1
|
Sellers JR. Remembrance of Robert S. Adelstein: Mr. Nonmuscle Myosin 2. Cytoskeleton (Hoboken) 2024. [PMID: 39390677 DOI: 10.1002/cm.21948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Affiliation(s)
- James R Sellers
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Liu X, Shu S. Suggesting Dictyostelium as a Model for Disease-Related Protein Studies through Myosin II Polymerization Pathway. Cells 2024; 13:263. [PMID: 38334655 PMCID: PMC10854627 DOI: 10.3390/cells13030263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/10/2024] Open
Abstract
Dictyostelium myosin II displays remarkable dynamism within the cell, continually undergoing polymerization and depolymerization processes. Under low-ion conditions, it assumes a folded structure like muscle myosins and forms thick filaments through polymerization. In our study, we presented intermediate structures observed during the early stages of polymerization of purified myosin via negative staining electron microscopy, immediately crosslinked with glutaraldehyde at the onset of polymerization. We identified folded monomers, dimers, and tetramers in the process. Our findings suggest that Dictyostelium myosin II follows a polymerization pathway in vitro akin to muscle myosin, with folded monomers forming folded parallel and antiparallel dimers that subsequently associate to create folded tetramers. These folded tetramers eventually unfold and associate with other tetramers to produce long filaments. Furthermore, our research revealed that ATP influences filament size, reducing it regardless of the status of RLC phosphorylation while significantly increasing the critical polymerization concentrations from 0.2 to 9 nM. In addition, we demonstrate the morphology of fully matured Dictyostelium myosin II filaments.
Collapse
|
3
|
Major E, Keller I, Horváth D, Tamás I, Erdődi F, Lontay B. Smoothelin-Like Protein 1 Regulates the Thyroid Hormone-Induced Homeostasis and Remodeling of C2C12 Cells via the Modulation of Myosin Phosphatase. Int J Mol Sci 2021; 22:10293. [PMID: 34638630 PMCID: PMC8508602 DOI: 10.3390/ijms221910293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 11/28/2022] Open
Abstract
The pathological elevation of the active thyroid hormone (T3) level results in the manifestation of hyperthyroidism, which is associated with alterations in the differentiation and contractile function of skeletal muscle (SKM). Myosin phosphatase (MP) is a major cellular regulator that hydrolyzes the phosphoserine of phosphorylated myosin II light chain. MP consists of an MYPT1/2 regulatory and a protein phosphatase 1 catalytic subunit. Smoothelin-like protein 1 (SMTNL1) is known to inhibit MP by directly binding to MP as well as by suppressing the expression of MYPT1 at the transcriptional level. Supraphysiological vs. physiological concentration of T3 were applied on C2C12 myoblasts and differentiated myotubes in combination with the overexpression of SMTNL1 to assess the role and regulation of MP under these conditions. In non-differentiated myoblasts, MP included MYPT1 in the holoenzyme complex and its expression and activity was regulated by SMTNL1, affecting the phosphorylation level of MLC20 assessed using semi-quantitative Western blot analysis. SMTNL1 negatively influenced the migration and cytoskeletal remodeling of myoblasts measured by high content screening. In contrast, in myotubes, the expression of MYPT2 but not MYPT1 increased in a T3-dependent and SMTNL1-independent manner. T3 treatment combined with SMTNL1 overexpression impeded the activity of MP. In addition, MP interacted with Na+/K+-ATPase and dephosphorylated its inhibitory phosphorylation sites, identifying this protein as a novel MP substrate. These findings may help us gain a better understanding of myopathy, muscle weakness and the disorder of muscle regeneration in hyperthyroid patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Beáta Lontay
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (E.M.); (I.K.); (D.H.); (I.T.); (F.E.)
| |
Collapse
|
4
|
Längst N, Adler J, Schweigert O, Kleusberg F, Cruz Santos M, Knauer A, Sausbier M, Zeller T, Ruth P, Lukowski R. Cyclic GMP-Dependent Regulation of Vascular Tone and Blood Pressure Involves Cysteine-Rich LIM-Only Protein 4 (CRP4). Int J Mol Sci 2021; 22:9925. [PMID: 34576086 PMCID: PMC8466836 DOI: 10.3390/ijms22189925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/09/2021] [Accepted: 08/25/2021] [Indexed: 01/14/2023] Open
Abstract
The cysteine-rich LIM-only protein 4 (CRP4), a LIM-domain and zinc finger containing adapter protein, has been implicated as a downstream effector of the second messenger 3',5'-cyclic guanosine monophosphate (cGMP) pathway in multiple cell types, including vascular smooth muscle cells (VSMCs). VSMCs and nitric oxide (NO)-induced cGMP signaling through cGMP-dependent protein kinase type I (cGKI) play fundamental roles in the physiological regulation of vascular tone and arterial blood pressure (BP). However, it remains unclear whether the vasorelaxant actions attributed to the NO/cGMP axis require CRP4. This study uses mice with a targeted deletion of the CRP4 gene (CRP4 KO) to elucidate whether cGMP-elevating agents, which are well known for their vasorelaxant properties, affect vessel tone, and thus, BP through CRP4. Cinaciguat, a NO- and heme-independent activator of the NO-sensitive (soluble) guanylyl cyclase (NO-GC) and NO-releasing agents, relaxed both CRP4-proficient and -deficient aortic ring segments pre-contracted with prostaglandin F2α. However, the magnitude of relaxation was slightly, but significantly, increased in vessels lacking CRP4. Accordingly, CRP4 KO mice presented with hypotonia at baseline, as well as a greater drop in systolic BP in response to the acute administration of cinaciguat, sodium nitroprusside, and carbachol. Mechanistically, loss of CRP4 in VSMCs reduced the Ca2+-sensitivity of the contractile apparatus, possibly involving regulatory proteins, such as myosin phosphatase targeting subunit 1 (MYPT1) and the regulatory light chain of myosin (RLC). In conclusion, the present findings confirm that the adapter protein CRP4 interacts with the NO-GC/cGMP/cGKI pathway in the vasculature. CRP4 seems to be part of a negative feedback loop that eventually fine-tunes the NO-GC/cGMP axis in VSMCs to increase myofilament Ca2+ desensitization and thereby the maximal vasorelaxant effects attained by (selected) cGMP-elevating agents.
Collapse
Affiliation(s)
- Natalie Längst
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| | - Julia Adler
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| | - Olga Schweigert
- Cardiovascular Systems Medicine and Molecular Translation, University Center of Cardiovascular Science, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (O.S.); (T.Z.)
- DZHK, German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, 20251 Hamburg, Germany
| | - Felicia Kleusberg
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| | - Melanie Cruz Santos
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| | - Amelie Knauer
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| | - Matthias Sausbier
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| | - Tanja Zeller
- Cardiovascular Systems Medicine and Molecular Translation, University Center of Cardiovascular Science, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (O.S.); (T.Z.)
