1
|
Fakharzadeh A, Moradi M, Sagui C, Roland C. Comparative Study of the Bending Free Energies of C- and G-Based DNA: A-, B-, and Z-DNA and Associated Mismatched Trinucleotide Repeats. J Chem Inf Model 2025. [PMID: 40377344 DOI: 10.1021/acs.jcim.5c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
DNA's structural flexibility plays a crucial role in various biological functions such as gene replication, repair, and regulation as well as DNA-protein recognition. We investigate the bending free energy of short DNA helices, including d(5'-(CG)7C-3')2 in A-, B-, and Z-forms, and C- and G-rich trinucleotide repeat helices, using orientation quaternions with enhanced sampling methods. The orientation quaternion technique provides an effective method to induce rotational transformations or to restrain the orientation of certain domains of biomolecular systems. This methodology was implemented in the AMBER simulation package and used to induce DNA bending in two separate ways: free bending and directional bending. We found that the bending free energy varies quadratically for moderate bending and then becomes almost linear for larger bending angles. The left-handed Z-DNA helix was found to exhibit the highest rigidity among the canonical DNA forms studied. The mechanisms associated with bending were also investigated with evidence for type I and type II kinks depending on the sequence and the helical form considered. The duplexes exhibit high flexibility in the presence of CC and GG mismatches, particularly CGG and GGC trinucleotide repeats in the Z-form, which have the lowest bending free energies. These calculations provide new insight into the mechanics of the global conformational flexibility of DNA molecules by quantifying the energetic cost and preferred directions of bending.
Collapse
Affiliation(s)
- Ashkan Fakharzadeh
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, United States
| | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Celeste Sagui
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, United States
| | - Christopher Roland
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, United States
| |
Collapse
|
2
|
He Z, Run Y, Feng Y, Yang Y, Tavakoli M, Ahmed A, Ariel F, Zhang W. Global identification and functional characterization of Z-DNA in rice. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1277-1290. [PMID: 39968963 PMCID: PMC11933839 DOI: 10.1111/pbi.14585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/27/2024] [Accepted: 01/02/2025] [Indexed: 02/20/2025]
Abstract
Z-DNA is a left-handed double helix form of DNA that is believed to be involved in various DNA transactions. However, comprehensive investigations aimed at global profiling of Z-DNA landscapes are still missing in both humans and plants. We here report the development of two techniques: anti-Z-DNA antibody-based immunoprecipitation followed by sequencing (ZIP-seq), and cleavage under targets and tagmentation (CUT&TAG) for characterizing Z-DNA in nipponbare rice (Oryza sativa L., Japonica). We found that Z-DNA-IP+ (Z-DNA recognized by the antibody) exhibits distinct genomic features as compared to Z-DNA-IP- (Z-DNA not recognized by the antibody). The concomitant presence of G-quadruplexes (G4s) and i-motifs (iMs) may promote Z-DNA formation. DNA modifications such as DNA-6mA/-4acC generally disfavours Z-DNA formation, while modifications like DNA-5mC (CHH) and 8-oxodG promote it, highlighting the distinct roles of DNA base modifications in modulating Z-DNA formation. Importantly, Z-DNA located at transcription start sites (TSSs) enhances gene expression, whereas Z-DNA in genic regions represses it, underscoring its dual roles in regulating the expression of genes involved in fundamental biological functions and responses to salt stress. Furthermore, Z-DNA may play a role in transcriptional initiation and termination rather than in transcriptional elongation. Finally, the presence of Z-DNA in promoters is correlated with the coevolution of overlapping genes, thereby regulating gene domestication. Consequently, our study represents as a pivotal point and a solid foundation for reliably launching genome-wide investigations of Z-DNA, thereby advancing the understanding of Z-DNA biology in both plants and non-plant systems.
Collapse
Affiliation(s)
- Zexue He
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, CIC‐MCPNanjing Agricultural UniversityNanjingJiangsuChina
- Key Lab of Agricultural Biotechnology of Ningxia, Ningxia Academy of Agriculture and Forestry SciencesYinChuanChina
| | - Yonghang Run
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, CIC‐MCPNanjing Agricultural UniversityNanjingJiangsuChina
| | - Yilong Feng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, CIC‐MCPNanjing Agricultural UniversityNanjingJiangsuChina
| | - Ying Yang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, CIC‐MCPNanjing Agricultural UniversityNanjingJiangsuChina
| | - Mahmoud Tavakoli
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, CIC‐MCPNanjing Agricultural UniversityNanjingJiangsuChina
| | - Asgar Ahmed
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, CIC‐MCPNanjing Agricultural UniversityNanjingJiangsuChina
- Bangladesh Wheat and Maize Research Institute (BWMRI)DinajpurBangladesh
| | - Federico Ariel
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, and CONICET‐UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE)Buenos AiresArgentina
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, CIC‐MCPNanjing Agricultural UniversityNanjingJiangsuChina
| |
Collapse
|
3
|
Travagliante G, Gaeta M, Purrello R, D’Urso A. Porphyrins as Chiroptical Conformational Probes for Biomolecules. Molecules 2025; 30:1512. [PMID: 40286092 PMCID: PMC11990877 DOI: 10.3390/molecules30071512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Porphyrins are highly conjugated macrocyclic compounds that possess exceptional photophysical and chemical properties, progressively establishing themselves as versatile tools in the structural investigation of biomolecules. This review explores their role as chiroptical conformational probes, focusing on their interactions with DNA and RNA. The planar electron rich structure of porphyrin macrocycle that promote π-π interactions, their easy functionalization at the meso positions, and their capacity to coordinate metal ions enable their use in probing nucleic acid structures with high sensitivity. Emphasis is placed on their induced circular dichroism (ICD) signals in the Soret region, which provide precise diagnostic insights into binding mechanisms and molecular interactions. The review examines the interactions of porphyrins with various DNA structures, including B-, Z-, and A-DNA, single-stranded DNA, and G-quadruplex DNA, as well as less common structures like I-motif and E-motif DNA. The last part highlights recent advancements in the use of porphyrins to probe RNA structures, emphasizing binding behaviors and chiroptical signals observed with RNA G-quadruplexes, as well as the challenges in interpreting ICD signals with other RNA motifs due to their inherent structural complexity.
Collapse
Affiliation(s)
| | | | | | - Alessandro D’Urso
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria, 6, 95125 Catania, Italy; (G.T.); (M.G.); (R.P.)
| |
Collapse
|
4
|
Aguilar MR, Jover J, Ruiz E, Aragonès AC, Artés Vivancos JM. Single-Molecule Electrical Conductance in Z-form DNA:RNA. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408459. [PMID: 39696933 PMCID: PMC11798349 DOI: 10.1002/smll.202408459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Nucleic acids have emerged as new materials with promising applications in nanotechnology, molecular electronics, and biosensing, but their electronic properties, especially at the single-molecule level, are largely underexplored. The Z-form is an exotic left-handed helical oligonucleotide conformation that may be involved in critical biological processes such as the regulation of gene expression and epigenetic processes. In this work, the electrical conductance of individual Guanine Cytosine (GC)-rich DNA:RNA molecules is measured in physiological buffer and 2,2,2-Trifluoroethanol (TFE) solvent, corresponding to the natural (right-handed helix) A-form typical in DNA:RNA hybrids and the (left-handed) Z-form conformations, respectively. Single-molecule conductance measurements are performed using the Scanning Tunneling Microscopy (STM)-assisted break-junction method in the so-called "blinking" approach, recording the spontaneous formation of single-biomolecule junctions and performing statistical analysis of the signals. Circular Dichroism (CD) experiments and ab initio calculations are also done to rationalize the measured molecular conductivity with a simple structural and electronic model. These results show that the electrical conductivity of the Z-form is one order of magnitude lower than that of the more compact A-form. The longer molecular length and higher energy for the Highest Occupied Molecular Orbital (HOMO) of the Z-form account for the differences in single-molecule conductance observed experimentally.
Collapse
Affiliation(s)
- Mauricio R. Aguilar
- Departament de Química Inorgànica i Orgànica, Secció de Química InorgànicaUniversitat de BarcelonaDiagonal 645Barcelona08028Spain
- Institut de Química Teòrica i Computacional (IQTC)Diagonal 645Barcelona08028Spain
| | - Jesus Jover
- Departament de Química Inorgànica i Orgànica, Secció de Química InorgànicaUniversitat de BarcelonaDiagonal 645Barcelona08028Spain
- Institut de Química Teòrica i Computacional (IQTC)Diagonal 645Barcelona08028Spain
| | - Eliseo Ruiz
- Departament de Química Inorgànica i Orgànica, Secció de Química InorgànicaUniversitat de BarcelonaDiagonal 645Barcelona08028Spain
- Institut de Química Teòrica i Computacional (IQTC)Diagonal 645Barcelona08028Spain
| | - Albert C. Aragonès
- Institut de Química Teòrica i Computacional (IQTC)Diagonal 645Barcelona08028Spain
- Departament de Ciència de Materials i Química FísicaUniversitat de BarcelonaMarti i Franquès 1Barcelona08028Spain
| | - Juan M Artés Vivancos
- Department of ChemistryUniversity of Massachusetts LowellLowellMA01854USA
- Present address:
European Research Council Executive Agency (ERCEA)BrusselsBelgium
| |
Collapse
|
5
|
Wang YR, Chang SM, Lin JJ, Chen HC, Lee LT, Tsai DY, Lee SD, Lan CY, Chang CR, Chen CF, Ng CS. A comprehensive study of Z-DNA density and its evolutionary implications in birds. BMC Genomics 2024; 25:1123. [PMID: 39573987 PMCID: PMC11580473 DOI: 10.1186/s12864-024-11039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Z-DNA, a left-handed helical form of DNA, plays a significant role in genomic stability and gene regulation. Its formation, associated with high GC content and repetitive sequences, is linked to genomic instability, potentially leading to large-scale deletions and contributing to phenotypic diversity and evolutionary adaptation. RESULTS In this study, we analyzed the density of Z-DNA-prone motifs of 154 avian genomes using the non-B DNA Motif Search Tool (nBMST). Our findings indicate a higher prevalence of Z-DNA motifs in promoter regions across all avian species compared to other genomic regions. A negative correlation was observed between Z-DNA density and developmental time in birds, suggesting that species with shorter developmental periods tend to have higher Z-DNA densities. This relationship implies that Z-DNA may influence the timing and regulation of development in avian species. Furthermore, Z-DNA density showed associations with traits such as body mass, egg mass, and genome size, highlighting the complex interactions between genome architecture and phenotypic characteristics. Gene Ontology (GO) analysis revealed that Z-DNA motifs are enriched in genes involved in nucleic acid binding, kinase activity, and translation regulation, suggesting a role in fine-tuning gene expression essential for cellular functions and responses to environmental changes. Additionally, the potential of Z-DNA to drive genomic instability and facilitate adaptive evolution underscores its importance in shaping phenotypic diversity. CONCLUSIONS This study emphasizes the role of Z-DNA as a dynamic genomic element contributing to gene regulation, genomic stability, and phenotypic diversity in avian species. Future research should experimentally validate these associations and explore the molecular mechanisms by which Z-DNA influences avian biology.
