1
|
Abstract
The water-soluble porphyrins meso-tetrakis[4-(carboxymethyleneoxy)phenyl]porphyrin ( H 2 T4CPP ), meso-tetrakis[3-(carboxymethyleneoxy)phenyl]porphyrin ( H 2 T3CPP ) and meso-tetrakis[3,4-bis(carboxymethyleneoxy)phenyl]porphyrin ( H 2 T3 , 4BCPP ) cleave plasmid pBR322 DNA to single-strand breaks (SSBs) in the presence of molecular oxygen and visible light. These porphyrins induced SSBs in DNA as a function of irradiation time as well as porphyrin concentration. Under similar conditions (10 μM or more), H 2 T3CPP showed more SSBs in DNA than the porphyrins H 2 T 4CPP and H 2 T 3,4 BCPP . The DNA cleavage was more in D 2 O -based buffer than in H 2 O buffer. In addition, this DNA cleavage was inhibited by the presence of sodium azide and lipoic acid, which are potent quenchers of singlet oxygen (1 O 2). These observations suggest the involvement of 1 O 2 in photocleavage of DNA. Further, the DNA cleavage, to a limited extent, was also inhibited by tert-butanol and mannitol, both quenchers of hydroxyl radical (· OH ), suggesting the involvement of · OH in photocleavage of DNA. Thus both 1 O 2 and · OH are involved in photocleavage of plasmid DNA by these porphyrins.
Collapse
Affiliation(s)
- SHAMPA R. CHATTERJEE
- Department of Chemistry, Indian Institute of Technology, Powai, Mumbai 400 076, India
| | - T. S. SRIVASTAVA
- Department of Chemistry, Indian Institute of Technology, Powai, Mumbai 400 076, India
| | - J. P. KAMAT
- Cell Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - T. P. A. DEVASAGAYAM
- Cell Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| |
Collapse
|
2
|
Melo LF, Mundle ST, Fattal MH, O’Regan NE, Strauss PR. Role of active site tyrosines in dynamic aspects of DNA binding by AP endonuclease. DNA Repair (Amst) 2007; 6:374-82. [PMID: 17218168 PMCID: PMC1991299 DOI: 10.1016/j.dnarep.2006.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2006] [Revised: 11/13/2006] [Accepted: 11/15/2006] [Indexed: 11/26/2022]
Abstract
AP endonuclease (AP endo), a key enzyme in repair of abasic sites in DNA, makes a single nick 5' to the phosphodeoxyribose of an abasic site (AP-site). We recently proposed a novel mechanism, whereby the enzyme uses a key tyrosine (Tyr(171)) to directly attack the scissile phosphate of the AP-site. We showed that loss of the tyrosyl hydroxyl from Tyr(171) resulted in dramatic diminution in enzymatic efficiency. Here we extend the previous work to compare binding/recognition of AP endo to oligomeric DNA with and without an AP-site by wild type enzyme and several tyrosine mutants including Tyr(128), Tyr(171) and Tyr(269). We used single turnover and electrophoretic mobility shift assays. As expected, binding to DNA with an AP-site is more efficient than binding to DNA without one. Unlike catalytic cleavage by AP endo, which requires both hydroxyl and aromatic moieties of Tyr(171), the ability to bind DNA efficiently without an AP-site is independent of an aromatic moiety at position 171. However, the ability to discriminate efficiently between DNA with and without an AP-site requires tyrosine at position 171. Thus, AP endo requires a tyrosine at the active site for the properties that enable it to behave as an efficient, processive endonuclease.
Collapse
Affiliation(s)
| | | | | | | | - Phyllis R. Strauss
- # To whom correspondence should be addressed. Tel. 617 373–3492; fax 617 373 2138; email
| |
Collapse
|
3
|
Hegde V, Wang M, Mian IS, Spyres L, Deutsch WA. The high binding affinity of human ribosomal protein S3 to 7,8-dihydro-8-oxoguanine is abrogated by a single amino acid change. DNA Repair (Amst) 2006; 5:810-5. [PMID: 16737853 DOI: 10.1016/j.dnarep.2006.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 04/03/2006] [Accepted: 04/10/2006] [Indexed: 11/29/2022]
Abstract
Previous studies have shown that human ribosomal protein S3 (hS3) has a high apparent binding affinity for 7,8-dihydro-8-oxoguanine (8-oxoG) residues in DNA and interacts with the human base excision repair (BER) proteins OGG1 and APE/Ref-1. We used a combination of computational and experimental approaches to understand the role of hS3 in BER and its potential to hinder repair of 8-oxoG lesions by OGG1 and APE/Ref-1. Sequence analysis was employed to identify hS3 residues likely to be involved in binding to 8-oxoG. One putative site, lysine 132 (K132), located in a helix-hairpin-helix DNA binding motif, was mutated to alanine (K132A). The hS3-K132A mutant retained the ability to cleave abasic DNA, but its capacity to bind 8-oxoG was abrogated completely. The ability of OGG1 to cleave an 8-oxoG-oligonucleotide substrate pre-incubated with hS3 or hS3-K132A was also tested. Pre-incubations with wild-type hS3 and 8-oxoG-containing oligonucleotides completely prevented the subsequent removal of 8-oxoG by OGG1. On the other hand, OGG1 incubations combined with hS3-K132A stimulated cleavage of 8-oxoG in excess of two-fold, confirming previous observations that hS3 positively interacts with OGG1, but only under conditions in which the binding of hS3 to 8-oxoG is limited. Overall, the ability of OGG1 to repair 8-oxoG is compromised when hS3 is bound to 8-oxoG sites. Conversely, in the absence of DNA binding, hS3 interacts positively with OGG1 to produce a more robust removal of 8-oxoG residues in DNA.
Collapse
Affiliation(s)
- Vijay Hegde
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, 70808, USA
| | | | | | | | | |
Collapse
|
4
|
Kim SH, Lee JY, Kim J. Characterization of a wide range base-damage-endonuclease activity of mammalian rpS3. Biochem Biophys Res Commun 2005; 328:962-7. [PMID: 15707971 DOI: 10.1016/j.bbrc.2005.01.045] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2004] [Indexed: 11/17/2022]
Abstract
Mammalian rpS3, a ribosomal protein S3 with a DNA repair endonuclease activity, nicks heavily UV-irradiated DNA and DNA containing AP sites. RpS3 calls for a novel endonucleolytic activity on AP sites generated from pyrimidine dimers by T4 pyrimidine dimer glycosylase activity. This study revealed that rpS3 cleaves the lesions including AP sites, thymine glycols, and other UV damaged lesions such as pyrimidine dimers. This enzyme does not have a glycosylase activity as predicted from its amino acid sequence. However, it has an endonuclease activity on DNA containing thymine glycol, which is exactly overlapped with UV-irradiated or AP DNAs, indicating that rpS3 cleaves phosphodiester bonds of DNAs containing altered bases with broad specificity acting as a base-damage-endonuclease. RpS3 cleaves supercoiled UV damaged DNA more efficiently than the relaxed counterpart, and the endonuclease activity of rpS3 was inhibited by MgCl2 on AP DNA but not on UV-irradiated DNA.