- DZHK, German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, 20251 Hamburg, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| |
Collapse
|
5
|
Kajuluri LP, Singh K, Morgan KG. Vascular aging, the vascular cytoskeleton and aortic stiffness. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:186-197. [PMID: 34414394 PMCID: PMC8372409 DOI: 10.37349/emed.2021.00041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vascular aging, aortic stiffness and hypertension are mechanistically interrelated. The perspective presented here will focus mainly on the molecular mechanisms of age-associated increases in the stiffness of the vascular smooth muscle cell (VSMC). This review will highlight the mechanisms by which the VSMC contributes to disorders of vascular aging. Distinct functional sub-components of the vascular cell and the molecular mechanisms of the protein-protein interactions, signaling mechanisms and intracellular trafficking processes in the setting of the aging aorta will be detailed.
Collapse
Affiliation(s)
| | - Kuldeep Singh
- Department of Health Sciences, Boston University, Boston, MA 02215, USA.,CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Kathleen G Morgan
- Department of Health Sciences, Boston University, Boston, MA 02215, USA
| |
Collapse
|
6
|
Boggu PR, Venkateswararao E, Manickam M, Sharma N, Kang JS, Jung SH. Identification of diphenylalkylisoxazol-5-amine scaffold as novel activator of cardiac myosin. Bioorg Med Chem 2020; 28:115742. [PMID: 33007555 DOI: 10.1016/j.bmc.2020.115742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 01/10/2023]
Abstract
To identify novel potent cardiac myosin activator, a series of diphenylalkylisoxazol-5-amine compounds 4-7 have been synthesized and evaluated for cardiac myosin ATPase activation. Among the 37 compounds, 4a (CMA at 10 µM = 81.6%), 4w (CMA at 10 µM = 71.2%) and 6b (CMA at 10 µM = 67.4%) showed potent cardiac myosin activation at a single concentration of 10 µM. These results suggested that the introduction of the amino-isoxazole ring as a bioisostere for urea group is acceptable for the cardiac myosin activation. Additional structure-activity relationship (SAR) studies were conducted. Para substitution (-Cl, -OCH3, -SO2N(CH3)2) to the phenyl rings or replacement of a phenyl ring with a heterocycle (pyridine, piperidine and tetrahydropyran) appeared to attenuate cardiac myosin activation at 10 µM. Additional hydrogen bonding acceptor next to the amino group of the isoxazoles did not enhance the activity. The potent isoxazole compounds showed selectivity for cardiac myosin activation over skeletal and smooth muscle myosin, and therefore these potent and selective isoxazole compounds could be considered as a new series of cardiac myosin ATPase activators for the treatment of systolic heart failure.
Collapse
Affiliation(s)
- Pulla Reddy Boggu
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Eeda Venkateswararao
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Manoj Manickam
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Niti Sharma
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jong Seong Kang
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Sang-Hun Jung
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
7
|
Manickam M, Pillaiyar T, Namasivayam V, Boggu PR, Sharma N, Jalani HB, Venkateswararao E, Lee YJ, Jeon ES, Son MJ, Woo SH, Jung SH. Design and synthesis of sulfonamidophenylethylamides as novel cardiac myosin activator. Bioorg Med Chem 2019; 27:4110-4123. [PMID: 31378598 DOI: 10.1016/j.bmc.2019.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 01/10/2023]
Abstract
The sulfonamidophenylethylamide analogues were explored for finding novel and potent cardiac myosin activators. Among them, N-(4-(N,N-dimethylsulfamoyl)phenethyl-N-methyl-5-phenylpentanamide (13, CMA at 10 µM = 48.5%; FS = 26.21%; EF = 15.28%) and its isomer, 4-(4-(N,N-dimethylsulfamoyl)phenyl-N-methyl-N-(3-phenylpropyl)butanamide (27, CMA at 10 µM = 55.0%; FS = 24.69%; EF = 14.08%) proved to be efficient cardiac myosin activators both in in vitro and in vivo studies. Compounds 13 (88.2 + 3.1% at 5 µM) and 27 (46.5 + 2.8% at 5 µM) showed positive inotropic effect in isolated rat ventricular myocytes. The potent compounds 13 and 27 were highly selective for cardiac myosin over skeletal and smooth muscle myosin, and therefore these potent and selective amide derivatives could be considered a new class of cardiac myosin activators for the treatment of systolic heart failure.
Collapse
Affiliation(s)
- Manoj Manickam
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Thanigaimalai Pillaiyar
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | | | - Pulla Reddy Boggu
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Niti Sharma
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hitesh B Jalani
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eeda Venkateswararao
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - You-Jung Lee
- Division of Cardiology, Samsung Medical Center, Samsung Biomedical Research Institute, School of Medicine, Sungkyunkwan University, 81 Irwon-Ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Eun-Seok Jeon
- Division of Cardiology, Samsung Medical Center, Samsung Biomedical Research Institute, School of Medicine, Sungkyunkwan University, 81 Irwon-Ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Min-Jeong Son
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sun-Hee Woo
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sang-Hun Jung
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
8
|
Manickam M, Boggu PR, Pillaiyar T, Sharma N, Jalani HB, Venkateswararao E, Jung SH. Exploration of diphenylalkyloxadiazoles as novel cardiac myosin activator. Bioorg Med Chem Lett 2018; 28:2369-2374. [PMID: 29937058 DOI: 10.1016/j.bmcl.2018.06.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 01/19/2023]
Abstract
To explore novel cardiac myosin activator, a series of diphenylalkyl substituted 1,3,4-oxadiazoles and 1,2,4-oxadiazoles have been prepared and tested for cardiac myosin ATPase activation in vitro. In all cases, three carbon spacer between the oxadiazole core and one of the phenyl ring was considered crucial. In case of 1,3,4-oxadiazole, zero to two carbon spacer between oxadiazole core and other phenyl ring are favorable. Phenyl ring can be replaced by cyclohexyl moiety. In case of 1,2,4-oxadiazole, zero or one carbon spacer between the oxadiazole and other phenyl ring are favorable. Introduction of hydrogen bonding donor (NH) group at the 2nd position of the 1,3,4-oxadiazole enhances the activity. Substitutions on either of the phenyl rings or change of phenyl ring to other heterocycle are not tolerated for both the oxadiazoles. The prepared oxadiazoles showed selective activation for cardiac muscle over smooth and skeleton muscles.
