we describe the precise cell types and regulatory activity of two PAX6 retinal enhancers, HS5 and NRE. Using a unique combination of live imaging and single-cell RNA sequencing in dual enhancer-reporter zebrafish embryos, we uncover differences in the spatiotemporal activity of these enhancers. Our results show that although overlapping, these enhancers have distinct activities in different cell types and therefore likely nonredundant functions. This work demonstrates that unique cell type-specific activities can be uncovered for apparently similar enhancers when investigated at high resolution in vivo.
Collapse
Affiliation(s)
- Kirsty Uttley
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Andrew S Papanastasiou
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Manuela Lahne
- UCL Institute of Ophthalmology, University College London, Greater London, UK
| | - Jennifer M Brisbane
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Ryan B MacDonald
- UCL Institute of Ophthalmology, University College London, Greater London, UK
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Shipra Bhatia
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
7
|
Li Y, Chen J, Zheng Y, Chen Z, Wang T, Sun Q, Wan X, Liu H, Sun X. A novel microdeletion of 517 kb downstream of the PAX6 gene in a Chinese family with congenital aniridia. BMC Ophthalmol 2023; 23:393. [PMID: 37752489 PMCID: PMC10523764 DOI: 10.1186/s12886-023-03147-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 09/19/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND To identify the disease-causing gene in a Chinese family affected with congenital aniridia. METHODS Patients underwent systematic ophthalmic examinations such as anterior segment photography, fundus photography, optical coherence tomography, and fundus fluorescein angiography. The proband was screened for pathogenic variants by whole exome sequencing (WES) and copy number variant (CNV) analysis. Real-time quantitative PCR (RT-qPCR) was applied to confirm the CNV results. Breakpoints were identified by long-range PCR followed by Sanger sequencing. RESULTS All seven members of this Chinese family, including four patients and three normal individuals, were recruited for this study. All patients showed bilateral congenital aniridia with nystagmus, except the son of the proband, who presented with bilateral partial coloboma of the iris. A novel heterozygous deletion (chr11:31,139,019-31,655,997) containing the 3' regulatory enhancers of the PAX6 gene was detected in this family. We also reviewed the reported microdeletions downstream of PAX6 in patients with aniridia. CONCLUSIONS We identified a novel microdeletion, 517 kb in size located about 133 kb downstream of the PAX6 gene, responsible for congenital aniridia in this Chinese family, which expands the spectrum of aniridia-associated mutations in PAX6.
Collapse
Affiliation(s)
- Yinwen Li
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Jieqiong Chen
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Ying Zheng
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Zhixuan Chen
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Tao Wang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Qian Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Xiaoling Wan
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
- National Clinical Research Center for Eye Diseases, Shanghai, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.
| | - Haiyun Liu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
- National Clinical Research Center for Eye Diseases, Shanghai, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| |
Collapse
|
8
|
Daruich A, Duncan M, Robert MP, Lagali N, Semina EV, Aberdam D, Ferrari S, Romano V, des Roziers CB, Benkortebi R, De Vergnes N, Polak M, Chiambaretta F, Nischal KK, Behar-Cohen F, Valleix S, Bremond-Gignac D. Congenital aniridia beyond black eyes: From phenotype and novel genetic mechanisms to innovative therapeutic approaches. Prog Retin Eye Res 2023; 95:101133. [PMID: 36280537 PMCID: PMC11062406 DOI: 10.1016/j.preteyeres.2022.101133] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Congenital PAX6-aniridia, initially characterized by the absence of the iris, has progressively been shown to be associated with other developmental ocular abnormalities and systemic features making congenital aniridia a complex syndromic disorder rather than a simple isolated disease of the iris. Moreover, foveal hypoplasia is now recognized as a more frequent feature than complete iris hypoplasia and a major visual prognosis determinant, reversing the classical clinical picture of this disease. Conversely, iris malformation is also a feature of various anterior segment dysgenesis disorders caused by PAX6-related developmental genes, adding a level of genetic complexity for accurate molecular diagnosis of aniridia. Therefore, the clinical recognition and differential genetic diagnosis of PAX6-related aniridia has been revealed to be much more challenging than initially thought, and still remains under-investigated. Here, we update specific clinical features of aniridia, with emphasis on their genotype correlations, as well as provide new knowledge regarding the PAX6 gene and its mutational spectrum, and highlight the beneficial utility of clinically implementing targeted Next-Generation Sequencing combined with Whole-Genome Sequencing to increase the genetic diagnostic yield of aniridia. We also present new molecular mechanisms underlying aniridia and aniridia-like phenotypes. Finally, we discuss the appropriate medical and surgical management of aniridic eyes, as well as innovative therapeutic options. Altogether, these combined clinical-genetic approaches will help to accelerate time to diagnosis, provide better determination of the disease prognosis and management, and confirm eligibility for future clinical trials or genetic-specific therapies.
Collapse
Affiliation(s)
- Alejandra Daruich
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Melinda Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Matthieu P Robert
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; Borelli Centre, UMR 9010, CNRS-SSA-ENS Paris Saclay-Paris Cité University, Paris, France
| | - Neil Lagali
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, 581 83, Linköping, Sweden; Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway
| | - Elena V Semina
- Department of Pediatrics, Children's Research Institute at the Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI, 53226, USA
| | - Daniel Aberdam
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Stefano Ferrari
- Fondazione Banca degli Occhi del Veneto, Via Paccagnella 11, Venice, Italy
| | - Vito Romano
- Department of Medical and Surgical Specialties, Radiolological Sciences, and Public Health, Ophthalmology Clinic, University of Brescia, Italy
| | - Cyril Burin des Roziers
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France; Service de Médecine Génomique des Maladies de Système et d'Organe, APHP. Centre Université de Paris, Fédération de Génétique et de Médecine Génomique Hôpital Cochin, 27 rue du Fbg St-Jacques, 75679, Paris Cedex 14, France
| | - Rabia Benkortebi
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France
| | - Nathalie De Vergnes
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France
| | - Michel Polak
- Pediatric Endocrinology, Gynecology and Diabetology, Hôpital Universitaire Necker Enfants Malades, AP-HP, Paris Cité University, INSERM U1016, Institut IMAGINE, France
| | | | - Ken K Nischal
- Division of Pediatric Ophthalmology, Strabismus, and Adult Motility, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; UPMC Eye Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Francine Behar-Cohen
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Sophie Valleix
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France; Service de Médecine Génomique des Maladies de Système et d'Organe, APHP. Centre Université de Paris, Fédération de Génétique et de Médecine Génomique Hôpital Cochin, 27 rue du Fbg St-Jacques, 75679, Paris Cedex 14, France
| | - Dominique Bremond-Gignac
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France.
| |
Collapse
|
9
|
Fishman ES, Han JS, La Torre A. Oscillatory Behaviors of microRNA Networks: Emerging Roles in Retinal Development. Front Cell Dev Biol 2022; 10:831750. [PMID: 35186936 PMCID: PMC8847441 DOI: 10.3389/fcell.2022.831750] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/07/2022] [Indexed: 01/02/2023] Open
Abstract
A broad repertoire of transcription factors and other genes display oscillatory patterns of expression, typically ranging from 30 min to 24 h. These oscillations are associated with a variety of biological processes, including the circadian cycle, somite segmentation, cell cycle, and metabolism. These rhythmic behaviors are often prompted by transcriptional feedback loops in which transcriptional activities are inhibited by their corresponding gene target products. Oscillatory transcriptional patterns have been proposed as a mechanism to drive biological clocks, the molecular machinery that transforms temporal information into accurate spatial patterning during development. Notably, several microRNAs (miRNAs) -small non-coding RNA molecules-have been recently shown to both exhibit rhythmic expression patterns and regulate oscillatory activities. Here, we discuss some of these new findings in the context of the developing retina. We propose that miRNA oscillations are a powerful mechanism to coordinate signaling pathways and gene expression, and that addressing the dynamic interplay between miRNA expression and their target genes could be key for a more complete understanding of many developmental processes.
Collapse
Affiliation(s)
| | | | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| |
Collapse
|
10
|
Wawrocka A, Walczak-Sztulpa J, Socha M, Kuszel L, Sowinska-Seidler A, Budny B, Bukowska-Olech E, Pilas-Pomykalska M, Jamsheer A, Krawczynski MR. Homozygous microdeletion in the 11p13 region in the patient with isolated form of aniridia: New challenges in the genetic diagnostics of aniridia. Am J Med Genet A 2021; 188:642-647. [PMID: 34773354 DOI: 10.1002/ajmg.a.62559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 11/09/2022]
Abstract
Aniridia is usually an autosomal dominant, rare disorder characterized by a variable degree of hypoplasia or the absence of iris tissue, with additional ocular abnormalities. Pathogenic variants in the PAX6 gene are associated with aniridia in most patients. However, in up to 30% of individuals, disease results from 11p13 chromosomal rearrangements. Here we present a patient with a clinical diagnosis of partial aniridia born to consanguineous Polish parents. The parents were asymptomatic and ophthalmologically normal. We performed PAX6 sequencing, array comparative genomic hybridization, quantitative real-time PCR, and whole genome sequencing. aCGH revealed a homozygous deletion of the DCDC1 gene fragment in the patient. The same, but heterozygous deletion, was detected in each of the patient's asymptomatic parents and brother. In the presented family, the signs and symptoms of aniridia are observed only in the homozygous proband. Whole genome sequencing analysis was performed to determine other possible causes of the disease and did not detect any additional or alternative potentially pathogenic variant. We report a novel homozygous deletion located in the 11p13 region, which does not include the PAX6 gene or any known PAX6 enhancers. To our best knowledge, this is the first reported case of a patient presented with isolated aniridia carrying a homozygous microdeletion downstream of the PAX6 gene.
Collapse
Affiliation(s)
- Anna Wawrocka
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Magdalena Socha
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Lukasz Kuszel
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Sowinska-Seidler
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Bartlomiej Budny
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | - Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland.,Centers for Medical Genetics GENESIS, Poznan, Poland
| | - Maciej R Krawczynski
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland.,Centers for Medical Genetics GENESIS, Poznan, Poland
| |
Collapse
|
11
|
Blanco-Kelly F, Tarilonte M, Villamar M, Damián A, Tamayo A, Moreno-Pelayo MA, Ayuso C, Cortón M. Genetics and epidemiology of aniridia: Updated guidelines for genetic study. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2021; 96 Suppl 1:4-14. [PMID: 34836588 DOI: 10.1016/j.oftale.2021.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/13/2021] [Indexed: 12/16/2022]
Abstract
Aniridia is a panocular disease characterized by iris hypoplasia, accompanied by other ocular manifestations, with a high clinical variability and overlapping with different abnormalities of the anterior and posterior segment. This review focuses on the genetic features of this autosomal dominant pathology, which is caused by the haploinsufficiency of the PAX6 gene. Mutations causing premature stop codons are the most frequent among the wider mutational spectrum of PAX6, with more than 600 different mutations identified so far. Recent advances in next-generation sequencing (NGS) have increased the diagnostic yield in aniridia and contributed to elucidate new etiopathogenic mechanisms leading to PAX6 haploinsufficiency. Here, we also update good practices and recommendations to improve genetic testing and clinical management of aniridia using more cost-effective NGS analysis. Those new approaches also allow studying simultaneously both structural variants and point-mutations in PAX6 as well as other genes for differential diagnosis, simultaneously. Some patients with atypical phenotypes might present mutations in FOXC1 and PITX2, both genes causing a wide spectrum of anterior segment dysgenesis, or in ITPR1, which is responsible for a distinctive form of circumpupillary iris aplasia present in Gillespie syndrome, or other mutations in minor genes. Since aniridia can also associate extraocular anomalies, as it occurs in carriers of PAX6 and WT1 microdeletions leading to WAGR syndrome, genetic studies are crucial to assure a correct diagnosis and clinical management, besides allowing prenatal and preimplantational genetic testing in families.