Collapse
Affiliation(s)
- Sang Hwa Kim
- Laboratory of Biochemistry, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | | | | |
Collapse
|
5
|
Hegde V, Kelley MR, Xu Y, Mian IS, Deutsch WA. Conversion of the bifunctional 8-oxoguanine/beta-delta apurinic/apyrimidinic DNA repair activities of Drosophila ribosomal protein S3 into the human S3 monofunctional beta-elimination catalyst through a single amino acid change. J Biol Chem 2001; 276:27591-6. [PMID: 11353770 DOI: 10.1074/jbc.m101213200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Drosophila S3 ribosomal protein has important roles in both protein translation and DNA repair. In regards to the latter activity, it has been shown that S3 contains vigorous N-glycosylase activity for the removal of 8-oxoguanine residues in DNA that leaves baseless sites in their places. Drosophila S3 also possesses an apurinic/apyrimidinic (AP) lyase activity in which the enzyme catalyzes a beta-elimination reaction that cleaves phosphodiester bonds 3' and adjacent to an AP lesion in DNA. In certain situations, this is followed by a delta-elimination reaction that ultimately leads to the formation of a single nucleotide gap in DNA bordered by 5'- and 3'-phosphate groups. The human S3 protein, although 80% identical to its Drosophila homolog and shorter by only two amino acids, has only marginal N-glycosylase activity. Its lyase activity only cleaves AP DNA by a beta-elimination reaction, thus further distinguishing itself from the Drosophila S3 protein in lacking a delta-elimination activity. Using a hidden Markov model analysis based on the crystal structures of several DNA repair proteins, the enzymatic differences between Drosophila and human S3 were suggested by the absence of a conserved glutamine residue in human S3 that usually resides at the cleft of the deduced active site pocket of DNA glycosylases. Here we show that the replacement of the Drosophila glutamine by an alanine residue leads to the complete loss of glycosylase activity. Unexpectedly, the delta-elimination reaction at AP sites was also abrogated by a change in the Drosophila glutamine residue. Thus, a single amino acid change converted the Drosophila activity into one that is similar to that possessed by the human S3 protein. In support of this were experiments executed in vivo that showed that human S3 and the Drosophila site-directed glutamine-changed S3 performed poorly when compared with Drosophila wild-type S3 and its ability to protect a bacterial mutant from the harmful effects of DNA-damaging agents.
Collapse
Affiliation(s)
- V Hegde
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana 70808, USA
| | | | | | | | | |
Collapse
|
6
|
Li AS, Bandy B, Tsang S, Davison AJ. DNA breakage induced by 1,2,4-benzenetriol: relative contributions of oxygen-derived active species and transition metal ions. Free Radic Biol Med 2001; 30:943-56. [PMID: 11316574 DOI: 10.1016/s0891-5849(01)00478-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report here the relative roles of metals and selected reactive oxygen species in DNA damage by the genotoxic benzene metabolite 1,2,4-benzenetriol, and the interactions of antioxidants in affording protection. 1,2,4-Benzenetriol induces scission in supercoiled phage DNA in neutral aqueous solution with an effective dose (ED(50)) of 6.7 microM for 50% cleavage of 2.05 microg/ml supercoiled PM2 DNA. In decreasing order of effectiveness: catalase (20 U/ml), formate (25 mM), superoxide dismutase (20 U/ml), and mannitol (50 mM) protected, from 85 to 28%. Evidently, H(2)O(2) is the dominant active species, with O(2)(*)(-) and *OH playing subordinate roles. Desferrioxamine or EDTA inhibited DNA breakage by 81-85%, despite accelerating 1,2,4-benzenetriol autoxidation. Consistent with this suggestion of a crucial role for metals, addition of cupric, cuprous, ferric, or ferrous ions enhanced DNA breakage, with copper being more active than iron. Combinations of scavengers protected more effectively than any single scavenger alone, with implications for antioxidants acting in concert in living cells. Synergistic combinations were superoxide dismutase with *OH scavengers, superoxide dismutase with desferrioxamine, and catalase with desferrioxamine. Antagonistic (preemptive) combinations were catalase with superoxide dismutase, desferrioxamine with *OH scavengers, and catalase with *OH scavengers. The most striking aspect of synergism was the extent to which metal chelation (desferrioxamine) acted synergistically with either catalase or superoxide dismutase to provide virtually complete protection. Concluding, 1,2,4-benzenetriol-induced DNA damage occurs mainly by site-specific, Fenton-type mechanisms, involving synergism between several reactive intermediates. Multiple antioxidant actions are needed for effective protection.
Collapse
Affiliation(s)
- A S Li
- Bioenergetics Research Laboratory, Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | | | | | |
Collapse
|
7
|
Li AS, Bandy B, Tsang SS, Davison AJ. DNA-breaking versus DNA-protecting activity of four phenolic compounds in vitro. Free Radic Res 2000; 33:551-66. [PMID: 11200088 DOI: 10.1080/10715760000301091] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Given the paradoxical effects of phenolics in oxidative stress, we evaluated the relative pro-oxidant and antioxidant properties of four natural phenolic compounds in DNA nicking. The phenolic compounds differed dramatically in their ability to nick purified supercoiled DNA, with the relative DNA nicking activity in the order: 1,2,4-benzenetriol (100% nicking) > gallic acid > caffeic acid > gossypol (20% nicking). Desferrioxamine (0.02 mM) decreased DNA strand breakage by each phenolic, most markedly with gallate (85% protection) and least with caffeic acid (26% protection). Addition of metals accelerated DNA nicking, with copper more effective (approximately 5-fold increase in damage) than iron with all four phenolics. Scavengers revealed the participation of specific oxygen-derived active species in DNA breakage. Hydrogen peroxide participated in all cases (23-90%). Hydroxyl radicals were involved (32-85%), except with 1,2,4-benzenetriol. Superoxide participated (81-86%) with gallic acid and gossypol, but not with caffeic acid or 1,2,4-benzenetriol. With 1,2,4-benzenetriol, scavengers failed to protect significantly except in combination. Thus, in the presence of desferrioxamine, catalase or superoxide dismutase inhibited almost completely. When DNA breakage was induced by Fenton's reagent (ascorbate plus iron) the two catechols (caffeic acid and gossypol) were protective, whereas the two triols (1,2,4-benzenetriol and gallic acid) exacerbated damage.
Collapse
Affiliation(s)
- A S Li
- Bioenergetics Research Laboratory, Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | | | | | |
Collapse
|
8
|
Schneider JE, Pye Q, Floyd RA. Qβ Bacteriophage Photoinactivated by Methylene Blue Plus Light Involves Inactivation of Its Genomic RNA. Photochem Photobiol 1999. [DOI: 10.1111/j.1751-1097.1999.tb08300.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Henle ES, Han Z, Tang N, Rai P, Luo Y, Linn S. Sequence-specific DNA cleavage by Fe2+-mediated fenton reactions has possible biological implications. J Biol Chem 1999; 274:962-71. [PMID: 9873038 DOI: 10.1074/jbc.274.2.962] [Citation(s) in RCA: 264] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Preferential cleavage sites have been determined for Fe2+/H2O2-mediated oxidations of DNA. In 50 mM H2O2, preferential cleavages occurred at the nucleoside 5' to each of the dG moieties in the sequence RGGG, a sequence found in a majority of telomere repeats. Within a plasmid containing a (TTAGGG)81 human telomere insert, 7-fold more strand breakage occurred in the restriction fragment with the insert than in a similar-sized control fragment. This result implies that telomeric DNA could protect coding DNA from oxidative damage and might also link oxidative damage and iron load to telomere shortening and aging. In micromolar H2O2, preferential cleavage occurred at the thymidine within the sequence RTGR, a sequence frequently found to be required in promoters for normal responses of many procaryotic and eucaryotic genes to iron or oxygen stress. Computer modeling of the interaction of Fe2+ with RTGR in B-DNA suggests that due to steric hindrance with the thymine methyl, Fe2+ associates in a specific manner with the thymine flipped out from the base stack so as to allow an octahedrally-oriented coordination of the Fe2+ with the three purine N7 residues. Fe2+-dependent changes in NMR spectra of duplex oligonucleotides containing ATGA versus those containing AUGA or A5mCGA were consistent with this model.
