1
|
Halder S, Dutta A, Mondal R, Chowdhury B, Das BB, Majumder S. Inactivation of the Catalytic Activity of Mps1 Kinase Prevents Its Own Degradation at Centrosomes. Cytoskeleton (Hoboken) 2025. [PMID: 40257068 DOI: 10.1002/cm.22032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/08/2025] [Accepted: 04/07/2025] [Indexed: 04/22/2025]
Abstract
Mps1 kinase plays important roles in regulating centriole assembly, apart from its essential role in spindle assembly checkpoint. Here we report a novel mode of regulating centrosomal Mps1 level, which is governed by its own catalytic activity that promotes its degradation at centrosomes. A kinase-dead mutant of Mps1 or catalytically inactive Mps1 due to treatment with a specific kinase inhibitor is protected from degradation at centrosomes. This autoregulatory mode of controlling Mps1 activity at centrosomes likely restricts excess centriole production in a dividing cell.
Collapse
Affiliation(s)
- Shrabani Halder
- CellBio Lab, Institute of Health Sciences, Presidency University, Kolkata, India
| | - Arpita Dutta
- CellBio Lab, Institute of Health Sciences, Presidency University, Kolkata, India
| | - Rupsa Mondal
- CellBio Lab, Institute of Health Sciences, Presidency University, Kolkata, India
| | - Banhi Chowdhury
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Benu Brata Das
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Shubhra Majumder
- CellBio Lab, Institute of Health Sciences, Presidency University, Kolkata, India
| |
Collapse
|
2
|
Xiao B, Luo X, Liu Y, Ye H, Liu H, Fan Y, Yu Y. Combining optical genome mapping and RNA-seq for structural variants detection and interpretation in unsolved neurodevelopmental disorders. Genome Med 2024; 16:113. [PMID: 39300495 DOI: 10.1186/s13073-024-01382-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Structural variations (SVs) are key genetic contributors to neurodevelopmental disorders (NDDs). Exome sequencing (ES), the current first-line tool for genetic testing of NDDs, falls short in SVs detection. This diagnostic gap is being actively addressed by new methods such as optical genome mapping (OGM). METHODS This study evaluated the utility of combining OGM and RNA-seq in the detection and interpretation of SVs in ES-negative NDDs. OGM was performed in 43 patients with NDDs with inconclusive ES results. Candidate SVs were selected based on disease association and pathogenicity evaluation, and further validated or reconstructed by alternative methods, including long-read sequencing for a complex rearrangement event. RNA-Seq was performed on blood samples from patients with candidate SVs to facilitate interpretation of pathogenicity. RESULTS OGM detected four candidate SVs, and RNA-seq confirmed the pathogenicity of three SVs in the patient cohort. This combined approach solved three cases-two cases with de novo SVs in genes associated with autosomal dominant NDDs, including a deletion encompassing the promoter and 5'UTR of MBD5 and an intragenic duplication of PAFAH1B1, and a third case possessing an intragenic duplication in trans with a pathogenic single-nucleotide variant of PLA2G6, associated with autosomal recessive NDDs. The expression alteration of the affected genes and the tandem positioning of two intragenic duplications were confirmed by RNA-seq. In the fourth case, OGM detected a complex rearrangement involving chromosomes 2 and 6, much more complex than the de novo t(2:6)(q13;q15) indicated by conventional cytogenetic analysis. Reconstruction showed that 17 segments of 6q15 spanning 9.3 Mb were disarranged and joined 2q11.2, with four breakpoints detected in the 5' and 3' non-coding region of the NDD-associated gene SYNCRIP. RNA-seq revealed largely preserved SYNCRIP expression, leaving the pathogenicity of this complex rearrangement event uncertain. CONCLUSIONS SVs in ES-negative NDDs can be identified by OGM, which is particularly useful for SVs in non-coding regions not covered by ES. OGM helps to construct complex SVs and provides information on the location and orientation of duplications, which is crucial for pathogenicity interpretation. The integration of RNA-seq facilitates the interpretation of the functional consequences of SVs at the transcriptional level. These findings demonstrate the utility and feasibility of combining OGM and RNA-seq in ES-negative cases with NDDs.
Collapse
Affiliation(s)
- Bing Xiao
- Department of Pediatric Endocrinology and Genetic Metabolism, Science and Education Building, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Room 801, No.1665, Kong Jiang Road, Shanghai, 200092, China
| | - Xiaomei Luo
- Department of Pediatric Endocrinology and Genetic Metabolism, Science and Education Building, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Room 801, No.1665, Kong Jiang Road, Shanghai, 200092, China
| | - Yi Liu
- Department of Pediatric Endocrinology and Genetic Metabolism, Science and Education Building, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Room 801, No.1665, Kong Jiang Road, Shanghai, 200092, China
| | - Hui Ye
- Department of Pediatric Endocrinology and Genetic Metabolism, Science and Education Building, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Room 801, No.1665, Kong Jiang Road, Shanghai, 200092, China
| | - Huili Liu
- Department of Pediatric Endocrinology and Genetic Metabolism, Science and Education Building, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Room 801, No.1665, Kong Jiang Road, Shanghai, 200092, China
| | - Yanjie Fan
- Department of Pediatric Endocrinology and Genetic Metabolism, Science and Education Building, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Room 801, No.1665, Kong Jiang Road, Shanghai, 200092, China.
| | - Yongguo Yu
- Department of Pediatric Endocrinology and Genetic Metabolism, Science and Education Building, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Room 801, No.1665, Kong Jiang Road, Shanghai, 200092, China.
| |
Collapse
|
3
|
Liang C, Zhou Y, Xin L, Kang K, Tian L, Zhang D, Li H, Zhao Q, Gao H, Shi Z. Hijacking monopolar spindle 1 (MPS1) for various cancer types by small molecular inhibitors: Deep insights from a decade of research and patents. Eur J Med Chem 2024; 273:116504. [PMID: 38795520 DOI: 10.1016/j.ejmech.2024.116504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/28/2024]
Abstract
Monopolar spindle 1 (MPS1) has garnered significant attention due to its pivotal role in regulating the cell cycle. Anomalous expression and hyperactivation of MPS1 have been associated with the onset and advancement of diverse cancers, positioning it as a promising target for therapeutic interventions. This review focuses on MPS1 small molecule inhibitors from the past decade, exploring design strategies, structure-activity relationships (SAR), safety considerations, and clinical performance. Notably, we propose prospects for MPS1 degraders based on proteolysis targeting chimeras (PROTACs), as well as reversible covalent bonding as innovative MPS1 inhibitor design strategies. The objective is to provide valuable information for future development and novel perspectives on potential MPS1 inhibitors.
Collapse
Affiliation(s)
- Chengyuan Liang
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China.
| | - Ying Zhou
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China
| | - Liang Xin
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China
| | - Kairui Kang
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China
| | - Lei Tian
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China; College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science& Technology, Xi'an, 710021, China
| | - Dezhu Zhang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China; Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, China
| | - Han Li
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, China; Shaanxi Pioneer Biotech Co., Ltd., Xi'an, 710082, China
| | - Qianqian Zhao
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China
| | - Hong Gao
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China; Shaanxi Pioneer Biotech Co., Ltd., Xi'an, 710082, China
| | - Zhenfeng Shi
- Department of Urology Surgery Center, The People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, 830002, China
| |
Collapse
|
4
|
Longo LVG, Hughes T, McNeil-Laidley B, Cottini F, Hilinski G, Merritt E, Benson DM. TTK/MPS1 inhibitor OSU-13 targets the mitotic checkpoint and is a potential therapeutic strategy for myeloma. Haematologica 2024; 109:578-590. [PMID: 37496433 PMCID: PMC10828771 DOI: 10.3324/haematol.2023.282838] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023] Open
Abstract
Despite substantial recent advances in treatment, multiple myeloma (MM) remains an incurable disease, with a shortage of treatment options for patients with high-risk disease, warranting the need for novel therapeutic targets and treatment approaches. Threonine and tyrosine kinase (TTK), also known as monopolar spindle 1 (MPS1), is a kinase essential for the mitotic spindle checkpoint whose expression correlates to unfavorable prognosis in several cancers. Here, we report the importance of TTK in MM, and the effects of the TTK inhibitor OSU-13. Elevated TTK expression correlated with amplification/ gain of 1q21 and decreased overall and event-free survival in MM. Treatment with OSU-13 inhibited TTK activity efficiently and selectively at a similar concentration range to other TTK inhibitor clinical candidates. OSU-13 reduced proliferation and viability of primary human MM cells and cell lines, especially those with high 1q21 copy numbers, and triggered apoptosis through caspase 3 and 7 activation. In addition, OSU-13 induced DNA damage and severe defects in chromosome alignment and segregation, generating aneuploidy. In vivo, OSU-13 decreased tumor growth in mice with NCI-H929 xenografts. Collectively, our findings reveal that inhibiting TTK with OSU-13 is a potential therapeutic strategy for MM, particularly for a subset of high-risk patients with poor outcome.
Collapse
Affiliation(s)
- Larissa Valle Guilhen Longo
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, Columbus, OH
| | - Tiffany Hughes
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, Columbus, OH
| | - Betina McNeil-Laidley
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, Columbus, OH
| | - Francesca Cottini
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, Columbus, OH
| | - Gerard Hilinski
- Drug Development Institute, Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, Columbus, OH
| | - Elizabeth Merritt
- Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, Columbus, OH
| | - Don M Benson
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, Columbus, OH.
| |
Collapse
|
5
|
Zeng Y, Ren X, Jin P, Zhang Y, Zhuo M, Wang J. Development of MPS1 Inhibitors: Recent Advances and Perspectives. J Med Chem 2023; 66:16484-16514. [PMID: 38095579 DOI: 10.1021/acs.jmedchem.3c00963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Monopolar spindle kinase 1 (MPS1) plays a pivotal role as a dual-specificity kinase governing spindle assembly checkpoint activation and sister chromatid separation in mitosis. Its overexpression has been observed in various human malignancies. MPS1 reduces spindle assembly checkpoint sensitivity, allowing tumor cells with a high degree of aneuploidy to complete mitosis and survive. Thus, MPS1 has emerged as a promising candidate for cancer therapy. Despite the identification of numerous MPS1 inhibitors, only five have advanced to clinical trials with none securing FDA approval for cancer treatment. In this perspective, we provide a concise overview of the structural and functional characteristics of MPS1 by highlighting its relevance to cancer. Additionally, we explore the structure-activity relationships, selectivity, and pharmacokinetics of MPS1 inhibitors featuring diverse scaffolds. Moreover, we review the reported work on enhancing MPS1 inhibitor selectivity, offering valuable insights into the discovery of novel, highly potent small-molecule MPS1 inhibitors.
Collapse
Affiliation(s)
- Yangjie Zeng
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Pengyao Jin
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yali Zhang
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Ming Zhuo
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Jubo Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
6
|
Zhang X, Huang L, Sun J, Liu J, Zong Y, Wan L, Yang X, Yan X, Zhang Y, Zhao R, Liu J, Zhong H, Wei C, Yang X, Tai Y, Han Y, Wang Y. Monopolar spindle 1 contributes to tamoxifen resistance in breast cancer through phosphorylation of estrogen receptor α. Breast Cancer Res Treat 2023; 202:595-606. [PMID: 37695401 DOI: 10.1007/s10549-023-07098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/06/2023] [Indexed: 09/12/2023]
Abstract
PURPOSE The overexpression of mitotic kinase monopolar spindle 1 (Mps1) has been identified in many tumor types, and targeting Mps1 for tumor therapy has shown great promise in multiple preclinical cancer models. However, the role played by Mps1 in tamoxifen (TAM) resistance in breast cancer has never been reported. METHODS The sensitivity of breast cancer cells to tamoxifen was analysed in colony formation assays and wound healing assays. Enhanced transactivational activity of estrogen receptor α (ERα) led by Mps1 overexpression was determined by luciferase assays. The interaction between Mps1 and ERα was verified by co-immunoprecipitation and proximity ligation assay. Phosphorylation of ERα by Mps1 was detected by in vitro kinase assay and such phosphorylation process in vivo was proven by co-immunoprecipitation. The potential phosphorylation site(s) of ERα were analyzed by mass spectrometry. RESULTS Mps1 determines the sensitivity of breast cancer cells to tamoxifen treatment. Mps1 overexpression rendered breast cancer cells more resistant to tamoxifen, while an Mps1 inhibitor or siMps1 oligos enabled cancer cells to overcome tamoxifen resistance. Mechanistically, Mps1 interacted with estrogen receptor α and stimulated its transactivational activity in a kinase activity-dependent manner. Mps1 was critical for ERα phosphorylation at Thr224 amino acid site. Importantly, Mps1 failed to enhance the transactivational activity of the ERα-T224A mutant. CONCLUSION Mps1 contributes to tamoxifen resistance in breast cancer and is a potential therapeutic that can overcome tamoxifen resistance in breast cancer.