Collapse
Affiliation(s)
- Yu-Ren Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Shao-Ming Chang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Jinn-Jy Lin
- National Center for High-performance Computing, National Applied Research Laboratories, Hsinchu, 300092, Taiwan
| | - Hsiao-Chian Chen
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan
- Marine Research Station, Academia Sinica, Yilan, 262204, Taiwan
- Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan
| | - Lo-Tung Lee
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Dien-Yu Tsai
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Shih-Da Lee
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chuang-Rung Chang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 300044, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu, 300044, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chih-Feng Chen
- Deparment of Animal Sciences, National Chung Hsing University, Taichung, 402202, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402202, Taiwan
| | - Chen Siang Ng
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan.
- Department of Life Science, National Tsing Hua University, Hsinchu, 300044, Taiwan.
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402202, Taiwan.
- Bioresource Conservation Research Center, National Tsing Hua University, Hsinchu, 300044, Taiwan.
| |
Collapse
|
6
|
Romero MF, Krall JB, Nichols PJ, Vantreeck J, Henen MA, Dejardin E, Schulz F, Vicens Q, Vögeli B, Diallo MA. Novel Z-DNA binding domains in giant viruses. J Biol Chem 2024; 300:107504. [PMID: 38944123 PMCID: PMC11298590 DOI: 10.1016/j.jbc.2024.107504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024] Open
Abstract
Z-nucleic acid structures play vital roles in cellular processes and have implications in innate immunity due to their recognition by Zα domains containing proteins (Z-DNA/Z-RNA binding proteins, ZBPs). Although Zα domains have been identified in six proteins, including viral E3L, ORF112, and I73R, as well as, cellular ADAR1, ZBP1, and PKZ, their prevalence across living organisms remains largely unexplored. In this study, we introduce a computational approach to predict Zα domains, leading to the revelation of previously unidentified Zα domain-containing proteins in eukaryotic organisms, including non-metazoan species. Our findings encompass the discovery of new ZBPs in previously unexplored giant viruses, members of the Nucleocytoviricota phylum. Through experimental validation, we confirm the Zα functionality of select proteins, establishing their capability to induce the B-to-Z conversion. Additionally, we identify Zα-like domains within bacterial proteins. While these domains share certain features with Zα domains, they lack the ability to bind to Z-nucleic acids or facilitate the B-to-Z DNA conversion. Our findings significantly expand the ZBP family across a wide spectrum of organisms and raise intriguing questions about the evolutionary origins of Zα-containing proteins. Moreover, our study offers fresh perspectives on the functional significance of Zα domains in virus sensing and innate immunity and opens avenues for exploring hitherto undiscovered functions of ZBPs.
Collapse
Affiliation(s)
- Miguel F Romero
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jeffrey B Krall
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA
| | - Parker J Nichols
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA
| | - Jillian Vantreeck
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA
| | - Morkos A Henen
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA
| | - Emmanuel Dejardin
- GIGA I3 - Molecular Immunology and Signal Transduction, University of Liège, Liège, Belgium
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| | - Quentin Vicens
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA.
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA.
| | - Mamadou Amadou Diallo
- GIGA I3 - Molecular Immunology and Signal Transduction, University of Liège, Liège, Belgium.
| |
Collapse
|
7
|
Ashley CN, Broni E, Miller WA. ADAR Family Proteins: A Structural Review. Curr Issues Mol Biol 2024; 46:3919-3945. [PMID: 38785511 PMCID: PMC11120146 DOI: 10.3390/cimb46050243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
This review aims to highlight the structures of ADAR proteins that have been crucial in the discernment of their functions and are relevant to future therapeutic development. ADAR proteins can correct or diversify genetic information, underscoring their pivotal contribution to protein diversity and the sophistication of neuronal networks. ADAR proteins have numerous functions in RNA editing independent roles and through the mechanisms of A-I RNA editing that continue to be revealed. Provided is a detailed examination of the ADAR family members-ADAR1, ADAR2, and ADAR3-each characterized by distinct isoforms that offer both structural diversity and functional variability, significantly affecting RNA editing mechanisms and exhibiting tissue-specific regulatory patterns, highlighting their shared features, such as double-stranded RNA binding domains (dsRBD) and a catalytic deaminase domain (CDD). Moreover, it explores ADARs' extensive roles in immunity, RNA interference, and disease modulation, demonstrating their ambivalent nature in both the advancement and inhibition of diseases. Through this comprehensive analysis, the review seeks to underline the potential of targeting ADAR proteins in therapeutic strategies, urging continued investigation into their biological mechanisms and health implications.
Collapse
Affiliation(s)
- Carolyn N. Ashley
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA; (C.N.A.); (E.B.)
| | - Emmanuel Broni
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA; (C.N.A.); (E.B.)
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA; (C.N.A.); (E.B.)
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
8
|
Lee DH, Bae WH, Ha H, Kim WR, Park EG, Lee YJ, Kim JM, Shin HJ, Kim HS. The human PTGR1 gene expression is controlled by TE-derived Z-DNA forming sequence cooperating with miR-6867-5p. Sci Rep 2024; 14:4723. [PMID: 38413664 PMCID: PMC10899170 DOI: 10.1038/s41598-024-55332-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/22/2024] [Indexed: 02/29/2024] Open
Abstract
Z-DNA, a well-known non-canonical form of DNA involved in gene regulation, is often found in gene promoters. Transposable elements (TEs), which make up 45% of the human genome, can move from one location to another within the genome. TEs play various biological roles in host organisms, and like Z-DNA, can influence transcriptional regulation near promoter regions. MicroRNAs (miRNAs) are a class of small non-coding RNA molecules that play a critical role in the regulation of gene expression. Although TEs can generate Z-DNA and miRNAs can bind to Z-DNA, how these factors affect gene transcription has yet to be elucidated. Here, we identified potential Z-DNA forming sequence (ZFS), including TE-derived ZFS, in the promoter of prostaglandin reductase 1 (PTGR1) by data analysis. The transcriptional activity of these ZFS in PTGR1 was confirmed using dual-luciferase reporter assays. In addition, we discovered a novel ZFS-binding miRNA (miR-6867-5p) that suppressed PTGR1 expression by targeting to ZFS. In conclusion, these findings suggest that ZFS, including TE-derived ZFS, can regulate PTGR1 gene expression and that miR-6867-5p can suppress PTGR1 by interacting with ZFS.
Collapse
Affiliation(s)
- Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Woo Hyeon Bae
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Hongseok Ha
- Institute of Endemic Diseases, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Jung-Min Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Hae Jin Shin
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea.
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
9
|
Li J, Tang M, Ke RX, Li PL, Sheng ZG, Zhu BZ. The anti-cancer drug candidate CBL0137 induced necroptosis via forming left-handed Z-DNA and its binding protein ZBP1 in liver cells. Toxicol Appl Pharmacol 2024; 482:116765. [PMID: 37995810 DOI: 10.1016/j.taap.2023.116765] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
CBL0137, a promising small molecular anti-cancer drug candidate, has been found to effectively induce apoptosis via activating p53 and suppressing nuclear factor-kappa B (NF-κB). However, it is still not clear whether CBL0137 can induce necroptosis in liver cancer; and if so, what is the underlying molecular mechanism. Here we found that CBL0137 could significantly induce left-handed double helix structure Z-DNA formation in HepG2 cells as shown by Z-DNA specific antibody assay, which was further confirmed by observing the expression of Z-DNA binding protein 1 (ZBP1) and adenosine deaminase acting on RNA 1 (ADAR1). Interestingly, we found that caspase inhibition significantly promoted CBL0137-induced necroptosis, which was further supported with the increase of the late apoptosis and necrosis assessed by the flow cytometry. Furthermore, we found that CBL0137 can also induce the expression of the three necroptosis-related proteins: receptor interacting serine/threonine kinase 1 (RIPK1), receptor interacting serine/threonine kinase 3 (RIPK3), and mixed lineage kinase domain-like (MLKL). Taken together, it was assumed that CBL0137-indued necroptosis in liver cells was due to induction of Z-DNA and ZBP1, which activated RIPK1/RIPK3/MLKL pathway. This represents the first report on the induction of the Z-DNA-mediated necroptosis by CBL0137 in the liver cancer cells, which should provide new perspectives for CBL0137 treatment of liver cancer.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing 100085, PR China; College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 101408, PR China
| | - Miao Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing 100085, PR China; College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 101408, PR China
| | - Ruo-Xian Ke
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing 100085, PR China; College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 101408, PR China
| | - Pei-Lin Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing 100085, PR China; College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 101408, PR China
| | - Zhi-Guo Sheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing 100085, PR China; College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 101408, PR China.
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing 100085, PR China; College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 101408, PR China; Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
10
|
Duardo RC, Guerra F, Pepe S, Capranico G. Non-B DNA structures as a booster of genome instability. Biochimie 2023; 214:176-192. [PMID: 37429410 DOI: 10.1016/j.biochi.2023.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Non-canonical secondary structures (NCSs) are alternative nucleic acid structures that differ from the canonical B-DNA conformation. NCSs often occur in repetitive DNA sequences and can adopt different conformations depending on the sequence. The majority of these structures form in the context of physiological processes, such as transcription-associated R-loops, G4s, as well as hairpins and slipped-strand DNA, whose formation can be dependent on DNA replication. It is therefore not surprising that NCSs play important roles in the regulation of key biological processes. In the last years, increasing published data have supported their biological role thanks to genome-wide studies and the development of bioinformatic prediction tools. Data have also highlighted the pathological role of these secondary structures. Indeed, the alteration or stabilization of NCSs can cause the impairment of transcription and DNA replication, modification in chromatin structure and DNA damage. These events lead to a wide range of recombination events, deletions, mutations and chromosomal aberrations, well-known hallmarks of genome instability which are strongly associated with human diseases. In this review, we summarize molecular processes through which NCSs trigger genome instability, with a focus on G-quadruplex, i-motif, R-loop, Z-DNA, hairpin, cruciform and multi-stranded structures known as triplexes.