Collapse
Affiliation(s)
- E S Henle
- Division of Biochemistry and Molecular Biology, University of California, Berkeley, California 94720-3202, USA
| | | | | | | | | | | |
Collapse
|
10
|
Cappelli E, Carrozzino F, Abbondandolo A, Frosina G. The DNA helicases acting in nucleotide excision repair, XPD, CSB and XPB, are not required for PCNA-dependent repair of abasic sites. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 259:325-30. [PMID: 9914510 DOI: 10.1046/j.1432-1327.1999.00050.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
DNA repair of abasic sites is accomplished in mammalian cells by two distinct base excision repair (BER) pathways: a single nucleotide insertion pathway and a proliferating cell nuclear antigen (PCNA)-dependent pathway involving a resynthesis patch of 2-10 nucleotides 3' to the lesion. The latter pathway shares some enzymatic components with the nucleotide excision repair (NER) pathway acting on damage induced by ultraviolet light: both pathways are strictly dependent on PCNA and several observations suggest that the polymerization and ligation phases may be carried out by common enzymatic activities (DNA polymerase delta/epsilon and DNA ligase I). Furthermore, it has been postulated that the transcription-NER coupling factor Cockayne syndrome B has a role in BER. We have investigated whether three NER proteins endowed with DNA helicase activities (the xeroderma pigmentosum D and B gene products and the Cockayne syndrome B gene product) may also be involved in repair of natural abasic sites, by using the Chinese hamster ovary mutant cell lines UV5, UV61 and 27-1. No defect of either the PCNA-dependent or the single nucleotide insertion pathways could be observed in UV5, UV61 or 27-1 mutant cell extracts, thus showing that the partial enzymatic overlap between PCNA-dependent BER and NER does not extend to DNA helicase activities.
Collapse
Affiliation(s)
- E Cappelli
- DNA Repair Unit, CSTA Laboratory - Instituto Nazionale Ricera Cancro, Genova, Italy
| | | | | | | |
Collapse
|
11
|
Abstract
Diffusion distances (abbreviated d's), the distances between the sites of generation of presumed hydroxyl radicals (*OH) by low molecular weight forms of Fe and the site of their reaction with substrate, were measured for three model systems for cellular DNA of varying degrees of complexity. Two d's for Fe complexed with each of ethylene diamminetetraaccetic acid (FeEDTA) and nitrilotriacetic acid (FeNTA) were measured for generation of malondialdehyde-type products (MDA) from deoxyribose and of single-strand breaks (SSBs) in the plasmid pBR322. The closer d's for pBR322 SSB generation (5-6 nm) were considerably greater than the d's for MDA generation in the deoxyribose assay (2-3 nm). This is consistent with charge-charge interactions playing an important role in defining d. The d's for FeNTA, FeEDTA, and other Fe species generating SSBs in isolated Ehrlich ascites tumor cell nuclei ranged from 2.1 to 14 nm. Charge-charge interactions, Fe-ligand-specific interactions, and binding to nuclear components were concluded to be important factors affecting d in isolated nuclei. Other factors related to nuclear structure may also play a role.
Collapse
Affiliation(s)
- H Li
- Department of Chemistry, University of Wisconsin-Milwaukee, USA
| | | | | | | |
Collapse
|
12
|
Ikeda S, Biswas T, Roy R, Izumi T, Boldogh I, Kurosky A, Sarker AH, Seki S, Mitra S. Purification and characterization of human NTH1, a homolog of Escherichia coli endonuclease III. Direct identification of Lys-212 as the active nucleophilic residue. J Biol Chem 1998; 273:21585-93. [PMID: 9705289 DOI: 10.1074/jbc.273.34.21585] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human endonuclease III (hNTH1), a homolog of the Escherichia coli enzyme (Nth), is a DNA glycosylase with abasic (apurinic/apyrimidinic (AP)) lyase activity and specifically cleaves oxidatively damaged pyrimidines in DNA. Its cDNA was cloned, and the full-length enzyme (304 amino acid residues) was expressed as a glutathione S-transferase fusion polypeptide in E. coli. Purified wild-type protein with two additional amino acid residues and a truncated protein with deletion of 22 residues at the NH2 terminus were equally active and had absorbance maxima at 280 and 410 nm, the latter due to the presence of a [4Fe-4S]cluster, as in E. coli Nth. The enzyme cleaved thymine glycol-containing form I plasmid DNA and a dihydrouracil (DHU)-containing oligonucleotide duplex. The protein had a molar extinction coefficient of 5.0 x 10(4) and a pI of 10. With the DHU-containing oligonucleotide duplex as substrate, the Km was 47 nM, and kcat was approximately 0.6/min, independent of whether DHU paired with G or A. The enzyme carries out beta-elimination and forms a Schiff base between the active site residue and the deoxyribose generated after base removal. The prediction of Lys-212 being the active site was confirmed by sequence analysis of the peptide-oligonucleotide adduct. Furthermore, replacing Lys-212 with Gln inactivated the enzyme. However, replacement with Arg-212 yielded an active enzyme with about 85-fold lower catalytic specificity than the wild-type protein. DNase I footprinting with hNTH1 showed protection of 10 nucleotides centered around the base lesion in the damaged strand and a stretch of 15 nucleotides (with the G opposite the lesion at the 5'-boundary) in the complementary strand. Immunological studies showed that HeLa cells contain a single hNTH species of the predicted size, localized in both the nucleus and the cytoplasm.
Collapse
Affiliation(s)
- S Ikeda
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wong BC, Chiu SK, Chow SA. The role of negative superhelicity and length of homology in the formation of paranemic joints promoted by RecA protein. J Biol Chem 1998; 273:12120-7. [PMID: 9575157 DOI: 10.1074/jbc.273.20.12120] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli RecA protein pairs homologous DNA molecules to form paranemic joints when there is an absence of a free end in the region of homologous contact. Paranemic joints are a key intermediate in homologous recombination and are important in understanding the mechanism for a search of homology. The efficiency of paranemic joint formation depended on the length of homology and the topological forms of the duplex DNA. The presence of negative superhelicity increased the pairing efficiency and reduced the minimal length of homology required for paranemic joint formation. Negative superhelicity stimulated joint formation by favoring the initial unwinding of duplex DNA that occurred during the homology search and was not essential in the maintenance of the paired structure. Regardless of length of homology, formation of paranemic joints using circular duplex DNA required the presence of more than six negative supercoils. Above six negative turns, an increasing degree of negative superhelicity resulted in a linear increase in the pairing efficiency. These results support a model of two distinct kinds of DNA unwinding occurring in paranemic joint formation: an initial unwinding caused by heterologous contacts during synapsis and a later one during pairing of the homologous molecules.