Collapse
Affiliation(s)
- Manoj Manickam
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Pulla Reddy Boggu
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Thanigaimalai Pillaiyar
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Niti Sharma
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hitesh B Jalani
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eeda Venkateswararao
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sang-Hun Jung
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
9
|
Anjum I. Calcium sensitization mechanisms in detrusor smooth muscles. J Basic Clin Physiol Pharmacol 2018; 29:227-235. [PMID: 29306925 DOI: 10.1515/jbcpp-2017-0071] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/12/2017] [Indexed: 06/07/2023]
Abstract
The contraction of detrusor smooth muscles depends on the increase in intracellular calcium. The influx of calcium from the plasma membrane calcium channels and calcium release from the sarcoplasmic reticulum give rise to intracellular calcium. Under the pathophysiological conditions, the increased sensitivity of regulatory and contractile proteins to calcium also plays an important role in maintaining the spontaneous detrusor smooth muscle activity. Many proteins have been identified to play a role in calcium sensitization. Both the protein kinase C (PKC) and Rho-kinase (ROCK) signaling pathways are responsible for the induction of calcium sensitization in the detrusor smooth muscles. The balance between the myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) regulates the intracellular calcium-contractile force relationship. The inhibition of MLCP by PKC-mediated phosphatase inhibitor (CPI-17) and myosin phosphatase target subunit (MYPT-1) phosphorylation by both the PKC and ROCK are responsible for calcium sensitization in the detrusor smooth muscles. However, the ROCK pathway predominantly participates in the calcium sensitization induction under pathophysiological situations. Many kinases are well known nowadays to play a role in calcium sensitization. This review aims to enlighten the current understanding of the regulatory mechanisms of calcium sensitization with special reference to the PKC and ROCK pathways in the detrusor smooth muscles. It will also aid in the development of new pharmacological strategies to prevent and treat bladder diseases.
Collapse
Affiliation(s)
- Irfan Anjum
- Department of Pharmacology, Faculty of Pharmacy, Hacettepe University, 06100 Sihhiye, Ankara, Turkey
| |
Collapse
|
10
|
Manickam M, Jalani HB, Pillaiyar T, Boggu PR, Sharma N, Venkateswararao E, Lee YJ, Jeon ES, Son MJ, Woo SH, Jung SH. Design and synthesis of sulfonamidophenylethylureas as novel cardiac myosin activator. Eur J Med Chem 2018; 143:1869-1887. [DOI: 10.1016/j.ejmech.2017.10.077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/18/2017] [Accepted: 10/30/2017] [Indexed: 01/10/2023]
|
11
|
Manickam M, Jalani HB, Pillaiyar T, Sharma N, Boggu PR, Venkateswararao E, Lee YJ, Jeon ES, Jung SH. Exploration of flexible phenylpropylurea scaffold as novel cardiac myosin activators for the treatment of systolic heart failure. Eur J Med Chem 2017; 134:379-391. [DOI: 10.1016/j.ejmech.2017.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/22/2017] [Accepted: 04/03/2017] [Indexed: 02/03/2023]
|
12
|
Proteolysis in meat tenderization from the point of view of each single protein: A proteomic perspective. J Proteomics 2016; 147:85-97. [DOI: 10.1016/j.jprot.2016.02.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/05/2016] [Accepted: 02/15/2016] [Indexed: 12/21/2022]
|
13
|
Espinoza-Fonseca LM, Alamo L, Pinto A, Thomas DD, Padrón R. Sequential myosin phosphorylation activates tarantula thick filament via a disorder-order transition. MOLECULAR BIOSYSTEMS 2016; 11:2167-79. [PMID: 26038232 DOI: 10.1039/c5mb00162e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Phosphorylation of myosin regulatory light chain (RLC) N-terminal extension (NTE) activates myosin in thick filaments. RLC phosphorylation plays a primary regulatory role in smooth muscles and a secondary (modulatory) role in striated muscles, which is regulated by Ca(2+)via TnC/TM on the thin filament. Tarantula striated muscle exhibits both regulatory systems: one switches on/off contraction through thin filament regulation, and another through PKC constitutively Ser35 phosphorylated swaying free heads in the thick filaments that produces quick force on twitches regulated from 0 to 50% and modulation is accomplished recruiting additional force-potentiating free and blocked heads via Ca(2+)4-CaM-MLCK Ser45 phosphorylation. We have used microsecond molecular dynamics (MD) simulations of tarantula RLC NTE to understand the structural basis for phosphorylation-based regulation in tarantula thick filament activation. Trajectory analysis revealed that an inter-domain salt bridge network (R39/E58,E61) facilitates the formation of a stable helix-coil-helix (HCH) motif formed by helices P and A in the unphosphorylated NTE of both myosin heads. Phosphorylation of the blocked head on Ser45 does not induce any substantial structural changes. However, phosphorylation of the free head on Ser35 disrupts this salt bridge network and induces a partial extension of helix P along RLC helix A. While not directly participating in the HCH folding, phosphorylation of Ser35 unlocks a compact structure and allows the NTE to spontaneously undergo coil-helix transitions. The modest structural change induced by the subsequent Ser45 diphosphorylation monophosphorylated Ser35 free head facilitates full helix P extension into a single structurally stable α-helix through a network of intra-domain salt bridges (pS35/R38,R39,R42). We conclude that tarantula thick filament activation is controlled by sequential Ser35-Ser45 phosphorylation via a conserved disorder-to-order transition.
Collapse
Affiliation(s)
- L Michel Espinoza-Fonseca
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
14
|
Brozovich FV, Nicholson CJ, Degen CV, Gao YZ, Aggarwal M, Morgan KG. Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders. Pharmacol Rev 2016; 68:476-532. [PMID: 27037223 PMCID: PMC4819215 DOI: 10.1124/pr.115.010652] [Citation(s) in RCA: 346] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The smooth muscle cell directly drives the contraction of the vascular wall and hence regulates the size of the blood vessel lumen. We review here the current understanding of the molecular mechanisms by which agonists, therapeutics, and diseases regulate contractility of the vascular smooth muscle cell and we place this within the context of whole body function. We also discuss the implications for personalized medicine and highlight specific potential target molecules that may provide opportunities for the future development of new therapeutics to regulate vascular function.