Collapse
Affiliation(s)
- Xuemiao Zhang
- Department of Clinical Laboratory, The Third Medical Center of Chinese PLA General Hospital, The Training Site for Postgraduates of Jinzhou Medical University, Jinzhou, 121001, China
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Linfei Huang
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Jing Sun
- China-Japan Union Hospital of Jilin University, Changchun, 130000, China
| | - Jialong Liu
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yulong Zong
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Luming Wan
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xiaopan Yang
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xue Yan
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yanhong Zhang
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Ruzhou Zhao
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Jing Liu
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Hui Zhong
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Congwen Wei
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xiaoli Yang
- Department of Clinical Laboratory, The Third Medical Center of Chinese PLA General Hospital, The Training Site for Postgraduates of Jinzhou Medical University, Jinzhou, 121001, China
- Department of Clinical Laboratory, The Third Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
- Clinical School of the Third Medical Center of Chinese PLA General Hospital, Anhui Medical University, Hefei, 230032, China
| | - Yanhong Tai
- Department of Pathology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100166, China
| | - Yue Han
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yanhai Wang
- Department of Clinical Laboratory, Huhhot First Hospital, Huhhot, 010030, China.
| |
Collapse
|
7
|
Sharma V, Gupta M. Designing of kinase hinge binders: A medicinal chemistry perspective. Chem Biol Drug Des 2022; 100:968-980. [PMID: 35112799 DOI: 10.1111/cbdd.14024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 01/16/2022] [Accepted: 01/29/2022] [Indexed: 01/25/2023]
Abstract
Protein kinases are key regulators of cellular signaling and play a critical role in oncogenesis. Inhibitors of protein kinases are pursued by both industry and academia as a promising target for cancer therapy. Within the protein kinases, the ATP site has produced more than 40 FDA-approved drugs. The ATP site is broadly composed of a hinge region, gatekeeper residues, DFG-loop, ribose pocket, and other hydrophobic regions. The hinge region in the ATP site can be used for designing potent inhibitors. In this review, we discuss some representative studies that will highlight the interactions of heterocyclic compounds with hinge regions of different kinases like BRAF kinase, EGRF kinase, MAP kinase, and Mps1 kinase.
Collapse
Affiliation(s)
- Vikas Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Mohit Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon, USA.,GreenLight Biosciences, Woburn, MA, United States
| |
Collapse
|
8
|
Li X, Wei W, Tao L, Zeng J, Zhu Y, Yang T, Wang Q, Tang M, Liu Z, Yu L. Design, synthesis and biological evaluation of a new class of 7H-pyrrolo[2,3-d]pyrimidine derivatives as Mps1 inhibitors for the treatment of breast cancer. Eur J Med Chem 2022; 245:114887. [DOI: 10.1016/j.ejmech.2022.114887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/08/2022] [Accepted: 10/24/2022] [Indexed: 11/28/2022]
|
9
|
Su L, Sun Z, Qi F, Su H, Qian L, Li J, Zuo L, Huang J, Yu Z, Li J, Chen Z, Zhang S. GRP75-driven, cell-cycle-dependent macropinocytosis of Tat/pDNA-Ca 2+ nanoparticles underlies distinct gene therapy effect in ovarian cancer. J Nanobiotechnology 2022; 20:340. [PMID: 35858873 PMCID: PMC9301890 DOI: 10.1186/s12951-022-01530-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/26/2022] [Indexed: 11/10/2022] Open
Abstract
Practice of tumor-targeted suicide gene therapy is hampered by unsafe and low efficient delivery of plasmid DNA (pDNA). Using HIV-Tat-derived peptide (Tat) to non-covalently form Tat/pDNA complexes advances the delivery performance. However, this innovative approach is still limited by intracellular delivery efficiency and cell-cycle status. In this study, Tat/pDNA complexes were further condensed into smaller, nontoxic nanoparticles by Ca2+ addition. Formulated Tat/pDNA-Ca2+ nanoparticles mainly use macropinocytosis for intercellular delivery, and their macropinocytic uptake was persisted in mitosis (M-) phase and highly activated in DNA synthesis (S-) phase of cell-cycle. Over-expression or phosphorylation of a mitochondrial chaperone, 75-kDa glucose-regulated protein (GRP75), promoted monopolar spindle kinase 1 (MPS1)-controlled centrosome duplication and cell-cycle progress, but also driven cell-cycle-dependent macropinocytosis of Tat/pDNA-Ca2+ nanoparticles. Further in vivo molecular imaging based on DF (Fluc-eGFP)-TF (RFP-Rluc-HSV-ttk) system showed that Tat/pDNA-Ca2+ nanoparticles exhibited highly suicide gene therapy efficiency in mouse model xenografted with human ovarian cancer. Furthermore, arresting cell-cycle at S-phase markedly enhanced delivery performance of Tat/pDNA-Ca2+ nanoparticles, whereas targeting GRP75 reduced their macropinocytic delivery. More importantly, in vivo targeting GRP75 combined with cell-cycle or macropinocytosis inhibitors exhibited distinct suicide gene therapy efficiency. In summary, our data highlight that mitochondrial chaperone GRP75 moonlights as a biphasic driver underlying cell-cycle-dependent macropinocytosis of Tat/pDNA-Ca2+ nanoparticles in ovarian cancer.
Collapse
Affiliation(s)
- Linjia Su
- Department of Cell Biology, School of Medicine, Nankai University, Nankai District, 94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Zhe Sun
- School of Life Sciences, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Fangzheng Qi
- Department of Cell Biology, School of Medicine, Nankai University, Nankai District, 94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Huishan Su
- Department of Cell Biology, School of Medicine, Nankai University, Nankai District, 94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Luomeng Qian
- Department of Cell Biology, School of Medicine, Nankai University, Nankai District, 94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Jing Li
- Department of Cell Biology, School of Medicine, Nankai University, Nankai District, 94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Liang Zuo
- Department of Cell Biology, School of Medicine, Nankai University, Nankai District, 94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Jinhai Huang
- School of Life Sciences, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Zhilin Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Jinping Li
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123, Uppsala, Sweden
| | - Zhinan Chen
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Sihe Zhang
- Department of Cell Biology, School of Medicine, Nankai University, Nankai District, 94 Weijin Road, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
10
|
Lu J, Huang Y, Huang J, He R, Huang M, Lu X, Xu Y, Zhou F, Zhang Z, Ding K. Discovery of the First Examples of Threonine Tyrosine Kinase PROTAC Degraders. J Med Chem 2022; 65:2313-2328. [PMID: 35084180 DOI: 10.1021/acs.jmedchem.1c01768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first examples of threonine tyrosine kinase (TTK) PROTACs were designed and synthesized. Two of the most potent molecules, 8e and 8j, demonstrated strong TTK degradation in COLO-205 human colorectal cancer cells with DC50 values of 1.7 and 3.1 nM, respectively. Proteasome-mediated degradation by the compounds could last for approximately 8 h after washout. The degraders 8e and 8j demonstrated improved antiproliferative activities comparing with the structurally similar inhibitor counterparts 8q and 8r. Degraders 8e and 8j also demonstrated reasonable PK profiles and exhibited potent target degradation and in vivo anticancer efficacy in a xenograft mouse model of COLO-205 human colorectal cancer cells upon i.p. administration.
Collapse
Affiliation(s)
- Jibu Lu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Yongjun Huang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jing Huang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Rui He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Minhao Huang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yong Xu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China.,State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Fengtao Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.,The First Affiliated Hospital (Huaqiao Hospital), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.,State Key Laboratory of Bioorganic Chemistry and Nature Products, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.345 Lingling Road, 200032 Shanghai, China
| |
Collapse
|
11
|
Estrogens—Origin of Centrosome Defects in Human Cancer? Cells 2022; 11:cells11030432. [PMID: 35159242 PMCID: PMC8833882 DOI: 10.3390/cells11030432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/22/2022] Open
Abstract
Estrogens are associated with a variety of diseases and play important roles in tumor development and progression. Centrosome defects are hallmarks of human cancers and contribute to ongoing chromosome missegragation and aneuploidy that manifest in genomic instability and tumor progression. Although several mechanisms underlie the etiology of centrosome aberrations in human cancer, upstream regulators are hardly known. Accumulating experimental and clinical evidence points to an important role of estrogens in deregulating centrosome homeostasis and promoting karyotype instability. Here, we will summarize existing literature of how natural and synthetic estrogens might contribute to structural and numerical centrosome defects, genomic instability and human carcinogenesis.
Collapse
|
12
|
Alfaro-Mora Y, Domínguez-Gómez G, Cáceres-Gutiérrez RE, Tolentino-García L, Herrera LA, Castro-Hernández C, Bermúdez-Cruz RM, Díaz-Chávez J. MPS1 is involved in the HPV16-E7-mediated centrosomes amplification. Cell Div 2021; 16:6. [PMID: 34736484 PMCID: PMC8567613 DOI: 10.1186/s13008-021-00074-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/14/2021] [Indexed: 11/10/2022] Open
Abstract
Background It has been reported that the oncoprotein E7 from human papillomavirus type 16 (HPV16-E7) can induce the excessive synthesis of centrosomes through the increase in the expression of PLK4, which is a transcriptional target of E2F1. On the other hand, it has been reported that increasing MPS1 protein stability can also generate an excessive synthesis of centrosomes. In this work, we analyzed the possible role of MPS1 in the amplification of centrosomes mediated by HPV16-E7. Results Employing qRT-PCR, Western Blot, and Immunofluorescence techniques, we found that E7 induces an increase in the MPS1 transcript and protein levels in the U2OS cell line, as well as protein stabilization. Besides, we observed that inhibiting the expression of MPS1 in E7 protein-expressing cells leads to a significant reduction in the number of centrosomes. Conclusions These results indicate that the presence of the MPS1 protein is necessary for E7 protein to increase the number of centrosomes, and possible implications are discussed. Supplementary Information The online version contains supplementary material available at 10.1186/s13008-021-00074-9.
Collapse
Affiliation(s)
- Yair Alfaro-Mora
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Mexico City, Mexico.,Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Guadalupe Domínguez-Gómez
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Rodrigo E Cáceres-Gutiérrez
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Laura Tolentino-García
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología (INCan), Mexico City, Mexico.,Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Clementina Castro-Hernández
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Rosa María Bermúdez-Cruz
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Mexico City, Mexico.
| | - José Díaz-Chávez
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología (INCan), Mexico City, Mexico.
| |
Collapse
|
13
|
Gräf R, Grafe M, Meyer I, Mitic K, Pitzen V. The Dictyostelium Centrosome. Cells 2021; 10:cells10102657. [PMID: 34685637 PMCID: PMC8534566 DOI: 10.3390/cells10102657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 12/13/2022] Open
Abstract
The centrosome of Dictyostelium amoebae contains no centrioles and consists of a cylindrical layered core structure surrounded by a corona harboring microtubule-nucleating γ-tubulin complexes. It is the major centrosomal model beyond animals and yeasts. Proteomics, protein interaction studies by BioID and superresolution microscopy methods led to considerable progress in our understanding of the composition, structure and function of this centrosome type. We discuss all currently known components of the Dictyostelium centrosome in comparison to other centrosomes of animals and yeasts.