Collapse
Affiliation(s)
- B C Wong
- Department of Biochemistry, University of Hong Kong, Hong Kong
| | | | | |
Collapse
|
14
|
Schneider JE, Tabatabaie T, Maidt L, Smith RH, Nguyen X, Pye Q, Floyd RA. Potential Mechanisms of Photodynamic Inactivation of Virus by Methylene Blue I. RNA–Protein Crosslinks and Other Oxidative Lesions in Qβ Bacteriophage. Photochem Photobiol 1998. [DOI: 10.1111/j.1751-1097.1998.tb05209.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Martinez A, Kolter R. Protection of DNA during oxidative stress by the nonspecific DNA-binding protein Dps. J Bacteriol 1997; 179:5188-94. [PMID: 9260963 PMCID: PMC179379 DOI: 10.1128/jb.179.16.5188-5194.1997] [Citation(s) in RCA: 353] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Reactive oxygen species can damage most cellular components, but DNA appears to be the most sensitive target of these agents. Here we present the first evidence of DNA protection against the toxic and mutagenic effects of oxidative damage in metabolically active cells: direct protection of DNA by Dps, an inducible nonspecific DNA-binding protein from Escherichia coli. We demonstrate that in a recA-deficient strain, expression of Dps from an inducible promoter prior to hydrogen peroxide challenge increases survival and reduces the number of chromosomal single-strand breaks. dps mutants exhibit increased levels of the G x C-->T x A mutations characteristic of oxidative damage after treatment with hydrogen peroxide. In addition, expression of Dps from the inducible plasmid reduces the frequency of spontaneous G x C-->T x A and A x T-->T x A mutations and can partially suppress the mutator phenotype of mutM (fpg) and mutY alleles. In a purified in vitro system, Dps reduces the number of DNA single-strand breaks and Fpg-sensitive sites introduced by hydrogen peroxide treatment, indicating that the protection observed in vivo is a direct effect of DNA binding by Dps. The widespread conservation of Dps homologs among prokaryotes suggests that this may be a general strategy for coping with oxidative stress.
Collapse
Affiliation(s)
- A Martinez
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
16
|
Rodriguez K, Wang Z, Friedberg EC, Tomkinson AE. Identification of functional domains within the RAD1.RAD10 repair and recombination endonuclease of Saccharomyces cerevisiae. J Biol Chem 1996; 271:20551-8. [PMID: 8702799 DOI: 10.1074/jbc.271.34.20551] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Saccharomyces cerevisiae rad1 and rad10 mutants are unable to carry out nucleotide excision repair and are also defective in a mitotic intrachromosomal recombination pathway. The products of these genes are subunits of an endonuclease which recognizes DNA duplex/single-strand junctions and specifically cleaves the 3' single-strand extension at or near the junction. It has been suggested that such junctions arise as a consequence of DNA lesion processing during nucleotide excision repair and the processing of double-strand breaks during intrachromosomal recombination. In this study we show that the RAD1 RAD10 complex also cleaves a more complex junction structure consisting of a duplex with a protruding 3' single-strand branch that resembles putative recombination intermediates in the RAD1 RAD10-mediated single-strand annealing pathway of mitotic recombination. Using monoclonal antibodies, we have identified two regions of RAD1 that are required for the cleavage of duplex/single-strand junctions. These reagents also inhibit nucleotide excision repair in vitro, confirming the essential role of the RAD1 RAD10 endonuclease in this pathway.
Collapse
Affiliation(s)
- K Rodriguez
- Institute of Biotechnology/Center for Molecular Medicine, University of Texas Health Science Center at San Antonio, 78245, USA
| | | | | | | |
Collapse
|
17
|
Ramdas J, Muniyappa K. Recognition and alignment of homologous DNA sequences between minichromosomes and single-stranded DNA promoted by RecA protein. MOLECULAR & GENERAL GENETICS : MGG 1995; 249:336-48. [PMID: 7500959 DOI: 10.1007/bf00290535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The incorporation of DNA into nucleosomes and higher-order forms of chromatin in vivo creates difficulties with respect to its accessibility for cellular functions such as transcription, replication, repair and recombination. To understand the role of chromatin structure in the process of homologous recombination, we have studied the interaction of nucleoprotein filaments, comprised of RecA protein and ssDNA, with minichromosomes. Using this paradigm, we have addressed how chromatin structure affects the search for homologous DNA sequences, and attempted to distinguish between two mutually exclusive models of DNA-DNA pairing mechanisms. Paradoxically, we found that the search for homologous sequences, as monitored by unwinding of homologous or heterologous duplex DNA, was facilitated by nucleosomes, with no discernible effect on homologous pairing. More importantly, unwinding of minichromosomes required the interaction of nucleoprotein filaments and led to the accumulation of circular duplex DNA sensitive to nuclease P1. Competition experiments indicated that chromatin templates and naked DNA served as equally efficient targets for homologous pairing. These and other findings suggest that nucleosomes do not impede but rather facilitate the search for homologous sequences and establish, in accordance with one proposed model, that unwinding of duplex DNA precedes alignment of homologous sequences at the level of chromatin. The potential application of this model to investigate the role of chromosomal proteins in the alignment of homologous sequences in the context of cellular recombination is considered.
Collapse
Affiliation(s)
- J Ramdas
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
18
|
Kim J, Chubatsu LS, Admon A, Stahl J, Fellous R, Linn S. Implication of mammalian ribosomal protein S3 in the processing of DNA damage. J Biol Chem 1995; 270:13620-9. [PMID: 7775413 DOI: 10.1074/jbc.270.23.13620] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A human apurinic/apyrimidinic endonuclease activity, called AP endonuclease I, is missing from or altered specifically in cells cultured from Xeroderma pigmentosum group-D individuals (XP-D cells) (Kuhnlein, U., Lee, B., Penhoet, E. E., and Linn, S. (1978) Nucleic Acids Res. 5,951-960). We have now observed that another nuclease activity, UV endonuclease III, is similarly not detected in XP-D cells and is inseparable from the AP endonuclease I activity. This activity preferentially cleaves the phosphodiester backbone of heavily ultraviolet-irradiated DNA at unknown lesions as well as at one of the phosphodiester bonds within a cyclobutane pyrimidine dimer. The nuclease activities have been purified from mouse cells to yield a peptide of M(r) = 32,000, whose sequence indicates identity with ribosomal protein S3. The nuclease activities all cross-react with immunopurified antibody directed against authentic rat ribosomal protein S3, and, upon expression in Escherichia coli of a cloned rat cDNA for ribosomal protein S3, each of the activities was recovered and was indistinguishable from those of the mammalian UV endonuclease III. Moreover, the protein expressed in E. coli and its activities cross-react with the rat protein antibody. Ribosomal protein S3 contains a potential nuclear localization signal, and the protein isolated as a nuclease also has a glycosylation pattern consistent with a nuclear localization as determined by lectin binding. The unexpected role of a ribosomal protein in DNA damage processing and the unexplained inability to detect the nuclease activities in extracts from XP-D cells are discussed.