Collapse
Affiliation(s)
- F Blanco-Kelly
- Departamento de Genética, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain; Área de Genética & Genómica, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - M Tarilonte
- Departamento de Genética, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain; Área de Genética & Genómica, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - M Villamar
- Servicio de Genética, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain; Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - A Damián
- Departamento de Genética, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain; Área de Genética & Genómica, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - A Tamayo
- Departamento de Genética, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain; Área de Genética & Genómica, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - M A Moreno-Pelayo
- Servicio de Genética, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain; Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - C Ayuso
- Departamento de Genética, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain; Área de Genética & Genómica, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - M Cortón
- Departamento de Genética, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain; Área de Genética & Genómica, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.
| |
Collapse
|
12
|
Kit V, Cunha DL, Hagag AM, Moosajee M. Longitudinal genotype-phenotype analysis in 86 patients with PAX6-related aniridia. JCI Insight 2021; 6:e148406. [PMID: 34101622 PMCID: PMC8410060 DOI: 10.1172/jci.insight.148406] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/03/2021] [Indexed: 12/30/2022] Open
Abstract
Aniridia is most commonly caused by haploinsufficiency of the PAX6 gene, characterized by variable iris and foveal hypoplasia, nystagmus, cataracts, glaucoma, and aniridia-related keratopathy (ARK). Genotype-phenotype correlations have previously been described; however, detailed longitudinal studies of aniridia are less commonly reported. We identified 86 patients from 62 unrelated families with molecularly confirmed heterozygous PAX6 variants from a UK-based single-center ocular genetics service. They were categorized into mutation groups, and a retrospective review of clinical characteristics (ocular and systemic) from baseline to most recent was recorded. One hundred and seventy-two eyes were evaluated, with a mean follow-up period of 16.3 ± 12.7 years. Nystagmus was recorded in 87.2% of the eyes, and foveal hypoplasia was found in 75%. Cataracts were diagnosed in 70.3%, glaucoma in 20.6%, and ARK in 68.6% of eyes. Prevalence, age of diagnosis and surgical intervention, and need for surgical intervention varied among mutation groups. Overall, the missense mutation subgroup had the mildest phenotype, and surgically naive eyes maintained better visual acuity. Systemic evaluation identified type 2 diabetes in 12.8% of the study group, which is twice the UK prevalence. This is the largest longitudinal study of aniridia in the UK, and as such, it can provide insights into prognostic indicators for patients and guiding clinical management of both ocular and systemic features.
Collapse
Affiliation(s)
- Vivienne Kit
- Moorfields Eye Hospital, NHS Foundation Trust, London, United Kingdom.,UCL Institute of Ophthalmology, London, United Kingdom
| | | | - Ahmed M Hagag
- Moorfields Eye Hospital, NHS Foundation Trust, London, United Kingdom.,UCL Institute of Ophthalmology, London, United Kingdom
| | - Mariya Moosajee
- Moorfields Eye Hospital, NHS Foundation Trust, London, United Kingdom.,UCL Institute of Ophthalmology, London, United Kingdom.,Great Ormond Street Hospital for Children, NHS Foundation Trust, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
13
|
Blanco-Kelly F, Tarilonte M, Villamar M, Damián A, Tamayo A, Moreno-Pelayo MA, Ayuso C, Cortón M. Genetics and epidemiology of aniridia: Updated guidelines for genetic study. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2021; 96:S0365-6691(21)00124-6. [PMID: 34243981 DOI: 10.1016/j.oftal.2021.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 11/24/2022]
Abstract
Aniridia is a panocular disease characterized by iris hypoplasia, accompanied by other ocular manifestations, with a high clinical variability and overlapping with different abnormalities of the anterior and posterior segment. This review focuses on the genetic features of this autosomal dominant pathology, which is caused by the haploinsufficiency of the PAX6 gene. Mutations causing premature stop codons are the most frequent among the wider mutational spectrum of PAX6, with more than 600 different mutations identified so far. Recent advances in next-generation sequencing (NGS) have increased the diagnostic yield in aniridia and contributed to elucidate new etiopathogenic mechanisms leading to PAX6 haploinsufficiency. Here, we also update good practices and recommendations to improve genetic testing and clinical management of aniridia using more cost-effective NGS analysis. Those new approaches also allow studying simultaneously both structural variants and point-mutations in PAX6 as well as other genes for differential diagnosis, simultaneously. Some patients with atypical phenotypes might present mutations in FOXC1 and PITX2, both genes causing a wide spectrum of anterior segment dysgenesis, or in ITPR1, which is responsible for a distinctive form of circumpupillary iris aplasia present in Gillespie syndrome, or other mutations in minor genes. Since aniridia can also associate extraocular anomalies, as it occurs in carriers of PAX6 and WT1 microdeletions leading to WAGR syndrome, genetic studies are crucial to assure a correct diagnosis and clinical management, besides allowing prenatal and preimplantational genetic testing in families.
Collapse
Affiliation(s)
- F Blanco-Kelly
- Departamento de Genética, Hospital Universitario Fundación Jiménez Díaz, Madrid, España; Área de Genética & Genómica, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, España; Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, España
| | - M Tarilonte
- Departamento de Genética, Hospital Universitario Fundación Jiménez Díaz, Madrid, España; Área de Genética & Genómica, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, España
| | - M Villamar
- Servicio de Genética, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, España; Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, España
| | - A Damián
- Departamento de Genética, Hospital Universitario Fundación Jiménez Díaz, Madrid, España; Área de Genética & Genómica, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, España
| | - A Tamayo
- Departamento de Genética, Hospital Universitario Fundación Jiménez Díaz, Madrid, España; Área de Genética & Genómica, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, España
| | - M A Moreno-Pelayo
- Servicio de Genética, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, España; Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, España
| | - C Ayuso
- Departamento de Genética, Hospital Universitario Fundación Jiménez Díaz, Madrid, España; Área de Genética & Genómica, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, España; Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, España
| | - M Cortón
- Departamento de Genética, Hospital Universitario Fundación Jiménez Díaz, Madrid, España; Área de Genética & Genómica, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, España; Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, España.
| |
Collapse
|
14
|
Davis ES, Voss G, Miesfeld JB, Zarate-Sanchez J, Voss SR, Glaser T. The rax homeobox gene is mutated in the eyeless axolotl, Ambystoma mexicanum. Dev Dyn 2021; 250:807-821. [PMID: 32864847 PMCID: PMC8907009 DOI: 10.1002/dvdy.246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 08/11/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Vertebrate eye formation requires coordinated inductive interactions between different embryonic tissue layers, first described in amphibians. A network of transcription factors and signaling molecules controls these steps, with mutations causing severe ocular, neuronal, and craniofacial defects. In eyeless mutant axolotls, eye morphogenesis arrests at the optic vesicle stage, before lens induction, and development of ventral forebrain structures is disrupted. RESULTS We identified a 5-bp deletion in the rax (retina and anterior neural fold homeobox) gene, which was tightly linked to the recessive eyeless (e) axolotl locus in an F2 cross. This frameshift mutation, in exon 2, truncates RAX protein within the homeodomain (P154fs35X). Quantitative RNA analysis shows that mutant and wild-type rax transcripts are equally abundant in E/e embryos. Translation appears to initiate from dual start codons, via leaky ribosome scanning, a conserved feature among gnathostome RAX proteins. Previous data show rax is expressed in the optic vesicle and diencephalon, deeply conserved among metazoans, and required for eye formation in other species. CONCLUSION The eyeless axolotl mutation is a null allele in the rax homeobox gene, with primary defects in neural ectoderm, including the retinal and hypothalamic primordia.
Collapse
Affiliation(s)
- Erik S. Davis
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, California
| | - Gareth Voss
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, and Ambystoma Genetic Stock Center, University of Kentucky, Lexington, Kentucky
| | - Joel B. Miesfeld
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, California
| | - Juan Zarate-Sanchez
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, California
- Davis Senior High School, Davis, California
| | - S. Randal Voss
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, and Ambystoma Genetic Stock Center, University of Kentucky, Lexington, Kentucky
| | - Tom Glaser
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, California
| |
Collapse
|
15
|
Jin X, Liu W, Qv LH, X WQ, Huang HB. A novel variant in PAX6 as the cause of aniridia in a Chinese family. BMC Ophthalmol 2021; 21:225. [PMID: 34016071 PMCID: PMC8136215 DOI: 10.1186/s12886-021-01848-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 02/05/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Aniridia is a kind of congenital human pan-ocular anomaly, which is related to PAX6 commonly. METHODS The ophthalmic examinations including visual acuity, slit lamp and fundoscopy examination were performed in a Chinese aniridia pedigree. The targeted next-generation sequencing of aniridia genes was used to identify the causative mutation. RESULTS A novel heterozygous PAX6 nonsense mutation c.619A > T (p.K207*) was identified in the Chinese autosomal dominant family with aniridia. Phenotype related to the novel mutation included nystagmus, keratopathy, absence of iris, cataract and foveal hypoplasia. CONCLUSIONS The novel nonsense variation in PAX6 was the cause of aniridia in this family, which expanded the spectrum of the PAX6 mutation.
Collapse
Affiliation(s)
- X Jin
- Department of Ophthalmology, Chinese PLA General Hospital, 100853, Beijing, China
| | - W Liu
- Department of Ophthalmology, Hainan Hospital of Chinese PLA General Hospital, 572000, Sanya, Hainan Province, China
| | - L H Qv
- Department of Ophthalmology, the 74th Army Group Hospital, 510318, Guangzhou, China
| | - W Q X
- Department of Ophthalmology, Chinese PLA General Hospital, 100853, Beijing, China
| | - H B Huang
- Department of Ophthalmology, Chinese PLA General Hospital, 100853, Beijing, China.
- Department of Ophthalmology, Hainan Hospital of Chinese PLA General Hospital, 572000, Sanya, Hainan Province, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
16
|
Pedersen HR, Baraas RC, Landsend ECS, Utheim ØA, Utheim TP, Gilson SJ, Neitz M. PAX6 Genotypic and Retinal Phenotypic Characterization in Congenital Aniridia. Invest Ophthalmol Vis Sci 2020; 61:14. [PMID: 32396632 PMCID: PMC7405610 DOI: 10.1167/iovs.61.5.14] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose To investigate the association between PAX6 genotype and macular morphology in congenital aniridia. Methods The study included 37 participants (15 males) with congenital aniridia (aged 10–72 years) and 58 age-matched normal controls (18 males). DNA was isolated from saliva samples. PAX6 exons, intron/exon junctions, and known regulatory regions were amplified in PCR and sequenced. Multiplex ligation-dependent probe amplification (MLPA) was performed to detect larger deletions or duplications in PAX6 or known cis-regulatory regions. Spectral-domain optical coherence tomography images were acquired and segmented semiautomatically. Mean thicknesses were calculated for inner and outer retinal layers within the macula along nasal and temporal meridians. Results Mutations in PAX6 or regulatory regions were found in 97% of the participants with aniridia. Foveal hypoplasia was observed in all who had a mutation within the PAX6 gene. Aniridic eyes had thinner outer retinal layers than controls, but with large between-individual variation (mean ± SD, 156.3 ± 32.3 µm vs 210.8 ± 12.3 µm, P < 0.001). Parafoveal and perifoveal inner and outer retinal layers were thinner in aniridia. Participants with mutations in noncoding PAX6 regions had thicker foveal outer retinal layers than those with mutations in the PAX6 coding regions (P = 0.04) and showed signs of postnatal development and maturation. Mutations outside the PAX6 gene were associated with the mildest retinal phenotypes. Conclusions PAX6 mutations are associated with significant thinning of macular inner and outer retinal layers, consistent with misdirected retinal development resulting in abnormal foveal formation and reduced number of neurons in the macula, with mutations in PAX6 coding regions giving the worst outcome.