Collapse
|
14
|
Gui P, Sedzro DM, Yuan X, Liu S, Hei M, Tian W, Zohbi N, Wang F, Yao Y, Aikhionbare FO, Gao X, Wang D, Yao X, Dou Z. Mps1 dimerization and multisite interactions with Ndc80 complex enable responsive spindle assembly checkpoint signaling. J Mol Cell Biol 2021; 12:486-498. [PMID: 32219319 PMCID: PMC7493027 DOI: 10.1093/jmcb/mjaa006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/13/2020] [Accepted: 03/18/2020] [Indexed: 12/21/2022] Open
Abstract
Error-free mitosis depends on accurate chromosome attachment to spindle microtubules, which is monitored by the spindle assembly checkpoint (SAC) signaling. As an upstream factor of SAC, the precise and dynamic kinetochore localization of Mps1 kinase is critical for initiating and silencing SAC signaling. However, the underlying molecular mechanism remains elusive. Here, we demonstrated that the multisite interactions between Mps1 and Ndc80 complex (Ndc80C) govern Mps1 kinetochore targeting. Importantly, we identified direct interaction between Mps1 tetratricopeptide repeat domain and Ndc80C. We further identified that Mps1 C-terminal fragment, which contains the protein kinase domain and C-tail, enhances Mps1 kinetochore localization. Mechanistically, Mps1 C-terminal fragment mediates its dimerization. Perturbation of C-tail attenuates the kinetochore targeting and activity of Mps1, leading to aberrant mitosis due to compromised SAC function. Taken together, our study highlights the importance of Mps1 dimerization and multisite interactions with Ndc80C in enabling responsive SAC signaling.
Collapse
Affiliation(s)
- Ping Gui
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.,Keck Center for Cellular Dynamics and Organoids Plasticity, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Divine M Sedzro
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Xiao Yuan
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Sikai Liu
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Mohan Hei
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Tian
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Najdat Zohbi
- Keck Center for Cellular Dynamics and Organoids Plasticity, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Fangwei Wang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Yihan Yao
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Felix O Aikhionbare
- Keck Center for Cellular Dynamics and Organoids Plasticity, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xinjiao Gao
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Dongmei Wang
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Zhen Dou
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
15
|
Chandra V, Rai R, Benbrook DM. Utility and Mechanism of SHetA2 and Paclitaxel for Treatment of Endometrial Cancer. Cancers (Basel) 2021; 13:cancers13102322. [PMID: 34066052 PMCID: PMC8150795 DOI: 10.3390/cancers13102322] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Incidence and death rates for endometrial cancer are steadily rising world-wide. Endometrial cancer patients at high risk for recurrence are treated with chemotherapy, which causes significant toxicity. Molecularly targeted drugs have been found to cause less toxicity than chemotherapy. We studied a low-toxicity drug, called SHetA2, which targets three heat shock A proteins that are highly mutated in endometrial cancers. Our results demonstrated that SHetA2 inhibits endometrial cancer cells and tumors, and enhances therapeutic effects of paclitaxel without increasing toxicity. This information supports development of clinical trials to test if combining SHetA2 with paclitaxel can increase the paclitaxel therapeutic effect without increasing toxicity, or allows a lowered paclitaxel dose to achieve the same level of therapeutic effect, but with reduced toxicity. Our new knowledge about how SHetA2 works can be translated into development of biomarkers to predict with patients would most likely benefit from SHetA2-based therapy. Abstract Endometrial cancer patients with advanced disease or high recurrence risk are treated with chemotherapy. Our objective was to evaluate the utility and mechanism of a novel drug, SHetA2, alone and in combination with paclitaxel, in endometrial cancer. SHetA2 targets the HSPA chaperone proteins, Grp78, hsc70, and mortalin, which have high mutation rates in endometrial cancer. SHetA2 effects on cancerous phenotypes, mitochondria, metabolism, protein expression, mortalin/client protein complexes, and cell death were evaluated in AN3CA, Hec13b, and Ishikawa endometrial cancer cell lines, and on growth of Ishikawa xenografts. In all three cell lines, SHetA2 inhibited anchorage-independent growth, migration, invasion, and ATP production, and induced G1 cell cycle arrest, mitochondrial damage, and caspase- and apoptosis inducing factor (AIF)-mediated apoptosis. These effects were associated with altered levels of proteins involved in cell cycle regulation, mitochondrial function, protein synthesis, endoplasmic reticulum stress, and metabolism; disruption of mortalin complexes with mitochondrial and metabolism proteins; and inhibition of oxidative phosphorylation and glycolysis. SHetA2 and paclitaxel exhibited synergistic combination indices in all cell lines and exerted greater xenograft tumor growth inhibition than either drug alone. SHetA2 is active against endometrial cancer cell lines in culture and in vivo and acts synergistically with paclitaxel.
Collapse
|
16
|
Huang M, Huang Y, Guo J, Yu L, Chang Y, Wang X, Luo J, Huang Y, Tu Z, Lu X, Xu Y, Zhang Z, Zhang Z, Ding K. Pyrido[2, 3-d]pyrimidin-7(8H)-ones as new selective orally bioavailable Threonine Tyrosine Kinase (TTK) inhibitors. Eur J Med Chem 2020; 211:113023. [PMID: 33248853 DOI: 10.1016/j.ejmech.2020.113023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/08/2020] [Accepted: 11/10/2020] [Indexed: 01/12/2023]
Abstract
A series of pyrido [2, 3-d]pyrimidin-7(8H)-ones were designed and synthesized as new selective orally bioavailable Threonine Tyrosine Kinase (TTK) inhibitors. One of the representative compounds, 5o, exhibited strong binding affinity with a Kd value of 0.15 nM, but was significantly less potent against a panel of 402 wild-type kinases at 100 nM. The compound also potently inhibited the kinase activity of TTK with an IC50 value of 23 nM, induced chromosome missegregation and aneuploidy, and suppressed proliferation of a panel of human cancer cell lines with low μM IC50 values. Compound 5o demonstrated good oral pharmacokinetic properties with a bioavailability value of 45.3% when administered at a dose of 25 mg/kg in rats. Moreover, a combination therapy of 5o with paclitaxel displayed promising in vivo efficacy against the HCT-116 human colon cancer xenograft model in nude mice with a Tumor Growth Inhibition (TGI) value of 78%. Inhibitor 5o may provide a new research tool for further validating therapeutic potential of TTK inhibition.
Collapse
Affiliation(s)
- Minhao Huang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | - Yongjun Huang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jing Guo
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Lei Yu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Yu Chang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xiaolu Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jinfeng Luo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | - Yanhui Huang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | - Zhengchao Tu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yong Xu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | - Zhimin Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| |
Collapse
|
17
|
Ju JQ, Li XH, Pan MH, Xu Y, Xu Y, Sun MH, Sun SC. Mps1 controls spindle assembly, SAC, and DNA repair in the first cleavage of mouse early embryos. J Cell Biochem 2020; 122:290-300. [PMID: 33025669 DOI: 10.1002/jcb.29858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/28/2020] [Accepted: 09/14/2020] [Indexed: 11/08/2022]
Abstract
Monopolar spindle-1 (Mps1) is a critical interphase regulator that also involves into the spindle assembly checkpoint for the cell cycle control in both mitosis and meiosis. However, the functions of Mps1 during mouse early embryo development is still unclear. In this study, we reported the important roles of Mps1 in the first cleavage of mouse embryos. Our data indicated that the loss of Mps1 activity caused precocious cleavage of zygotes to 2-cell embryos; however, prolonged culture disturbed the early embryo development to the blastocyst. We found that the spindle organization was disrupted after Mps1 inhibition, and the chromosomes were misaligned in the first cleavage. Moreover, the kinetochore-microtubule attachment was lost and Aurora B failed to accumulate to the kinetochores, indicating that the spindle assembly checkpoint (SAC) was activated. Furthermore, the inhibition of Mps1 activity resulted in an increase of DNA damage, which further induced oxidative stress, showing with positive γ-H2A.X signal and increased reactive oxygen species level. Ultimately, irreparable DNA damage and oxidative stress-activated apoptosis and autophagy, which was confirmed by the positive Annexin-V signal and increased autophagosomes. Taken together, our data indicated that Mps1 played important roles in the control of SAC and DNA repair during mouse early embryo development.
Collapse
Affiliation(s)
- Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Han Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yi Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yao Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ming-Hong Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
18
|
Benzi G, Piatti S. Killing two birds with one stone: how budding yeast Mps1 controls chromosome segregation and spindle assembly checkpoint through phosphorylation of a single kinetochore protein. Curr Genet 2020; 66:1037-1044. [PMID: 32632756 DOI: 10.1007/s00294-020-01091-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
Abstract
During mitosis, the identical sister chromatids of each chromosome must attach through their kinetochores to microtubules emanating from opposite spindle poles. This process, referred to as chromosome biorientation, is essential for equal partitioning of the genetic information to the two daughter cells. Defects in chromosome biorientation can give rise to aneuploidy, a hallmark of cancer and genetic diseases. A conserved surveillance mechanism called spindle assembly checkpoint (SAC) prevents the onset of anaphase until biorientation is attained. Key to chromosome biorientation is an error correction mechanism that allows kinetochores to establish proper bipolar attachments by disengaging faulty kinetochore-microtubule connections. Error correction relies on the Aurora B and Mps1 kinases that also promote SAC signaling, raising the possibility that they are part of a single sensory device responding to improper attachments and concomitantly controlling both their disengagement and a temporary mitotic arrest. In budding yeast, Aurora B and Mps1 promote error correction independently from one another, but while the substrates of Aurora B in this process are at least partially known, the mechanism underlying the involvement of Mps1 in the error correction pathway is unknown. Through the characterization of a novel mps1 mutant and an unbiased genetic screen for extragenic suppressors, we recently gained evidence that a common mechanism based on Mps1-dependent phosphorylation of the Knl1/Spc105 kinetochore scaffold and subsequent recruitment of the Bub1 kinase is critical for the function of Mps1 in chromosome biorientation as well as for SAC activation (Benzi et al. EMBO Rep, 2020).
Collapse
Affiliation(s)
- Giorgia Benzi
- CRBM, University of Montpellier, CNRS, 1919 Route de Mende, 34293, Montpellier, France
| | - Simonetta Piatti
- CRBM, University of Montpellier, CNRS, 1919 Route de Mende, 34293, Montpellier, France.
| |
Collapse
|
19
|
Jusino S, Saavedra HI. Role of E2Fs and mitotic regulators controlled by E2Fs in the epithelial to mesenchymal transition. Exp Biol Med (Maywood) 2019; 244:1419-1429. [PMID: 31575294 DOI: 10.1177/1535370219881360] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is a complex cellular process in which epithelial cells acquire mesenchymal properties. EMT occurs in three biological settings: development, wound healing and fibrosis, and tumor progression. Despite occurring in three independent biological settings, EMT signaling shares some molecular mechanisms that allow epithelial cells to de-differentiate and acquire mesenchymal characteristics that confer cells invasive and migratory capacity to distant sites. Here we summarize the molecular mechanism that delineates EMT and we will focus on the role of E2 promoter binding factors (E2Fs) in EMT during tumor progression. Since the E2Fs are presently undruggable due to their control in numerous pivotal cellular functions and due to the lack of selectivity against individual E2Fs, we will also discuss the role of three mitotic regulators and/or mitotic kinases controlled by the E2Fs (NEK2, Mps1/TTK, and SGO1) in EMT that can be useful as drug targets. Impact statement The study of the epithelial to mesenchymal transition (EMT) is an active area of research since it is one of the early intermediates to invasion and metastasis—a state of the cancer cells that ultimately kills many cancer patients. We will present in this review that besides their canonical roles as regulators of proliferation, unregulated expression of the E2F transcription factors may contribute to cancer initiation and progression to metastasis by signaling centrosome amplification, chromosome instability, and EMT. Since our discovery that the E2F activators control centrosome amplification and mitosis in cancer cells, we have identified centrosome and mitotic regulators that may represent actionable targets against EMT and metastasis in cancer cells. This is impactful to all of the cancer patients in which the Cdk/Rb/E2F pathway is deregulated, which has been estimated to be most cancer patients with solid tumors.