Collapse
Affiliation(s)
- J Kim
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3202, USA
| | | | | | | | | | | |
Collapse
|
19
|
Luo Y, Han Z, Chin SM, Linn S. Three chemically distinct types of oxidants formed by iron-mediated Fenton reactions in the presence of DNA. Proc Natl Acad Sci U S A 1994; 91:12438-42. [PMID: 7809055 PMCID: PMC45453 DOI: 10.1073/pnas.91.26.12438] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Exposure of Escherichia coli to H2O2 leads to two kinetically distinguishable modes of killing: mode I killing occurs maximally near 2 mM H2O2, whereas mode II killing is essentially independent of H2O2 concentrations up to 20 mM. A major portion of H2O2 toxicity is attributed to DNA damage caused by the iron-mediated Fenton reaction. By studying DNA damage during Fenton reactions in vitro, the same complex kinetics were observed and three types of oxidants were distinguished based upon their reactivities toward H2O2 and alcohols and upon iron-chelator effects. Type I oxidants are sensitive to H2O2 but moderately resistant to ethanol; type II oxidants are resistant to both H2O2 and ethanol; type III oxidants are sensitive to H2O2, ethanol, and t-butanol. To explain these results, we hypothesize that type I oxidants are generated upon Fe2+ associated with DNA only through electrostatic interactions and cause mode I killing of E. coli; type II oxidants arise upon Fe2+, which is at least partially base-associated, and cause mode II killing; type III oxidants arise on Fe2+ free in solution and probably do not cause killing. Therefore, particular interactions of DNA with transition metals should be considered to be an integral part of the chemistry and toxicity of H2O2.
Collapse
Affiliation(s)
- Y Luo
- Division of Biochemistry and Molecular Biology, University of California, Berkeley 94720-3202
| | | | | | | |
Collapse
|
20
|
Wilson DM, Deutsch WA, Kelley MR. Drosophila ribosomal protein S3 contains an activity that cleaves DNA at apurinic/apyrimidinic sites. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47256-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
21
|
Tomkinson AE, Bardwell AJ, Tappe N, Ramos W, Friedberg EC. Purification of Rad1 protein from Saccharomyces cerevisiae and further characterization of the Rad1/Rad10 endonuclease complex. Biochemistry 1994; 33:5305-11. [PMID: 8172904 DOI: 10.1021/bi00183a038] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The yeast recombination and repair proteins Rad1 and Rad10 associate with a 1:1 stoichiometry to form a stable complex with a relative molecular mass of 190 kDa. This complex, which has previously been shown to degrade single-stranded DNA endonucleolytically, also cleaves supercoiled duplex DNA molecules. In this reaction, supercoiled (form I) molecules are rapidly converted to nicked, relaxed (form II) molecules, presumably as a result of nicking at transient single-stranded regions in the supercoiled DNA. At high enzyme concentrations, there is a slow conversion of the form II molecules to linear (form III) molecules. The Rad1/Rad10 endonuclease does not preferentially cleave UV-irradiated DNA and has no detectable exonuclease activity. The nuclease activity of the Rad1/Rad10 complex is consistent with the predicted roles of the RAD1 and RAD10 genes of Saccharomyces cerevisiae in both the incision events of nucleotide excision repair and the removal of nonhomologous 3' single strands during intrachromosomal recombination between repeated sequences. In these pathways, the specificity and reactivity of the Rad1/Rad10 endonuclease will probably be modulated by further protein-protein interactions.
Collapse
Affiliation(s)
- A E Tomkinson
- Laboratory of Molecular Pathology, University of Texas Southwestern Medical Center, Dallas 75235
| | | | | | | | | |
Collapse
|
22
|
Wassermann K. Intragenomic heterogeneity of DNA damage formation and repair: a review of cellular responses to covalent drug DNA interaction. Crit Rev Toxicol 1994; 24:281-322. [PMID: 7857520 DOI: 10.3109/10408449409017921] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chemical DNA interaction and its processing can now be studied at the level of specific genomic regions. Such investigations have revealed important new information about the molecular biology of the cellular responses to genomic insult and especially of the repair processes. They also have demonstrated that both the formation and repair of DNA damage display patterns of intragenomic heterogeneity. Therefore, mechanistic studies should involve examination of DNA damage formation and repair in specific genomic sequences besides in the overall genome to provide clues to the way in which specific modifications of DNA or chromatin could have specific biological effects. This review primarily focuses on studies done to elucidate the nature of DNA damage induction and intragenomic processing provoked by covalent drug-DNA modification in mammalian cells. The involvement of DNA damage formation and cellular processing as critical factors for genomic injury is exemplified by studies of the novel alkylating morpholinyl anthracyclines and the bifunctional alkylating agent nitrogen mustard as a prototype agent for covalent drug DNA interaction.
Collapse
Affiliation(s)
- K Wassermann
- Department of Toxicology and Biology, National Institute of Occupational Health, Copenhagen, Denmark
| |
Collapse
|
23
|
Characterization of a human DNA damage binding protein implicated in xeroderma pigmentosum E. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36923-6] [Citation(s) in RCA: 163] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
24
|
Abstract
Nucleotide excision repair is the major DNA repair mechanism in all species tested. This repair system is the sole mechanism for removing bulky adducts from DNA, but it repairs essentially all DNA lesions, and thus, in addition to its main function, it plays a back-up role for other repair systems. In both pro- and eukaryotes nucleotide excision is accomplished by a multisubunit ATP-dependent nuclease. The excision nuclease of prokaryotes incises the eighth phosphodiester bond 5' and the fourth or fifth phosphodiester bond 3' to the modified nucleotide and thus excises a 12-13-mer. The excision nuclease of eukaryotes incises the 22nd, 23rd, or 24th phosphodiester bond 5' and the fifth phosphodiester bond 3' to the lesion and thus removes the adduct in a 27-29-mer. A transcription repair coupling factor encoded by the mfd gene in Escherichia coli and the ERCC6 gene in humans directs the excision nuclease to RNA polymerase stalled at a lesion in the transcribed strand and thus ensures preferential repair of this strand compared to the nontranscribed strand.
Collapse
Affiliation(s)
- A Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill 27599
| | | |
Collapse
|
25
|
cDNA and deduced amino acid sequence of a mouse DNA repair enzyme (APEX nuclease) with significant homology to Escherichia coli exonuclease III. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54779-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
26
|
Sander M, Lowenhaupt K, Rich A. Drosophila Rrp1 protein: an apurinic endonuclease with homologous recombination activities. Proc Natl Acad Sci U S A 1991; 88:6780-4. [PMID: 1713691 PMCID: PMC52172 DOI: 10.1073/pnas.88.15.6780] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A protein previously purified from Drosophila embryo extracts by a DNA strand transfer assay, Rrp1 (recombination repair protein 1), has an N-terminal 427-amino acid region unrelated to known proteins, and a 252-amino acid C-terminal region with sequence homology to two DNA repair nucleases, Escherichia coli exonuclease III and Streptococcus pneumoniae exonuclease A, which are known to be active as apurinic endonucleases and as double-stranded DNA 3' exonucleases. We demonstrate here that purified Rrp1 has apurinic endonuclease and double-stranded DNA 3' exonuclease, activities and carries out single-stranded DNA renaturation in a Mg(2+)-dependent manner. Strand transfer, 3' exonuclease, and single-stranded DNA renaturation activities comigrate during column chromatography. The properties of Rrp1 suggest that it could promote homologous recombination at sites of DNA damage.