Collapse
Affiliation(s)
- F V Brozovich
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C J Nicholson
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C V Degen
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - Yuan Z Gao
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - M Aggarwal
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - K G Morgan
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| |
Collapse
|
15
|
Perrino BA. Calcium Sensitization Mechanisms in Gastrointestinal Smooth Muscles. J Neurogastroenterol Motil 2016; 22:213-25. [PMID: 26701920 PMCID: PMC4819859 DOI: 10.5056/jnm15186] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 12/22/2014] [Indexed: 01/05/2023] Open
Abstract
An increase in intracellular Ca2+ is the primary trigger of contraction of gastrointestinal (GI) smooth muscles. However, increasing the Ca2+ sensitivity of the myofilaments by elevating myosin light chain phosphorylation also plays an essential role. Inhibiting myosin light chain phosphatase activity with protein kinase C-potentiated phosphatase inhibitor protein-17 kDa (CPI-17) and myosin phosphatase targeting subunit 1 (MYPT1) phosphorylation is considered to be the primary mechanism underlying myofilament Ca2+ sensitization. The relative importance of Ca2+ sensitization mechanisms to the diverse patterns of GI motility is likely related to the varied functional roles of GI smooth muscles. Increases in CPI-17 and MYPT1 phosphorylation in response to agonist stimulation regulate myosin light chain phosphatase activity in phasic, tonic, and sphincteric GI smooth muscles. Recent evidence suggests that MYPT1 phosphorylation may also contribute to force generation by reorganization of the actin cytoskeleton. The mechanisms responsible for maintaining constitutive CPI-17 and MYPT1 phosphorylation in GI smooth muscles are still largely unknown. The characteristics of the cell-types comprising the neuroeffector junction lead to fundamental differences between the effects of exogenous agonists and endogenous neurotransmitters on Ca2+ sensitization mechanisms. The contribution of various cell-types within the tunica muscularis to the motor responses of GI organs to neurotransmission must be considered when determining the mechanisms by which Ca2+ sensitization pathways are activated. The signaling pathways regulating Ca2+ sensitization may provide novel therapeutic strategies for controlling GI motility. This article will provide an overview of the current understanding of the biochemical basis for the regulation of Ca2+ sensitization, while also discussing the functional importance to different smooth muscles of the GI tract.
Collapse
Affiliation(s)
- Brian A Perrino
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| |
Collapse
|
16
|
Abstract
By interacting with the troponin-tropomyosin complex on myofibrillar thin filaments, Ca2+ and myosin govern the regulatory switching processes influencing contractile activity of mammalian cardiac and skeletal muscles. A possible explanation of the roles played by Ca2+ and myosin emerged in the early 1970s when a compelling "steric model" began to gain traction as a likely mechanism accounting for muscle regulation. In its most simple form, the model holds that, under the control of Ca2+ binding to troponin and myosin binding to actin, tropomyosin strands running along thin filaments either block myosin-binding sites on actin when muscles are relaxed or move away from them when muscles are activated. Evidence for the steric model was initially based on interpretation of subtle changes observed in X-ray fiber diffraction patterns of intact skeletal muscle preparations. Over the past 25 years, electron microscopy coupled with three-dimensional reconstruction directly resolved thin filament organization under many experimental conditions and at increasingly higher resolution. At low-Ca2+, tropomyosin was shown to occupy a "blocked-state" position on the filament, and switched-on in a two-step process, involving first a movement of tropomyosin away from the majority of the myosin-binding site as Ca2+ binds to troponin and then a further movement to fully expose the site when small numbers of myosin heads bind to actin. In this contribution, basic information on Ca2+-regulation of muscle contraction is provided. A description is then given relating the voyage of discovery taken to arrive at the present understanding of the steric regulatory model.
Collapse
Affiliation(s)
- William Lehman
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts, U.S.A
| |
Collapse
|
17
|
Wu C, Kovac JR. Models for erectile dysfunction and their importance to novel drug discovery. Expert Opin Drug Discov 2015; 11:185-96. [DOI: 10.1517/17460441.2016.1126243] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
18
|
Haldeman BD, Brizendine RK, Facemyer KC, Baker JE, Cremo CR. The kinetics underlying the velocity of smooth muscle myosin filament sliding on actin filaments in vitro. J Biol Chem 2015; 289:21055-70. [PMID: 24907276 DOI: 10.1074/jbc.m114.564740] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Actin-myosin interactions are well studied using soluble myosin fragments, but little is known about effects of myosin filament structure on mechanochemistry. We stabilized unphosphorylated smooth muscle myosin (SMM) and phosphorylated smooth muscle myosin (pSMM) filaments against ATP-induced depolymerization using a cross-linker and attached fluorescent rhodamine (XL-Rh-SMM). Electron micrographs showed that these side polar filaments are very similar to unmodified filaments. They are ~0.63 μm long and contain ~176 molecules. Rate constants for ATP-induced dissociation and ADP release from acto-myosin for filaments and S1 heads were similar. Actin-activated ATPases of SMM and XL-Rh-SMM were similarly regulated. XL-Rh-pSMM filaments moved processively on F-actin that was bound to a PEG brush surface. ATP dependence of filament velocities was similar to that for solution ATPases at high [actin], suggesting that both processes are limited by the same kinetic step (weak to strong transition) and therefore are attachment- limited. This differs from actin sliding over myosin monomers, which is primarily detachment-limited. Fitting filament data to an attachment-limited model showed that approximately half of the heads are available to move the filament, consistent with a side polar structure. We suggest the low stiffness subfragment 2 (S2) domain remains unhindered during filament motion in our assay. Actin-bound negatively displaced heads will impart minimal drag force because of S2 buckling. Given the ADP release rate, the velocity, and the length of S2, these heads will detach from actin before slack is taken up into a backwardly displaced high stiffness position. This mechanism explains the lack of detachment- limited kinetics at physiological [ATP]. These findings address how nonlinear elasticity in assemblies of motors leads to efficient collective force generation.
Collapse
|
19
|
Huang H, Larsen MR, Palmisano G, Dai J, Lametsch R. Quantitative phosphoproteomic analysis of porcine muscle within 24 h postmortem. J Proteomics 2014; 106:125-39. [PMID: 24769528 DOI: 10.1016/j.jprot.2014.04.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 04/07/2014] [Accepted: 04/12/2014] [Indexed: 01/20/2023]
Abstract
UNLABELLED Protein phosphorylation can regulate most of the important processes in muscle, such as metabolism and contraction. The postmortem (PM) metabolism and rigor mortis have essential effects on meat quality. In order to identify and characterize the protein phosphorylation events involved in meat quality development, a quantitative mass spectrometry-based phosphoproteomic study was performed to analyze the porcine muscle within 24h PM using dimethyl labeling combined with the TiSH phosphopeptide enrichment strategy. In total 305 unique proteins were identified, including 160 phosphoproteins with 784 phosphorylation sites. Among these, 184 phosphorylation sites on 93 proteins had their phosphorylation levels significantly changed. The proteins involved in glucose metabolism and muscle contraction were the two largest clusters of phosphoproteins with significantly changed phosphorylation levels in muscle within 24 h PM. The high phosphorylation level of heat shock proteins (HSPs) in early PM may be an adaptive response to slaughter stress and protect muscle cell from apoptosis, as observed in the serine 84 of HSP27. This work indicated that PM muscle proteins underwent significant changes at the phosphorylation level but were relatively stable at the total protein level, suggesting that protein phosphorylation may have important roles in meat quality development through the regulation of proteins involved in glucose metabolism and muscle contraction, thereby affecting glycolysis and rigor mortis development in PM muscle. BIOLOGICAL SIGNIFICANCE The manuscript describes the characterization of postmortem (PM) porcine muscle within 24 h postmortem from the perspective of protein phosphorylation using advanced phosphoproteomic techniques. In the study, the authors employed the dimethyl labeling combined with the TiSH phosphopeptide enrichment and LC-MS/MS strategy. This was the first high-throughput quantitative phosphoproteomic study in PM muscle of farm animals. In the work, both the proteome and phosphoproteome were analyzed, and the large number of identified peptides, phosphopeptides and phosphorylation sites can greatly enrich the current farm animal protein database. The proteins involved in glycometabolism, muscle contraction and heat shock proteins (HSPs) showed significantly changed phosphorylation levels during PM meat development. This work indicated that PM muscle proteins underwent significant changes at phosphorylation level but were relatively stable at the total protein level, suggesting that protein phosphorylation may have important roles in meat development through the regulation of proteins involved in metabolism and muscle contraction, thereby affecting glycolysis and rigor mortis development in PM muscle. The work can promote the understanding of PM muscle metabolism and meat quality development, and be helpful for future meat quality control.