Collapse
Affiliation(s)
- Shirley Jusino
- Basic Sciences Department, Division of Pharmacology and Toxicology, Ponce Research Institute, Ponce Health Sciences University, Ponce PR 00732, USA
| | - Harold I Saavedra
- Basic Sciences Department, Division of Pharmacology and Toxicology, Ponce Research Institute, Ponce Health Sciences University, Ponce PR 00732, USA
| |
Collapse
|
20
|
Molecular design and anticancer activities of small-molecule monopolar spindle 1 inhibitors: A Medicinal chemistry perspective. Eur J Med Chem 2019; 175:247-268. [DOI: 10.1016/j.ejmech.2019.04.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 11/21/2022]
|
21
|
Zheng L, Chen Z, Kawakami M, Chen Y, Roszik J, Mustachio LM, Kurie JM, Villalobos P, Lu W, Behrens C, Mino B, Solis LM, Silvester J, Thu KL, Cescon DW, Rodriguez-Canales J, Wistuba II, Mak TW, Liu X, Dmitrovsky E. Tyrosine Threonine Kinase Inhibition Eliminates Lung Cancers by Augmenting Apoptosis and Polyploidy. Mol Cancer Ther 2019; 18:1775-1786. [PMID: 31358662 DOI: 10.1158/1535-7163.mct-18-0864] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/18/2018] [Accepted: 07/24/2019] [Indexed: 01/11/2023]
Abstract
The spindle assembly checkpoint maintains genomic integrity. A key component is tyrosine threonine kinase (TTK, also known as Mps1). TTK antagonism is hypothesized to cause genomic instability and cell death. Interrogating The Cancer Genome Atlas revealed high TTK expression in lung adenocarcinomas and squamous cell cancers versus the normal lung (P < 0.001). This correlated with an unfavorable prognosis in examined lung adenocarcinoma cases (P = 0.007). TTK expression profiles in lung tumors were independently assessed by RNA in situ hybridization. CFI-402257 is a highly selective TTK inhibitor. Its potent antineoplastic effects are reported here against a panel of well-characterized murine and human lung cancer cell lines. Significant antitumorigenic activity followed independent treatments of athymic mice bearing human lung cancer xenografts (6.5 mg/kg, P < 0.05; 8.5 mg/kg, P < 0.01) and immunocompetent mice with syngeneic lung cancers (P < 0.001). CFI-402257 antineoplastic mechanisms were explored. CFI-402257 triggered aneuploidy and apoptotic death of lung cancer cells without changing centrosome number. Reverse phase protein arrays (RPPA) of vehicle versus CFI-402257-treated lung cancers were examined using more than 300 critical growth-regulatory proteins. RPPA bioinformatic analyses discovered CFI-402257 enhanced MAPK signaling, implicating MAPK antagonism in augmenting TTK inhibitory effects. This was independently confirmed using genetic and pharmacologic repression of MAPK that promoted CFI-402257 anticancer actions. TTK antagonism exerted marked antineoplastic effects against lung cancers and MAPK inhibition cooperated. Future work should determine whether CFI-402257 treatment alone or with a MAPK inhibitor is active in the lung cancer clinic.
Collapse
Affiliation(s)
- Lin Zheng
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zibo Chen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Masanori Kawakami
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Yulong Chen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lisa Maria Mustachio
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pamela Villalobos
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wei Lu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carmen Behrens
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Barbara Mino
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luisa M Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer Silvester
- The Campbell Family Institute for Breast Cancer Research at Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Kelsie L Thu
- The Campbell Family Institute for Breast Cancer Research at Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - David W Cescon
- The Campbell Family Institute for Breast Cancer Research at Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jaime Rodriguez-Canales
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tak W Mak
- The Campbell Family Institute for Breast Cancer Research at Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Xi Liu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Ethan Dmitrovsky
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Frederick National Laboratory for Cancer Research, Frederick, Maryland.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
22
|
Allahyar A, Ubels J, de Ridder J. A data-driven interactome of synergistic genes improves network-based cancer outcome prediction. PLoS Comput Biol 2019; 15:e1006657. [PMID: 30726216 PMCID: PMC6380593 DOI: 10.1371/journal.pcbi.1006657] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 02/19/2019] [Accepted: 11/20/2018] [Indexed: 12/13/2022] Open
Abstract
Robustly predicting outcome for cancer patients from gene expression is an important challenge on the road to better personalized treatment. Network-based outcome predictors (NOPs), which considers the cellular wiring diagram in the classification, hold much promise to improve performance, stability and interpretability of identified marker genes. Problematically, reports on the efficacy of NOPs are conflicting and for instance suggest that utilizing random networks performs on par to networks that describe biologically relevant interactions. In this paper we turn the prediction problem around: instead of using a given biological network in the NOP, we aim to identify the network of genes that truly improves outcome prediction. To this end, we propose SyNet, a gene network constructed ab initio from synergistic gene pairs derived from survival-labelled gene expression data. To obtain SyNet, we evaluate synergy for all 69 million pairwise combinations of genes resulting in a network that is specific to the dataset and phenotype under study and can be used to in a NOP model. We evaluated SyNet and 11 other networks on a compendium dataset of >4000 survival-labelled breast cancer samples. For this purpose, we used cross-study validation which more closely emulates real world application of these outcome predictors. We find that SyNet is the only network that truly improves performance, stability and interpretability in several existing NOPs. We show that SyNet overlaps significantly with existing gene networks, and can be confidently predicted (~85% AUC) from graph-topological descriptions of these networks, in particular the breast tissue-specific network. Due to its data-driven nature, SyNet is not biased to well-studied genes and thus facilitates post-hoc interpretation. We find that SyNet is highly enriched for known breast cancer genes and genes related to e.g. histological grade and tamoxifen resistance, suggestive of a role in determining breast cancer outcome.
Collapse
Affiliation(s)
- Amin Allahyar
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Delft Bioinformatics Lab, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - Joske Ubels
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Skyline DX, Rotterdam
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam
| | - Jeroen de Ridder
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
23
|
Fisk HA, Thomas JL, Nguyen TB. Breaking Bad: Uncoupling of Modularity in Centriole Biogenesis and the Generation of Excess Centrioles in Cancer. Results Probl Cell Differ 2019; 67:391-411. [PMID: 31435805 DOI: 10.1007/978-3-030-23173-6_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Centrosomes are tiny yet complex cytoplasmic structures that perform a variety of roles related to their ability to act as microtubule-organizing centers. Like the genome, centrosomes are single copy structures that undergo a precise semi-conservative replication once each cell cycle. Precise replication of the centrosome is essential for genome integrity, because the duplicated centrosomes will serve as the poles of a bipolar mitotic spindle, and any number of centrosomes other than two will lead to an aberrant spindle that mis-segregates chromosomes. Indeed, excess centrosomes are observed in a variety of human tumors where they generate abnormal spindles in situ that are thought to participate in tumorigenesis by driving genomic instability. At the heart of the centrosome is a pair of centrioles, and at the heart of centrosome duplication is the replication of this centriole pair. Centriole replication proceeds through a complex macromolecular assembly process. However, while centrosomes may contain as many as 500 proteins, only a handful of proteins have been shown to be essential for centriole replication. Our observations suggest that centriole replication is a modular, bottom-up process that we envision akin to building a house; the proper site of assembly is identified, a foundation is assembled at that site, and subsequent modules are added on top of the foundation. Here, we discuss the data underlying our view of modularity in the centriole assembly process, and suggest that non-essential centriole assembly factors take on greater importance in cancer cells due to their function in coordination between centriole modules, using the Monopolar spindles 1 protein kinase and its substrate Centrin 2 to illustrate our model.
Collapse
Affiliation(s)
- Harold A Fisk
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA.
| | - Jennifer L Thomas
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Tan B Nguyen
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
24
|
Liu M, Qiu YL, Jin T, Zhou Y, Mao ZY, Zhang YJ. Meta-analysis of microarray datasets identify several chromosome segregation-related cancer/testis genes potentially contributing to anaplastic thyroid carcinoma. PeerJ 2018; 6:e5822. [PMID: 30386706 PMCID: PMC6203939 DOI: 10.7717/peerj.5822] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/25/2018] [Indexed: 01/08/2023] Open
Abstract
AIM Anaplastic thyroid carcinoma (ATC) is the most lethal thyroid malignancy. Identification of novel drug targets is urgently needed. MATERIALS & METHODS We re-analyzed several GEO datasets by systematic retrieval and data merging. Differentially expressed genes (DEGs) were filtered out. We also performed pathway enrichment analysis to interpret the data. We predicted key genes based on protein-protein interaction networks, weighted gene co-expression network analysis and genes' cancer/testis expression pattern. We also further characterized these genes using data from the Cancer Genome Atlas (TCGA) project and gene ontology annotation. RESULTS Cell cycle-related pathways were significantly enriched in upregulated genes in ATC. We identified TRIP13, DLGAP5, HJURP, CDKN3, NEK2, KIF15, TTK, KIF2C, AURKA and TPX2 as cell cycle-related key genes with cancer/testis expression pattern. We further uncovered that most of these putative key genes were critical components during chromosome segregation. CONCLUSION We predicted several key genes harboring potential therapeutic value in ATC. Cell cycle-related processes, especially chromosome segregation, may be the key to tumorigenesis and treatment of ATC.
Collapse
Affiliation(s)
- Mu Liu
- The First Medical School of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu-Lu Qiu
- The First Medical School of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tong Jin
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yin Zhou
- The First Medical School of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhi-Yuan Mao
- Department of Human Anatomy, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yong-Jie Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory for Aging & Diseases of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
25
|
LMO1 functions as an oncogene by regulating TTK expression and correlates with neuroendocrine differentiation of lung cancer. Oncotarget 2018; 9:29601-29618. [PMID: 30038707 PMCID: PMC6049873 DOI: 10.18632/oncotarget.25642] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/24/2018] [Indexed: 11/25/2022] Open
Abstract
LMO1 encodes a protein containing a cysteine-rich LIM domain involved in protein-protein interactions. Recent studies have shown that LMO1 functions as an oncogene in several cancer types, including non-small cell lung cancer (NSCLC). However, the function of LMO1 in other histological subtypes of lung cancer, such as small cell lung cancer (SCLC), was not investigated. In analyzing the expression of LMO1 across a panel of lung cell lines, we found that LMO1 expression levels were significantly and dramatically higher in SCLC cells, an aggressive neuroendocrine subtype of lung cancer, relative to NSCLC and normal lung cells. In NSCLC cells, LMO1 mRNA levels were significantly correlated with expression of neuroendocrine differentiation markers. Our in vitro investigations indicated that LMO1 had the general property of promoting cell proliferation in lung cancer cells representing different histological subtypes, suggesting a general oncogenic function of LMO1 in lung cancer. In investigating the clinical relevance of LMO1 as an oncogene, we found that a high tumor level of the LMO1 mRNA was an independent predictor of poor patient survival. These results suggest that LMO1 acts as an oncogene, with expression correlated with neuroendocrine differentiation of lung cancer, and that it is a determinant of lung cancer aggressiveness and prognosis. By combining gene expression correlations with patient survival and functional in vitro investigations, we further identified TTK as mediating the oncogenic function of LMO1 in lung cancer cells.