Collapse
Affiliation(s)
- M Sander
- Laboratory of Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | | | | |
Collapse
|
27
|
Sun Y, Moses RE. Reactivation of psoralen-reacted plasmid DNA in Fanconi anemia, xeroderma pigmentosum, and normal human fibroblast cells. SOMATIC CELL AND MOLECULAR GENETICS 1991; 17:229-38. [PMID: 2047939 DOI: 10.1007/bf01232819] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
We have used a host cell reactivation system to study the effect of 8-methoxypsoralen (8-MOP) reaction on CAT (chloramphenicol acetyltransferase) and NEO (aminoglycoside phosphotransferase) expression in normal human cells, as well as two cell lines with possible DNA repair-processing defects. Plasmid DNA was treated with psoralen plus near-ultraviolet (NUV) irradiation. The reacted plasmids, pSV2cat and pSV2neo, were transfected into Fanconi anemia (FA), xeroderma pigmentosum (XP), and normal human fibroblast cells for transient or stable assay. The cells were assayed for CAT activity at various times after transfection or selected for G418 resistance. The extent of adduct formation required to inhibit expression was much less (difference of D37 greater than 2.5) in FA or XP cells compared to normal. We conclude that in FA and XP cells, the reactivation of CAT was much less than in normal cells. The possibility of differential DNA uptake and/or degradation in transient assay was ruled out by analysis of plasmid DNA recovered from transfected cells. The data of the two independent assays indicate that FA and XP cells are deficient in cross-linked DNA repair.
Collapse
Affiliation(s)
- Y Sun
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030
| | | |
Collapse
|
28
|
Abstract
When RecA protein, in the form of a nucleoprotein filament containing circular single-stranded DNA (plus strand only), reacts with homologous linear duplex DNA, a directional transfer ensues of a strand from the duplex DNA to the nucleoprotein filament, resulting in the displacement of the linear plus strand in the 5' to 3' direction. The initial homologous synapsis, however, can occur at either end of the duplex DNA, or anywhere in between, and when homology is restricted to different regions of the duplex DNA, the joint molecules that form in each region show striking differences in stability upon deproteinization: distal joints greater than proximal joints much greater than medial joints. In the deproteinized distal joints, which are thermostable, 2000 nucleotide residues of the circular plus strand are resistant to P1 nuclease; both strands of the original duplex DNA remain resistant to P1 nuclease, and the potentially displaceable linear plus strand, which has a 3' homologous end, remains resistant to Escherichia coli exonuclease I. These observations suggest that RecA protein promotes homologous pairing and strand exchange via long three-stranded DNA intermediates and, moreover, that, once formed, such triplex structures in natural DNA are stable even when RecA protein has been removed.
Collapse
Affiliation(s)
- B J Rao
- Department of Human Genetics, Yale University School of Medicine, New Haven, CT 06510
| | | | | |
Collapse
|
29
|
Venugopal S, Guzder SN, Deutsch WA. Apurinic endonuclease activity from wild-type and repair-deficient mei-9 Drosophila ovaries. MOLECULAR & GENERAL GENETICS : MGG 1990; 221:421-6. [PMID: 1696350 DOI: 10.1007/bf00259407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An endonuclease which acts on apurinic (AP) sites in DNA was partially purified from Drosophila ovaries. The enzyme present in the female germ line has a molecular weight of 63,000 daltons, is Mg++ dependent, and produces a site upon cleaving depurinated DNA that supports DNA repair synthesis. Although the same characteristics are shared by the enzyme present in the excision-deficient mutant mei-9, specific activity for the AP endonuclease is reduced 98% when compared with that found for its wild-type counterpart. Moreover, cross-reactivity toward an antibody that recognizes the wild-type AP endonuclease protein is reduced roughly 90% for partially purified preparations from mei-9. Mixing experiments between extracts of mei-9 and wild type suggest that the mei-9 structural gene somehow alters or influences the levels of the AP endonuclease protein, but in view of the complex phenotype of this mutant the endonuclease is probably not the product of the gene itself.
Collapse
Affiliation(s)
- S Venugopal
- Department of Biochemistry, Louisiana State University, Baton Rouge 70803
| | | | | |
Collapse
|
30
|
Lenz J, Okenquist SA, LoSardo JE, Hamilton KK, Doetsch PW. Identification of a mammalian nuclear factor and human cDNA-encoded proteins that recognize DNA containing apurinic sites. Proc Natl Acad Sci U S A 1990; 87:3396-400. [PMID: 2185469 PMCID: PMC53907 DOI: 10.1073/pnas.87.9.3396] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Damage to DNA can have lethal or mutagenic consequences for cells unless it is detected and repaired by cellular proteins. Repair depends on the ability of cellular factors to distinguish the damaged sites. Electrophoretic binding assays were used to identify a factor from the nuclei of mammalian cells that bound to DNA containing apurinic sites. A binding assay based on the use of beta-galactosidase fusion proteins was subsequently used to isolate recombinant clones of human cDNAs that encoded apurinic DNA-binding proteins. Two distinct human cDNAs were identified that encoded proteins that bound apurinic DNA preferentially over undamaged, methylated, or UV-irradiated DNA. These approaches may offer a general method for the detection of proteins that recognize various types of DNA damage and for the cloning of genes encoding such proteins.
Collapse
Affiliation(s)
- J Lenz
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | | | | | | |
Collapse
|
31
|
Tomkinson AE, Bonk RT, Kim J, Bartfeld N, Linn S. Mammalian mitochondrial endonuclease activities specific for ultraviolet-irradiated DNA. Nucleic Acids Res 1990; 18:929-35. [PMID: 2315045 PMCID: PMC330347 DOI: 10.1093/nar/18.4.929] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial forms of uracil DNA glycosylase and UV endonuclease have been purified and characterized from the mouse plasmacytoma cell line, MPC-11. As in other cell types, the mitochondrial uracil DNA glycosylase has properties very similar to those of the nuclear enzyme, although in this case the mitochondrial activity was also distinguishable by extreme sensitivity to dilution. Three mitochondrial UV endonuclease activities are also similar to nuclear enzymes; however, the relative amounts of these enzyme activities in the mitochondria is significantly different from that in the nucleus. In particular, mitochondria contain a much higher proportion of an activity analogous to UV endonuclease III. Nuclear UV endonuclease III activity is absent from XP group D fibroblasts and XP group D lymphoblasts have reduced, but detectable levels of the mitochondrial form of this enzyme. This residual activity differs in its properties from the normal mitochondrial form of UV endonuclease III, however. The presence of these enzyme activities which function in base excision repair suggests that such DNA repair occurs in mitochondria. Alternatively, these enzymes might act to mark damaged mitochondrial genomes for subsequent degradation.