Collapse
Affiliation(s)
- Renée C Duardo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Federico Guerra
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Simona Pepe
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
11
|
Mendoza HG, Matos VJ, Park S, Pham KM, Beal PA. Selective Inhibition of ADAR1 Using 8-Azanebularine-Modified RNA Duplexes. Biochemistry 2023; 62:1376-1387. [PMID: 36972568 PMCID: PMC10804918 DOI: 10.1021/acs.biochem.2c00686] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Adenosine deaminases acting on RNA (ADARs) are RNA editing enzymes that catalyze the hydrolytic deamination of adenosine (A) to inosine (I) in dsRNA. In humans, two catalytically active ADARs, ADAR1 and ADAR2, perform this A-to-I editing event. The growing field of nucleotide base editing has highlighted ADARs as promising therapeutic agents while multiple studies have also identified ADAR1's role in cancer progression. However, the potential for site-directed RNA editing as well as the rational design of inhibitors is being hindered by the lack of detailed molecular understanding of RNA recognition by ADAR1. Here, we designed short RNA duplexes containing the nucleoside analog, 8-azanebularine (8-azaN), to gain insight into molecular recognition by the human ADAR1 catalytic domain. From gel shift and in vitro deamination experiments, we validate ADAR1 catalytic domain's duplex secondary structure requirement and present a minimum duplex length for binding (14 bp, with 5 bp 5' and 8 bp 3' to editing site). These findings concur with predicted RNA-binding contacts from a previous structural model of the ADAR1 catalytic domain. Finally, we establish that neither 8-azaN as a free nucleoside nor a ssRNA bearing 8-azaN inhibits ADAR1 and demonstrate that the 8-azaN-modified RNA duplexes selectively inhibit ADAR1 and not the closely related ADAR2 enzyme.
Collapse
Affiliation(s)
- Herra G. Mendoza
- Department of Chemistry, University of California, Davis, CA 95616 USA
| | | | - SeHee Park
- Department of Chemistry, University of California, Davis, CA 95616 USA
| | - Kevin M. Pham
- Department of Chemistry, University of California, Davis, CA 95616 USA
| | - Peter A. Beal
- Department of Chemistry, University of California, Davis, CA 95616 USA
| |
Collapse
|
12
|
Li Z, Wang J, Willner B, Willner I. Topologically Triggered Dynamic DNA Frameworks. Isr J Chem 2023. [DOI: 10.1002/ijch.202300013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Zhenzhen Li
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Jianbang Wang
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Bilha Willner
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Itamar Willner
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
13
|
Z-DNA and Z-RNA: Methods-Past and Future. Methods Mol Biol 2023; 2651:295-329. [PMID: 36892776 DOI: 10.1007/978-1-0716-3084-6_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
A quote attributed to Yogi Berra makes the observation that "It's tough to make predictions, especially about the future," highlighting the difficulties posed to an author writing a manuscript like the present. The history of Z-DNA shows that earlier postulates about its biology have failed the test of time, both those from proponents who were wildly enthusiastic in enunciating roles that till this day still remain elusive to experimental validation and those from skeptics within the larger community who considered the field a folly, presumably because of the limitations in the methods available at that time. If anything, the biological roles we now know for Z-DNA and Z-RNA were not anticipated by anyone, even when those early predictions are interpreted in the most favorable way possible. The breakthroughs in the field were made using a combination of methods, especially those based on human and mouse genetic approaches informed by the biochemical and biophysical characterization of the Zα family of proteins. The first success was with the p150 Zα isoform of ADAR1 (adenosine deaminase RNA specific), with insights into the functions of ZBP1 (Z-DNA-binding protein 1) following soon after from the cell death community. Just as the replacement of mechanical clocks by more accurate designs changed expectations about navigation, the discovery of the roles assigned by nature to alternative conformations like Z-DNA has forever altered our view of how the genome operates. These recent advances have been driven by better methodology and by better analytical approaches. This article will briefly describe the methods that were key to these discoveries and highlight areas where new method development is likely to further advance our knowledge.
Collapse
|
14
|
Bao HL, Xu Y. Oligonucleotide Containing 8-Trifluoromethyl-2'-Deoxyguanosine as a Z-DNA Probe. Methods Mol Biol 2023; 2651:115-130. [PMID: 36892763 DOI: 10.1007/978-1-0716-3084-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Z-DNA structure is a noncanonical left-handed alternative form of DNA, which has been suggested to be biologically important and is related to several genetic diseases and cancer. Therefore, investigation of Z-DNA structure associated with biological events is of great importance to understanding the functions of these molecules. Here, we described the development of a trifluoromethyl labeled deoxyguanosine derivative and employed it as a 19F NMR probe to study Z-form DNA structure in vitro and in living cells.
Collapse
Affiliation(s)
- Hong-Liang Bao
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki, Japan.,Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki, Japan.
| |
Collapse
|
15
|
Pant P. Harmonizing Interstrand Electrostatic Repulsion by Conformational Rigidity in Counterion-Deprived Z-DNA: A Molecular Dynamics Study. J Phys Chem B 2022; 126:9956-9963. [PMID: 36412276 DOI: 10.1021/acs.jpcb.2c04527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Deoxyribonucleic acid (DNA) is a vital biomacromolecule. Although the right-handed B-DNA type helical structure is the most abundant and extensively studied form of DNA, several noncanonical forms, such as triplex, quadruplex, Z-DNA, A-DNA, and ss-DNA, have been probed from time to time to gain insights into the DNA's function. Z-DNA was recently found to be involved in cancer and several autoimmune diseases. In the present Article, we evaluated the conformational stability of locked-sugar-based Z-DNA via all-atom explicit-solvent molecular dynamics simulations and found that the modified DNA maintained the left-handed conformation even in the absence of counterions, wherein the structural rigidity dominates over the electrostatic repulsion between the complementary strands. The control Z-DNA without counterions, as expected, instantaneously resulted in unfolded states. The remarkable stability of the conformationally locked model system was thoroughly investigated via structural and energetic perspectives and was probably the result of the backbone widening in tandem with enhanced electrostatics between complementary strands. We believe that the design of the proposed modified Z-DNA construct could help understand the otherwise delicate Z-DNA conformation even in salt-deprived conditions. The design could also motivate the medicinal use of short segments of such modified nucleotides and could be utilized in more advanced modeling techniques, such as DNA origami which has gained popularity in recent years.
Collapse
Affiliation(s)
- Pradeep Pant
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
16
|
Verburg SG, Lelievre RM, Westerveld MJ, Inkol JM, Sun YL, Workenhe ST. Viral-mediated activation and inhibition of programmed cell death. PLoS Pathog 2022; 18:e1010718. [PMID: 35951530 PMCID: PMC9371342 DOI: 10.1371/journal.ppat.1010718] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Viruses are ubiquitous intracellular genetic parasites that heavily rely on the infected cell to complete their replication life cycle. This dependency on the host machinery forces viruses to modulate a variety of cellular processes including cell survival and cell death. Viruses are known to activate and block almost all types of programmed cell death (PCD) known so far. Modulating PCD in infected hosts has a variety of direct and indirect effects on viral pathogenesis and antiviral immunity. The mechanisms leading to apoptosis following virus infection is widely studied, but several modalities of PCD, including necroptosis, pyroptosis, ferroptosis, and paraptosis, are relatively understudied. In this review, we cover the mechanisms by which viruses activate and inhibit PCDs and suggest perspectives on how these affect viral pathogenesis and immunity.
Collapse
Affiliation(s)
- Shayla Grace Verburg
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | | | | | - Jordon Marcus Inkol
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Yi Lin Sun
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Samuel Tekeste Workenhe
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| |
Collapse
|
17
|
High-throughput techniques enable advances in the roles of DNA and RNA secondary structures in transcriptional and post-transcriptional gene regulation. Genome Biol 2022; 23:159. [PMID: 35851062 PMCID: PMC9290270 DOI: 10.1186/s13059-022-02727-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/07/2022] [Indexed: 12/27/2022] Open
Abstract
The most stable structure of DNA is the canonical right-handed double helix termed B DNA. However, certain environments and sequence motifs favor alternative conformations, termed non-canonical secondary structures. The roles of DNA and RNA secondary structures in transcriptional regulation remain incompletely understood. However, advances in high-throughput assays have enabled genome wide characterization of some secondary structures. Here, we describe their regulatory functions in promoters and 3’UTRs, providing insights into key mechanisms through which they regulate gene expression. We discuss their implication in human disease, and how advances in molecular technologies and emerging high-throughput experimental methods could provide additional insights.
Collapse
|
18
|
Construction of ssDNA-Attached LR-Chimera Involving Z-DNA for ZBP1 Binding Analysis. Molecules 2022; 27:molecules27123706. [PMID: 35744832 PMCID: PMC9230395 DOI: 10.3390/molecules27123706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 12/10/2022] Open
Abstract
The binding of proteins to Z-DNA is hard to analyze, especially for short non-modified DNA, because it is easily transferred to B-DNA. Here, by the hybridization of a larger circular single-stranded DNA (ssDNA) with a smaller one, an LR-chimera (involving a left-handed part and a right-handed one) with an ssDNA loop is produced. The circular ssDNAs are prepared by the hybridization of two ssDNA fragments to form two nicks, followed by nick sealing with T4 DNA ligase. No splint (a scaffold DNA for circularizing ssDNA) is required, and no polymeric byproducts are produced. The ssDNA loop on the LR-chimera can be used to attach it with other molecules by hybridization with another ssDNA. The gel shift binding assay with Z-DNA specific binding antibody (Z22) or Z-DNA binding protein 1 (ZBP1) shows that stable Z-DNA can form under physiological ionic conditions even when the extra ssDNA part is present. Concretely, a 5'-terminal biotin-modified DNA oligonucleotide complementary to the ssDNA loop on the LR-chimera is used to attach it on the surface of a biosensor inlaid with streptavidin molecules, and the binding constant of ZBP1 with Z-DNA is analyzed by BLI (bio-layer interferometry). This approach is convenient for quantitatively analyzing the binding dynamics of Z-DNA with other molecules.