Collapse
Affiliation(s)
- Honggang Huang
- Department of Food Science, Faculty of Science, University of Copenhagen, DK-1958 Frederiksberg, Denmark; Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark; The Danish Diabetes Academy, Denmark.
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Giuseppe Palmisano
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark; Institute of Biomedical Sciences, Department of Parasitology, USP, São Paulo, Brazil
| | - Jie Dai
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - René Lametsch
- Department of Food Science, Faculty of Science, University of Copenhagen, DK-1958 Frederiksberg, Denmark.
| |
Collapse
|
20
|
Maruta H. Herbal therapeutics that block the oncogenic kinase PAK1: a practical approach towards PAK1-dependent diseases and longevity. Phytother Res 2013; 28:656-72. [PMID: 23943274 DOI: 10.1002/ptr.5054] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/12/2013] [Indexed: 12/11/2022]
Abstract
Over 35 years research on PAKs, RAC/CDC42(p21)-activated kinases, comes of age, and in particular PAK1 has been well known to be responsible for a variety of diseases such as cancer (mainly solid tumors), Alzheimer's disease, acquired immune deficiency syndrome and other viral/bacterial infections, inflammatory diseases (asthma and arthritis), diabetes (type 2), neurofibromatosis, tuberous sclerosis, epilepsy, depression, schizophrenia, learning disability, autism, etc. Although several distinct synthetic PAK1-blockers have been recently developed, no FDA-approved PAK1 blockers are available on the market as yet. Thus, patients suffering from these PAK1-dependent diseases have to rely on solely a variety of herbal therapeutics such as propolis and curcumin that block PAK1 without affecting normal cell growth. Furthermore, several recent studies revealed that some of these herbal therapeutics significantly extend the lifespan of nematodes (C. elegans) and fruit flies (Drosophila), and PAK1-deficient worm lives longer than the wild type. Here, I outline mainly pathological phenotypes of hyper-activated PAK1 and a list of herbal therapeutics that block PAK1, but cause no side (harmful) effect on healthy people or animals.
Collapse
|
21
|
Butler T, Paul J, Europe-Finner N, Smith R, Chan EC. Role of serine-threonine phosphoprotein phosphatases in smooth muscle contractility. Am J Physiol Cell Physiol 2013; 304:C485-504. [PMID: 23325405 DOI: 10.1152/ajpcell.00161.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The degree of phosphorylation of myosin light chain 20 (MLC20) is a major determinant of force generation in smooth muscle. Myosin phosphatases (MPs) contain protein phosphatase (PP) 1 as catalytic subunits and are the major enzymes that dephosphorylate MLC20. MP regulatory targeting subunit 1 (MYPT1), the main regulatory subunit of MP in all smooth muscles, is a key convergence point of contractile and relaxatory pathways. Combinations of regulatory mechanisms, including isoform splicing, multiple phosphorylation sites, and scaffolding proteins, modulate MYPT1 activity with tissue and agonist specificities to affect contraction and relaxation. Other members of the PP1 family that do not target myosin, as well as PP2A and PP2B, dephosphorylate a range of proteins that affect smooth muscle contraction. This review discusses the role of phosphatases in smooth muscle contractility with a focus on MYPT1 in uterine smooth muscle. Myometrium shares characteristics of vascular and other visceral smooth muscles yet, during healthy pregnancy, undergoes hypertrophy, hyperplasia, quiescence, and labor as physiological processes. Myometrium presents an accessible model for the study of normal and pathological smooth muscle function, and a better understanding of myometrial physiology may allow the development of novel therapeutics for the many disorders of myometrial physiology from preterm labor to dysmenorrhea.
Collapse
Affiliation(s)
- Trent Butler
- Mothers and Babies Research Centre, Faculty of Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | | | | | |
Collapse
|
22
|
Force and movement. Biophysics (Nagoya-shi) 2012. [DOI: 10.1017/cbo9781139035002.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
23
|
Wang CLA, Coluccio LM. New insights into the regulation of the actin cytoskeleton by tropomyosin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 281:91-128. [PMID: 20460184 PMCID: PMC2923581 DOI: 10.1016/s1937-6448(10)81003-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The actin cytoskeleton is regulated by a variety of actin-binding proteins including those constituting the tropomyosin family. Tropomyosins are coiled-coil dimers that bind along the length of actin filaments. In muscles, tropomyosin regulates the interaction of actin-containing thin filaments with myosin-containing thick filaments to allow contraction. In nonmuscle cells where multiple tropomyosin isoforms are expressed, tropomyosins participate in a number of cellular events involving the cytoskeleton. This chapter reviews the current state of the literature regarding tropomyosin structure and function and discusses the evidence that tropomyosins play a role in regulating actin assembly.