Collapse
|
26
|
Guo X, Ni J, Zhu Y, Zhou T, Ma X, Xue J, Wang X. Folate deficiency induces mitotic aberrations and chromosomal instability by compromising the spindle assembly checkpoint in cultured human colon cells. Mutagenesis 2017; 32:547-560. [DOI: 10.1093/mutage/gex030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/30/2017] [Indexed: 01/10/2023] Open
Affiliation(s)
- Xihan Guo
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, China
- School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Juan Ni
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, China
| | - Yuqian Zhu
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, China
| | - Tao Zhou
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, China
| | - Xiaoling Ma
- China Gene Health Management Group, Ltd., Shanghai, China
| | - Jinglun Xue
- China Gene Health Management Group, Ltd., Shanghai, China
| | - Xu Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, China
- School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
27
|
Inhibition of the spindle assembly checkpoint kinase Mps-1 as a novel therapeutic strategy in malignant mesothelioma. Oncogene 2017; 36:6501-6507. [PMID: 28759042 PMCID: PMC5690838 DOI: 10.1038/onc.2017.266] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/24/2017] [Accepted: 06/16/2017] [Indexed: 12/11/2022]
Abstract
Malignant mesothelioma (MM) is an aggressive malignancy, highly resistant to current medical and surgical therapies, whose tumor cells characteristically show a high level of aneuploidy and genomic instability. We tested our hypothesis that targeting chromosomal instability in MM would improve response to therapy. TTK/Mps-1 (monopolar spindle 1 kinase) is a kinase of the spindle assembly checkpoint that controls cell division and cell fate. CFI-402257 is a novel, selective inhibitor of Mps-1 with antineoplastic activity. We found that CFI-402257 suppresses MM growth. We found that Mps-1 is overexpressed in MM and that its expression correlates with poor patients’ outcome. In vitro, CFI-402257-mediated inhibition of Mps-1 resulted in abrogation of the mitotic checkpoint, premature progression through mitosis, marked aneuploidy and mitotic catastrophe. In vivo, CFI-402257 reduced MM growth in an orthotopic, syngeneic model, when used as a single agent, and more so when used in combination with cisplatin+pemetrexed, the current standard of care. Our preclinical findings indicate that CFI-402257 is a promising novel therapeutic agent to improve the efficacy of the current chemotherapeutic regimens for MM patients.
Collapse
|
28
|
Choi M, Min YH, Pyo J, Lee CW, Jang CY, Kim JE. TC Mps1 12, a novel Mps1 inhibitor, suppresses the growth of hepatocellular carcinoma cells via the accumulation of chromosomal instability. Br J Pharmacol 2017; 174:1810-1825. [PMID: 28299790 DOI: 10.1111/bph.13782] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/01/2017] [Accepted: 03/05/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Chromosomal instability is not only a hallmark of cancer but also an attractive therapeutic target. A diverse set of mitotic kinases maintains chromosomal stability. One of these is monopolar spindle 1 (Mps1, also known as TTK), which is essential for chromosome alignment and for the spindle assembly checkpoint (SAC). Pharmacological inhibition of Mps1 has been suggested as a cancer therapeutic; however, despite the existence of a novel Mps1 inhibitor, TC Mps1 12, no such studies have been performed. EXPERIMENTAL APPROACH The effects of TC Mps1 12 on cell viability, chromosome alignment, centrosome number, mitotic duration, apoptosis and SAC were determined in hepatocellular carcinoma (HCC) cells. In addition, the association of Mps1 expression with the overall survival of HCC patients was analysed. KEY RESULTS Treatment of human HCC cells with TC Mps1 12 led to chromosome misalignment and missegregation, and disorganization of centrosomes. Even in the presence of these errors, TC Mps1 12-treated cells overrode the SAC, resulting in a shortened mitotic duration and mitotic slippage. This mitotic catastrophe triggered apoptosis and, finally, inhibited the growth of HCC cells. In addition, the expression of the Mps1-encoding TTK gene was associated with poor overall survival of HCC patients. CONCLUSION AND IMPLICATIONS TC Mps1 12 results in the accumulation of chromosomal instabilities and mitotic catastrophe in HCC cells. Overall, these data demonstrate that the inhibition of Mps1 kinase using TC Mps1 12 is a promising therapeutic approach for liver cancer.
Collapse
Affiliation(s)
- Minji Choi
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Yoo Hong Min
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Jaehyuk Pyo
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon, Republic of Korea
| | - Chang-Young Jang
- College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Ja-Eun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,East-West Medical Research Institute, Kyung Hee University, Seoul, Republic of Korea.,Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
29
|
Genetic and pharmacological inhibition of TTK impairs pancreatic cancer cell line growth by inducing lethal chromosomal instability. PLoS One 2017; 12:e0174863. [PMID: 28380042 PMCID: PMC5381904 DOI: 10.1371/journal.pone.0174863] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 03/16/2017] [Indexed: 01/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma, which accounts for the majority of pancreatic cancers, is a lethal disease with few therapeutic options. Genomic profiling of pancreatic ductal adenocarcinoma has identified a complex and heterogeneous landscape. Understanding the molecular characteristics of pancreatic ductal adenocarcinoma will facilitate the identification of potential therapeutic strategies. We analyzed the gene expression profiles of primary tumors from patients compared to normal pancreas and identified high co-overexpression of core components of the spindle assembly checkpoint, including the protein kinase TTK (also known as MPS-1). We found overexpression of TTK protein in a subset of pancreatic ductal adenocarcinoma primary tumors and cell lines. siRNA-mediated depletion or catalytic inhibition of TTK resulted in an aberrant cell cycle profile, multi- and micro-nucleation, induction of apoptosis, and decreased cell proliferation and transformed growth. Selective catalytic inhibition of TTK caused override of the spindle assembly checkpoint-induced cell cycle arrest. Interestingly, we identified ubiquitin specific peptidase 16 (Usp16), an ubiquitin hydrolase, as a phosphorylation substrate of TTK. Usp16 regulates chromosomal condensation and G2/M progression by deubiquitinating histone H2A and polo-like kinase 1. Phosphomimetic mutants of Usp16 show enhanced proteosomal degradation and may prolong the G2/M transition allowing for correction of replication errors. Taken together, our results suggest a critical role for TTK in preventing aneuploidy-induced cell death in pancreatic cancer.
Collapse
|
30
|
Sugimoto Y, Sawant DB, Fisk HA, Mao L, Li C, Chettiar S, Li PK, Darby MV, Brueggemeier RW. Novel pyrrolopyrimidines as Mps1/TTK kinase inhibitors for breast cancer. Bioorg Med Chem 2017; 25:2156-2166. [PMID: 28259529 DOI: 10.1016/j.bmc.2017.02.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/10/2017] [Accepted: 02/12/2017] [Indexed: 11/24/2022]
Abstract
New targeted therapy approaches for certain subtypes of breast cancer, such as triple-negative breast cancers and other aggressive phenotypes, are desired. High levels of the mitotic checkpoint kinase Mps1/TTK have correlated with high histologic grade in breast cancer, suggesting a potential new therapeutic target for aggressive breast cancers (BC). Novel small molecules targeting Mps1 were designed by computer assisted docking analyses, and several candidate compounds were synthesized. These compounds were evaluated in anti-proliferative assays of a panel of 15 breast cancer cell lines and further examined for their ability to inhibit a variety of Mps1-dependent biological functions. The results indicate that the lead compounds have strong anti-proliferative potential through Mps1/TTK inhibition in both basal and luminal BC cell lines, exhibiting IC50 values ranging from 0.05 to 1.0μM. In addition, the lead compounds 1 and 13 inhibit Mps1 kinase enzymatic activity with IC50 values from 0.356μM to 0.809μM, and inhibited Mps1-associated cellular functions such as centrosome duplication and the spindle checkpoint in triple negative breast cancer cells. The most promising analog, compound 13, significantly decreased tumor growth in nude mice containing Cal-51 triple negative breast cancer cell xenografts. Using drug discovery technologies, computational modeling, medicinal chemistry, cell culture and in vivo assays, novel small molecule Mps1/TTK inhibitors have been identified as potential targeted therapies for breast cancers.
Collapse
Affiliation(s)
- Yasuro Sugimoto
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Dwitiya B Sawant
- Department of Molecular Genetics, College of Arts & Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Harold A Fisk
- Department of Molecular Genetics, College of Arts & Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Liguang Mao
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Chenglong Li
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Somsundaram Chettiar
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Pui-Kai Li
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Michael V Darby
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Robert W Brueggemeier
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
31
|
Restuccia A, Yang F, Chen C, Lu L, Dai W. Mps1 is SUMO-modified during the cell cycle. Oncotarget 2016; 7:3158-70. [PMID: 26675261 PMCID: PMC4823097 DOI: 10.18632/oncotarget.6552] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/21/2015] [Indexed: 11/30/2022] Open
Abstract
Mps1 is a dual specificity protein kinase that regulates the spindle assembly checkpoint and mediates proper microtubule attachment to chromosomes during mitosis. However, the molecular mechanism that controls Mps1 protein level and its activity during the cell cycle remains unclear. Given that sumoylation plays an important role in mitotic progression, we investigated whether Mps1 was SUMO-modified and whether sumoylation affects its activity in mitosis. Our results showed that Mps1 was sumoylated in both asynchronized and mitotic cell populations. Mps1 was modified by both SUMO-1 and SUMO-2. Our further studies revealed that lysine residues including K71, K287, K367 and K471 were essential for Mps1 sumoylation. Sumoylation appeared to play a role in mediating kinetochore localization of Mps1, thus affecting normal mitotic progression. Furthermore, SUMO-resistant mutants of Mps1 interacted with BubR1 more efficiently than it did with the wild-type control. Combined, our results indicate that Mps1 is SUMO-modified that plays an essential role in regulating Mps1 functions during mitosis.
Collapse
Affiliation(s)
- Agnese Restuccia
- Division of Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Feikun Yang
- Departments of Environmental Medicine, Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, Tuxedo Park, NY, USA
| | - Changyan Chen
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Lou Lu
- Division of Molecular Medicine, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Torrance, CA, USA
| | - Wei Dai
- Departments of Environmental Medicine, Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, Tuxedo Park, NY, USA
| |
Collapse
|
32
|
Jemaà M, Manic G, Lledo G, Lissa D, Reynes C, Morin N, Chibon F, Sistigu A, Castedo M, Vitale I, Kroemer G, Abrieu A. Whole-genome duplication increases tumor cell sensitivity to MPS1 inhibition. Oncotarget 2016; 7:885-901. [PMID: 26637805 PMCID: PMC4808040 DOI: 10.18632/oncotarget.6432] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/18/2015] [Indexed: 12/31/2022] Open
Abstract
Several lines of evidence indicate that whole-genome duplication resulting in tetraploidy facilitates carcinogenesis by providing an intermediate and metastable state more prone to generate oncogenic aneuploidy. Here, we report a novel strategy to preferentially kill tetraploid cells based on the abrogation of the spindle assembly checkpoint (SAC) via the targeting of TTK protein kinase (better known as monopolar spindle 1, MPS1). The pharmacological inhibition as well as the knockdown of MPS1 kills more efficiently tetraploid cells than their diploid counterparts. By using time-lapse videomicroscopy, we show that tetraploid cells do not survive the aborted mitosis due to SAC abrogation upon MPS1 depletion. On the contrary diploid cells are able to survive up to at least two more cell cycles upon the same treatment. This effect might reflect the enhanced difficulty of cells with whole-genome doubling to tolerate a further increase in ploidy and/or an elevated level of chromosome instability in the absence of SAC functions. We further show that MPS1-inhibited tetraploid cells promote mitotic catastrophe executed by the intrinsic pathway of apoptosis, as indicated by the loss of mitochondrial potential, the release of the pro-apoptotic cytochrome c from mitochondria, and the activation of caspases. Altogether, our results suggest that MPS1 inhibition could be used as a therapeutic strategy for targeting tetraploid cancer cells.