Collapse
|
19
|
Herbert A, Fedorov A, Poptsova M. Mono a Mano: ZBP1's Love-Hate Relationship with the Kissing Virus. Int J Mol Sci 2022; 23:3079. [PMID: 35328502 PMCID: PMC8955656 DOI: 10.3390/ijms23063079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/24/2022] [Accepted: 03/09/2022] [Indexed: 12/27/2022] Open
Abstract
Z-DNA binding protein (ZBP1) very much represents the nuclear option. By initiating inflammatory cell death (ICD), ZBP1 activates host defenses to destroy infectious threats. ZBP1 is also able to induce noninflammatory regulated cell death via apoptosis (RCD). ZBP1 senses the presence of left-handed Z-DNA and Z-RNA (ZNA), including that formed by expression of endogenous retroelements. Viruses such as the Epstein-Barr "kissing virus" inhibit ICD, RCD and other cell death signaling pathways to produce persistent infection. EBV undergoes lytic replication in plasma cells, which maintain detectable levels of basal ZBP1 expression, leading us to suggest a new role for ZBP1 in maintaining EBV latency, one of benefit for both host and virus. We provide an overview of the pathways that are involved in establishing latent infection, including those regulated by MYC and NF-κB. We describe and provide a synthesis of the evidence supporting a role for ZNA in these pathways, highlighting the positive and negative selection of ZNA forming sequences in the EBV genome that underscores the coadaptation of host and virus. Instead of a fight to the death, a state of détente now exists where persistent infection by the virus is tolerated by the host, while disease outcomes such as death, autoimmunity and cancer are minimized. Based on these new insights, we propose actionable therapeutic approaches to unhost EBV.
Collapse
Affiliation(s)
- Alan Herbert
- InsideOutBio, 42 8th Street, Charlestown, MA 02129, USA
- Laboratory of Bioinformatics, Faculty of Computer Science, National Research University Higher School of Economics, 11 Pokrovsky Bulvar, 101000 Moscow, Russia; (A.F.); (M.P.)
| | - Aleksandr Fedorov
- Laboratory of Bioinformatics, Faculty of Computer Science, National Research University Higher School of Economics, 11 Pokrovsky Bulvar, 101000 Moscow, Russia; (A.F.); (M.P.)
| | - Maria Poptsova
- Laboratory of Bioinformatics, Faculty of Computer Science, National Research University Higher School of Economics, 11 Pokrovsky Bulvar, 101000 Moscow, Russia; (A.F.); (M.P.)
| |
Collapse
|
20
|
Buzzo JR, Devaraj A, Gloag ES, Jurcisek JA, Robledo-Avila F, Kesler T, Wilbanks K, Mashburn-Warren L, Balu S, Wickham J, Novotny LA, Stoodley P, Bakaletz LO, Goodman SD. Z-form extracellular DNA is a structural component of the bacterial biofilm matrix. Cell 2021; 184:5740-5758.e17. [PMID: 34735796 DOI: 10.1016/j.cell.2021.10.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/03/2021] [Accepted: 10/12/2021] [Indexed: 12/30/2022]
Abstract
Biofilms are community architectures adopted by bacteria inclusive of a self-formed extracellular matrix that protects resident bacteria from diverse environmental stresses and, in many species, incorporates extracellular DNA (eDNA) and DNABII proteins for structural integrity throughout biofilm development. Here, we present evidence that this eDNA-based architecture relies on the rare Z-form. Z-form DNA accumulates as biofilms mature and, through stabilization by the DNABII proteins, confers structural integrity to the biofilm matrix. Indeed, substances known to drive B-DNA into Z-DNA promoted biofilm formation whereas those that drive Z-DNA into B-DNA disrupted extant biofilms. Importantly, we demonstrated that the universal bacterial DNABII family of proteins stabilizes both bacterial- and host-eDNA in the Z-form in situ. A model is proposed that incorporates the role of Z-DNA in biofilm pathogenesis, innate immune response, and immune evasion.
Collapse
Affiliation(s)
- John R Buzzo
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Aishwarya Devaraj
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Erin S Gloag
- Department of Orthopedics, Ohio State University, Columbus, OH 43210, USA
| | - Joseph A Jurcisek
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Frank Robledo-Avila
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Theresa Kesler
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Kathryn Wilbanks
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Lauren Mashburn-Warren
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Sabarathnam Balu
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Joseph Wickham
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Laura A Novotny
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Paul Stoodley
- Department of Orthopedics, Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH 43210, USA; National Centre for Advanced Tribology at Southampton, University of Southampton, Southampton S017 1BJ, UK
| | - Lauren O Bakaletz
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA; Department of Pediatrics, College of Medicine, Ohio State University, Columbus, OH 43210, USA.
| | - Steven D Goodman
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA; Department of Pediatrics, College of Medicine, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
21
|
Pandya N, Bhagwat SR, Kumar A. Regulatory role of Non-canonical DNA Polymorphisms in human genome and their relevance in Cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188594. [PMID: 34303788 DOI: 10.1016/j.bbcan.2021.188594] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022]
Abstract
DNA has the ability to form polymorphic structures like canonical duplex DNA and non-canonical triplex DNA, Cruciform, Z-DNA, G-quadruplex (G4), i-motifs, and hairpin structures. The alteration in the form of DNA polymorphism in the response to environmental changes influences the gene expression. Non-canonical structures are engaged in various biological functions, including chromatin epigenetic and gene expression regulation via transcription and translation, as well as DNA repair and recombination. The presence of non-canonical structures in the regulatory region of the gene alters the gene expression and affects the cellular machinery. Formation of non-canonical structure in the regulatory site of cancer-related genes either inhibits or dysregulate the gene function and promote tumour formation. In the current article, we review the influence of non-canonical structure on the regulatory mechanisms in human genome. Moreover, we have also discussed the relevance of non-canonical structures in cancer and provided information on the drugs used for their treatment by targeting these structures.
Collapse
Affiliation(s)
- Nirali Pandya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Sonali R Bhagwat
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India.
| |
Collapse
|
22
|
Bao HL, Xu Y. Observation of Z-DNA Structure via the Synthesis of Oligonucleotide DNA Containing 8-Trifluoromethyl-2-Deoxyguanosine. Curr Protoc 2021; 1:e28. [PMID: 33484490 DOI: 10.1002/cpz1.28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This article contains detailed synthetic protocols for the preparation of DNA oligonucleotides containing 8-trifluoromethyl-2'-deoxyguanosine (CF3 dG) and their application to observe Z-DNA structure in vitro and in living HeLa cells. First, using a catalytic system consisting of FeSO4 , H2 SO4 , and H2 O2 in DMSO, we achieved a one-step synthesis of CF3 dG through a radical reaction between deoxyguanosine (dG) and CF3 I, with a yield of 45%. We then obtained the 3'-phosphoramidite of CF3 dG through a routine three-step procedure. Next, we employed the CF3 dG phosphoramidite monomer in the synthesis of oligonucleotides on a solid-phase DNA synthesizer. Finally, we used the CF3 dG-modified DNA oligonucleotides to observe Z-DNA structure in vitro and in living HeLa cells through 19 F NMR spectroscopy. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of CF3 dG phosphoramidites Basic Protocol 2: Preparation of CF3 dG-modified DNA oligonucleotides Basic Protocol 3: Evaluation of CF3 dG stabilization of Z-DNA structure by CD spectroscopy Basic Protocol 4: Investigation of Z-DNA structure in vitro and in HeLa cells with CF3 dG-modified DNA oligonucleotides and 19 F NMR spectroscopy.
Collapse
Affiliation(s)
- Hong-Liang Bao
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Japan
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Japan
| |
Collapse
|
23
|
Gabriel L, Srinivasan B, Kuś K, Mata JF, João Amorim M, Jansen LET, Athanasiadis A. Enrichment of Zα domains at cytoplasmic stress granules is due to their innate ability to bind to nucleic acids. J Cell Sci 2021; 134:268376. [PMID: 34037233 DOI: 10.1242/jcs.258446] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/08/2021] [Indexed: 01/14/2023] Open
Abstract
Zα domains recognize the left-handed helical Z conformation of double-stranded nucleic acids. They are found in proteins involved in the nucleic acid sensory pathway of the vertebrate innate immune system and host evasion by viral pathogens. Previously, it has been demonstrated that ADAR1 (encoded by ADAR in humans) and DAI (also known as ZBP1) localize to cytoplasmic stress granules (SGs), and this localization is mediated by their Zα domains. To investigate the mechanism, we determined the interactions and localization pattern for the N-terminal region of human DAI (ZαβDAI), which harbours two Zα domains, and for a ZαβDAI mutant deficient in nucleic acid binding. Electrophoretic mobility shift assays demonstrated the ability of ZαβDAI to bind to hyperedited nucleic acids, which are enriched in SGs. Furthermore, using immunofluorescence and immunoprecipitation coupled with mass spectrometry, we identified several interacting partners of the ZαβDAI-RNA complex in vivo under conditions of arsenite-induced stress. These interactions are lost upon loss of nucleic acid-binding ability or upon RNase treatment. Thus, we posit that the mechanism for the translocation of Zα domain-containing proteins to SGs is mainly mediated by the nucleic acid-binding ability of their Zα domains. This article has an associated First Person interview with Bharath Srinivasan, joint first author of the paper.
Collapse
Affiliation(s)
- Luisa Gabriel
- Instituto Gulbenkian de Ciência, Rua Quinta Grande 6, Oeiras 2781-156, Portugal
| | - Bharath Srinivasan
- Instituto Gulbenkian de Ciência, Rua Quinta Grande 6, Oeiras 2781-156, Portugal
| | - Krzysztof Kuś
- Instituto Gulbenkian de Ciência, Rua Quinta Grande 6, Oeiras 2781-156, Portugal
| | - João F Mata
- Instituto Gulbenkian de Ciência, Rua Quinta Grande 6, Oeiras 2781-156, Portugal
| | - Maria João Amorim
- Instituto Gulbenkian de Ciência, Rua Quinta Grande 6, Oeiras 2781-156, Portugal
| | - Lars E T Jansen
- Instituto Gulbenkian de Ciência, Rua Quinta Grande 6, Oeiras 2781-156, Portugal
| | - Alekos Athanasiadis
- Instituto Gulbenkian de Ciência, Rua Quinta Grande 6, Oeiras 2781-156, Portugal
| |
Collapse
|
24
|
Erdmann EA, Mahapatra A, Mukherjee P, Yang B, Hundley HA. To protect and modify double-stranded RNA - the critical roles of ADARs in development, immunity and oncogenesis. Crit Rev Biochem Mol Biol 2020; 56:54-87. [PMID: 33356612 DOI: 10.1080/10409238.2020.1856768] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adenosine deaminases that act on RNA (ADARs) are present in all animals and function to both bind double-stranded RNA (dsRNA) and catalyze the deamination of adenosine (A) to inosine (I). As inosine is a biological mimic of guanosine, deamination by ADARs changes the genetic information in the RNA sequence and is commonly referred to as RNA editing. Millions of A-to-I editing events have been reported for metazoan transcriptomes, indicating that RNA editing is a widespread mechanism used to generate molecular and phenotypic diversity. Loss of ADARs results in lethality in mice and behavioral phenotypes in worm and fly model systems. Furthermore, alterations in RNA editing occur in over 35 human pathologies, including several neurological disorders, metabolic diseases, and cancers. In this review, a basic introduction to ADAR structure and target recognition will be provided before summarizing how ADARs affect the fate of cellular RNAs and how researchers are using this knowledge to engineer ADARs for personalized medicine. In addition, we will highlight the important roles of ADARs and RNA editing in innate immunity and cancer biology.