Collapse
|
24
|
JUAN Y, SHEN J, CHUANG S, KOGAN BA, HUANG C, WU W, LIU K, LEVIN RM. Ischemia/Reperfusion Effects on Bladder Muscle and Mucosa Cell Contractile Regulatory Proteins. Low Urin Tract Symptoms 2009. [DOI: 10.1111/j.1757-5672.2009.00011.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Hypolite JA, Chang S, LaBelle E, Babu GJ, Periasamy M, Wein AJ, Chacko S. Deletion of SM-B, the high ATPase isoform of myosin, upregulates the PKC-mediated signal transduction pathway in murine urinary bladder smooth muscle. Am J Physiol Renal Physiol 2009; 296:F658-65. [PMID: 19052105 PMCID: PMC2660183 DOI: 10.1152/ajprenal.90221.2008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 12/01/2008] [Indexed: 01/10/2023] Open
Abstract
Detrusor smooth muscle (DSM) hypertrophy induced by partial bladder outlet obstruction (PBOO) is associated with changes in the NH2-terminal myosin heavy chain isoform from predominantly SM-B to SM-A, alteration in the Ca2+ sensitization pathway, and the contractile characteristics from phasic to tonic in rabbits. We utilized the SM-B knockout (KO) mouse to determine whether a shift from SM-B to SM-A without PBOO is associated with changes in the signal transduction pathway mediated via PKC and CPI-17, which keeps the myosin phosphorylation (MLC20) level high by inhibiting the myosin phosphatase. DSM strips from SM-B KO mice generated more force in response to electrical field stimulation, KCl, carbachol, and phorbol 12,13-dibutyrate than that of age-matched wild-type mice. There was no difference in the ED50 for carbachol but the maximum response was greater for the SM-B KO mice. DSM from SM-B KO mice revealed increased mass and hypertrophy. The KO mice also showed an overexpression of PKC-alpha, increased levels of phospho-CPI-17, and an elevated level of IP3 and DAG upon stimulation with carbachol. Two-dimensional gel electrophoresis revealed an increased level of MLC20 phosphorylation in response to carbachol. Together, these changes may be responsible for the higher level of force generation and maintenance by the DSM from the SM-B KO bladders. In conclusion, our data show that ablation of SM-B is associated with alteration of PKC-mediated signal transduction and CPI-17-mediated Ca2+ sensitization pathway that regulate smooth muscle contraction. Interestingly, similar changes are also present in PBOO-induced DSM compensatory response in the rabbit model in which SM-B is downregulated.
Collapse
Affiliation(s)
- Joseph A Hypolite
- Division of Urology and Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Greenberg MJ, Watt JD, Jones M, Kazmierczak K, Szczesna-Cordary D, Moore JR. Regulatory light chain mutations associated with cardiomyopathy affect myosin mechanics and kinetics. J Mol Cell Cardiol 2009; 46:108-15. [PMID: 18929571 PMCID: PMC2675789 DOI: 10.1016/j.yjmcc.2008.09.126] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 09/04/2008] [Accepted: 09/08/2008] [Indexed: 10/21/2022]
Abstract
The myosin regulatory light chain (RLC) wraps around the alpha-helical neck region of myosin. This neck region has been proposed to act as a lever arm, amplifying small conformational changes in the myosin head to generate motion. The RLC serves an important structural role, supporting the myosin neck region and a modulatory role, tuning the kinetics of the actin myosin interaction. Given the importance of the RLC, it is not surprising that mutations of the RLC can lead to familial hypertrophic cardiomyopathy (FHC), the leading cause of sudden cardiac death in people under 30. Population studies identified two FHC mutations located near the cationic binding site of the RLC, R58Q and N47K. Although these mutations are close in sequence, they differ in clinical presentation and prognosis, with R58Q showing a more severe phenotype. We examined the molecular based changes in myosin that are responsible for the disease phenotype by purifying myosin from transgenic mouse hearts expressing mutant myosins and examining actin filament sliding using the in vitro motility assay. We found that both R58Q and N47K show reductions in force compared to the wild type that could result in compensatory hypertrophy. Furthermore, we observed a higher ATPase rate and an increased activation at submaximal calcium levels for the R58Q myosin that could lead to decreased efficiency and incomplete cardiac relaxation, potentially explaining the more severe phenotype for the R58Q mutation.
Collapse
Affiliation(s)
- Michael J. Greenberg
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA, USA
| | - James D. Watt
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA, USA
| | - Michelle Jones
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeffrey R. Moore
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
27
|
Alamo L, Wriggers W, Pinto A, Bártoli F, Salazar L, Zhao FQ, Craig R, Padrón R. Three-dimensional reconstruction of tarantula myosin filaments suggests how phosphorylation may regulate myosin activity. J Mol Biol 2008; 384:780-97. [PMID: 18951904 PMCID: PMC2729561 DOI: 10.1016/j.jmb.2008.10.013] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 09/27/2008] [Accepted: 10/02/2008] [Indexed: 11/19/2022]
Abstract
Muscle contraction involves the interaction of the myosin heads of the thick filaments with actin subunits of the thin filaments. Relaxation occurs when this interaction is blocked by molecular switches on these filaments. In many muscles, myosin-linked regulation involves phosphorylation of the myosin regulatory light chains (RLCs). Electron microscopy of vertebrate smooth muscle myosin molecules (regulated by phosphorylation) has provided insight into the relaxed structure, revealing that myosin is switched off by intramolecular interactions between its two heads, the free head and the blocked head. Three-dimensional reconstruction of frozen-hydrated specimens revealed that this asymmetric head interaction is also present in native thick filaments of tarantula striated muscle. Our goal in this study was to elucidate the structural features of the tarantula filament involved in phosphorylation-based regulation. A new reconstruction revealed intra- and intermolecular myosin interactions in addition to those seen previously. To help interpret the interactions, we sequenced the tarantula RLC and fitted an atomic model of the myosin head that included the predicted RLC atomic structure and an S2 (subfragment 2) crystal structure to the reconstruction. The fitting suggests one intramolecular interaction, between the cardiomyopathy loop of the free head and its own S2, and two intermolecular interactions, between the cardiac loop of the free head and the essential light chain of the blocked head and between the Leu305-Gln327 interaction loop of the free head and the N-terminal fragment of the RLC of the blocked head. These interactions, added to those previously described, would help switch off the thick filament. Molecular dynamics simulations suggest how phosphorylation could increase the helical content of the RLC N-terminus, weakening these interactions, thus releasing both heads and activating the thick filament.
Collapse
Affiliation(s)
- Lorenzo Alamo
- Departamento de Biología Estructural, Instituto Venezolano de Investigaciones Científicas (IVIC), Apdo. 20632, Caracas 1020A, Venezuela
| | - Willy Wriggers
- University of Texas Health Science Center, Houston, U.S.A
| | - Antonio Pinto
- Departamento de Biología Estructural, Instituto Venezolano de Investigaciones Científicas (IVIC), Apdo. 20632, Caracas 1020A, Venezuela
| | - Fulvia Bártoli
- Departamento de Biología Estructural, Instituto Venezolano de Investigaciones Científicas (IVIC), Apdo. 20632, Caracas 1020A, Venezuela
| | - Leiría Salazar
- Departamento de Biología Estructural, Instituto Venezolano de Investigaciones Científicas (IVIC), Apdo. 20632, Caracas 1020A, Venezuela
| | - Fa-Qing Zhao
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Roger Craig
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Raúl Padrón
- Departamento de Biología Estructural, Instituto Venezolano de Investigaciones Científicas (IVIC), Apdo. 20632, Caracas 1020A, Venezuela
| |
Collapse
|
28
|
Wang CLA. Caldesmon and the regulation of cytoskeletal functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 644:250-72. [PMID: 19209827 PMCID: PMC2975104 DOI: 10.1007/978-0-387-85766-4_19] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Caldesmon (CaD) is an extraordinary actin-binding protein, because in addition to actin, it also bindsmyosin, calmodulin and tropomyosin. As a component of the smoothmuscle and nonmuscle contractile apparatus CaD inhibits the actomyosin ATPase activity and its inhibitory action is modulated by both Ca2+ and phosphorylation. The multiplicity of binding partners and diverse biochemical properties suggest CaD is a potent and versatile regulatory protein both in contractility and cell motility. However, after decades ofinvestigation in numerous laboratories, hard evidence is still lacking to unequivocally identify its in vivo functions, although indirect evidence is mounting to support an important role in connection with the actin cytoskeleton. This chapter reviews the highlights of the past findings and summarizes the current views on this protein, with emphasis of its interaction with tropomyosin.