Collapse
Affiliation(s)
- Mohamed Jemaà
- CRBM, CNRS UMR5237, Université de Montpellier, Montpellier, France
| | | | - Gwendaline Lledo
- CRBM, CNRS UMR5237, Université de Montpellier, Montpellier, France
| | - Delphine Lissa
- Université Paris-Sud/Paris XI, Le Kremlin-Bicêtre, France.,INSERM, UMRS1138, Paris, France.,Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Gustave Roussy Cancer Campus, Villejuif, France
| | - Christelle Reynes
- EA 2415, Laboratoire de Biostatistique, d'Epidémiologie et de Recherche Clinique, Université de Montpellier, Montpellier, France
| | - Nathalie Morin
- CRBM, CNRS UMR5237, Université de Montpellier, Montpellier, France
| | - Frédéric Chibon
- Department of Biopathology, Institut Bergonié, Comprehensive Cancer Centre, Bordeaux, France.,INSERM U916, Bordeaux, France
| | | | - Maria Castedo
- Université Paris-Sud/Paris XI, Le Kremlin-Bicêtre, France.,INSERM, UMRS1138, Paris, France.,Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Gustave Roussy Cancer Campus, Villejuif, France
| | - Ilio Vitale
- Regina Elena National Cancer Institute, Rome, Italy.,Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Guido Kroemer
- INSERM, UMRS1138, Paris, France.,Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Ariane Abrieu
- CRBM, CNRS UMR5237, Université de Montpellier, Montpellier, France
| |
Collapse
|
33
|
Zhang X, Ling Y, Guo Y, Bai Y, Shi X, Gong F, Tan P, Zhang Y, Wei C, He X, Ramirez A, Liu X, Cao C, Zhong H, Xu Q, Ma RZ. Mps1 kinase regulates tumor cell viability via its novel role in mitochondria. Cell Death Dis 2016; 7:e2292. [PMID: 27383047 PMCID: PMC4973343 DOI: 10.1038/cddis.2016.193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 06/01/2016] [Accepted: 06/03/2016] [Indexed: 12/22/2022]
Abstract
Targeting mitotic kinase monopolar spindle 1 (Mps1) for tumor therapy has been investigated for many years. Although it was suggested that Mps1 regulates cell viability through its role in spindle assembly checkpoint (SAC), the underlying mechanism remains less defined. In an endeavor to reveal the role of high levels of mitotic kinase Mps1 in the development of colon cancer, we unexpectedly found the amount of Mps1 required for cell survival far exceeds that of maintaining SAC in aneuploid cell lines. This suggests that other functions of Mps1 besides SAC are also employed to maintain cell viability. Mps1 regulates cell viability independent of its role in cytokinesis as the genetic depletion of Mps1 spanning from metaphase to cytokinesis affects neither cytokinesis nor cell viability. Furthermore, we developed a single-cycle inhibition strategy that allows disruption of Mps1 function only in mitosis. Using this strategy, we found the functions of Mps1 in mitosis are vital for cell viability as short-term treatment of mitotic colon cancer cell lines with Mps1 inhibitors is sufficient to cause cell death. Interestingly, Mps1 inhibitors synergize with microtubule depolymerizing drug in promoting polyploidization but not in tumor cell growth inhibition. Finally, we found that Mps1 can be recruited to mitochondria by binding to voltage-dependent anion channel 1 (VDAC1) via its C-terminal fragment. This interaction is essential for cell viability as Mps1 mutant defective for interaction fails to main cell viability, causing the release of cytochrome c. Meanwhile, deprivation of VDAC1 can make tumor cells refractory to loss of Mps1-induced cell death. Collectively, we conclude that inhibition of the novel mitochondrial function Mps1 is sufficient to kill tumor cells.
Collapse
Affiliation(s)
- X Zhang
- State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Y Ling
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - Y Guo
- State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,Graduate School, University of the Chinese Academy of Sciences, Beijing 100149, China
| | - Y Bai
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - X Shi
- State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,Graduate School, University of the Chinese Academy of Sciences, Beijing 100149, China
| | - F Gong
- State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,Graduate School, University of the Chinese Academy of Sciences, Beijing 100149, China
| | - P Tan
- State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Y Zhang
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - C Wei
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - X He
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - A Ramirez
- University of Colorado at Boulder, Boulder, CO 80302, USA
| | - X Liu
- University of Colorado at Boulder, Boulder, CO 80302, USA
| | - C Cao
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - H Zhong
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - Q Xu
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - R Z Ma
- State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,Graduate School, University of the Chinese Academy of Sciences, Beijing 100149, China
| |
Collapse
|
34
|
Modular elements of the TPR domain in the Mps1 N terminus differentially target Mps1 to the centrosome and kinetochore. Proc Natl Acad Sci U S A 2016; 113:7828-33. [PMID: 27339139 DOI: 10.1073/pnas.1607421113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Faithful segregation of chromosomes to two daughter cells is regulated by the formation of a bipolar mitotic spindle and the spindle assembly checkpoint, ensuring proper spindle function. Here we show that the proper localization of the kinase Mps1 (monopolar spindle 1) is critical to both these processes. Separate elements in the Mps1 N-terminal extension (NTE) and tetratricopeptide repeat (TPR) domains govern localization to either the kinetochore or the centrosome. The third TPR (TPR3) and the TPR-capping helix (C-helix) are each sufficient to target Mps1 to the centrosome. TPR3 binds to voltage-dependent anion channel 3, but although this is sufficient for centrosome targeting of Mps1, it is not necessary because of the presence of the C-helix. A version of Mps1 lacking both elements cannot localize to or function at the centrosome, but maintains kinetochore localization and spindle assembly checkpoint function, indicating that TPR3 and the C-helix define a bipartite localization determinant that is both necessary and sufficient to target Mps1 to the centrosome but dispensable for kinetochore targeting. In contrast, elements required for kinetochore targeting (the NTE and first two TPRs) are dispensable for centrosomal localization and function. These data are consistent with a separation of Mps1 function based on localization determinants within the N terminus.
Collapse
|
35
|
Srinivas V, Kitagawa M, Wong J, Liao PJ, Lee SH. The Tumor Suppressor Cdkn3 Is Required for Maintaining the Proper Number of Centrosomes by Regulating the Centrosomal Stability of Mps1. Cell Rep 2015; 13:1569-77. [PMID: 26586430 DOI: 10.1016/j.celrep.2015.10.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/06/2015] [Accepted: 10/13/2015] [Indexed: 10/22/2022] Open
Abstract
Supernumerary centrosomes promote the assembly of abnormal spindles in many human cancers. The observation that modest changes in the centrosomal levels of Mps1 kinase can cause centrosome overduplication in human cells suggests the existence of a regulatory system that may tightly control its centrosomal stability. Here, we show that Cdkn3, a Cdk-associated phosphatase, prevents Mps1-mediated centrosome overduplication. We identify Cdkn3 as a direct binding partner of Mps1. The interaction between Mps1 and Cdkn3 is required for Mps1 to recruit Cdkn3 to centrosomes. Subsequently, Mps1-bound Cdkn3 forms a regulatory system that controls the centrosomal levels of Mps1 through proteasome-mediated degradation and thereby prevents Mps1-mediated centrosome overduplication. Conversely, knockdown of Cdkn3 stabilizes Mps1 at centrosomes, which promotes centrosome overduplication. We suggest that Mps1 and Cdkn3 form a self-regulated feedback loop at centrosomes to tightly control the centrosomal levels of Mps1, which prevents centrosome overduplication in human cells.
Collapse
Affiliation(s)
- Vinayaka Srinivas
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Mayumi Kitagawa
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jasmine Wong
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Pei-Ju Liao
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Sang Hyun Lee
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore.
| |
Collapse
|
36
|
Sawant DB, Majumder S, Perkins JL, Yang CH, Eyers PA, Fisk HA. Centrin 3 is an inhibitor of centrosomal Mps1 and antagonizes centrin 2 function. Mol Biol Cell 2015; 26:3741-53. [PMID: 26354417 PMCID: PMC4626060 DOI: 10.1091/mbc.e14-07-1248] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/04/2015] [Indexed: 11/11/2022] Open
Abstract
Centrins are a family of small, calcium-binding proteins with diverse cellular functions that play an important role in centrosome biology. We previously identified centrin 2 and centrin 3 (Cetn2 and Cetn3) as substrates of the protein kinase Mps1. However, although Mps1 phosphorylation sites control the function of Cetn2 in centriole assembly and promote centriole overproduction, Cetn2 and Cetn3 are not functionally interchangeable, and we show here that Cetn3 is both a biochemical inhibitor of Mps1 catalytic activity and a biological inhibitor of centrosome duplication. In vitro, Cetn3 inhibits Mps1 autophosphorylation at Thr-676, a known site of T-loop autoactivation, and interferes with Mps1-dependent phosphorylation of Cetn2. The cellular overexpression of Cetn3 attenuates the incorporation of Cetn2 into centrioles and centrosome reduplication, whereas depletion of Cetn3 generates extra centrioles. Finally, overexpression of Cetn3 reduces Mps1 Thr-676 phosphorylation at centrosomes, and mimicking Mps1-dependent phosphorylation of Cetn2 bypasses the inhibitory effect of Cetn3, suggesting that the biological effects of Cetn3 are due to the inhibition of Mps1 function at centrosomes.
Collapse
Affiliation(s)
- Dwitiya B Sawant
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Shubhra Majumder
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Jennifer L Perkins
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Ching-Hui Yang
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Harold A Fisk
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
37
|
Non-Overlapping Distributions and Functions of the VDAC Family in Ciliogenesis. Cells 2015; 4:331-53. [PMID: 26264029 PMCID: PMC4588040 DOI: 10.3390/cells4030331] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/21/2015] [Accepted: 07/27/2015] [Indexed: 02/06/2023] Open
Abstract
Centrosomes are major microtubule-organizing centers of animal cells that consist of two centrioles. In mitotic cells, centrosomes are duplicated to serve as the poles of the mitotic spindle, while in quiescent cells, centrosomes move to the apical membrane where the oldest centriole is transformed into a basal body to assemble a primary cilium. We recently showed that mitochondrial outer membrane porin VDAC3 localizes to centrosomes where it negatively regulates ciliogenesis. We show here that the other two family members, VDAC1 and VDAC2, best known for their function in mitochondrial bioenergetics, are also found at centrosomes. Like VDAC3, centrosomal VDAC1 is predominantly localized to the mother centriole, while VDAC2 localizes to centriolar satellites in a microtubule-dependent manner. Down-regulation of VDAC1 leads to inappropriate ciliogenesis, while its overexpression suppresses cilia formation, suggesting that VDAC1 and VDAC3 both negatively regulate ciliogenesis. However, this negative effect on ciliogenesis is not shared by VDAC2, which instead appears to promote maturation of primary cilia. Moreover, because overexpression of VDAC3 cannot compensate for depletion of VDAC1, our data suggest that while the entire VDAC family localizes to centrosomes, they have non-redundant functions in cilogenesis.
Collapse
|
38
|
Connecting the microtubule attachment status of each kinetochore to cell cycle arrest through the spindle assembly checkpoint. Chromosoma 2015; 124:463-80. [PMID: 25917595 DOI: 10.1007/s00412-015-0515-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 12/12/2022]
Abstract
Kinetochores generate a signal that inhibits anaphase progression until every kinetochore makes proper attachments to spindle microtubules. This spindle assembly checkpoint (SAC) increases the fidelity of chromosome segregation. We will review the molecular mechanisms by which kinetochores generate the SAC and extinguish the signal after making proper attachments, with the goal of identifying unanswered questions and new research directions. We will emphasize recent breakthroughs in how phosphorylation changes drive the activation and inhibition of the signal. We will also emphasize the dramatic changes in kinetochore structure that occur after attaching to microtubules and how these coordinate SAC function with microtubule attachment status. Finally, we will review the emerging cross talk between the DNA damage response and the SAC.