Collapse
|
17
|
Cross E, Duncan-Flavell PJ, Howarth RJ, Crooks RO, Thomas NS, Bunyan DJ. Screening of a large PAX6 cohort identified many novel variants and emphasises the importance of the paired and homeobox domains. Eur J Med Genet 2020; 63:103940. [DOI: 10.1016/j.ejmg.2020.103940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/20/2019] [Accepted: 04/23/2020] [Indexed: 12/21/2022]
|
18
|
The Genetic and Endoplasmic Reticulum-Mediated Molecular Mechanisms of Primary Open-Angle Glaucoma. Int J Mol Sci 2020; 21:ijms21114171. [PMID: 32545285 PMCID: PMC7312987 DOI: 10.3390/ijms21114171] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
Glaucoma is a heterogenous, chronic, progressive group of eye diseases, which results in irreversible loss of vision. There are several types of glaucoma, whereas the primary open-angle glaucoma (POAG) constitutes the most common type of glaucoma, accounting for three-quarters of all glaucoma cases. The pathological mechanisms leading to POAG pathogenesis are multifactorial and still poorly understood, but it is commonly known that significantly elevated intraocular pressure (IOP) plays a crucial role in POAG pathogenesis. Besides, genetic predisposition and aggregation of abrogated proteins within the endoplasmic reticulum (ER) lumen and subsequent activation of the protein kinase RNA-like endoplasmic reticulum kinase (PERK)-dependent unfolded protein response (UPR) signaling pathway may also constitute important factors for POAG pathogenesis at the molecular level. Glaucoma is commonly known as a ‘silent thief of sight’, as it remains asymptomatic until later stages, and thus its diagnosis is frequently delayed. Thereby, detailed knowledge about the glaucoma pathophysiology is necessary to develop both biochemical and genetic tests to improve its early diagnosis as well as develop a novel, ground-breaking treatment strategy, as currently used medical therapies against glaucoma are limited and may evoke numerous adverse side-effects in patients.
Collapse
|
19
|
Lima Cunha D, Arno G, Corton M, Moosajee M. The Spectrum of PAX6 Mutations and Genotype-Phenotype Correlations in the Eye. Genes (Basel) 2019; 10:genes10121050. [PMID: 31861090 PMCID: PMC6947179 DOI: 10.3390/genes10121050] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022] Open
Abstract
The transcription factor PAX6 is essential in ocular development in vertebrates, being considered the master regulator of the eye. During eye development, it is essential for the correct patterning and formation of the multi-layered optic cup and it is involved in the developing lens and corneal epithelium. In adulthood, it is mostly expressed in cornea, iris, and lens. PAX6 is a dosage-sensitive gene and it is highly regulated by several elements located upstream, downstream, and within the gene. There are more than 500 different mutations described to affect PAX6 and its regulatory regions, the majority of which lead to PAX6 haploinsufficiency, causing several ocular and systemic abnormalities. Aniridia is an autosomal dominant disorder that is marked by the complete or partial absence of the iris, foveal hypoplasia, and nystagmus, and is caused by heterozygous PAX6 mutations. Other ocular abnormalities have also been associated with PAX6 changes, and genotype-phenotype correlations are emerging. This review will cover recent advancements in PAX6 regulation, particularly the role of several enhancers that are known to regulate PAX6 during eye development and disease. We will also present an updated overview of the mutation spectrum, where an increasing number of mutations in the non-coding regions have been reported. Novel genotype-phenotype correlations will also be discussed.
Collapse
Affiliation(s)
| | - Gavin Arno
- Institute of Ophthalmology, UCL, London EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Marta Corton
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital—Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Mariya Moosajee
- Institute of Ophthalmology, UCL, London EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- Correspondence:
| |
Collapse
|
20
|
Soyugelen Demirok G, Ekşioğlu Ü, Yakın M, Kaderli A, Kaderli ST, Örnek F. Short- and Long-term Results of Glaucoma Valve Implantation for Aniridia-related Glaucoma: A Case Series and Literature Review. Turk J Ophthalmol 2019; 49:183-187. [PMID: 31486604 PMCID: PMC6761385 DOI: 10.4274/tjo.galenos.2019.07348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objectives: To report the results obtained from glaucoma drainage device (GDD) implantation in patients with aniridia-related glaucoma and to review the literature. Materials and Methods: We retrospectively reviewed 6 patients who underwent GDD implantation for glaucoma secondary to congenital aniridia between April 2001 and February 2015. Data on age at surgery, gender, laterality, surgeries before GDD implantation, GDD model, concomitant ocular disorders, visual acuity, and intraocular pressure (IOP) values before and at 1 and 12 months after GDD implantation, medications, follow-up period, findings during last visit, complications, and course of disease were collected. Results: Mean age at surgery was 16.00±12.31 years (range 5-37 years). Mean IOP was 33.00±12.11 (range 22-50) mmHg just before the GDD implantation with a mean of 3.5±1.2 medications. Mean IOP 1 month after implantation was 16.33±4.22 (range 12-24) mmHg with a mean of 1.5±0.8 medications; at 12 months, mean IOP was 19.50±4.76 (range 15-26) mmHg with 3.0±0.8 medications. At the last follow-up visit, IOP was 21.16±4.07 (range 16-26) mmHg with a mean of 3.33±0.51 medications. Mean follow-up was 19.16±8.8 (range 12-36) months. Surgical success rates were 83.3%, 66.6%, and 50.0% at 1 month, 12 months, and the last visit, respectively. Conclusion: GDD implantation was effective in controlling aniridic glaucoma with a success rate of 83.3% at 1-month follow-up and 66.6% at 1-year follow-up. Therefore, it should be considered as an initial surgical treatment for aniridic glaucoma; the clinician should be alert for concomitant ocular disorders.
Collapse
Affiliation(s)
| | - Ümit Ekşioğlu
- Ankara Training and Research Hospital, Ophthalmology Clinic, Ankara, Turkey
| | - Mehmet Yakın
- Ankara Training and Research Hospital, Ophthalmology Clinic, Ankara, Turkey
| | - Ahmet Kaderli
- Ankara Training and Research Hospital, Ophthalmology Clinic, Ankara, Turkey
| | - Sema Tamer Kaderli
- Ankara Training and Research Hospital, Ophthalmology Clinic, Ankara, Turkey
| | - Firdevs Örnek
- Ankara Training and Research Hospital, Ophthalmology Clinic, Ankara, Turkey
| |
Collapse
|
21
|
Zhao Y, Zheng D, Cvekl A. Profiling of chromatin accessibility and identification of general cis-regulatory mechanisms that control two ocular lens differentiation pathways. Epigenetics Chromatin 2019; 12:27. [PMID: 31053165 PMCID: PMC6498704 DOI: 10.1186/s13072-019-0272-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Promoters and enhancers are cis-regulatory DNA sequences that control specificity and quantity of transcription. Both are rich on clusters of cis-acting sites that interact with sequence-specific DNA-binding transcription factors (TFs). At the level of chromatin, these regions display increased nuclease sensitivity, reduced nucleosome density, including nucleosome-free regions, and specific combinations of posttranslational modifications of core histone proteins. Together, "open" and "closed" chromatins represent transcriptionally active and repressed states of individual genes, respectively. Cellular differentiation is marked by changes in local chromatin structure. Lens morphogenesis, regulated by TF Pax6, includes differentiation of epithelial precursor cells into lens fibers in parallel with differentiation of epithelial precursors into the mature lens epithelium. RESULTS Using ATAC-seq, we investigated dynamics of chromatin changes during mouse lens fibers and epithelium differentiation. Tissue-specific features of these processes are demonstrated via comparative studies of embryonic stem cells, forebrain, and liver chromatins. Unbiased analysis reveals cis-regulatory logic of lens differentiation through known (e.g., AP-1, Ets, Hsf4, Maf, and Pax6 sites) and novel (e.g., CTCF, Tead, and NF1) motifs. Twenty-six DNA-binding TFs, recognizing these cis-motifs, are markedly up-regulated in differentiating lens fibers. As specific examples, our ATAC-seq data uncovered both the regulatory regions and TF binding motifs in Foxe3, Prox1, and Mip loci that are consistent with previous, though incomplete, experimental data. A cross-examination of Pax6 binding with ATAC-seq data demonstrated that Pax6 bound to both open (H3K27ac and P300-enriched) and closed chromatin domains in lens and forebrain. CONCLUSIONS Our study has generated the first lens chromatin accessibility maps that support a general model of stage-specific chromatin changes associated with transcriptional activities of batteries of genes required for lens fiber cell formation. Analysis of active (or open) promoters and enhancers reveals important cis-DNA motifs that establish the molecular foundation for temporally and spatially regulated gene expression in lens. Together, our data and models open new avenues for the field to conduct mechanistic studies of transcriptional control regions, reconstruction of gene regulatory networks that govern lens morphogenesis, and identification of cataract-causing mutations in noncoding sequences.
Collapse
Affiliation(s)
- Yilin Zhao
- The Departments of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Deyou Zheng
- The Departments of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA
- Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Ales Cvekl
- The Departments of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA
- Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| |
Collapse
|
22
|
Macdonald GC, Hesselson SE, Chan JY, Jenkins AB, Laybutt DR, Hesselson D, Campbell LV. Deletion distal to the PAX6 coding region reveals a novel basis for familial cosegregation of aniridia and diabetes mellitus. Diabetes Res Clin Pract 2019; 148:64-71. [PMID: 30572005 DOI: 10.1016/j.diabres.2018.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/22/2018] [Accepted: 12/12/2018] [Indexed: 11/17/2022]
Abstract
AIMS Analyze cosegregation of aniridia and diabetes to identify genetic criteria for detection and early treatment of diabetes-susceptible aniridia patients. METHODS We assessed a two-generation family: three individuals with aniridia, two previously diagnosed as type 2 diabetes. One individual with aniridia, with unknown diabetes status, was evaluated by oral glucose tolerance test. Genetic analysis of aniridia-associated genes was performed on all available family members. Candidate genes were functionally tested by gene silencing in MIN6 pancreatic β-cells. RESULTS A 25 year old male with aniridia had a diabetic oral glucose tolerance test despite a normal fasting blood glucose. A 484-630 kb deletion ∼120 kb distal to PAIRED BOX 6 (PAX6) showed dominant cosegregation with aniridia and diabetes in all affected family members. The deleted region contains regulatory elements for PAX6 expression and four additional coding regions. Knockdown of two of the deleted genes (Dnajc24 or Immp1l) with Pax6 impaired glucose-stimulated insulin secretion. CONCLUSIONS We demonstrate dominant cosegregation of diabetes and aniridia with a deletion distal to PAX6, which is clinically distinct from the mild glucose intolerance previously reported with PAX6 coding mutations. Asymptomatic aniridia individuals appear at risk of diabetes (and its complications) and could benefit from earlier diagnosis and treatment.