Collapse
Affiliation(s)
- A E Tomkinson
- Department of Biochemistry, University of California, Berkeley 94720
| | | | | | | | | |
Collapse
|
32
|
Schneider JE, Price S, Maidt L, Gutteridge JM, Floyd RA. Methylene blue plus light mediates 8-hydroxy 2'-deoxyguanosine formation in DNA preferentially over strand breakage. Nucleic Acids Res 1990; 18:631-5. [PMID: 2155406 PMCID: PMC333472 DOI: 10.1093/nar/18.3.631] [Citation(s) in RCA: 168] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Methylene blue (MB) plus light, in the presence of oxygen, mediates formation of 8-hydroxyguanine in DNA. The yield of 8-hydroxyguanine may be as much as from 2 to 4% of the guanines present. The results presented here show that treatment of supercoiled plasmid DNA with methylene blue plus light causes single-stranded nicks. However, single-stranded nicking occurs approximately 17-fold less frequently than does formation of 8-hydroxyguanine. The nicking rate is reduced in the presence of Mg ion but is not prevented by inhibitors of the iron-catalyzed Fenton reaction or by scavengers of hydroxyl free radicals. Extensive exposure of DNA to light in the presence of MB produces no detectable thiobarbital reactive material thus implicating that single strand nicking does not occur by hydroxyl free radical attack on deoxyribose. Formation of 8-hydroxyguanine is apparently not dependent upon intercalative binding of MB to DNA, since it is formed in polydeoxyguanylic acid.
Collapse
Affiliation(s)
- J E Schneider
- Molecular Toxicology Research Group, Oklahoma Medical Research Foundation, Oklahoma City 73104
| | | | | | | | | |
Collapse
|
33
|
Bailleul B, Daubersies P, Galiègue-Zouitina S, Loucheux-Lefebvre MH. Molecular basis of 4-nitroquinoline 1-oxide carcinogenesis. Jpn J Cancer Res 1989; 80:691-7. [PMID: 2511172 PMCID: PMC5917829 DOI: 10.1111/j.1349-7006.1989.tb01698.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- B Bailleul
- Unité INSERM n 124, Institut de Recherches sur le Cancer de Lille, France
| | | | | | | |
Collapse
|
34
|
Antibody to a human DNA repair protein allows for cloning of a Drosophila cDNA that encodes an apurinic endonuclease. Mol Cell Biol 1989. [PMID: 2471063 DOI: 10.1128/mcb.9.3.965] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cDNA of a Drosophila DNA repair gene, AP3, was cloned by screening an embryonic lambda gt11 expression library with an antibody that was originally prepared against a purified human apurinic-apyrimidinic (AP) endonuclease. The 1.2-kilobase (kb) AP3 cDNA mapped to a region on the third chromosome where a number of mutagen-sensitive alleles were located. The cDNA clone yielded an in vitro translation product of 35,000 daltons, in agreement with the predicted size of the translation product of the only open reading frame of AP3, and identical to the molecular size of an AP endonuclease activity recovered following sodium dodecyl sulfate-polyacrylamide gel electrophoresis of Drosophila extracts. The C-terminal portion of the predicted protein contained regions of presumptive DNA-binding domains, while the DNA sequence at the amino end of AP3 showed similarity to the Escherichia coli recA gene. AP3 is expressed as an abundant 1.3-kb mRNA that is detected throughout the life cycle of Drosophila melanogaster. Another 3.5-kb mRNA also hybridized to the AP3 cDNA, but this species was restricted to the early stages of development.
Collapse
|
35
|
Kelley MR, Venugopal S, Harless J, Deutsch WA. Antibody to a human DNA repair protein allows for cloning of a Drosophila cDNA that encodes an apurinic endonuclease. Mol Cell Biol 1989; 9:965-73. [PMID: 2471063 PMCID: PMC362685 DOI: 10.1128/mcb.9.3.965-973.1989] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The cDNA of a Drosophila DNA repair gene, AP3, was cloned by screening an embryonic lambda gt11 expression library with an antibody that was originally prepared against a purified human apurinic-apyrimidinic (AP) endonuclease. The 1.2-kilobase (kb) AP3 cDNA mapped to a region on the third chromosome where a number of mutagen-sensitive alleles were located. The cDNA clone yielded an in vitro translation product of 35,000 daltons, in agreement with the predicted size of the translation product of the only open reading frame of AP3, and identical to the molecular size of an AP endonuclease activity recovered following sodium dodecyl sulfate-polyacrylamide gel electrophoresis of Drosophila extracts. The C-terminal portion of the predicted protein contained regions of presumptive DNA-binding domains, while the DNA sequence at the amino end of AP3 showed similarity to the Escherichia coli recA gene. AP3 is expressed as an abundant 1.3-kb mRNA that is detected throughout the life cycle of Drosophila melanogaster. Another 3.5-kb mRNA also hybridized to the AP3 cDNA, but this species was restricted to the early stages of development.
Collapse
Affiliation(s)
- M R Kelley
- Department of Biochemistry and Biophysics, Loyola University Medical School, Maywood, Illinois 60152
| | | | | | | |
Collapse
|
36
|
Kim J, Linn S. Purification and characterization of UV endonucleases I and II from murine plasmacytoma cells. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)81675-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
37
|
Affiliation(s)
- M M Cohen
- Department of Obstetrics and Gynecology, School of Medicine, University of Maryland, Baltimore
| | | |
Collapse
|
38
|
Mitochondrial endonuclease activities specific for apurinic/apyrimidinic sites in DNA from mouse cells. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37787-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
39
|
Randahl H, Elliott GC, Linn S. DNA-repair reactions by purified HeLa DNA polymerases and exonucleases. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37744-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
40
|
Imlay JA, Chin SM, Linn S. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 1988; 240:640-2. [PMID: 2834821 DOI: 10.1126/science.2834821] [Citation(s) in RCA: 1058] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Exposure of Escherichia coli to low concentrations of hydrogen peroxide results in DNA damage that causes mutagenesis and kills the bacteria, whereas higher concentrations of peroxide reduce the amount of such damage. Earlier studies indicated that the direct DNA oxidant is a derivative of hydrogen peroxide whose formation is dependent on cell metabolism. The generation of this oxidant depends on the availability of both reducing equivalents and an iron species, which together mediate a Fenton reaction in which ferrous iron reduces hydrogen peroxide to a reactive radical. An in vitro Fenton system was established that generates DNA strand breaks and inactivates bacteriophage and that also reproduces the suppression of DNA damage by high concentrations of peroxide. The direct DNA oxidant both in vivo and in this in vitro system exhibits reactivity unlike that of a free hydroxyl radical and may instead be a ferryl radical.
Collapse
Affiliation(s)
- J A Imlay
- Department of Biochemistry, University of California, Berkeley 94720
| | | | | |
Collapse
|
41
|
Chow SA, Honigberg SM, Radding CM. DNase protection by recA protein during strand exchange. Asymmetric protection of the Holliday structure. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)69077-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
42
|
Ivanov VA, Tretyak TM, Afonin YN. Excision of apurinic and/or apyrimidinic sites from DNA by nucleolytical enzymes from rat brain. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 172:155-9. [PMID: 3278904 DOI: 10.1111/j.1432-1033.1988.tb13867.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Apurinic and/or apyrimidinic (AP) sites were excised from PM2 phage DNA by two enzymes: an AP endodeoxyribonuclease isolated from rat neocortex chromatin and a rat brain exodeoxyribonuclease, DNase B III. The resulting gap was filled with DNA polymerase beta prepared from rat liver and finally ligated by Escherichia coli DNA ligase.