Collapse
Affiliation(s)
- Emily A Erdmann
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | - Priyanka Mukherjee
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN, USA
| | - Boyoon Yang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Heather A Hundley
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN, USA
| |
Collapse
|
25
|
Li Y, Huang Q, Yao G, Wang X, Zhang F, Wang T, Shao C, Zheng X, Jing X, Zhou H. Remodeling Chromatin Induces Z-DNA Conformation Detected through Fourier Transform Infrared Spectroscopy. Anal Chem 2020; 92:14452-14458. [PMID: 33085464 DOI: 10.1021/acs.analchem.0c02432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The SWI/SNF complex is a highly conserved chromatin remodeling complex and can hydrolyze ATP by its catalytic subunit BRG1 or BRM to reconstruct the chromatin. To investigate whether this ATP-dependent chromatin remodeling could affect the DNA conformation, we therefore regulated (knocked down or overexpressed) BRG1/BRM in the cells and applied Fourier transform infrared (FTIR) spectroscopy to probe DNA conformational changes. As a result, we found that BRG1/BRM was indeed associated with the DNA conformational changes, in which knockdown of BRG1/BRM reduced Z-DNA conformation, while overexpression of BRG1/BRM enhanced Z-DNA conformation. This Z-DNA conformational transformation was also verified using the Z-DNA-binding proteins. Therefore, this work has provided a direct analytical tool to probe Z-DNA transformation upon ATP-dependent chromatin remodeling.
Collapse
Affiliation(s)
- Yalin Li
- Henan Key Laboratory of Ion-beam Bioengineering, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Qing Huang
- CAS Key Laboratory of Ion-beam Bioengineering, Hefei Institutes of Physical Science, Institute of Intelligent Machines, Chinese Academy of Sciences (CAS), Hefei 230031, China
| | - Guohua Yao
- CAS Key Laboratory of Ion-beam Bioengineering, Hefei Institutes of Physical Science, Institute of Intelligent Machines, Chinese Academy of Sciences (CAS), Hefei 230031, China
| | - Xiaoyi Wang
- Department of Pediatric Hematology and Oncology, Zhengzhou University First Affiliated Hospital, Zhengzhou 450000 China
| | - Fengqiu Zhang
- Henan Key Laboratory of Ion-beam Bioengineering, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Tao Wang
- The College of Nursing and Health, Zhengzhou University, Zhengzhou, China 450001
| | - Changsheng Shao
- CAS Key Laboratory of Ion-beam Bioengineering, Hefei Institutes of Physical Science, Institute of Intelligent Machines, Chinese Academy of Sciences (CAS), Hefei 230031, China
| | - Xinxin Zheng
- CAS Key Laboratory of Ion-beam Bioengineering, Hefei Institutes of Physical Science, Institute of Intelligent Machines, Chinese Academy of Sciences (CAS), Hefei 230031, China
| | - Xumiao Jing
- Henan Key Laboratory of Ion-beam Bioengineering, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Huiyue Zhou
- The College of Nursing and Health, Zhengzhou University, Zhengzhou, China 450001
| |
Collapse
|
26
|
Zahedi K, Brooks M, Barone S, Rahmati N, Murray Stewart T, Dunworth M, Destefano-Shields C, Dasgupta N, Davidson S, Lindquist DM, Fuller CE, Smith RD, Cleveland JL, Casero RA, Soleimani M. Ablation of polyamine catabolic enzymes provokes Purkinje cell damage, neuroinflammation, and severe ataxia. J Neuroinflammation 2020; 17:301. [PMID: 33054763 PMCID: PMC7559641 DOI: 10.1186/s12974-020-01955-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Polyamine catabolism plays a key role in maintaining intracellular polyamine pools, yet its physiological significance is largely unexplored. Here, we report that the disruption of polyamine catabolism leads to severe cerebellar damage and ataxia, demonstrating the fundamental role of polyamine catabolism in the maintenance of cerebellar function and integrity. METHODS Mice with simultaneous deletion of the two principal polyamine catabolic enzymes, spermine oxidase and spermidine/spermine N1-acetyltransferase (Smox/Sat1-dKO), were generated by the crossbreeding of Smox-KO (Smox-/-) and Sat1-KO (Sat1-/-) animals. Development and progression of tissue injury was monitored using imaging, behavioral, and molecular analyses. RESULTS Smox/Sat1-dKO mice are normal at birth, but develop progressive cerebellar damage and ataxia. The cerebellar injury in Smox/Sat1-dKO mice is associated with Purkinje cell loss and gliosis, leading to neuroinflammation and white matter demyelination during the latter stages of the injury. The onset of tissue damage in Smox/Sat1-dKO mice is not solely dependent on changes in polyamine levels as cerebellar injury was highly selective. RNA-seq analysis and confirmatory studies revealed clear decreases in the expression of Purkinje cell-associated proteins and significant increases in the expression of transglutaminases and markers of neurodegenerative microgliosis and astrocytosis. Further, the α-Synuclein expression, aggregation, and polyamination levels were significantly increased in the cerebellum of Smox/Sat1-dKO mice. Finally, there were clear roles of transglutaminase-2 (TGM2) in the cerebellar pathologies manifest in Smox/Sat1-dKO mice, as pharmacological inhibition of transglutaminases reduced the severity of ataxia and cerebellar injury in Smox/Sat1-dKO mice. CONCLUSIONS These results indicate that the disruption of polyamine catabolism, via coordinated alterations in tissue polyamine levels, elevated transglutaminase activity and increased expression, polyamination, and aggregation of α-Synuclein, leads to severe cerebellar damage and ataxia. These studies indicate that polyamine catabolism is necessary to Purkinje cell survival, and for sustaining the functional integrity of the cerebellum.
Collapse
Affiliation(s)
- Kamyar Zahedi
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
- Research Services, Veterans Affairs Medical Center, Cincinnati, OH, 45220, USA.
- Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
- Research Services, Veterans Affairs Medical Center, Albuquerque, NM, 87108, USA.
- Department of Internal Medicine, Division of Nephrology, University of New Mexico College of Medicine, 915 Camino de Salud, Bldg. 289, IDTC 3315, Albuquerque, NM, 87113, USA.
- Present Address: Department of Internal Medicine, Division of Nephrology, University of New Mexico College of Medicine, Albuquerque, NM, 87131, USA.
| | - Marybeth Brooks
- Research Services, Veterans Affairs Medical Center, Cincinnati, OH, 45220, USA
- Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
- Present Address: Department of Internal Medicine, Division of Nephrology, University of New Mexico College of Medicine, Albuquerque, NM, 87131, USA
| | - Sharon Barone
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Research Services, Veterans Affairs Medical Center, Cincinnati, OH, 45220, USA
- Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
- Research Services, Veterans Affairs Medical Center, Albuquerque, NM, 87108, USA
- Present Address: Department of Internal Medicine, Division of Nephrology, University of New Mexico College of Medicine, Albuquerque, NM, 87131, USA
| | - Negah Rahmati
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Tracy Murray Stewart
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Matthew Dunworth
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Christina Destefano-Shields
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Nupur Dasgupta
- The Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Steve Davidson
- Department of Anesthesiology and Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Diana M Lindquist
- Department of Radiology, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Christine E Fuller
- Upstate Medical University Department of Pathology, Syracuse, NY, 13219, USA
| | - Roger D Smith
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - John L Cleveland
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL, USA
| | - Robert A Casero
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Manoocher Soleimani
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
- Research Services, Veterans Affairs Medical Center, Cincinnati, OH, 45220, USA.
- Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
- Research Services, Veterans Affairs Medical Center, Albuquerque, NM, 87108, USA.
- Department of Internal Medicine, Division of Nephrology, University of New Mexico College of Medicine, 915 Camino de Salud, Bldg. 289, IDTC 3315, Albuquerque, NM, 87113, USA.
- Present Address: Department of Internal Medicine, Division of Nephrology, University of New Mexico College of Medicine, Albuquerque, NM, 87131, USA.
| |
Collapse
|
27
|
Bao HL, Masuzawa T, Oyoshi T, Xu Y. Oligonucleotides DNA containing 8-trifluoromethyl-2'-deoxyguanosine for observing Z-DNA structure. Nucleic Acids Res 2020; 48:7041-7051. [PMID: 32678885 PMCID: PMC7367190 DOI: 10.1093/nar/gkaa505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/01/2020] [Accepted: 06/10/2020] [Indexed: 01/05/2023] Open
Abstract
Z-DNA is known to be a left-handed alternative form of DNA and has important biological roles as well as being related to cancer and other genetic diseases. It is therefore important to investigate Z-DNA structure and related biological events in living cells. However, the development of molecular probes for the observation of Z-DNA structures inside living cells has not yet been realized. Here, we have succeeded in developing site-specific trifluoromethyl oligonucleotide DNA by incorporation of 8-trifluoromethyl-2′-deoxyguanosine (FG). 2D NMR strongly suggested that FG adopted a syn conformation. Trifluoromethyl oligonucleotides dramatically stabilized Z-DNA, even under physiological salt concentrations. Furthermore, the trifluoromethyl DNA can be used to directly observe Z-form DNA structure and interaction of DNA with proteins in vitro, as well as in living human cells by19F NMR spectroscopy for the first time. These results provide valuable information to allow understanding of the structure and function of Z-DNA.
Collapse
Affiliation(s)
- Hong-Liang Bao
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Tatsuki Masuzawa
- Faculty of Science, Department of Chemistry, Shizuoka University, 836 Ohya Suruga Shizuoka 422-8529, Japan
| | - Takanori Oyoshi
- Faculty of Science, Department of Chemistry, Shizuoka University, 836 Ohya Suruga Shizuoka 422-8529, Japan
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
28
|
Dynamic regulation of Z-DNA in the mouse prefrontal cortex by the RNA-editing enzyme Adar1 is required for fear extinction. Nat Neurosci 2020; 23:718-729. [PMID: 32367065 PMCID: PMC7269834 DOI: 10.1038/s41593-020-0627-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 03/19/2020] [Indexed: 01/06/2023]
Abstract
DNA forms conformational states beyond the right-handed double-helix; however, the functional relevance of these non-canonical structures in the brain remains unknown. We show that, in the prefrontal cortex of mice, the formation of one such structure, Z-DNA, is involved in the regulation of extinction memory. Z-DNA is formed during fear learning, and reduced during extinction learning, which is mediated, in part, by a direct interaction between Z-DNA and the RNA editing enzyme Adar1. Adar1 binds to Z-DNA during fear extinction learning which leads to a reduction in Z-DNA at sites where Adar1 is recruited. Knockdown of Adar1 leads to an inability to modify a previously acquired fear memory and blocks activity-dependent changes in DNA structure and RNA state; effects that are fully rescued by the introduction of full-length Adar1. These findings suggest a novel mechanism of learning-induced gene regulation dependent on both proteins which recognize DNA structure, and the state.