Collapse
Affiliation(s)
- Gemma C Macdonald
- Diabetes Centre, St Vincent's Hospital, Sydney, New South Wales, Australia.
| | - Stephanie E Hesselson
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Jeng Yie Chan
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, NSW, Australia; St Vincent's Clinical School, UNSW Sydney, NSW, Australia
| | - Arthur B Jenkins
- School of Medicine, University of Wollongong, Wollongong, Australia
| | - D Ross Laybutt
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, NSW, Australia; St Vincent's Clinical School, UNSW Sydney, NSW, Australia
| | - Daniel Hesselson
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, UNSW Sydney, Australia.
| | - Lesley V Campbell
- Diabetes Centre, St Vincent's Hospital, Sydney, New South Wales, Australia; Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, UNSW Sydney, Australia; Department of Endocrinology, St Vincent's Hospital, Sydney, Australia
| |
Collapse
|
23
|
Smith M, Flodman PL. Expanded Insights Into Mechanisms of Gene Expression and Disease Related Disruptions. Front Mol Biosci 2018; 5:101. [PMID: 30542652 PMCID: PMC6277798 DOI: 10.3389/fmolb.2018.00101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/02/2018] [Indexed: 12/31/2022] Open
Abstract
Definitive molecular diagnoses in disorders apparently due to genetic or genomic defects are still lacking in a significant number of investigated cases, despite use of studies designed to discover defects in the protein coding regions of the genome. Increasingly studies are being designed to search for defects in the non-protein coding genome, and for alterations in gene expression. Here we review new insights into genomic elements involved in control of gene expression, including methods to analyze chromatin that is accessible for transcription factor binding, enhancers, chromatin looping, transcription, RNA binding proteins, and alternative splicing. We review new studies on levels of genome organization, including the occurrence of transcriptional domains and their boundary elements. Information is presented on specific malformation syndromes that arise due to structural genomic changes that impact the non-protein coding genome and sometimes impact specific transcriptional domains. We also review convergence of genome-wide association with studies of gene expression, discoveries related to expression quantitative trait loci and splicing quantitative trait loci and the relevance of these to specific complex common diseases. Aspects of epigenetic mechanisms and clinical applications of analyses of methylation signatures are also discussed.
Collapse
Affiliation(s)
- Moyra Smith
- Department of Pediatrics, University of California, Irvine, Irvine, CA, United States
| | | |
Collapse
|
24
|
The genetic architecture of aniridia and Gillespie syndrome. Hum Genet 2018; 138:881-898. [PMID: 30242502 PMCID: PMC6710220 DOI: 10.1007/s00439-018-1934-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022]
Abstract
Absence of part or all of the iris, aniridia, is a feature of several genetically distinct conditions. This review focuses on iris development and then the clinical features and molecular genetics of these iris malformations. Classical aniridia, a panocular eye malformation including foveal hypoplasia, is the archetypal phenotype associated with heterozygous PAX6 loss-of-function mutations. Since this was identified in 1991, many genetic mechanisms of PAX6 inactivation have been elucidated, the commonest alleles being intragenic mutations causing premature stop codons, followed by those causing C-terminal extensions. Rarely, aniridia cases are associated with FOXC1, PITX2 and/or their regulatory regions. Aniridia can also occur as a component of many severe global eye malformations. Gillespie syndrome—a triad of partial aniridia, non-progressive cerebellar ataxia and intellectual disability—is phenotypically and genotypically distinct from classical aniridia. The causative gene has recently been identified as ITPR1. The same characteristic Gillespie syndrome-like iris, with aplasia of the pupillary sphincter and a scalloped margin, is seen in ACTA2-related multisystemic smooth muscle dysfunction syndrome. WAGR syndrome (Wilms tumour, aniridia, genitourinary anomalies and mental retardation/intellectual disability), is caused by contiguous deletion of PAX6 and WT1 on chromosome 11p. Deletions encompassing BDNF have been causally implicated in the obesity and intellectual disability associated with the condition. Lastly, we outline a genetic investigation strategy for aniridia in light of recent developments, suggesting an approach based principally on chromosomal array and gene panel testing. This strategy aims to test all known aniridia loci—including the rarer, life-limiting causes—whilst remaining simple and practical.
Collapse
|
25
|
Liu X, Wu Y, Miao Z, Zhang H, Gong B, Zhu X, Huang L, Shi Y, Hao F, Ma S, Lin H, Wang L, Yang Z. A novel deletion downstream of the PAX6 gene identified in a Chinese family with congenital aniridia. Ophthalmic Genet 2018; 39:428-436. [PMID: 29902091 DOI: 10.1080/13816810.2018.1466336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Xiaoqi Liu
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Center of Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yaqi Wu
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Center of Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zequn Miao
- Department of Ophthalmology, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
- Center of Optometry, Peking University People’s Hospital, Beijing, China
| | - Houbin Zhang
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Center of Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Gong
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Center of Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianjun Zhu
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Center of Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu, China
- Institute of Chengdu Biology, Chinese Academy of Sciences, Chengdu, China
- Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, China
| | - Lulin Huang
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Center of Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu, China
- Institute of Chengdu Biology, Chinese Academy of Sciences, Chengdu, China
- Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, China
| | - Yi Shi
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Center of Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu, China
- Institute of Chengdu Biology, Chinese Academy of Sciences, Chengdu, China
- Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, China
| | - Fang Hao
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shi Ma
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - He Lin
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lejin Wang
- Department of Ophthalmology, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
- Center of Optometry, Peking University People’s Hospital, Beijing, China
| | - Zhenglin Yang
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Center of Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu, China
- Institute of Chengdu Biology, Chinese Academy of Sciences, Chengdu, China
- Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
26
|
Syrimis A, Nicolaou N, Alexandrou A, Papaevripidou I, Nicolaou M, Loukianou E, Christophidou-Anastasiadou V, Malas S, Sismani C, Tanteles GA. Aniridia due to a novel microdeletion affecting PAX6 regulatory enhancers: case report and review of the literature. J Genet 2018; 97:555-562. [PMID: 29932076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Aniridia is a rare congenital ocular malformation that follows an autosomal dominant mode of inheritance. Most patients carry pathogenic point mutations in the paired box 6 gene (PAX6), but some carry deletions involving the 11p13 region, encompassing partly or completely PAX6 or the region downstream. We identified a novel deletion, ~564 kb in size located about 46.5 kb downstream of PAX6 in a family with bilateral aniridia and foveal hypoplasia using array-CGH and multiplex ligation-dependent probe amplification. We also reviewall of the reported deletions downstream of PAX6 in patients with aniridia and/or other congenital malformations and define the overlapping region that leads to aniridia when deleted.
Collapse
Affiliation(s)
- Andreas Syrimis
- Department of Clinical Genetics, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Aniridia due to a novel microdeletion affecting
$$\textit{PAX6}$$
PAX
6
regulatory enhancers: case report and review of the literature. J Genet 2018. [DOI: 10.1007/s12041-018-0925-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
28
|
Phenotypic Variation in a Four-Generation Family with Aniridia Carrying a Novel PAX6 Mutation. J Ophthalmol 2018; 2018:5978293. [PMID: 29850208 PMCID: PMC5904767 DOI: 10.1155/2018/5978293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/05/2018] [Indexed: 12/14/2022] Open
Abstract
Aniridia is a congenital disease that affects almost all eye structures and is primarily caused by loss-of-function mutations in the PAX6 gene. The degree of vision loss in aniridia varies and is dependent on the extent of foveal, iris, and optic nerve hypoplasia and the presence of glaucoma, cataracts, and corneal opacification. Here, we describe a 4-generation family in which 7 individuals across 2 generations carry a novel disease-causing frameshift mutation (NM_000280.4(PAX6):c.565TC>T) in PAX6. This mutation results in an early stop codon in exon 8, which is predicted to cause nonsense-mediated decay of the truncated mRNA and a functionally null PAX6 allele. Family members with aniridia showed differences in multiple eye phenotypes including iris and optic nerve hypoplasia, congenital and acquired corneal opacification, glaucoma, and strabismus. Visual acuity ranged from 20/100 to less than 20/800. Patients who required surgical intervention for glaucoma or corneal opacification had worse visual outcomes. Our results show that family members carrying a novel PAX6 frameshift mutation have variable expressivity, leading to different ocular comorbidities and visual outcomes.
Collapse
|
29
|
PAX6 molecular analysis and genotype-phenotype correlations in families with aniridia from Australasia and Southeast Asia. Mol Vis 2018; 24:261-273. [PMID: 29618921 PMCID: PMC5873721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/26/2018] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Aniridia is a congenital disorder caused by variants in the PAX6 gene. In this study, we assessed the involvement of PAX6 in patients with aniridia from Australasia and Southeast Asia. METHODS Twenty-nine individuals with aniridia from 18 families originating from Australia, New Caledonia, Cambodia, Sri Lanka, and Bhutan were included. The PAX6 gene was investigated for sequence variants and analyzed for deletions with multiplex ligation-dependent probe amplification. RESULTS We identified 11 sequence variants and six chromosomal deletions, including one in mosaic. Four deleterious sequence variants were novel: p.(Pro81HisfsTer12), p.(Gln274Ter), p.(Ile29Thr), and p.(Met1?). Ocular complications were associated with a progressive loss of visual function as shown by a visual acuity ≤ 1.00 logMAR reported in 65% of eyes. The prevalence of keratopathy was statistically significantly higher in the Australasian cohort (78.6%) compared with the Southeast Asian cohort (9.1%, p=0.002). Variants resulting in protein truncating codons displayed limited genotype-phenotype correlations compared with other variants. CONCLUSIONS PAX6 variants and deletions were identified in 94% of patients with aniridia from Australasia and Southeast Asia. This study is the first report of aniridia and variations in PAX6 in individuals from Cambodia, Sri Lanka, Bhutan, and New Caledonia, and the largest cohort from Australia.
Collapse
|
30
|
Wawrocka A, Krawczynski MR. The genetics of aniridia - simple things become complicated. J Appl Genet 2018; 59:151-159. [PMID: 29460221 PMCID: PMC5895662 DOI: 10.1007/s13353-017-0426-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/21/2017] [Accepted: 12/21/2017] [Indexed: 12/26/2022]
Abstract
Aniridia is a rare, panocular disorder characterized by a variable degree of hypoplasia or the absence of iris tissue associated with additional ocular abnormalities. It is inherited in an autosomal dominant manner, with high penetrance and variable expression even within the same family. In most cases the disease is caused by haploinsufficiency truncating mutations in the PAX6 gene; however, in up to 30% of aniridia patients, disease results from chromosomal rearrangements at the 11p13 region. The aim of this review is to present the clinical and genetic aspects of the disease. Furthermore, we present a molecular diagnostic strategy in the aniridia patients. Recent improvement in the genetic diagnostic approach will precisely diagnosis aniridia patients, which is essential especially for children with aniridia in order to determine the risk of developing a Wilms tumor or neurodevelopmental disorder. Finally, based on the previous studies we describe the current knowledge and latest research findings in the topic of pathogenesis of aniridia and possible future treatment.
Collapse
Affiliation(s)
- Anna Wawrocka
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland.
| | - Maciej R Krawczynski
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland
- Centers for Medical Genetics GENESIS, Poznan, Poland
| |
Collapse
|
31
|
Cvekl A, Zhang X. Signaling and Gene Regulatory Networks in Mammalian Lens Development. Trends Genet 2017; 33:677-702. [PMID: 28867048 DOI: 10.1016/j.tig.2017.08.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 11/16/2022]
Abstract
Ocular lens development represents an advantageous system in which to study regulatory mechanisms governing cell fate decisions, extracellular signaling, cell and tissue organization, and the underlying gene regulatory networks. Spatiotemporally regulated domains of BMP, FGF, and other signaling molecules in late gastrula-early neurula stage embryos generate the border region between the neural plate and non-neural ectoderm from which multiple cell types, including lens progenitor cells, emerge and undergo initial tissue formation. Extracellular signaling and DNA-binding transcription factors govern lens and optic cup morphogenesis. Pax6, c-Maf, Hsf4, Prox1, Sox1, and a few additional factors regulate the expression of the lens structural proteins, the crystallins. Extensive crosstalk between a diverse array of signaling pathways controls the complexity and order of lens morphogenetic processes and lens transparency.