Collapse
Affiliation(s)
- V A Ivanov
- Institute of Biological Physics, Academy of Sciences of the USSR, Pushchino
| | | | | |
Collapse
|
43
|
Kim J, Linn S. The mechanisms of action of E. coli endonuclease III and T4 UV endonuclease (endonuclease V) at AP sites. Nucleic Acids Res 1988; 16:1135-41. [PMID: 2449657 PMCID: PMC334742 DOI: 10.1093/nar/16.3.1135] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Treatment of DNA containing AP sites with either T4 UV endonuclease or with E. coli endonuclease III followed by a human class II AP endonuclease releases a putative beta-elimination product. This result suggests that both the T4 endonuclease and E. coli endonuclease III class I AP endonucleases catalyze phosphodiester bond cleavage via a lyase- rather than a hydrolase mechanism. Indeed, we have not detected a class I AP endonuclease which hydrolytically catalyzes phosphodiester bond cleavage. Whereas these enzymes use a lyase-like rather than a hydrolytic mechanism, they nonetheless catalyze phosphodiester bond cleavage. We suggest that the term endonuclease can be properly applied to them.
Collapse
Affiliation(s)
- J Kim
- Department of Biochemistry, University of California, Berkeley 94720
| | | |
Collapse
|
44
|
Nishida C, Reinhard P, Linn S. DNA repair synthesis in human fibroblasts requires DNA polymerase delta. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)57421-x] [Citation(s) in RCA: 159] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
45
|
Chow SA, Rao BJ, Radding CM. Reversibility of strand invasion promoted by recA protein and its inhibition by Escherichia coli single-stranded DNA-binding protein or phage T4 gene 32 protein. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)57379-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
46
|
rec-A protein-promoted recombination reaction consists of two independent processes, homologous matching and processive unwinding. A study involving an anti-rec-A protein-monoclonal IgG. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)45342-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
47
|
Henner WD, Kiker NP, Jorgensen TJ, Munck JN. Purification and amino-terminal amino acid sequence of an apurinic/apyrimidinic endonuclease from calf thymus. Nucleic Acids Res 1987; 15:5529-44. [PMID: 2441359 PMCID: PMC306005 DOI: 10.1093/nar/15.14.5529] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
An apurinic/apyrimidinic (AP) endonuclease (E.C.3.1.25.2) has been purified 1100 fold to apparent homogeneity from calf thymus by a series of ion exchange, gel filtration and hydrophobic interaction chromatographies. The purified AP endonuclease is a monomeric protein with an apparent molecular weight on SDS-PAGE of 37,000. On gel filtration the protein behaves as a protein of apparent molecular weight 40,000. DNA cleavage by this AP endonuclease is dependent on the presence of AP sites in the DNA. DNA cleavage requires the divalent cation Mg2+ and has a broad pH optimum of 7.5-9.0. Maximal rates of catalysis occur at NaCl or KCl concentrations of 25-50 mM. The amino acid composition and the amino-terminal amino acid sequence for this AP endonuclease are presented. Comparison of the properties of this AP endonuclease purified from calf thymus with the reported properties of the human AP endonuclease purified from HeLa cells or placenta indicate that the properties of such an AP endonuclease are highly conserved in these two mammalian species.
Collapse
|
48
|
Tomkinson AE, Linn S. Purification and properties of a single strand-specific endonuclease from mouse cell mitochondria. Nucleic Acids Res 1986; 14:9579-93. [PMID: 3027656 PMCID: PMC341322 DOI: 10.1093/nar/14.24.9579] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A nuclease was purified from mitochondria of the mouse plasmacytoma cell line, MCP-11 which acts on single-stranded DNA endonucleolytically and appears to have no activity upon native DNA. It degrades unordered RNA somewhat more effectively than it does DNA. The enzyme activity and the major detectable polypeptide migrate to a position corresponding to an Mr of 37,400 on denaturing polyacrylamide gels; in its native form the activity has an S value of 4.7, which corresponds to a molecular weight of roughly 73,000. The single-strand DNase activity has a pH optimum near 7.5, requires a divalent cation and is inhibited by EDTA, phosphate, KCl and NaCl. The enzyme is remarkably similar to fungal mitochondrial enzymes whose absence in various mutants correlates with defective DNA repair and recombination. It reacts weakly with antibody to a form of such an enzyme from Neurospora crassa.
Collapse
|
49
|
Abstract
A cloned gene, designated nfo, caused overproduction of an EDTA-resistant endonuclease specific for apurinic-apyrimidinic sites in DNA. The sedimentation coefficient of the enzyme was similar to that of endonuclease IV. An insertion mutation was constructed in vitro and transferred from a plasmid to the Escherichia coli chromosome. nfo mutants had an increased sensitivity to the alkylating agents methyl methanesulfonate and mitomycin C and to the oxidants tert-butyl hydroperoxide and bleomycin. The nfo mutation enhanced the killing of xth (exonuclease III) mutants by methyl methanesulfonate, H2O2, tert-butyl hydroperoxide, and gamma rays, and it enhanced their mutability by methyl methanesulfonate. It also increased the temperature sensitivity of an xth dut (dUTPase) mutant that is defective in the repair of uracil-containing DNA. These results are consistent with earlier findings that endonuclease IV and exonuclease III both cleave DNA 5' to an apurinic-apyrimidinic site and that exonuclease III is more active. However, nfo mutants were more sensitive to tert-butyl hydroperoxide and to bleomycin than were xth mutants, suggesting that endonuclease IV might recognize some lesions that exonuclease III does not. The mutants displayed no marked increase in sensitivity to 254-nm UV radiation, and the addition of an nth (endonuclease III) mutation to nfo or nfo xth mutants did not significantly increase their sensitivity to any of the agents tested.
Collapse
|
50
|
Abstract
The repair response of Escherichia coli to hydrogen peroxide-induced DNA damage was investigated in intact and toluene-treated cells. Cellular DNA was cleaved after treatment by hydrogen peroxide as analyzed by alkaline sucrose sedimentation. The incision step did not require ATP or magnesium and was not inhibited by N-ethylmaleimide (NEM). An ATP-independent, magnesium-dependent incorporation of nucleotides was seen after the exposure of cells to hydrogen peroxide. This DNA repair synthesis was not inhibited by the addition of NEM or dithiothreitol. In dnaB(Ts) strain CRT266, which is thermolabile for DNA replication, normal levels of DNA synthesis were found at the restrictive temperature (43 degrees C), showing that DNA replication was not necessary for this DNA synthesis. Density gradient analysis also indicated that hydrogen peroxide inhibited DNA replication and stimulated repair synthesis. The subsequent reformation step required magnesium, did not require ATP, and was not inhibited by NEM, in agreement with the synthesis requirements. This suggests that DNA polymerase I was involved in the repair step. Furthermore, a strain defective in DNA polymerase I was unable to reform its DNA after peroxide treatment. Chemical cleavage of the DNA was shown by incision of supercoiled DNA with hydrogen peroxide in the presence of a low concentration of ferric chloride. These findings suggest that hydrogen peroxide directly incises DNA, causing damage which is repaired by an incision repair pathway that requires DNA polymerase I.
Collapse
|