Collapse
|
29
|
Zhou Z, Fan D, Willner I. Modeling Gene Expression Instability by Programmed and Switchable Polymerization/Nicking DNA Nanomachineries. ACS NANO 2020; 14:5046-5052. [PMID: 32250590 DOI: 10.1021/acsnano.0c01583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Models for gene expression instability by noncanonical DNA-nanostructures are introduced. The systems consist of a promoter-template scaffold that acts as a polymerization/nicking machinery that models, in the presence of polymerase/Nt.BbvCI and dNTPs, the autonomous synthesis of displaced strands mimicking the native "genes". Incorporation of noncanonical DNA structures into the scaffolds consisting of Sr2+-ion-stabilized G-quadruplexes, T-A·T triplexes, or ATP-aptamer complexes results in the perturbation of the polymerization/nicking DNA machineries and the synthesis of displaced strands-"genes" exhibiting other structures. By the dissociation of the noncanonical blockage units, the regeneration of the synthesis of the original intact displaced strands-"genes" is demonstrated. The study introduces conceptual means to eliminate destructive gene expression instability pathways.
Collapse
Affiliation(s)
- Zhixin Zhou
- Institute of Chemistry, The Minerva Center for Biohybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Daoqing Fan
- Institute of Chemistry, The Minerva Center for Biohybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, The Minerva Center for Biohybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
30
|
Zhao X, Xie L, Wang Z, Wang J, Xu H, Han X, Bai D, Deng P. ZBP1 (DAI/DLM-1) promotes osteogenic differentiation while inhibiting adipogenic differentiation in mesenchymal stem cells through a positive feedback loop of Wnt/β-catenin signaling. Bone Res 2020; 8:12. [PMID: 32195010 PMCID: PMC7058036 DOI: 10.1038/s41413-020-0085-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/19/2019] [Accepted: 07/01/2019] [Indexed: 02/05/2023] Open
Abstract
The lineage specification of mesenchymal stem/stromal cells (MSCs) is tightly regulated by a wide range of factors. Recently, the versatile functions of ZBP1 (also known as DAI or DLM-1) have been reported in the blood circulation and immune systems. However, the biological function of ZBP1 during the lineage specification of MSCs is still unknown. In the present study, we found that ZBP1 was upregulated during osteogenesis but downregulated during adipogenesis in mouse bone marrow-derived MSCs (mBMSCs). ZBP1 was highly expressed in osteoblasts but expressed at a relatively low level in marrow adipocytes. Knockdown of ZBP1 inhibited alkaline phosphataseactivity, extracellular matrix mineralization, and osteogenesis-related gene expression in vitro and reduced ectopic bone formation in vivo. Knockdown of ZBP1 also promoted adipogenesis in MSCs in vitro. Conversely, the overexpression of ZBP1 increased the osteogenesis but suppressed the adipogenesis of MSCs. When the expression of ZBP1 was rescued, the osteogenic capacity of ZBP1-depleted mBMSCs was restored at both the molecular and phenotypic levels. Furthermore, we demonstrated that ZBP1, a newly identified target of Wnt/β-catenin signaling, was required for β-catenin translocation into nuclei. Collectively, our results indicate that ZBP1 is a novel regulator of bone and fat transdifferentiation via Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Xuefeng Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041 PR China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041 PR China
| | - Liang Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041 PR China
| | - Zhiyong Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041 PR China
| | - Jiongke Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041 PR China
| | - Hao Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041 PR China
| | - Xianglong Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041 PR China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041 PR China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041 PR China
| | - Peng Deng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041 PR China
| |
Collapse
|
31
|
Soyal SM, Bonova P, Kwik M, Zara G, Auer S, Scharler C, Strunk D, Nofziger C, Paulmichl M, Patsch W. The Expression of CNS-Specific PPARGC1A Transcripts Is Regulated by Hypoxia and a Variable GT Repeat Polymorphism. Mol Neurobiol 2020; 57:752-764. [PMID: 31471878 PMCID: PMC7031416 DOI: 10.1007/s12035-019-01731-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022]
Abstract
PPARGC1A encodes a transcriptional co-activator also termed peroxisome proliferator-activated receptor (PPAR) gamma coactivator 1-alpha (PGC-1α) which orchestrates multiple transcriptional programs. We have recently identified CNS-specific transcripts that are initiated far upstream of the reference gene (RG) promoter. The regulation of these isoforms may be relevant, as experimental and genetic studies implicated the PPARGC1A locus in neurodegenerative diseases. We therefore studied cis- and trans-regulatory elements activating the CNS promoter in comparison to the RG promoter in human neuronal cell lines. A naturally occurring variable guanidine thymidine (GT) repeat polymorphism within a microsatellite region in the proximal CNS promoter increases promoter activity in neuronal cell lines. Both the RG and the CNS promoters are activated by ESRRA, and the PGC-1α isoforms co-activate ESRRA on their own promoters suggesting an autoregulatory feedback loop. The proximal CNS, but not the RG, promoter is induced by FOXA2 and co-activated by PGC-1α resulting in robust activation. Furthermore, the CNS, but not the RG, promoter is targeted by the canonical hypoxia response involving HIF1A. Importantly, the transactivation by HIF1A is modulated by the size of the GT polymorphism. Increased expression of CNS-specific transcripts in response to hypoxia was observed in an established rat model, while RG transcripts encoding the full-length reference protein were not increased. These results suggest a role of the CNS region of the PPARGC1A locus in ischemia and warrant further studies in humans as the activity of the CNS promoter as well as its induction by hypoxia is subject to inter-individual variability due to the GT polymorphism.
Collapse
Affiliation(s)
- Selma M Soyal
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020, Salzburg, Austria.
| | - Petra Bonova
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Markus Kwik
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020, Salzburg, Austria
| | - Greta Zara
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020, Salzburg, Austria
| | - Simon Auer
- Institute for Medical and Chemical Laboratory Diagnostics, Paracelsus Medical University, 5020, Salzburg, Austria
| | - Cornelia Scharler
- Institute of Experimental and Clinical Cell Therapy, Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, 5020, Salzburg, Austria
| | - Dirk Strunk
- Institute of Experimental and Clinical Cell Therapy, Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, 5020, Salzburg, Austria
| | | | - Markus Paulmichl
- PharmGenetix GmbH, Niederalm, 5081, Salzburg, Austria
- Department of Personalized Medicine, Humanomed, 9020, Klagenfurt, Austria
| | - Wolfgang Patsch
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020, Salzburg, Austria.
| |
Collapse
|
32
|
Chen JY, Lim DH, Fu XD. Mechanistic Dissection of RNA-Binding Proteins in Regulated Gene Expression at Chromatin Levels. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:55-66. [PMID: 31900328 PMCID: PMC7332398 DOI: 10.1101/sqb.2019.84.039222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Eukaryotic genomes are known to prevalently transcribe diverse classes of RNAs, virtually all of which, including nascent RNAs from protein-coding genes, are now recognized to have regulatory functions in gene expression, suggesting that RNAs are both the products and the regulators of gene expression. Their functions must enlist specific RNA-binding proteins (RBPs) to execute their regulatory activities, and recent evidence suggests that nearly all biochemically defined chromatin regions in the human genome, whether defined for gene activation or silencing, have the involvement of specific RBPs. Interestingly, the boundary between RNA- and DNA-binding proteins is also melting, as many DNA-binding proteins traditionally studied in the context of transcription are able to bind RNAs, some of which may simultaneously bind both DNA and RNA to facilitate network interactions in three-dimensional (3D) genome. In this review, we focus on RBPs that function at chromatin levels, with particular emphasis on their mechanisms of action in regulated gene expression, which is intended to facilitate future functional and mechanistic dissection of chromatin-associated RBPs.
Collapse
Affiliation(s)
- Jia-Yu Chen
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Do-Hwan Lim
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
33
|
Winnerdy FR, Bakalar B, Maity A, Vandana JJ, Mechulam Y, Schmitt E, Phan AT. NMR solution and X-ray crystal structures of a DNA molecule containing both right- and left-handed parallel-stranded G-quadruplexes. Nucleic Acids Res 2019; 47:8272-8281. [PMID: 31216034 PMCID: PMC6735952 DOI: 10.1093/nar/gkz349] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/16/2019] [Accepted: 06/13/2019] [Indexed: 01/29/2023] Open
Abstract
Analogous to the B- and Z-DNA structures in double-helix DNA, there exist both right- and left-handed quadruple-helix (G-quadruplex) DNA. Numerous conformations of right-handed and a few left-handed G-quadruplexes were previously observed, yet they were always identified separately. Here, we present the NMR solution and X-ray crystal structures of a right- and left-handed hybrid G-quadruplex. The structure reveals a stacking interaction between two G-quadruplex blocks with different helical orientations and displays features of both right- and left-handed G-quadruplexes. An analysis of loop mutations suggests that single-nucleotide loops are preferred or even required for the left-handed G-quadruplex formation. The discovery of a right- and left-handed hybrid G-quadruplex further expands the polymorphism of G-quadruplexes and is potentially useful in designing a left-to-right junction in G-quadruplex engineering.