Collapse
Affiliation(s)
- Ales Cvekl
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Xin Zhang
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
32
|
Voskresenskaya A, Pozdeyeva N, Vasilyeva T, Batkov Y, Shipunov A, Gagloev B, Zinchenko R. Clinical and morphological manifestations of aniridia-associated keratopathy on anterior segment optical coherence tomography and in vivo confocal microscopy. Ocul Surf 2017; 15:759-769. [PMID: 28698011 DOI: 10.1016/j.jtos.2017.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 06/12/2017] [Accepted: 07/05/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE The study aimed to evaluate clinical and morphological changes in the limbal palisades of Vogt (POV) at different stages of aniridia-associated keratopathy (AAK) and to assess possible utility of anterior segment optical coherence tomography (AS-OCT) for the visualization of limbal progenitor structures as it correlates to laser scanning confocal microscopy (LSCM) data. METHODS The study involved 32 patients (59 eyes) with congenital aniridia. AAK stage was defined based on biomicroscopy. Assessment of limbal zone and detection of POVs in identical areas was performed by LSCM (HRT3) and AS-OCT (RTVue XR Avanti) using 3D Cornea (En Face mode) and Cornea Cross Line protocols. RESULTS Intact and changed POVs were found in 8/8 stage 0 eyes, in 1/21 stage I and 2/13 stage II eyes. Spearman's correlation coefficient in assessing the consistency of the POV diagnostic results by LSCM and AS-OCT for the inferior limbus was rS = 0.85 (P < 0.05), for the superior limbus - rS = 0.53 (P < 0.05). AS-OCT was less sensitive for detection of partially present POVs in superior limbus. The negative correlation between AAK stage and POV preservation was determined (rS = -0.5, P < 0.05). There was no correlation between AAK stage and patient age (rS = 0.235, P = 0.209). Three patients with PAX6 3' deletion showed stage 0 AAK with intact or slightly disturbed POVs morphology and transparent cornea. CONCLUSION AS-OCT may be an additional diagnostic tool for POV visualization in vivo in aniridic patients. Its diagnostic accuracy is subject to selection of anatomic region, nystagmus and the degree of POV degradation.
Collapse
Affiliation(s)
- Anna Voskresenskaya
- Cheboksary branch of S. Fyodorov Eye Microsurgery Federal State Institution, Cheboksary, Russian Federation.
| | - Nadezhda Pozdeyeva
- Cheboksary branch of S. Fyodorov Eye Microsurgery Federal State Institution, Cheboksary, Russian Federation; Postgraduate Medical Institute, Cheboksary, Russian Federation
| | - Tatyana Vasilyeva
- Federal State Budgetary Institution, Research Center for Medical Genetics, Moscow, Russian Federation
| | - Yevgeniy Batkov
- Cheboksary branch of S. Fyodorov Eye Microsurgery Federal State Institution, Cheboksary, Russian Federation
| | - Aleksandr Shipunov
- Cheboksary branch of S. Fyodorov Eye Microsurgery Federal State Institution, Cheboksary, Russian Federation
| | - Boris Gagloev
- Cheboksary branch of S. Fyodorov Eye Microsurgery Federal State Institution, Cheboksary, Russian Federation
| | - Rena Zinchenko
- Federal State Budgetary Institution, Research Center for Medical Genetics, Moscow, Russian Federation; Pirogov Russian National Research Medical University, Moscow, Russian Federation
| |
Collapse
|
33
|
Blanco-Kelly F, Palomares M, Vallespín E, Villaverde C, Martín-Arenas R, Vélez-Monsalve C, Lorda-Sánchez I, Nevado J, Trujillo-Tiebas MJ, Lapunzina P, Ayuso C, Corton M. Improving molecular diagnosis of aniridia and WAGR syndrome using customized targeted array-based CGH. PLoS One 2017; 12:e0172363. [PMID: 28231309 PMCID: PMC5322952 DOI: 10.1371/journal.pone.0172363] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/04/2017] [Indexed: 11/18/2022] Open
Abstract
Chromosomal deletions at 11p13 are a frequent cause of congenital Aniridia, a rare pan-ocular genetic disease, and of WAGR syndrome, accounting up to 30% of cases. First-tier genetic testing for newborn with aniridia, to detect 11p13 rearrangements, includes Multiplex Ligation-dependent Probe Amplification (MLPA) and karyotyping. However, neither of these approaches allow obtaining a complete picture of the high complexity of chromosomal deletions and breakpoints in aniridia. Here, we report the development and validation of a customized targeted array-based comparative genomic hybridization, so called WAGR-array, for comprehensive high-resolution analysis of CNV in the WAGR locus. Our approach increased the detection rate in a Spanish cohort of 38 patients with aniridia, WAGR syndrome and other related ocular malformations, allowing to characterize four undiagnosed aniridia cases, and to confirm MLPA findings in four additional patients. For all patients, breakpoints were accurately established and a contiguous deletion syndrome, involving a large number of genes, was identified in three patients. Moreover, we identified novel microdeletions affecting 3' PAX6 regulatory regions in three families with isolated aniridia. This tool represents a good strategy for the genetic diagnosis of aniridia and associated syndromes, allowing for a more accurate CNVs detection, as well as a better delineation of breakpoints. Our results underline the clinical importance of performing exhaustive and accurate analysis of chromosomal rearrangements for patients with aniridia, especially newborns and those without defects in PAX6 after diagnostic screening.
Collapse
Affiliation(s)
- Fiona Blanco-Kelly
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - María Palomares
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
| | - Elena Vallespín
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
| | - Cristina Villaverde
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Rubén Martín-Arenas
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
| | - Camilo Vélez-Monsalve
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Isabel Lorda-Sánchez
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Julián Nevado
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
| | - María José Trujillo-Tiebas
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Pablo Lapunzina
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- * E-mail: (CA); (MC)
| | - Marta Corton
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- * E-mail: (CA); (MC)
| |
Collapse
|
34
|
Voskresenskaya AA, Pozdeeva NA, Vasil'eva TA, Gagloev BV, Shipunov AA, Zinchenko RA. [Diagnostic capabilities of optical coherence tomography and confocal laser scanning microscopy in studying manifestations of aniridia-associated keratopathy]. Vestn Oftalmol 2017; 133:30-44. [PMID: 29319667 DOI: 10.17116/oftalma2017133630-44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
AIM to investigate the possible use of anterior segment optical coherence tomography (AS-OCT) and laser scanning confocal microscopy (LSCM) for visualization of limbal progenitor structures and epithelial changes at different stages of aniridia-associated keratopathy (AAK) and to analyze genotype-phenotype correlations of corneal damage. MATERIAL AND METHODS Thirty-four patients (63 eyes) with congenital aniridia (CA) were subjected to epithelial cell density measurement in the central cornea as well as epithelial surface assessment with limbal palisades of Vogt (POV) detection in the corresponding sites of the two corneas. For that, LSCM (HRT3) and AS-OCT (RTVue XR Avanti) were performed. Central corneal and epithelial thicknesses were measured using the Pachymetry protocol. RESULTS There has been found an increase in the central corneal thickness (CCT) of CA patients, which correlated with the stage of AAK, and a decrease in the central epithelial thickness as compared with healthy subjects (p<0.05). The difference between the basal and wing epithelial cells density in eyes with stages I and II AAK and normal cells density at stage 0 AAK was statistically significant (p<0.05). Intact or disturbed POV were detected in all patients with PAX6 3' deletion. At that, AS-OCT findings highly agreed with LSCM images for both the inferii (rS=0.85, p<0.05) and superior limbi (rS=0.53, p<0.05). A negative correlation was established between the stage of AAK and in vivo morphology of POV (rS=-0.5, p<0.05). However, no correlation was found between the stage of AAK and patient's age (rS=0.169, p=0.174). CONCLUSION AS-OCT and LSCM are both important diagnostic tools for corneal surface monitoring in patients with limbal stem cells deficiency.
Collapse
Affiliation(s)
- A A Voskresenskaya
- Cheboksary branch of S. Fyodorov Eye Microsurgery Federal State Institution, 10 Tractorostroiteley prospekt, Cheboksary, Russian Federation, 428028
| | - N A Pozdeeva
- Cheboksary branch of S. Fyodorov Eye Microsurgery Federal State Institution, 10 Tractorostroiteley prospekt, Cheboksary, Russian Federation, 428028; Postgraduate Doctors' Training Institute, Ministry of Healthcare and Social Development of the Chuvash Republic, 3 Krasnaya Sq., Cheboksary, Chuvash Republic, Russian Federation, 428003
| | - T A Vasil'eva
- Research Center for Medical Genetics, 1 Moskvorech'e St., Moscow, Russian Federation, 115478
| | - B V Gagloev
- Cheboksary branch of S. Fyodorov Eye Microsurgery Federal State Institution, 10 Tractorostroiteley prospekt, Cheboksary, Russian Federation, 428028
| | - A A Shipunov
- Cheboksary branch of S. Fyodorov Eye Microsurgery Federal State Institution, 10 Tractorostroiteley prospekt, Cheboksary, Russian Federation, 428028
| | - R A Zinchenko
- Research Center for Medical Genetics, 1 Moskvorech'e St., Moscow, Russian Federation, 115478; Pirogov Russian National Research Medical University, 1 Ostrovityanova St., Moscow, Russian Federation, 117997
| |
Collapse
|
35
|
Happ H, Weh E, Costakos D, Reis LM, Semina EV. Case report of homozygous deletion involving the first coding exons of GCNT2 isoforms A and B and part of the upstream region of TFAP2A in congenital cataract. BMC MEDICAL GENETICS 2016; 17:64. [PMID: 27609212 PMCID: PMC5016880 DOI: 10.1186/s12881-016-0316-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 07/28/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Congenital cataracts affect 3-6 per 10,000 live births and represent one of the leading causes of blindness in children. Congenital cataracts have a strong genetic component with high heterogeneity and variability. CASE PRESENTATION Analysis of whole exome sequencing data in a patient affected with congenital cataracts identified a pathogenic deletion which was further defined by other techniques. A ~98-kb homozygous deletion of 6p24.3 involving the first three exons (two non-coding and one coding) of GCNT2 isoform A, the first exon (coding) of GCNT2 isoform B, and part of the intergenic region between GCNT2 and TFAP2A was identified in the patient and her brother while both parents were found to be heterozygous carriers of the deletion. The exact breakpoints were identified and revealed the presence of Alu elements at both sides of the deletion, thus indicating Alu-mediated non-homologous end-joining as the most plausible mechanism for this rearrangement. Recessive mutations in GCNT2 are known to cause an adult i blood group phenotype with congenital cataracts in some cases. The GCNT2 gene has three differentially expressed transcripts, with GCNT2B being the only isoform associated with lens function and GCNT2C being the only isoform expressed in red blood cells based on earlier studies; previously reported mutations/deletions have either affected all three isoforms (causing blood group and cataract phenotype) or the C isoform only (causing blood group phenotype only). Dominant mutations in TFAP2A are associated with syndromic anophthalmia/microphthalmia and other ocular phenotypes as part of Branchio-Ocular-Facial-Syndrome (BOFS). While the patients do not fit a diagnosis of BOFS, one sibling demonstrates mild overlap with the phenotypic spectrum, and therefore an effect of this deletion on the function of TFAP2A cannot be ruled out. CONCLUSIONS To the best of our knowledge, this is the first case reported in which disruption of the GCNT2 gene does not involve the C isoform. The congenital cataracts phenotype in the affected patients is consistent with the previously defined isoform-specific roles of this gene. The GCNT2-TFAP2A region may be prone to rearrangements through Alu-mediated non-homologous end-joining.