Collapse
Affiliation(s)
- C L Albert Wang
- Boston Biomedical Research Institute, 64 Grove Street, Watertown, MA 02472, USA.
| |
Collapse
|
29
|
Kulikova N, Pronina OE, Dabrowska R, Borovikov YS. Caldesmon inhibits the actin–myosin interaction by changing its spatial orientation and mobility during the ATPase activity cycle. Biochem Biophys Res Commun 2007; 357:461-6. [PMID: 17428444 DOI: 10.1016/j.bbrc.2007.03.154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 03/27/2007] [Indexed: 11/25/2022]
Abstract
Orientation and mobility of acrylodan fluorescent probe specifically bound to caldesmon Cys580 incorporated into muscle ghost fibers decorated with myosin S1 and containing tropomyosin was studied in the presence or absence of MgADP, MgAMP-PNP, MgATPgammaS or MgATP. Modeling of various intermediate states of actomyosin has shown discrete changes in orientation and mobility of the dye dipoles which is the evidence for multistep changes in the structural changes of caldesmon during the ATPase hydrolysis cycle. It is suggested that S1 interaction with actin results in nucleotide-dependent displacement of the C-terminal part of caldesmon molecule and changes in its mobility. Thus inhibition of the actomyosin ATPase activity may be due to changes in caldesmon position on the thin filament and its interaction with actin. Our new findings described in the present paper as well as those published recently elsewhere might conciliate the two existing models of molecular mechanism of inhibition of the actomyosin ATPase by caldesmon.
Collapse
|
30
|
Eddinger TJ, Meer DP. Myosin II isoforms in smooth muscle: heterogeneity and function. Am J Physiol Cell Physiol 2007; 293:C493-508. [PMID: 17475667 DOI: 10.1152/ajpcell.00131.2007] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Both smooth muscle (SM) and nonmuscle class II myosin molecules are expressed in SM tissues comprising hollow organ systems. Individual SM cells may express one or more of multiple myosin II isoforms that differ in myosin heavy chain (MHC) and myosin light chain (MLC) subunits. Although much has been learned, the expression profiles, organization within contractile filaments, localization within cells, and precise roles in various contractile functions of these different myosin molecules are still not well understood. However, data supporting unique physiological roles for certain isoforms continues to build. Isoform differences located in the S1 head region of the MHC can alter actin binding and rates of ATP hydrolysis. Differences located in the MHC tail can alter the formation, stability, and size of the myosin thick filament. In these distinct ways, both head and tail isoform differences can alter force generation and muscle shortening velocities. The MLCs that are associated with the lever arm of the S1 head can affect the flexibility and range of motion of this domain and possibly the motion of the S2 and motor domains. Phosphorylation of MLC(20) has been associated with conformational changes in the S1 and/or S2 fragments regulating enzymatic activity of the entire myosin molecule. A challenge for the future will be delineation of the physiological significance of the heterogeneous expression of these isoforms in developmental, tissue-specific, and species-specific patterns and or the intra- and intercellular heterogeneity of myosin isoform expression in SM cells of a given organ.
Collapse
Affiliation(s)
- Thomas J Eddinger
- Biological Sciences, Marquette University, Milwaukee, WI 53233, USA.
| | | |
Collapse
|
31
|
Lin ADY, Levin RM, Kogan BA, Whitbeck C, Leggett RE, Kearns C, Mannikarottu A. Alteration of contractile and regulatory proteins in estrogen-induced hypertrophy of female rabbit bladder. Urology 2006; 68:1139-43. [PMID: 17113912 DOI: 10.1016/j.urology.2006.08.1094] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 07/10/2006] [Accepted: 08/22/2006] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Estrogen is essential to mediate physiologic functions in female bladders. Deficiency of estrogen has been speculated to be an etiologic factor for bladder dysfunction in postmenopausal women. Our previous studies have demonstrated that estrogen supplementation in female rabbits induces a "functional hypertrophy" of the urinary bladder smooth muscle. The present study investigated the alterations in the contractile and regulatory proteins in this model. METHODS Twenty New Zealand white female rabbits were separated into five groups of 4 rabbits each. Group 1 served as the control, groups 2 to 6 underwent ovariectomy (Ovx), and group 2 served as the Ovx without estradiol treatment group. Two weeks after Ovx, groups 3 to 5 were given 17-beta estradiol (1 mg/kg/day) by subcutaneous implant for 1, 3, and 7 days, respectively. The expression of the contractile and regulatory proteins, such as myosin light chain kinase, rho-kinase, and caldesmon, was analyzed by Western blotting. RESULTS The expression of myosin light chain kinase was enhanced by estradiol supplementation. The expression of rho-kinase-alpha was increased significantly (20-fold) after Ovx, which was downregulated after estrogen supplementation. No significant change was seen in rho-kinase-beta after Ovx or estradiol supplementation. The expression of caldesmon isoforms was enhanced by 1-day estradiol supplementation but decreased to lower levels than those of the control group by 3 and 7 days of estrogen treatment. CONCLUSIONS The results of the present study have provided more understanding about the role of the contractile and regulatory proteins in detrusor muscle, in both dysfunctional atrophy induced by Ovx and functional hypertrophy induced by estrogen supplementation.
Collapse
|
32
|
Abstract
Kinases and ATPases produce adenosine diphosphate (ADP) as a common product, so an assay that detects ADP would provide a universal means for activity-based screening of enzymes in these families. Because it is known that most kinases accept ATPbetaS (sulfur on the beta-phosphorous) as a substrate in place of adenosine triphosphate (ATP), the authors have developed a continuous assay using this substrate, with detection of the ADPbetaS product using dithio reagents. Such an assay is possible because dithio groups react selectively with ADPbetaS and not with ATPbetaS. Thiol detection was done using both Ellman's reagent (DTNB) and a recently developed fluorescent dithio reagent, DSSA. Therefore, the assay can be run in both absorbance and fluorescence detection modes. The assay was used to perform steady-state kinetic analyses of both hexokinase and myosin ATPase. It was also used to demonstrate the diastereoselectivity of hexokinase (R) and myosin ATPase (S) for the isomers of ATPbetaS, consistent with previous results. When run in fluorescence mode using a plate reader, an average Z' value of 0.54 was obtained, suggesting the assay is appropriate for high-throughput screening.