Collapse
|
39
|
Liu Y, Lang Y, Patel NK, Ng G, Laufer R, Li SW, Edwards L, Forrest B, Sampson PB, Feher M, Ban F, Awrey DE, Beletskaya I, Mao G, Hodgson R, Plotnikova O, Qiu W, Chirgadze NY, Mason JM, Wei X, Lin DCC, Che Y, Kiarash R, Madeira B, Fletcher GC, Mak TW, Bray MR, Pauls HW. The Discovery of Orally Bioavailable Tyrosine Threonine Kinase (TTK) Inhibitors: 3-(4-(heterocyclyl)phenyl)-1H-indazole-5-carboxamides as Anticancer Agents. J Med Chem 2015; 58:3366-92. [DOI: 10.1021/jm501740a] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yong Liu
- Campbell Family Institute for Breast Cancer Research, University Health Network, TMDT East Tower, MaRS Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Yunhui Lang
- Campbell Family Institute for Breast Cancer Research, University Health Network, TMDT East Tower, MaRS Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Narendra Kumar Patel
- Campbell Family Institute for Breast Cancer Research, University Health Network, TMDT East Tower, MaRS Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Grace Ng
- Campbell Family Institute for Breast Cancer Research, University Health Network, TMDT East Tower, MaRS Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Radoslaw Laufer
- Campbell Family Institute for Breast Cancer Research, University Health Network, TMDT East Tower, MaRS Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Sze-Wan Li
- Campbell Family Institute for Breast Cancer Research, University Health Network, TMDT East Tower, MaRS Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Louise Edwards
- Campbell Family Institute for Breast Cancer Research, University Health Network, TMDT East Tower, MaRS Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Bryan Forrest
- Campbell Family Institute for Breast Cancer Research, University Health Network, TMDT East Tower, MaRS Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Peter B. Sampson
- Campbell Family Institute for Breast Cancer Research, University Health Network, TMDT East Tower, MaRS Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Miklos Feher
- Campbell Family Institute for Breast Cancer Research, University Health Network, TMDT East Tower, MaRS Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Fuqiang Ban
- Campbell Family Institute for Breast Cancer Research, University Health Network, TMDT East Tower, MaRS Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Donald E. Awrey
- Campbell Family Institute for Breast Cancer Research, University Health Network, TMDT East Tower, MaRS Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Irina Beletskaya
- Campbell Family Institute for Breast Cancer Research, University Health Network, TMDT East Tower, MaRS Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Guodong Mao
- Campbell Family Institute for Breast Cancer Research, University Health Network, TMDT East Tower, MaRS Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Richard Hodgson
- Campbell Family Institute for Breast Cancer Research, University Health Network, TMDT East Tower, MaRS Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Olga Plotnikova
- Campbell Family Institute for Breast Cancer Research, University Health Network, TMDT East Tower, MaRS Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Wei Qiu
- Campbell Family
Cancer Research Institute, University Health Network, Princess Margaret
Cancer Centre, 610 University Avenue, Toronto, Ontario M5G 2C4, Canada
| | - Nickolay Y. Chirgadze
- Campbell Family
Cancer Research Institute, University Health Network, Princess Margaret
Cancer Centre, 610 University Avenue, Toronto, Ontario M5G 2C4, Canada
| | - Jacqueline M. Mason
- Campbell Family Institute for Breast Cancer Research, University Health Network, TMDT East Tower, MaRS Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Xin Wei
- Campbell Family Institute for Breast Cancer Research, University Health Network, TMDT East Tower, MaRS Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Dan Chi-Chia Lin
- Campbell Family Institute for Breast Cancer Research, University Health Network, TMDT East Tower, MaRS Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Yi Che
- Campbell Family Institute for Breast Cancer Research, University Health Network, TMDT East Tower, MaRS Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Reza Kiarash
- Campbell Family Institute for Breast Cancer Research, University Health Network, TMDT East Tower, MaRS Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Brian Madeira
- Campbell Family Institute for Breast Cancer Research, University Health Network, TMDT East Tower, MaRS Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Graham C. Fletcher
- Campbell Family Institute for Breast Cancer Research, University Health Network, TMDT East Tower, MaRS Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Tak W. Mak
- Campbell Family Institute for Breast Cancer Research, University Health Network, TMDT East Tower, MaRS Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Mark R. Bray
- Campbell Family Institute for Breast Cancer Research, University Health Network, TMDT East Tower, MaRS Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Henry W. Pauls
- Campbell Family Institute for Breast Cancer Research, University Health Network, TMDT East Tower, MaRS Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
40
|
Kusakabe KI, Ide N, Daigo Y, Itoh T, Yamamoto T, Kojima E, Mitsuoka Y, Tadano G, Tagashira S, Higashino K, Okano Y, Sato Y, Inoue M, Iguchi M, Kanazawa T, Ishioka Y, Dohi K, Kido Y, Sakamoto S, Ando S, Maeda M, Higaki M, Yoshizawa H, Murai H, Nakamura Y. A unique hinge binder of extremely selective aminopyridine-based Mps1 (TTK) kinase inhibitors with cellular activity. Bioorg Med Chem 2015; 23:2247-60. [PMID: 25801152 DOI: 10.1016/j.bmc.2015.02.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 01/15/2023]
Abstract
Mps1, also known as TTK, is a dual-specificity kinase that regulates the spindle assembly check point. Increased expression levels of Mps1 are observed in cancer cells, and the expression levels correlate well with tumor grade. Such evidence points to selective inhibition of Mps1 as an attractive strategy for cancer therapeutics. Starting from an aminopyridine-based lead 3a that binds to a flipped-peptide conformation at the hinge region in Mps1, elaboration of the aminopyridine scaffold at the 2- and 6-positions led to the discovery of 19c that exhibited no significant inhibition for 287 kinases as well as improved cellular Mps1 and antiproliferative activities in A549 lung carcinoma cells (cellular Mps1 IC₅₀=5.3 nM, A549 IC₅₀=26 nM). A clear correlation between cellular Mps1 and antiproliferative IC₅₀ values indicated that the antiproliferative activity observed in A549 cells would be responsible for the cellular inhibition of Mps1. The X-ray structure of 19c in complex with Mps1 revealed that this compound retains the ability to bind to the peptide flip conformation. Finally, comparative analysis of the X-ray structures of 19c, a deamino analogue 33, and a known Mps1 inhibitor bound to Mps1 provided insights into the unique binding mode at the hinge region.
Collapse
Affiliation(s)
- Ken-ichi Kusakabe
- Medicinal Research Laboratories, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan.
| | - Nobuyuki Ide
- Medicinal Research Laboratories, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Yataro Daigo
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Medical Oncology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Takeshi Itoh
- Medicinal Research Laboratories, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Takahiko Yamamoto
- Innovative Drug Discovery Research Laboratories, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Eiichi Kojima
- Medicinal Research Laboratories, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Yasunori Mitsuoka
- Medicinal Research Laboratories, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Genta Tadano
- Medicinal Research Laboratories, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Sachie Tagashira
- Medicinal Research Laboratories, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Kenichi Higashino
- Innovative Drug Discovery Research Laboratories, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Yousuke Okano
- Innovative Drug Discovery Research Laboratories, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Yuji Sato
- Medicinal Research Laboratories, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Makiko Inoue
- Medicinal Research Laboratories, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Motofumi Iguchi
- Medicinal Research Laboratories, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Takayuki Kanazawa
- Medicinal Research Laboratories, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Yukichi Ishioka
- Medicinal Research Laboratories, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Keiji Dohi
- Medicinal Research Laboratories, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Yasuto Kido
- Drug Developmental Research Laboratories, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Shingo Sakamoto
- Drug Developmental Research Laboratories, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Shigeru Ando
- Medicinal Research Laboratories, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Masahiro Maeda
- Innovative Drug Discovery Research Laboratories, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Masayo Higaki
- Innovative Drug Discovery Research Laboratories, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Hidenori Yoshizawa
- Medicinal Research Laboratories, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Hitoshi Murai
- Medicinal Research Laboratories, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Yusuke Nakamura
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
41
|
Jia H, Zhang X, Wang W, Bai Y, Ling Y, Cao C, Ma RZ, Zhong H, Wang X, Xu Q. A putative N-terminal nuclear export sequence is sufficient for Mps1 nuclear exclusion during interphase. BMC Cell Biol 2015; 16:6. [PMID: 25886724 PMCID: PMC4373099 DOI: 10.1186/s12860-015-0048-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 01/13/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Mps1, an essential component of the mitotic checkpoint, is also an important interphase regulator and has roles in DNA damage response, cytokinesis and centrosome duplication. Mps1 predominantly resides in the cytoplasm and relocates into the nucleus at the late G2 phase. So far, the mechanism underlying the Mps1 translocation between the cytoplasm and nucleus has been unclear. RESULTS In this work, a dynamic export process of Mps1 from the nucleus to cytoplasm in interphase was revealed- a process blocked by the Crm1 inhibitor, Leptomycin B, suggesting that export of Mps1 is Crm1 dependent. Consistent with this speculation, a direct association between Mps1 and Crm1 was found. Furthermore, a putative nuclear export sequence (pNES) motif at the N-terminal of Mps1 was identified by analyzing the motif of Mps1. This motif shows a high sequence similarity to the classic NES, a fusion of this motif with EGFP results in dramatic exclusion of the fusion protein from the nucleus. Additionally, Mps1 mutant loss of pNES integrity was shown by replacing leucine with alanine which produced a diffused subcellular distribution, compared to the wild type protein which resides predominantly in cytoplasm. CONCLUSION Taken these findings together, it was concluded that the pNES sequence is sufficient for the Mps1 export from nucleus during interphase.
Collapse
Affiliation(s)
- Haiwei Jia
- Navy General Hospital of China, Beijing, 100048, China.
| | - Xiaojuan Zhang
- State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Wenjun Wang
- Beijing Institute of Biotechnology, Taiping road 27, POB 130(8), Beijing, 100850, China.
| | - Yuanyuan Bai
- Beijing Institute of Biotechnology, Taiping road 27, POB 130(8), Beijing, 100850, China.
| | - Youguo Ling
- Beijing Institute of Biotechnology, Taiping road 27, POB 130(8), Beijing, 100850, China.
- Department of Life Science, Anhui University, Hefei, 230601, China.
| | - Cheng Cao
- Beijing Institute of Biotechnology, Taiping road 27, POB 130(8), Beijing, 100850, China.
| | - Runlin Z Ma
- State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Hui Zhong
- Beijing Institute of Biotechnology, Taiping road 27, POB 130(8), Beijing, 100850, China.
| | - Xue Wang
- West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Quanbin Xu
- Beijing Institute of Biotechnology, Taiping road 27, POB 130(8), Beijing, 100850, China.
| |
Collapse
|
42
|
Kusakabe KI, Ide N, Daigo Y, Itoh T, Yamamoto T, Hashizume H, Nozu K, Yoshida H, Tadano G, Tagashira S, Higashino K, Okano Y, Sato Y, Inoue M, Iguchi M, Kanazawa T, Ishioka Y, Dohi K, Kido Y, Sakamoto S, Ando S, Maeda M, Higaki M, Baba Y, Nakamura Y. Discovery of imidazo[1,2-b]pyridazine derivatives: selective and orally available Mps1 (TTK) kinase inhibitors exhibiting remarkable antiproliferative activity. J Med Chem 2015; 58:1760-75. [PMID: 25625617 DOI: 10.1021/jm501599u] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Monopolar spindle 1 (Mps1) is an attractive oncology target due to its high expression level in cancer cells as well as the correlation of its expression levels with histological grades of cancers. An imidazo[1,2-a]pyrazine 10a was identified during an HTS campaign. Although 10a exhibited good biochemical activity, its moderate cellular as well as antiproliferative activities needed to be improved. The cocrystal structure of an analogue of 10a guided our lead optimization to introduce substituents at the 6-position of the scaffold, giving the 6-aryl substituted 21b which had improved cellular activity but no oral bioavailability in rat. Property-based optimization at the 6-position and a scaffold change led to the discovery of the imidazo[1,2-b]pyridazine-based 27f, an extremely potent (cellular Mps1 IC50 = 0.70 nM, A549 IC50 = 6.0 nM), selective Mps1 inhibitor over 192 kinases, which could be orally administered and was active in vivo. This 27f demonstrated remarkable antiproliferative activity in the nanomolar range against various tissue cancer cell lines.
Collapse
Affiliation(s)
- Ken-Ichi Kusakabe
- Medicinal Research Laboratories, ‡Drug Developmental Research Laboratories, and §Innovative Drug Discovery Research Laboratories, Shionogi Pharmaceutical Research Center , 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The centrosome was discovered in the late 19th century when mitosis was first described. Long recognized as a key organelle of the spindle pole, its core component, the centriole, was realized more than 50 or so years later also to comprise the basal body of the cilium. Here, we chart the more recent acquisition of a molecular understanding of centrosome structure and function. The strategies for gaining such knowledge were quickly developed in the yeasts to decipher the structure and function of their distinctive spindle pole bodies. Only within the past decade have studies with model eukaryotes and cultured cells brought a similar degree of sophistication to our understanding of the centrosome duplication cycle and the multiple roles of this organelle and its component parts in cell division and signaling. Now as we begin to understand these functions in the context of development, the way is being opened up for studies of the roles of centrosomes in human disease.