Collapse
Affiliation(s)
- Hannah Happ
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Eric Weh
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Deborah Costakos
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Linda M Reis
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Elena V Semina
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, 53226, USA. .,Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA. .,Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
36
|
Abstract
Mutations in enhancer-associated chromatin-modifying components and genomic alterations in non-coding regions of the genome occur frequently in cancer, and other diseases pointing to the importance of enhancer fidelity to ensure proper tissue homeostasis. In this review, I will use specific examples to discuss how mutations in chromatin-modifying factors might affect enhancer activity of disease-relevant genes. I will then consider direct evidence from single nucleotide polymorphisms, small insertions, or deletions but also larger genomic rearrangements such as duplications, deletions, translocations, and inversions of specific enhancers to demonstrate how they have the ability to impact enhancer activity of disease genes including oncogenes and tumor suppressor genes. Considering that the scientific community only fairly recently has begun to focus its attention on "enhancer malfunction" in disease, I propose that multiple new enhancer-regulated and disease-relevant processes will be uncovered in the near future that will constitute the mechanistic basis for novel therapeutic avenues.
Collapse
Affiliation(s)
- Hans-Martin Herz
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
37
|
MiR-433 inhibits retinoblastoma malignancy by suppressing Notch1 and PAX6 expression. Biomed Pharmacother 2016; 82:247-55. [PMID: 27470361 DOI: 10.1016/j.biopha.2016.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/01/2016] [Accepted: 05/02/2016] [Indexed: 12/21/2022] Open
Abstract
Retinoblastoma (RB) is the most frequent primary intraocular cancer. It has been demonstrated by previous studies that retinoblastoma is initiated primarily by the inactivation of the retinoblastoma Rb1 gene in retinal cells. However, additional genetic alterations than Rb1 mutation could play important roles in the process of transforming benign retinal cells into retinoblastoma tumor cells. In this study, we identified that microRNA miR-433 is one of such genetic factors. We found that the expression levels of miR-433 were downregulated in RB tissues. We also determined that miR-433 negatively regulated RB cell proliferation, migration and invasion, and induced cell cycle arrest and apoptosis of RB cells. We used bioinformatics method to predict and confirmed that Notch1 and PAX6 were miR-433 target genes in RB cells. Importantly, we demonstrated that restoration of Notch1 and PAX6 expression partially rescued the inhibition of cell proliferation and metastasis induced by miR-433 overexpression, suggesting that miR-433 regulates RB cell proliferation and metastasis through suppressing the expression of Notch1 and PAX6.
Collapse
|
38
|
Ansari M, Rainger J, Hanson IM, Williamson KA, Sharkey F, Harewood L, Sandilands A, Clayton-Smith J, Dollfus H, Bitoun P, Meire F, Fantes J, Franco B, Lorenz B, Taylor DS, Stewart F, Willoughby CE, McEntagart M, Khaw PT, Clericuzio C, Van Maldergem L, Williams D, Newbury-Ecob R, Traboulsi EI, Silva ED, Madlom MM, Goudie DR, Fleck BW, Wieczorek D, Kohlhase J, McTrusty AD, Gardiner C, Yale C, Moore AT, Russell-Eggitt I, Islam L, Lees M, Beales PL, Tuft SJ, Solano JB, Splitt M, Hertz JM, Prescott TE, Shears DJ, Nischal KK, Doco-Fenzy M, Prieur F, Temple IK, Lachlan KL, Damante G, Morrison DA, van Heyningen V, FitzPatrick DR. Genetic Analysis of 'PAX6-Negative' Individuals with Aniridia or Gillespie Syndrome. PLoS One 2016; 11:e0153757. [PMID: 27124303 PMCID: PMC4849793 DOI: 10.1371/journal.pone.0153757] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 04/04/2016] [Indexed: 12/26/2022] Open
Abstract
We report molecular genetic analysis of 42 affected individuals referred with a diagnosis of aniridia who previously screened as negative for intragenic PAX6 mutations. Of these 42, the diagnoses were 31 individuals with aniridia and 11 individuals referred with a diagnosis of Gillespie syndrome (iris hypoplasia, ataxia and mild to moderate developmental delay). Array-based comparative genomic hybridization identified six whole gene deletions: four encompassing PAX6 and two encompassing FOXC1. Six deletions with plausible cis-regulatory effects were identified: five that were 3' (telomeric) to PAX6 and one within a gene desert 5' (telomeric) to PITX2. Sequence analysis of the FOXC1 and PITX2 coding regions identified two plausibly pathogenic de novo FOXC1 missense mutations (p.Pro79Thr and p.Leu101Pro). No intragenic mutations were detected in PITX2. FISH mapping in an individual with Gillespie-like syndrome with an apparently balanced X;11 reciprocal translocation revealed disruption of a gene at each breakpoint: ARHGAP6 on the X chromosome and PHF21A on chromosome 11. In the other individuals with Gillespie syndrome no mutations were identified in either of these genes, or in HCCS which lies close to the Xp breakpoint. Disruption of PHF21A has previously been implicated in the causation of intellectual disability (but not aniridia). Plausibly causative mutations were identified in 15 out of 42 individuals (12/32 aniridia; 3/11 Gillespie syndrome). Fourteen of these mutations presented in the known aniridia genes; PAX6, FOXC1 and PITX2. The large number of individuals in the cohort with no mutation identified suggests greater locus heterogeneity may exist in both isolated and syndromic aniridia than was previously appreciated.
Collapse
Affiliation(s)
- Morad Ansari
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Jacqueline Rainger
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Isabel M. Hanson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Kathleen A. Williamson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Freddie Sharkey
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Louise Harewood
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Angela Sandilands
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Jill Clayton-Smith
- Faculty of Medical and Human Sciences, Manchester Centre for Genomic Medicine, Institute of Human Development, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester, United Kingdom
| | - Helene Dollfus
- Service de Génétique Médicale, Hôpital de Haute-Pierre, Strasbourg, France
| | - Pierre Bitoun
- Medical Genetics Departments, University Hospital Jean Verdier, Bondy, France
| | - Francoise Meire
- Department of ophthalmopediatrics, Hôpital Universitaire des Enfants Reine Fabiola, Bruxelles, Belgium
| | - Judy Fantes
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Brunella Franco
- Medical Genetics, Department of Medical Translational Sciences, Federico II University, Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Birgit Lorenz
- Department of Ophthalmology, Justus-Liebig-University Giessen, Universitaetsklinikum Giessen and Marburg UKGM, Giessen, Germany
| | - David S. Taylor
- Institute of Child Health, University College London, UK and Great Ormond Street Hospital for Children, London, United Kingdom
| | - Fiona Stewart
- Northern Ireland Regional Genetics Service (NIRGS), Belfast City Hospital, Belfast, United Kingdom
| | - Colin E. Willoughby
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Meriel McEntagart
- Medical Genetics Unit, St George's University of London, London, United Kingdom
| | - Peng Tee Khaw
- Moorfields Eye Hospital, London, UK and University College London, Institute of Ophthalmology, London, United Kingdom
| | - Carol Clericuzio
- Department of Pediatric Genetics, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | | | - Denise Williams
- Clinical Genetics Unit, Birmingham Women's Hospital, Birmingham, United Kingdom
| | - Ruth Newbury-Ecob
- Department of Clinical Genetics, University Hospitals, Bristol, United Kingdom
| | - Elias I. Traboulsi
- Center for Genetic Eye Diseases, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, United States of America
| | - Eduardo D. Silva
- Department Ophthalmology, University Hospital of Coimbra, Coimbra, Portugal
| | - Mukhlis M. Madlom
- Children's Hospital, Doncaster Royal Infirmary, Doncaster, United Kingdom
| | - David R. Goudie
- Human Genetics Unit, University of Dundee College of Medicine, Dentistry and Nursing, Ninewells Hospital, Dundee, United Kingdom
| | - Brian W. Fleck
- Department of Ophthalmology, Princess Alexandra Eye Pavilion, Chalmers Street, Edinburgh, United Kingdom
| | - Dagmar Wieczorek
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
- Institut für Humangenetik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | | | - Alice D. McTrusty
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Carol Gardiner
- Clinical Genetics, Southern General Hospital, Glasgow, United Kingdom
| | - Christopher Yale
- Department of Paediatrics and Child Health, Ipswich Hospital, Ipswich, United Kingdom
| | - Anthony T. Moore
- Moorfields Eye Hospital, London, UK and University College London, Institute of Ophthalmology, London, United Kingdom
| | - Isabelle Russell-Eggitt
- Institute of Child Health, University College London, UK and Great Ormond Street Hospital for Children, London, United Kingdom
| | - Lily Islam
- Institute of Child Health, University College London, UK and Great Ormond Street Hospital for Children, London, United Kingdom
| | - Melissa Lees
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street Hospital, London, United Kingdom
| | - Philip L. Beales
- Institute of Child Health, University College London, UK and Great Ormond Street Hospital for Children, London, United Kingdom
| | - Stephen J. Tuft
- Moorfields Eye Hospital, London, UK and University College London, Institute of Ophthalmology, London, United Kingdom
| | - Juan B. Solano
- Ruber International Hospital, Medical Genetics Unit, Mirasierra, Madrid, Spain
| | - Miranda Splitt
- Northern Genetics Service, Institute of Genetic Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
| | - Jens Michael Hertz
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark
| | - Trine E. Prescott
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Deborah J. Shears
- Department of Clinical Genetics, Churchill Hospital, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
| | - Ken K. Nischal
- UPMC Eye Center, Children's Hospital of Pittsburgh of UPMC, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | | | - Fabienne Prieur
- CHU de Saint Etienne, Service de génétique médicale, Saint-Etienne, France
| | - I. Karen Temple
- Academic Unit of Genetic Medicine, Division of Human Genetics, University of Southampton, Southampton, United Kingdom
| | - Katherine L. Lachlan
- Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Giuseppe Damante
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - Danny A. Morrison
- St. Thomas’ Hospital, Westminster Bridge Road, London, United Kingdom
| | - Veronica van Heyningen
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - David R. FitzPatrick
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| |
Collapse
|
39
|
Cvekl A, Callaerts P. PAX6: 25th anniversary and more to learn. Exp Eye Res 2016; 156:10-21. [PMID: 27126352 DOI: 10.1016/j.exer.2016.04.017] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/12/2016] [Accepted: 04/22/2016] [Indexed: 01/29/2023]
Abstract
The DNA-binding transcription factor PAX6 was cloned 25 years ago by multiple teams pursuing identification of human and mouse eye disease causing genes, cloning vertebrate homologues of pattern-forming regulatory genes identified in Drosophila, or abundant eye-specific transcripts. Since its discovery in 1991, genetic, cellular, molecular and evolutionary studies on Pax6 mushroomed in the mid 1990s leading to the transformative thinking regarding the genetic program orchestrating both early and late stages of eye morphogenesis as well as the origin and evolution of diverse visual systems. Since Pax6 is also expressed outside of the eye, namely in the central nervous system and pancreas, a number of important insights into the development and function of these organs have been amassed. In most recent years, genome-wide technologies utilizing massively parallel DNA sequencing have begun to provide unbiased insights into the regulatory hierarchies of specification, determination and differentiation of ocular cells and neurogenesis in general. This review is focused on major advancements in studies on mammalian eye development driven by studies of Pax6 genes in model organisms and future challenges to harness the technology-driven opportunities to reconstruct, step-by-step, the transition from naïve ectoderm, neuroepithelium and periocular mesenchyme/neural crest cells into the three-dimensional architecture of the eye.