Collapse
Affiliation(s)
- Fernaldo Richtia Winnerdy
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Blaž Bakalar
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Arijit Maity
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - J Jeya Vandana
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Yves Mechulam
- Laboratoire de Biochimie, UMR 7654, CNRS, Ecole Polytechnique, Palaiseau 91128, France
| | - Emmanuelle Schmitt
- Laboratoire de Biochimie, UMR 7654, CNRS, Ecole Polytechnique, Palaiseau 91128, France
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
34
|
Dias C, Elzein S, Sladek R, Goodyer CG. Sex-specific effects of a microsatellite polymorphism on human growth hormone receptor gene expression. Mol Cell Endocrinol 2019; 492:110442. [PMID: 31063794 DOI: 10.1016/j.mce.2019.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 01/05/2023]
Abstract
Growth hormone (GH) binds to its specific receptor (GHR) at the surface of target cells activating multiple signaling pathways implicated in growth and metabolism. Dysregulation of GHRs leads to pathophysiological states that most commonly affect stature. We previously showed the association of a polymorphic (n = 15-37) GT microsatellite in the human GHR gene promoter with short stature in a sex-specific manner. In the present study we evaluated the functional relevance of this polymorphism in regulating GHR expression. Using luciferase reporter assays, we found that the GT repeat had a significant cis regulatory effect in response to HIF1α and a potential repressor role following C/EBPβ stimulation. Using a digital PCR application to measure allelic imbalance (AI), we showed a high prevalence of AI (∼76%) at the GHR locus in lymphoblastoid cell lines (LCLs), with a significantly higher degree of imbalance in LCLs derived from males. Examination of expression of GHR as well as other members of the GH-IGF1 axis in the LCLs revealed significant associations of GHR, IGF1 and BCL2 expression with GT genotype in a sex-specific manner. Our results suggest that this GT microsatellite exerts both cis and trans effects in a sex-specific context, revealing a new mechanism by which GHR gene expression is regulated.
Collapse
Affiliation(s)
- Christel Dias
- Division of Experimental Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Samar Elzein
- Division of Experimental Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Robert Sladek
- Division of Experimental Medicine and Department of Human Genetics, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Cynthia Gates Goodyer
- Division of Experimental Medicine and Department of Pediatrics, McGill University, Montreal, Quebec, H4A 3J1, Canada.
| |
Collapse
|
35
|
Lee CH, Shih YP, Ho MR, Wang AHJ. The C-terminal D/E-rich domain of MBD3 is a putative Z-DNA mimic that competes for Zα DNA-binding activity. Nucleic Acids Res 2019; 46:11806-11821. [PMID: 30304469 PMCID: PMC6294567 DOI: 10.1093/nar/gky933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 10/04/2018] [Indexed: 12/25/2022] Open
Abstract
The Z-DNA binding domain (Zα), derived from the human RNA editing enzyme ADAR1, can induce and stabilize the Z-DNA conformation. However, the biological function of Zα/Z-DNA remains elusive. Herein, we sought to identify proteins associated with Zα to gain insight into the functional network of Zα/Z-DNA. By pull-down, biophysical and biochemical analyses, we identified a novel Zα-interacting protein, MBD3, and revealed that Zα interacted with its C-terminal acidic region, an aspartate (D)/glutamate (E)-rich domain, with high affinity. The D/E-rich domain of MBD3 may act as a DNA mimic to compete with Z-DNA for binding to Zα. Dimerization of MBD3 via intermolecular interaction of the D/E-rich domain and its N-terminal DNA binding domain, a methyl-CpG-binding domain (MBD), attenuated the high affinity interaction of Zα and the D/E-rich domain. By monitoring the conformation transition of DNA, we found that Zα could compete with the MBD domain for binding to the Z-DNA forming sequence, but not vice versa. Furthermore, co-immunoprecipitation experiments confirmed the interaction of MBD3 and ADAR1 in vivo. Our findings suggest that the interplay of Zα and MBD3 may regulate the transition of the DNA conformation between B- and Z-DNA and thereby modulate chromatin accessibility, resulting in alterations in gene expression.
Collapse
Affiliation(s)
- Chi-Hua Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Yan-Ping Shih
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Meng-Ru Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Andrew H-J Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
36
|
Hur JH, Lee AR, Yoo W, Lee JH, Kim KK. Identification of a new Z-DNA inducer using SYBR green 1 as a DNA conformation sensor. FEBS Lett 2019; 593:2628-2636. [PMID: 31254354 DOI: 10.1002/1873-3468.13513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 11/10/2022]
Abstract
Z-DNA, which is left-handed double-stranded DNA, is involved in various cellular processes. However, its biological roles have not been fully evaluated due to the lack of tools available that can control the precise conformational change to Z-DNA in vitro and in vivo. Therefore, the need for identifying new Z-DNA inducers is high. We developed an assay system to monitor the conformational change in DNA utilizing the fluorescence of SYBR green I integrated into a double-stranded oligonucleotide. By applying this assay to screen for compounds that induce the B-DNA to Z-DNA transition, we identified the natural compound aklavin as a novel Z-DNA inducer.
Collapse
Affiliation(s)
- Jeong Hwan Hur
- Department of Molecular Cell Biology, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Ae-Ree Lee
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju, Korea
| | - Wanki Yoo
- Department of Molecular Cell Biology, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Joon-Hwa Lee
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju, Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, Korea.,Samsung Biomedical Research Institute, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
37
|
Zhang Y, Cui Y, An R, Liang X, Li Q, Wang H, Wang H, Fan Y, Dong P, Li J, Cheng K, Wang W, Wang S, Wang G, Xue C, Komiyama M. Topologically Constrained Formation of Stable Z-DNA from Normal Sequence under Physiological Conditions. J Am Chem Soc 2019; 141:7758-7764. [PMID: 30844265 DOI: 10.1021/jacs.8b13855] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Z-DNA, a left-handed duplex, has been shown to form in vivo and regulate expression of the corresponding gene. However, its biological roles have not been satisfactorily understood, mainly because Z-DNA is easily converted to the thermodynamically favorable B-DNA. Here we present a new idea to form stable Z-DNA under normal physiological conditions and achieve detailed analysis on its fundamental features. Simply by mixing two complementary minicircles of single-stranded DNA with no chemical modification, the hybridization spontaneously induces topological constraint which twines one-half of the double-stranded DNA into stable Z-DNA. The formation of Z-conformation with high stability has been proved by using circular dichroism spectroscopy, Z-DNA-specific antibody binding assay, nuclease digestion, etc. Even at a concentration of MgCl2 as low as 0.5 mM, Z-DNA was successfully obtained, avoiding the use of high salt conditions, limited sequences, ancillary additives, or chemical modifications, criteria which have hampered Z-DNA research. The resultant Z-DNA has the potential to be used as a canonical standard sample in Z-DNA research. By using this approach, further developments of Z-DNA science and its applications become highly promising.
Collapse
Affiliation(s)
- Yaping Zhang
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China
| | - Yixiao Cui
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China
| | - Ran An
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China
| | - Xingguo Liang
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China.,Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , No. 1 Wenhai Road , Qingdao , People's Republic of China
| | - Qi Li
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China
| | - Haiting Wang
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China
| | - Hao Wang
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China
| | - Yiqiao Fan
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China
| | - Ping Dong
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China
| | - Jing Li
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China
| | - Kai Cheng
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China
| | - Weinan Wang
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China
| | - Sai Wang
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China
| | - Guoqing Wang
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China.,Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , No. 1 Wenhai Road , Qingdao , People's Republic of China
| | - Changhu Xue
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China.,Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , No. 1 Wenhai Road , Qingdao , People's Republic of China
| | - Makoto Komiyama
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China
| |
Collapse
|
38
|
Abstract
Noncoding RNAs (ncRNAs) have received much attention due to their central role in gene expression and translational regulation as well as due to their involvement in several biological processes and disease development. Small noncoding RNAs (sncRNAs), such as microRNAs and piwiRNAs, have been thoroughly investigated and functionally characterized. Long noncoding RNAs (lncRNAs), known to play an important role in chromatin-interacting transcription regulation, posttranscriptional regulation, cell-to-cell signaling, and protein regulation, are also being investigated to further elucidate their functional roles.Next-generation sequencing (NGS) technologies have greatly aided in characterizing the ncRNAome. Moreover, the coupling of NGS technology together with bioinformatics tools has been essential to the genome-wide detection of RNA modifications in ncRNAs. RNA editing, a common human co-transcriptional and posttranscriptional modification, is a dynamic biological phenomenon able to alter the sequence and the structure of primary transcripts (both coding and noncoding RNAs) during the maturation process, consequently influencing the biogenesis, as well as the function, of ncRNAs. In particular, the dysregulation of the RNA editing machineries have been associated with the onset of human diseases.In this chapter we discuss the potential functions of ncRNA editing and describe the knowledge base and bioinformatics resources available to investigate such phenomenon.
Collapse
|
39
|
Balasubramaniyam T, Ishizuka T, Xu Y. Stability and properties of Z-DNA containing artificial nucleobase 2'-O-methyl-8-methyl guanosine. Bioorg Med Chem 2018; 27:364-369. [PMID: 30545733 DOI: 10.1016/j.bmc.2018.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 10/27/2022]
Abstract
We synthesized several DNA oligonucleotides containing one or several 2'-O-methyl-8-methyl guanosine (m8Gm) and demonstrated that these oligonucleotides not only stabilize the Z-DNA with a wide range of sequences under low salt conditions but also possess high thermal stability. Using artificial nucleobase-containing oligonucleotides, we studied the interaction of the Zα domain with Z-DNA. Furthermore, we showed that the m8Gm-contained oligonucleotides allow to study the photochemical reaction of Z-DNA.
Collapse
Affiliation(s)
- Thananjeyan Balasubramaniyam
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyo-take, Miyazaki 889-1692, Japan
| | - Takumi Ishizuka
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyo-take, Miyazaki 889-1692, Japan
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyo-take, Miyazaki 889-1692, Japan.
| |
Collapse
|
40
|
Shevchenko G, Morris KV. All I's on the RADAR: role of ADAR in gene regulation. FEBS Lett 2018; 592:2860-2873. [PMID: 29770436 DOI: 10.1002/1873-3468.13093] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/26/2018] [Accepted: 05/05/2018] [Indexed: 12/12/2022]
Abstract
Adenosine to inosine (A-to-I) editing is the most abundant form of RNA modification in mammalian cells, which is catalyzed by adenosine deaminase acting on the double-stranded RNA (ADAR) protein family. A-to-I editing is currently known to be involved in the regulation of the immune system, RNA splicing, protein recoding, microRNA biogenesis, and formation of heterochromatin. Editing occurs within regions of double-stranded RNA, particularly within inverted Alu repeats, and is associated with many diseases including cancer, neurological disorders, and metabolic syndromes. However, the significance of RNA editing in a large portion of the transcriptome remains unknown. Here, we review the current knowledge about the prevalence and function of A-to-I editing by the ADAR protein family, focusing on its role in the regulation of gene expression. Furthermore, RNA editing-independent regulation of cellular processes by ADAR and the putative role(s) of this process in gene regulation will be discussed.