Collapse
Affiliation(s)
- Jingyan Fu
- Cancer Research UK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Iain M Hagan
- Cancer Research UK Manchester Institute, University of Manchester, Withington, Manchester M20 4BX, United Kingdom
| | - David M Glover
- Cancer Research UK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| |
Collapse
|
44
|
Veres DV, Gyurkó DM, Thaler B, Szalay KZ, Fazekas D, Korcsmáros T, Csermely P. ComPPI: a cellular compartment-specific database for protein-protein interaction network analysis. Nucleic Acids Res 2014; 43:D485-93. [PMID: 25348397 PMCID: PMC4383876 DOI: 10.1093/nar/gku1007] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Here we present ComPPI, a cellular compartment-specific database of proteins and their interactions enabling an extensive, compartmentalized protein–protein interaction network analysis (URL: http://ComPPI.LinkGroup.hu). ComPPI enables the user to filter biologically unlikely interactions, where the two interacting proteins have no common subcellular localizations and to predict novel properties, such as compartment-specific biological functions. ComPPI is an integrated database covering four species (S. cerevisiae, C. elegans, D. melanogaster and H. sapiens). The compilation of nine protein–protein interaction and eight subcellular localization data sets had four curation steps including a manually built, comprehensive hierarchical structure of >1600 subcellular localizations. ComPPI provides confidence scores for protein subcellular localizations and protein–protein interactions. ComPPI has user-friendly search options for individual proteins giving their subcellular localization, their interactions and the likelihood of their interactions considering the subcellular localization of their interacting partners. Download options of search results, whole-proteomes, organelle-specific interactomes and subcellular localization data are available on its website. Due to its novel features, ComPPI is useful for the analysis of experimental results in biochemistry and molecular biology, as well as for proteome-wide studies in bioinformatics and network science helping cellular biology, medicine and drug design.
Collapse
Affiliation(s)
- Daniel V Veres
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Dávid M Gyurkó
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Benedek Thaler
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Kristóf Z Szalay
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Dávid Fazekas
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Tamás Korcsmáros
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary TGAC, The Genome Analysis Centre, Norwich, UK Gut Health and Food Safety Programme, Institute of Food Research, Norwich, UK
| | - Peter Csermely
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| |
Collapse
|
45
|
Discovery of inhibitors of the mitotic kinase TTK based on N-(3-(3-sulfamoylphenyl)-1H-indazol-5-yl)-acetamides and carboxamides. Bioorg Med Chem 2014; 22:4968-97. [DOI: 10.1016/j.bmc.2014.06.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/06/2014] [Accepted: 06/14/2014] [Indexed: 12/22/2022]
|
46
|
Lee IJ, Wang N, Hu W, Schott K, Bähler J, Giddings TH, Pringle JR, Du LL, Wu JQ. Regulation of spindle pole body assembly and cytokinesis by the centrin-binding protein Sfi1 in fission yeast. Mol Biol Cell 2014; 25:2735-49. [PMID: 25031431 PMCID: PMC4161509 DOI: 10.1091/mbc.e13-11-0699] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A previous model suggested doubling of Sfi1 as the first step of SPB assembly. Here it is shown that Sfi1 is gradually recruited to SPBs throughout the cell cycle. Conserved tryptophans in Sfi1 are required for its equal partitioning during mitosis, and unequal partitioning of Sfi1 underlies SPB assembly and mitotic defects in the next cell cycle. Centrosomes play critical roles in the cell division cycle and ciliogenesis. Sfi1 is a centrin-binding protein conserved from yeast to humans. Budding yeast Sfi1 is essential for the initiation of spindle pole body (SPB; yeast centrosome) duplication. However, the recruitment and partitioning of Sfi1 to centrosomal structures have never been fully investigated in any organism, and the presumed importance of the conserved tryptophans in the internal repeats of Sfi1 remains untested. Here we report that in fission yeast, instead of doubling abruptly at the initiation of SPB duplication and remaining at a constant level thereafter, Sfi1 is gradually recruited to SPBs throughout the cell cycle. Like an sfi1Δ mutant, a Trp-to-Arg mutant (sfi1-M46) forms monopolar spindles and exhibits mitosis and cytokinesis defects. Sfi1-M46 protein associates preferentially with one of the two daughter SPBs during mitosis, resulting in a failure of new SPB assembly in the SPB receiving insufficient Sfi1. Although all five conserved tryptophans tested are involved in Sfi1 partitioning, the importance of the individual repeats in Sfi1 differs. In summary, our results reveal a link between the conserved tryptophans and Sfi1 partitioning and suggest a revision of the model for SPB assembly.
Collapse
Affiliation(s)
- I-Ju Lee
- Graduate Program of Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, OH 43210 Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Ning Wang
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Wen Hu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Kersey Schott
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Jürg Bähler
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Thomas H Giddings
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309
| | - John R Pringle
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210 Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
47
|
De Souza CP, Hashmi SB, Osmani AH, Osmani SA. Application of a new dual localization-affinity purification tag reveals novel aspects of protein kinase biology in Aspergillus nidulans. PLoS One 2014; 9:e90911. [PMID: 24599037 PMCID: PMC3944740 DOI: 10.1371/journal.pone.0090911] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/04/2014] [Indexed: 12/22/2022] Open
Abstract
Filamentous fungi occupy critical environmental niches and have numerous beneficial industrial applications but devastating effects as pathogens and agents of food spoilage. As regulators of essentially all biological processes protein kinases have been intensively studied but how they regulate the often unique biology of filamentous fungi is not completely understood. Significant understanding of filamentous fungal biology has come from the study of the model organism Aspergillus nidulans using a combination of molecular genetics, biochemistry, cell biology and genomic approaches. Here we describe dual localization-affinity purification (DLAP) tags enabling endogenous N or C-terminal protein tagging for localization and biochemical studies in A. nidulans. To establish DLAP tag utility we endogenously tagged 17 protein kinases for analysis by live cell imaging and affinity purification. Proteomic analysis of purifications by mass spectrometry confirmed association of the CotA and NimXCdk1 kinases with known binding partners and verified a predicted interaction of the SldABub1/R1 spindle assembly checkpoint kinase with SldBBub3. We demonstrate that the single TOR kinase of A. nidulans locates to vacuoles and vesicles, suggesting that the function of endomembranes as major TOR cellular hubs is conserved in filamentous fungi. Comparative analysis revealed 7 kinases with mitotic specific locations including An-Cdc7 which unexpectedly located to mitotic spindle pole bodies (SPBs), the first such localization described for this family of DNA replication kinases. We show that the SepH septation kinase locates to SPBs specifically in the basal region of apical cells in a biphasic manner during mitosis and again during septation. This results in gradients of SepH between G1 SPBs which shift along hyphae as each septum forms. We propose that SepH regulates the septation initiation network (SIN) specifically at SPBs in the basal region of G1 cells and that localized gradients of SIN activity promote asymmetric septation.
Collapse
Affiliation(s)
- Colin P. De Souza
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Shahr B. Hashmi
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Aysha H. Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Stephen A. Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
48
|
Balakrishnan L, Bhattacharjee M, Ahmad S, Nirujogi RS, Renuse S, Subbannayya Y, Marimuthu A, Srikanth SM, Raju R, Dhillon M, Kaur N, Jois R, Vasudev V, Ramachandra Y, Sahasrabuddhe NA, Prasad TK, Mohan S, Gowda H, Shankar S, Pandey A. Differential proteomic analysis of synovial fluid from rheumatoid arthritis and osteoarthritis patients. Clin Proteomics 2014; 11:1. [PMID: 24393543 PMCID: PMC3918105 DOI: 10.1186/1559-0275-11-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 12/10/2013] [Indexed: 01/09/2023] Open
Abstract
Background Rheumatoid arthritis and osteoarthritis are two common musculoskeletal disorders that affect the joints. Despite high prevalence rates, etiological factors involved in these disorders remain largely unknown. Dissecting the molecular aspects of these disorders will significantly contribute to improving their diagnosis and clinical management. In order to identify proteins that are differentially expressed between these two conditions, a quantitative proteomic profiling of synovial fluid obtained from rheumatoid arthritis and osteoarthritis patients was carried out by using iTRAQ labeling followed by high resolution mass spectrometry analysis. Results We have identified 575 proteins out of which 135 proteins were found to be differentially expressed by ≥3-fold in the synovial fluid of rheumatoid arthritis and osteoarthritis patients. Proteins not previously reported to be associated with rheumatoid arthritis including, coronin-1A (CORO1A), fibrinogen like-2 (FGL2), and macrophage capping protein (CAPG) were found to be upregulated in rheumatoid arthritis. Proteins such as CD5 molecule-like protein (CD5L), soluble scavenger receptor cysteine-rich domain-containing protein (SSC5D), and TTK protein kinase (TTK) were found to be upregulated in the synovial fluid of osteoarthritis patients. We confirmed the upregulation of CAPG in rheumatoid arthritis synovial fluid by multiple reaction monitoring assay as well as by Western blot. Pathway analysis of differentially expressed proteins revealed a significant enrichment of genes involved in glycolytic pathway in rheumatoid arthritis. Conclusions We report here the largest identification of proteins from the synovial fluid of rheumatoid arthritis and osteoarthritis patients using a quantitative proteomics approach. The novel proteins identified from our study needs to be explored further for their role in the disease pathogenesis of rheumatoid arthritis and osteoarthritis. Sartaj Ahmad and Raja Sekhar Nirujogi contributed equally to this article.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Subramanian Shankar
- Department of Internal Medicine, Armed Forces Medical College, Pune 411040, India.
| | | |
Collapse
|
49
|
Centrosomes and the Art of Mitotic Spindle Maintenance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 313:179-217. [DOI: 10.1016/b978-0-12-800177-6.00006-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
50
|
Pihan GA. Centrosome dysfunction contributes to chromosome instability, chromoanagenesis, and genome reprograming in cancer. Front Oncol 2013; 3:277. [PMID: 24282781 PMCID: PMC3824400 DOI: 10.3389/fonc.2013.00277] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/28/2013] [Indexed: 12/19/2022] Open
Abstract
The unique ability of centrosomes to nucleate and organize microtubules makes them unrivaled conductors of important interphase processes, such as intracellular payload traffic, cell polarity, cell locomotion, and organization of the immunologic synapse. But it is in mitosis that centrosomes loom large, for they orchestrate, with clockmaker's precision, the assembly and functioning of the mitotic spindle, ensuring the equal partitioning of the replicated genome into daughter cells. Centrosome dysfunction is inextricably linked to aneuploidy and chromosome instability, both hallmarks of cancer cells. Several aspects of centrosome function in normal and cancer cells have been molecularly characterized during the last two decades, greatly enhancing our mechanistic understanding of this tiny organelle. Whether centrosome defects alone can cause cancer, remains unanswered. Until recently, the aggregate of the evidence had suggested that centrosome dysfunction, by deregulating the fidelity of chromosome segregation, promotes and accelerates the characteristic Darwinian evolution of the cancer genome enabled by increased mutational load and/or decreased DNA repair. Very recent experimental work has shown that missegregated chromosomes resulting from centrosome dysfunction may experience extensive DNA damage, suggesting additional dimensions to the role of centrosomes in cancer. Centrosome dysfunction is particularly prevalent in tumors in which the genome has undergone extensive structural rearrangements and chromosome domain reshuffling. Ongoing gene reshuffling reprograms the genome for continuous growth, survival, and evasion of the immune system. Manipulation of molecular networks controlling centrosome function may soon become a viable target for specific therapeutic intervention in cancer, particularly since normal cells, which lack centrosome alterations, may be spared the toxicity of such therapies.
Collapse
Affiliation(s)
- German A Pihan
- Department of Pathology and Laboratory Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| |
Collapse
|