Collapse
Affiliation(s)
- Ales Cvekl
- The Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; The Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Patrick Callaerts
- Laboratory of Behavioral and Developmental Genetics, K.U. Leuven, VIB, 3000, Leuven, Belgium.
| |
Collapse
|
40
|
Lupiáñez DG, Spielmann M, Mundlos S. Breaking TADs: How Alterations of Chromatin Domains Result in Disease. Trends Genet 2016; 32:225-237. [DOI: 10.1016/j.tig.2016.01.003] [Citation(s) in RCA: 283] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/05/2016] [Accepted: 01/11/2016] [Indexed: 12/13/2022]
|
41
|
Bobilev AM, McDougal ME, Taylor WL, Geisert EE, Netland PA, Lauderdale JD. Assessment of PAX6 alleles in 66 families with aniridia. Clin Genet 2016; 89:669-77. [PMID: 26661695 DOI: 10.1111/cge.12708] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/03/2015] [Accepted: 12/04/2015] [Indexed: 12/18/2022]
Abstract
We report on PAX6 alleles associated with a clinical diagnosis of classical aniridia in 81 affected individuals representing 66 families. Allelic variants expected to affect PAX6 function were identified in 61 families (76 individuals). Ten cases of sporadic aniridia (10 families) had complete (8 cases) or partial (2 cases) deletion of the PAX6 gene. Sequence changes that introduced a premature termination codon into the open reading frame of PAX6 occurred in 47 families (62 individuals). Three individuals with sporadic aniridia (three families) had sequence changes (one deletion, two run-on mutations) expected to result in a C-terminal extension. An intronic deletion of unknown functional significance was detected in one case of sporadic aniridia (one family), but not in unaffected relatives. Within these 61 families, single nucleotide substitutions accounted for 30/61 (49%), indels for 23/61 (38%), and complete deletion of the PAX6 locus for 8/61 (13%). In five cases of sporadic aniridia (five families), no disease-causing mutation in the coding region was detected. In total, 23 unique variants were identified that have not been reported in the Leiden Open Variation Database (LOVD) database. Within the group assessed, 92% had sequence changes expected to reduce PAX6 function, confirming the primacy of PAX6 haploinsufficiency as causal for aniridia.
Collapse
Affiliation(s)
- A M Bobilev
- Neuroscience Division of the Biomedical and Health Sciences Institute, The University of Georgia, Athens, GA, USA
| | - M E McDougal
- Department of Cellular Biology, The University of Georgia, Athens, GA, USA
| | - W L Taylor
- Molecular Resource Center, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - E E Geisert
- Department of Ophthalmology in the Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - P A Netland
- Molecular Resource Center, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - J D Lauderdale
- Neuroscience Division of the Biomedical and Health Sciences Institute, The University of Georgia, Athens, GA, USA.,Department of Cellular Biology, The University of Georgia, Athens, GA, USA
| |
Collapse
|
42
|
Sartaj R, Chee RI, Yang J, Wan P, Liu A, Guaiquil V, Fuchs E, Rosenblatt MI. LIM Homeobox Domain 2 Is Required for Corneal Epithelial Homeostasis. Stem Cells 2016; 34:493-503. [PMID: 26661907 PMCID: PMC4834794 DOI: 10.1002/stem.2257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 07/15/2015] [Accepted: 08/06/2015] [Indexed: 11/09/2022]
Abstract
The cornea requires constant epithelial renewal to maintain clarity for appropriate vision. A subset of stem cells residing at the limbus is primarily responsible for maintaining corneal epithelium homeostasis. Trauma and disease may lead to stem cell deficiency and therapeutic targeting to replenish the stemness capacity has been stalled by the lack of reliable corneal epithelial stem cell markers. Here we identified the location of Lhx2 in mice (mLhx2) cornea and conjunctival tissue using an Lhx2eGFP reporter model and in human tissues (hLHX2). Lhx2 localized to the basal cells of central cornea, the conjunctiva and the entire limbal epithelium in humans and mice. To ascribe a functional role we generated Lhx2 conditional knockout (cKO) mice and the phenotypic effects in corneas were analyzed by slit lamp microscopy, in cell‐based assays and in a model of corneal epithelium debridement. Immunodetection on corneal sections were used to visualize conjunctivalization, a sign of limbal barrier failure. Lhx2cKO mice produced reduced body hair and spontaneous epithelial defects in the cornea that included neovascularization, perforation with formation of scar tissue and opacification. Cell based assays showed that Lhx2cKO derived corneal epithelial cells have a significantly lower capacity to form colonies over time and delayed wound‐healing recovery when compared to wildtype cells. Repeated corneal epithelial wounding resulted in decreased re‐epithelialization and multiple cornea lesions in Lhx2cKO mice compared to normal recovery seen in wildtype mice. We conclude that Lhx2 is required for maintenance of the corneal epithelial cell compartment and the limbal barrier. Stem Cells2016;34:493–503
Collapse
Affiliation(s)
- Rachel Sartaj
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ru-ik Chee
- Margaret Dyson Vision Research Institute, Weill Cornell Medical College, New York, New York, USA
| | - Jing Yang
- Margaret Dyson Vision Research Institute, Weill Cornell Medical College, New York, New York, USA
| | - Pengxia Wan
- Margaret Dyson Vision Research Institute, Weill Cornell Medical College, New York, New York, USA
| | - Aihong Liu
- Margaret Dyson Vision Research Institute, Weill Cornell Medical College, New York, New York, USA
| | - Victor Guaiquil
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology Development, The Rockefeller University, New York, New York, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
43
|
PAX6 Expression and Retinal Cell Death in a Transgenic Mouse Model for Acute Angle-Closure Glaucoma. J Glaucoma 2015; 24:426-32. [PMID: 25827297 DOI: 10.1097/ijg.0b013e318207069b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE PAX6 is a highly conserved protein essential for the control of eye development both in invertebrates and vertebrates. PAX6 expression persists in the adult inner retina, but little is known about its functions after completion of retinal differentiation. Therefore, we investigated PAX6 expression in wild-type and calcitonin receptor-like receptor transgenic (CLR(SMαA)) mice with angle-closure glaucoma. METHODS Intraocular pressure was measured by indentation tonometry in anesthetized mice. Eyes of mice of both genotypes were enucleated at various ages and retinas were processed for morphological analysis and PAX6 immunostaining. The content of PAX6 in retinal extracts was estimated by Western blot analysis. Retinal expression of glaucoma-related genes was analyzed by reverse transcription-polymerase chain reaction. RESULTS Control mice showed normal retinal morphology between p22 and p428 with steady PAX6 expression in the ganglion cell layer (GCL) and the inner nuclear layer (INL). CLR(SMαA) mice examined between p22 and p82 exhibited increased intraocular pressure and a progressive decrease in cell number including PAX6-expressing cells in the GCL. The INL was not affected up to postnatal day 42. Later, a significant increase in PAX6-expressing cells concomitant with an overall loss of cells was observed in the INL of CLR(SMαA) as compared with control mice. Retinal up-regulation of glaucoma-related genes was furthermore observed. CONCLUSIONS Distinctive changes of PAX6 expression in the inner retina of CLR(SMαA) mice suggest a role in regulatory mechanisms involved in glaucoma-related retinal cell death. The selective increase of PAX6 expression in the degenerating INL of CLR(SMαA) mice may represent an attempt to preserve retinal cytoarchitecture.
Collapse
|
44
|
Balay L, Totten E, Okada L, Zell S, Ticho B, Israel J, Kogan J. A familial pericentric inversion of chromosome 11 associated with a microdeletion of 163 kb and microduplication of 288 kb at 11p13 and 11q22.3 without aniridia or eye anomalies. Am J Med Genet A 2015; 170A:202-9. [PMID: 26419218 DOI: 10.1002/ajmg.a.37388] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 08/31/2015] [Indexed: 11/06/2022]
Abstract
Interstitial deletions of 11p13 involving MPPED2, DCDC5, DCDC1, DNAJC24, IMMP1L, and ELP4 are previously reported to have downstream transcriptional effects on the expression of PAX6, due to a downstream regulatory region (DRR). Currently, no clear genotype-phenotype correlations have been established allowing for conclusive information regarding the exact location of the PAX6 DRR, though its location has been approximated in mouse models to be within the Elp4 gene. Of the clinical reports currently published examining patients with intact PAX6 genes but harboring deletions identified in genes downstream of PAX6, 100% indicate phenotypes which include aniridia, whereas approximately half report additional eye deformities, autism, or intellectual disability. In this clinical report, we present a 12-year-old male patient, his brother, and mother with pericentric inversions of chromosome 11 associated with submicroscopic interstitial deletions of 11p13 and duplications of 11q22.3. The inversions were identified by standard cytogenetic analysis; microarray and FISH detected the chromosomal imbalance. The patient's phenotype includes intellectual disability, speech abnormalities, and autistic behaviors, but interestingly neither the patient, his brother, nor mother have aniridia or other eye anomalies. To the best of our knowledge, these findings in three family members represent the only reported cases with 11p13 deletions downstream of PAX6 not demonstrating phenotypic characteristics of aniridia or abnormal eye development. Although none of the deleted genes are obvious candidates for the patient's phenotype, the absence of aniridia in the presence of this deletion in all three family members further delineates the location of the DRR for PAX6.
Collapse
Affiliation(s)
- Lara Balay
- Center for Genetic Medicine, Northwestern University, Chicago, Illinois
| | - Ellen Totten
- Advocate Medical Group Genetics, Park Ridge, Illinois
| | - Luna Okada
- St. Alexius Medical Center, Hoffman Estates, Illinois
| | - Sidney Zell
- Advocate Children's Hospital, Oak Lawn, Illinois
| | | | | | - Jillene Kogan
- Advocate Medical Group Genetics, Park Ridge, Illinois.,Department of Cytogenetics, ACL Laboratories, Rosemont, Illinois
| |
Collapse
|
45
|
Ypsilanti AR, Rubenstein JLR. Transcriptional and epigenetic mechanisms of early cortical development: An examination of how Pax6 coordinates cortical development. J Comp Neurol 2015; 524:609-29. [PMID: 26304102 DOI: 10.1002/cne.23866] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 07/14/2015] [Accepted: 07/17/2015] [Indexed: 12/26/2022]
Abstract
The development of the cortex is an elaborate process that integrates a plethora of finely tuned molecular processes ranging from carefully regulated gradients of transcription factors, dynamic changes in the chromatin landscape, or formation of protein complexes to elicit and regulate transcription. Combined with cellular processes such as cell type specification, proliferation, differentiation, and migration, all of these developmental processes result in the establishment of an adult mammalian cortex with its typical lamination and regional patterning. By examining in-depth the role of one transcription factor, Pax6, on the regulation of cortical development, its integration in the regulation of chromatin state, and its regulation by cis-regulatory elements, we aim to demonstrate the importance of integrating each level of regulation in our understanding of cortical development.