Collapse
Affiliation(s)
- Galina Shevchenko
- Hematological Malignancy and Stem Cell Transplantation Institute, Center for Gene Therapy, City of Hope-Beckman Research Institute, Duarte, CA, USA
| | - Kevin V Morris
- Hematological Malignancy and Stem Cell Transplantation Institute, Center for Gene Therapy, City of Hope-Beckman Research Institute, Duarte, CA, USA
| |
Collapse
|
41
|
Bagshaw AT. Functional Mechanisms of Microsatellite DNA in Eukaryotic Genomes. Genome Biol Evol 2017; 9:2428-2443. [PMID: 28957459 PMCID: PMC5622345 DOI: 10.1093/gbe/evx164] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2017] [Indexed: 02/06/2023] Open
Abstract
Microsatellite repeat DNA is best known for its length mutability, which is implicated in several neurological diseases and cancers, and often exploited as a genetic marker. Less well-known is the body of work exploring the widespread and surprisingly diverse functional roles of microsatellites. Recently, emerging evidence includes the finding that normal microsatellite polymorphism contributes substantially to the heritability of human gene expression on a genome-wide scale, calling attention to the task of elucidating the mechanisms involved. At present, these are underexplored, but several themes have emerged. I review evidence demonstrating roles for microsatellites in modulation of transcription factor binding, spacing between promoter elements, enhancers, cytosine methylation, alternative splicing, mRNA stability, selection of transcription start and termination sites, unusual structural conformations, nucleosome positioning and modification, higher order chromatin structure, noncoding RNA, and meiotic recombination hot spots.
Collapse
|
42
|
Han JH, Yamamoto S, Park S, Sugiyama H. Development of a Vivid FRET System Based on a Highly Emissive dG-dC Analogue Pair. Chemistry 2017; 23:7607-7613. [PMID: 28411372 DOI: 10.1002/chem.201701118] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Indexed: 12/12/2022]
Abstract
A new type of Förster Resonance Energy Transfer (FRET) system using highly emissive isomorphic nucleobase analogues is reported. The FRET pair consists of 2-aminothieno[3,4-d]pyrimidine G-mimic deoxyribonucleoside (th dG) as an energy donor and 1,3-diaza-2-oxophenothiazine (tC) as an energy acceptor. The distance and orientation between donor and acceptor was controlled by systematic incorporation of th dG and tC into DNA sequences to investigate the FRET efficiencies. This is the first Watson-Crick base-pairable FRET pair to produce vivid colors. In addition, this nucleic acid-based FRET pair was used to monitor DNA conformation and achieved visualization of the B-Z transition.
Collapse
Affiliation(s)
- Ji Hoon Han
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Seigi Yamamoto
- Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Soyoung Park
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University,Yoshida-ushinomiyacho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
43
|
Abstract
Inosine is one of the most common modifications found in human RNAs and the Adenosine Deaminases that act on RNA (ADARs) are the main enzymes responsible for its production. ADARs were first discovered in the 1980s and since then our understanding of ADARs has advanced tremendously. For instance, it is now known that defective ADAR function can cause human diseases. Furthermore, recently solved crystal structures of the human ADAR2 deaminase bound to RNA have provided insights regarding the catalytic and substrate recognition mechanisms. In this chapter, we describe the occurrence of inosine in human RNAs and the newest perspective on the ADAR family of enzymes, including their substrate recognition, catalytic mechanism, regulation as well as the consequences of A-to-I editing, and their relation to human diseases.
Collapse
|
44
|
Characterization of an In Vivo Z-DNA Detection Probe Based on a Cell Nucleus Accumulating Intrabody. Mol Biotechnol 2017; 58:585-94. [PMID: 27351554 DOI: 10.1007/s12033-016-9958-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Left-handed Z-DNA is a physiologically unstable DNA conformation, and its existence in vivo can be attributed to localized torsional distress. Despite evidence for the existence of Z-DNA in vivo, its precise role in the control of gene expression is not fully understood. Here, an in vivo probe based on an anti-Z-DNA intrabody is proposed for native Z-DNA detection. The probe was used for chromatin immunoprecipitation of potential Z-DNA-forming sequences in the human genome. One of the isolated putative Z-DNA-forming sequences was cloned upstream of a reporter gene expression cassette under control of the CMV promoter. The reporter gene encoded an antibody fragment fused to GFP. Transient co-transfection of this vector along with the Z-probe coding vector improved reporter gene expression. This improvement was demonstrated by measuring reporter gene mRNA and protein levels and the amount of fluorescence in co-transfected CHO-K1 cells. These results suggest that the presence of the anti-Z-DNA intrabody can interfere with a Z-DNA-containing reporter gene expression. Therefore, this in vivo probe for the detection of Z-DNA could be used for global correlation of Z-DNA-forming sequences and gene expression regulation.
Collapse
|
45
|
Man VH, Pan F, Sagui C, Roland C. Comparative melting and healing of B-DNA and Z-DNA by an infrared laser pulse. J Chem Phys 2016; 144:145101. [DOI: 10.1063/1.4945340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Viet Hoang Man
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Feng Pan
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Celeste Sagui
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Christopher Roland
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| |
Collapse
|
46
|
Moradi M, Babin V, Roland C, Sagui C. The Adaptively Biased Molecular Dynamics method revisited: New capabilities and an application. ACTA ACUST UNITED AC 2015. [DOI: 10.1088/1742-6596/640/1/012020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Bongini L, Lombardi V, Bianco P. The transition mechanism of DNA overstretching: a microscopic view using molecular dynamics. J R Soc Interface 2015; 11:20140399. [PMID: 24920111 DOI: 10.1098/rsif.2014.0399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The overstretching transition in torsionally unconstrained DNA is studied by means of atomistic molecular dynamics simulations. The free-energy profile as a function of the length of the molecule is determined through the umbrella sampling technique providing both a thermodynamic and a structural characterization of the transition pathway. The zero-force free-energy profile is monotonic but, in accordance with recent experimental evidence, becomes two-state at high forces. A number of experimental results are satisfactorily predicted: (i) the entropic and enthalpic contributions to the free-energy difference between the basic (B) state and the extended (S) state; (ii) the longitudinal extension of the transition state and (iii) the enthalpic contribution to the transition barrier. A structural explanation of the experimental finding that overstretching is a cooperative reaction characterized by elementary units of approximately 22 base pairs is found in the average distance between adenine/thymine-rich regions along the molecule. The overstretched DNA adopts a highly dynamical and structurally disordered double-stranded conformation which is characterized by residual base pairing, formation of non-native intra-strand hydrogen bonds and effective hydrophobic screening of apolar regions.
Collapse
Affiliation(s)
- L Bongini
- Laboratory of Physiology, Department of Biology, University of Florence, Sesto Fiorentino, Firenze, Italy
| | - V Lombardi
- Laboratory of Physiology, Department of Biology, University of Florence, Sesto Fiorentino, Firenze, Italy
| | - P Bianco
- Laboratory of Physiology, Department of Biology, University of Florence, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
48
|
Medina-Molner A, Rohner M, Pandiarajan D, Spingler B. Mono- and dinuclear metal complexes containing the 1,5,9-triazacyclododecane ([12]aneN3) unit and their interaction with DNA. Dalton Trans 2015; 44:3664-72. [DOI: 10.1039/c4dt02713b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It takes two to tango: Only the dinuclear but not the mononuclear metal complexes of triazacyclododecane ([12]aneN3) were able to induce the Z-DNA of poly d(GC).
Collapse
|
49
|
Pan F, Roland C, Sagui C. Ion distributions around left- and right-handed DNA and RNA duplexes: a comparative study. Nucleic Acids Res 2014; 42:13981-96. [PMID: 25428372 PMCID: PMC4267617 DOI: 10.1093/nar/gku1107] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 12/30/2022] Open
Abstract
The ion atmosphere around nucleic acids is an integral part of their solvated structure. However, detailed aspects of the ionic distribution are difficult to probe experimentally, and comparative studies for different structures of the same sequence are almost non-existent. Here, we have used large-scale molecular dynamics simulations to perform a comparative study of the ion distribution around (5'-CGCGCGCGCGCG-3')2 dodecamers in solution in B-DNA, A-RNA, Z-DNA and Z-RNA forms. The CG sequence is very sensitive to ionic strength and it allows the comparison with the rare but important left-handed forms. The ions investigated include Na(+), K(+) and Mg(2 +), with various concentrations of their chloride salts. Our results quantitatively describe the characteristics of the ionic distributions for different structures at varying ionic strengths, tracing these differences to nucleic acid structure and ion type. Several binding pockets with rather long ion residence times are described, both for the monovalent ions and for the hexahydrated Mg[(H2O)6](2+) ion. The conformations of these binding pockets include direct binding through desolvated ion bridges in the GpC steps in B-DNA and A-RNA; direct binding to backbone oxygens; binding of Mg[(H2O)6](2+) to distant phosphates, resulting in acute bending of A-RNA; tight 'ion traps' in Z-RNA between C-O2 and the C-O2' atoms in GpC steps; and others.
Collapse
Affiliation(s)
- Feng Pan
- Center for High Performance Simulations (CHiPS) and Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Christopher Roland
- Center for High Performance Simulations (CHiPS) and Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Celeste Sagui
- Center for High Performance Simulations (CHiPS) and Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| |
Collapse
|
50
|
Luke CT, Casta A, Kim H, Christiano AM. Hairless and the polyamine putrescine form a negative regulatory loop in the epidermis. Exp Dermatol 2014; 22:644-9. [PMID: 24079733 DOI: 10.1111/exd.12228] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2013] [Indexed: 11/30/2022]
Abstract
Hairless (HR) is a nuclear protein with corepressor activity that is highly expressed in the skin and hair follicle. Mutations in Hairless lead to hair loss accompanied by the appearance of papules (atrichia with papular lesions), and similar phenotypes appear when the key polyamine enzymes ornithine decarboxylase (ODC) and spermidine/spermine N(1) -acetyltransferase (SSAT) are overexpressed. Both ODC and SSAT transgenic mice have elevated epidermal levels of putrescine, leading us to investigate the mechanistic link between putrescine and HR. We show here that HR and putrescine form a negative regulatory network, as epidermal ODC expression is elevated when HR is decreased and vice versa. We also show that the regulation of ODC by HR is dependent on the MYC superfamily of proteins, in particular MYC, MXI1 and MXD3. Furthermore, we found that elevated levels of putrescine lead to decreased HR expression, but that the SSAT-TG phenotype is distinct from that found when HR is mutated. Transcriptional microarray analysis of putrescine-treated primary human keratinocytes demonstrated differential regulation of genes involved in protein-protein interactions, nucleotide binding and transcription factor activity, suggesting that the putrescine-HR negative regulatory loop may have a large impact on epidermal homeostasis and hair follicle cycling.
Collapse
Affiliation(s)
- Courtney T Luke
- Department of Dermatology, Columbia University, College of Physicians & Surgeons, New York, NY, USA
| | | | | | | |
Collapse
|