Collapse
Affiliation(s)
- Athéna R Ypsilanti
- Department of Psychiatry, Neuroscience Program, and the Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, California
| | - John L R Rubenstein
- Department of Psychiatry, Neuroscience Program, and the Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
46
|
Schilter KF, Reis LM, Sorokina EA, Semina EV. Identification of an Alu-repeat-mediated deletion of OPTN upstream region in a patient with a complex ocular phenotype. Mol Genet Genomic Med 2015; 3:490-9. [PMID: 26740941 PMCID: PMC4694134 DOI: 10.1002/mgg3.159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/05/2015] [Accepted: 05/08/2015] [Indexed: 12/14/2022] Open
Abstract
Genetic causes of ocular conditions remain largely unknown. To reveal the molecular basis for a congenital ocular phenotype associated with glaucoma we performed whole‐exome sequencing (WES) and whole‐genome copy number analyses of patient DNA. WES did not identify a causative variant. Copy number variation analysis identified a deletion of 10p13 in the patient and his unaffected father; the deletion breakpoint contained a single 37‐bp sequence that is normally present in two distinct Alu repeats separated by ~181 kb. The deletion removed part of the upstream region of optineurin (OPTN) as well as the upstream sequence and two coding exons of coiled‐coil domain containing 3 (CCDC3); analysis of the patient's second allele showed normal OPTN and CCDC3 sequences. Studies of zebrafish orthologs identified expression in the developing eye for both genes. OPTN is a known factor in dominant adult‐onset glaucoma and Amyotrophic Lateral Sclerosis (ALS). The deletion eliminates 98 kb of the OPTN upstream sequence leaving only ~1 kb of the proximal promoter region. Comparison of transcriptional activation capability of the 3 kb normal and the rearranged del(10)(p13) OPTN promoter sequences demonstrated a statistically significant decrease for the deleted allele; sequence analysis of the entire deleted region identified multiple conserved elements with possible cis‐regulatory activity. Additional screening of CCDC3 indicated that heterozygous loss‐of‐function alleles are unlikely to cause congenital ocular disease. In summary, we report the first regulatory region deletion involving OPTN, caused by Alu‐mediated nonallelic homologous recombination and possibly contributing to the patient's ocular phenotype. In addition, our data indicate that Alu‐mediated rearrangements of the OPTN upstream region may represent a new source of affected alleles in human conditions. Evaluation of the upstream OPTN sequences in additional ocular and ALS patients may help to determine the role of this region, if any, in human disease.
Collapse
Affiliation(s)
- Kala F Schilter
- Department of Pediatrics and Children's Research InstituteMedical College of WisconsinMilwaukeeWisconsin53226; Department of Cell Biology, Neurobiology and AnatomyMedical College of WisconsinMilwaukeeWisconsin53226
| | - Linda M Reis
- Department of Pediatrics and Children's Research Institute Medical College of Wisconsin Milwaukee Wisconsin 53226
| | - Elena A Sorokina
- Department of Pediatrics and Children's Research Institute Medical College of Wisconsin Milwaukee Wisconsin 53226
| | - Elena V Semina
- Department of Pediatrics and Children's Research InstituteMedical College of WisconsinMilwaukeeWisconsin53226; Department of Cell Biology, Neurobiology and AnatomyMedical College of WisconsinMilwaukeeWisconsin53226
| |
Collapse
|
47
|
Manuel MN, Mi D, Mason JO, Price DJ. Regulation of cerebral cortical neurogenesis by the Pax6 transcription factor. Front Cell Neurosci 2015; 9:70. [PMID: 25805971 PMCID: PMC4354436 DOI: 10.3389/fncel.2015.00070] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/18/2015] [Indexed: 12/19/2022] Open
Abstract
Understanding brain development remains a major challenge at the heart of understanding what makes us human. The neocortex, in evolutionary terms the newest part of the cerebral cortex, is the seat of higher cognitive functions. Its normal development requires the production, positioning, and appropriate interconnection of very large numbers of both excitatory and inhibitory neurons. Pax6 is one of a relatively small group of transcription factors that exert high-level control of cortical development, and whose mutation or deletion from developing embryos causes major brain defects and a wide range of neurodevelopmental disorders. Pax6 is very highly conserved between primate and non-primate species, is expressed in a gradient throughout the developing cortex and is essential for normal corticogenesis. Our understanding of Pax6’s functions and the cellular processes that it regulates during mammalian cortical development has significantly advanced in the last decade, owing to the combined application of genetic and biochemical analyses. Here, we review the functional importance of Pax6 in regulating cortical progenitor proliferation, neurogenesis, and formation of cortical layers and highlight important differences between rodents and primates. We also review the pathological effects of PAX6 mutations in human neurodevelopmental disorders. We discuss some aspects of Pax6’s molecular actions including its own complex transcriptional regulation, the distinct molecular functions of its splice variants and some of Pax6’s known direct targets which mediate its actions during cortical development.
Collapse
Affiliation(s)
- Martine N Manuel
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh UK
| | - Da Mi
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh UK
| | - John O Mason
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh UK
| | - David J Price
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh UK
| |
Collapse
|
48
|
Aygun N. Correlations between long inverted repeat (LIR) features, deletion size and distance from breakpoint in human gross gene deletions. Sci Rep 2015; 5:8300. [PMID: 25657065 PMCID: PMC4319165 DOI: 10.1038/srep08300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/14/2015] [Indexed: 11/09/2022] Open
Abstract
Long inverted repeats (LIRs) have been shown to induce genomic deletions in yeast. In this study, LIRs were investigated within ±10 kb spanning each breakpoint from 109 human gross deletions, using Inverted Repeat Finder (IRF) software. LIR number was significantly higher at the breakpoint regions, than in control segments (P < 0.001). In addition, it was found that strong correlation between 5' and 3' LIR numbers, suggesting contribution to DNA sequence evolution (r = 0.85, P < 0.001). 138 LIR features at ±3 kb breakpoints in 89 (81%) of 109 gross deletions were evaluated. Significant correlations were found between distance from breakpoint and loop length (r = -0.18, P < 0.05) and stem length (r = -0.18, P < 0.05), suggesting DNA strands are potentially broken in locations closer to bigger LIRs. In addition, bigger loops cause larger deletions (r = 0.19, P < 0.05). Moreover, loop length (r = 0.29, P < 0.02) and identity between stem copies (r = 0.30, P < 0.05) of 3' LIRs were more important in larger deletions. Consequently, DNA breaks may form via LIR-induced cruciform structure during replication. DNA ends may be later repaired by non-homologous end-joining (NHEJ), with following deletion.
Collapse
Affiliation(s)
- Nevim Aygun
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, Inciralti, Izmir, Turkey
| |
Collapse
|
49
|
Dubey SK, Mahalaxmi N, Vijayalakshmi P, Sundaresan P. Mutational analysis and genotype-phenotype correlations in southern Indian patients with sporadic and familial aniridia. Mol Vis 2015; 21:88-97. [PMID: 25678763 PMCID: PMC4316699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/24/2015] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Aniridia is a rare panocular disorder characterized by iris hypoplasia and other associated eye anomalies. Heterozygous null mutations in paired box gene 6 (PAX6) are the major cause of the classic aniridia phenotype. This study aims to detect the mutational spectrum of PAX6 and associated phenotypes in southern Indian patients with sporadic and familial aniridia. METHODS Genomic DNA was isolated from peripheral blood from all participants. The coding regions and flanking intronic sequences of PAX6 were screened with Sanger sequencing in 30 probands with aniridia. The identified variations were further evaluated in available family members and 150 healthy controls. The pathogenic potential of the mutations were assessed using bioinformatics tools. RESULTS Thirteen different mutations were detected in eight sporadic and five familial cases. Eleven novel mutations, including five insertions (c.7_10dupAACA, c.567dupC, c.704dupC, c.868dupA and c.753_754insTA), two deletions (c.242delC and c.249delT), and four splicing variants (c.10+1G>A, c.141G>A, c.141+4A>G and c.764A>G) were identified in this study. Clinical findings of the patients revealed phenotypic heterogeneity with the same or different mutations. CONCLUSIONS This study reported 11 novel mutations and thus expanded the spectrum of PAX6 mutations. Interestingly, all mutations reported in this study were truncations, which confirms the hypothesis that haploinsufficiency of PAX6 causes the aniridia phenotype. Our observations revealed inter- and intrafamilial phenotypic variability with PAX6 mutations. The common ocular findings associated with PAX6 mutations were iris hypoplasia, nystagmus, and foveal hypoplasia reported in almost all cases, with cataract, glaucoma, and keratopathy reported in approximately 50% of the patients.
Collapse
Affiliation(s)
- Sushil Kumar Dubey
- Department of Genetics, Dr. G. Venkataswamy Eye Research Institute, Aravind Medical Research Foundation, Madurai, India
| | - Nagasubramanian Mahalaxmi
- Department of Genetics, Dr. G. Venkataswamy Eye Research Institute, Aravind Medical Research Foundation, Madurai, India
| | | | - Periasamy Sundaresan
- Department of Genetics, Dr. G. Venkataswamy Eye Research Institute, Aravind Medical Research Foundation, Madurai, India
| |
Collapse
|
50
|
Hu P, Meng L, Ma D, Qiao F, Wang Y, Zhou J, Yi L, Xu Z. A novel 11p13 microdeletion encompassing PAX6 in a Chinese Han family with aniridia, ptosis and mental retardation. Mol Cytogenet 2015; 8:3. [PMID: 25628759 PMCID: PMC4307215 DOI: 10.1186/s13039-015-0110-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/09/2015] [Indexed: 12/22/2022] Open
Abstract
Purpose To explore possible genetic aberrations in a Chinese family with aniridia, ptosis and mental retardation, and provide genetic evidence for the prenatal diagnosis. Methods 14 exons of PAX6 in the proband were sequenced by the Sanger sequencing technique. Multiplex ligation-dependent probe amplification (MLPA) technique was employed to further explore gene alterations of PAX6. Single nucleotide polymorphisms-array (SNP-array) assay was applied to screen potential pathologic genome-wide copy number variations (CNV). Results There were no detectable pathogenic mutations in the 14 exons of PAX6 in the proband. MLPA indicated a heterozygous deletion encompassing all PAX6 gene regions covered and a partial upstream region. SNP-array assay detected a heterozygous 11p13 microdeletion with a length of 518 kb in the proband, spanning two whole annotated genes, elongation factor protein 4 (ELP4), the paired box gene 6 (PAX6), and partial IMP1 inner-mitochondrial membrane (IMMP1L) gene. SNP-array revealed her affected brother carried the identical deletion. Conclusions The 518 kb heterozygous deletion in 11p13 encompassing PAX6 should be the genetic etiology for the familial aniridia.
Collapse
Affiliation(s)
- Ping Hu
- State key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, 123# Tianfei Street, Baixia District Nanjing, 210029 China
| | - Lulu Meng
- State key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, 123# Tianfei Street, Baixia District Nanjing, 210029 China
| | - Dingyuan Ma
- State key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, 123# Tianfei Street, Baixia District Nanjing, 210029 China
| | - Fengchang Qiao
- State key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, 123# Tianfei Street, Baixia District Nanjing, 210029 China
| | - Yan Wang
- State key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, 123# Tianfei Street, Baixia District Nanjing, 210029 China
| | - Jing Zhou
- State key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, 123# Tianfei Street, Baixia District Nanjing, 210029 China
| | - Long Yi
- Department of Pathology, Nanjing University Medical School, Nanjing, China
| | - Zhengfeng Xu
- State key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, 123# Tianfei Street, Baixia District Nanjing, 210029 China
| |
Collapse
|