Collapse
Affiliation(s)
- Taurai Chiku
- Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, WI 53201-1881, USA
| | | | | |
Collapse
|
33
|
Han S, Speich JE, Eddinger TJ, Berg KM, Miner AS, Call C, Ratz PH. Evidence for absence of latch-bridge formation in muscular saphenous arteries. Am J Physiol Heart Circ Physiol 2006; 291:H138-46. [PMID: 16461375 DOI: 10.1152/ajpheart.00977.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Large-diameter elastic arteries can produce strong contractions indefinitely at a high-energy economy by the formation of latch bridges. Whether downstream blood vessels also use latch bridges remains unknown. The zero-pressure medial thickness and lumen diameter of rabbit saphenous artery (SA), a muscular branch of the elastic femoral artery (FA), were, respectively, approximately twofold and half-fold that of the FA. In isolated FA and SA rings, KCl rapidly (< 16 s) caused strong increases in isometric stress (1.2 x 10(5) N/m2) and intracellular Ca2+ concentration ([Ca2+]i; 250 nM). By 10 min, [Ca2+]i declined to approximately 175 nM in both tissues, but stress was sustained in FA (1.3 x 10(5) N/m2) and reduced by 40% in SA (0.8 x 10(5) N/m2). Reduced tonic stress correlated with reduced myosin light chain (MLC) phosphorylation in SA (28 vs. 42% in FA), and simulations with the use of the four-state kinetic latch-bridge model supported the hypothesis that latch-bridge formation in FA, but not SA, permitted maintenance of high stress values at steady state. SA expressed more MLC phosphatase than FA, and permeabilized SA relaxed more rapidly than FA, suggesting that MLC phosphatase activity was greater in SA than in FA. The ratio of fast-to-slow myosin isoforms was greater for SA than FA, and on quick release, SA redeveloped isometric force faster than FA. These data support the hypothesis that maintained isometric force was 40% less in SA than in FA because expressed motor proteins in SA do not support latch-bridge formation.
Collapse
Affiliation(s)
- Shaojie Han
- Department of Biochemistry, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0614, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Deng W, Bivalacqua TJ, Hellstrom WJG, Kadowitz PJ. Gene and stem cell therapy for erectile dysfunction. Int J Impot Res 2005; 17 Suppl 1:S57-63. [PMID: 16391545 DOI: 10.1038/sj.ijir.3901430] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Erectile dysfunction (ED) is defined as the inability to attain and/or maintain penile erection sufficient for satisfactory sexual performance. ED is a highly prevalent health problem with considerable impact on the quality of life of men and their partners. Although the treatment of ED with oral phosphodiesterase type V (PDE5) inhibitors is effective in a wide range of individuals, it is not efficacious in all patients. The failure of PDE5 inhibitors happens mainly in men with diabetes, non-nerve sparing radical prostatectomy, and high disease severity. Therefore, improved therapies based on a better understanding of the fundamental issues in erectile physiology and pathophysiology have recently been proposed. Here, we summarize studies on ED treatment using gene and stem cell therapies. Adenoviral-mediated intracavernosal transfer of therapeutic genes, such as endothelial nitric oxide synthase (eNOS), calcitonin gene-related peptide (CGRP), superoxide dismutase (SOD), and RhoA/Rho kinase and mesenchymal stem cell-based cell and gene therapy strategy for the treatment of age- and diabetes-related ED are the focus of this review.
Collapse
Affiliation(s)
- W Deng
- Department of Pharmacology, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
35
|
Exton JH. The roles of calcium and phosphoinositides in the mechanisms of alpha 1-adrenergic and other agonists. Rev Physiol Biochem Pharmacol 2005; 111:117-224. [PMID: 2906170 DOI: 10.1007/bfb0033873] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
36
|
|
37
|
Dillon PF. Dick Murphy: three decades as the touchstone of smooth muscle physiology. Focus on “Cooperative attachment of cross bridges predicts regulation of smooth muscle force by myosin phosphorylation”. Am J Physiol Cell Physiol 2004; 287:C590-1. [PMID: 15308464 DOI: 10.1152/ajpcell.00264.2004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Patrick F Dillon
- Dept. of Physiology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
38
|
|
39
|
Bivalacqua TJ, Champion HC, Usta MF, Cellek S, Chitaley K, Webb RC, Lewis RL, Mills TM, Hellstrom WJG, Kadowitz PJ. RhoA/Rho-kinase suppresses endothelial nitric oxide synthase in the penis: a mechanism for diabetes-associated erectile dysfunction. Proc Natl Acad Sci U S A 2004; 101:9121-6. [PMID: 15184671 PMCID: PMC428483 DOI: 10.1073/pnas.0400520101] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Significant impairment in endothelial-derived nitric oxide is present in the diabetic corpus cavernosum. RhoA/Rho-kinase may suppress endothelial nitric oxide synthase (eNOS). Here, we tested the hypothesis that RhoA/Rho-kinase contributes to diabetes-related erectile dysfunction and down-regulation of eNOS in the streptozotocin (STZ)-diabetic rat penis. Colocalization of Rho-kinase and eNOS protein was present in the endothelium of the corpus cavernosum. RhoA/Rho-kinase protein abundance and MYPT-1 phosphorylation at Thr-696 were elevated in the STZ-diabetic rat penis. In addition, eNOS protein expression, cavernosal constitutive NOS activity, and cGMP levels were reduced in the STZ-diabetic penis. To assess the functional role of RhoA/Rho-kinase in the penis, we evaluated the effects of an adeno-associated virus encoding the dominant-negative RhoA mutant (AAVTCMV19NRhoA) on RhoA/Rho-kinase and eNOS and erectile function in vivo in the STZ-diabetic rat. STZ-diabetic rats transfected with AAVCMVT19NRhoA had a reduction in RhoA/Rho-kinase and MYPT-1 phosphorylation at a time when cavernosal eNOS protein, constitutive NOS activity, and cGMP levels were restored to levels found in the control rats. There was a significant decrease in erectile response to cavernosal nerve stimulation in the STZ-diabetic rat. AAVT19NRhoA gene transfer improved erectile responses in the STZ-diabetic rat to values similar to control. These data demonstrate a previously undescribed mechanism for the down-regulation of penile eNOS in diabetes mediated by activation of the RhoA/Rho-kinase pathway. Importantly, these data imply that inhibition of RhoA/Rho-kinase improves eNOS protein content and activity thus restoring erectile function in diabetes.
Collapse
Affiliation(s)
- Trinity J Bivalacqua
- Department of Urology, Tulane Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bing W, Chang S, Hypolite JA, DiSanto ME, Zderic SA, Rolf L, Wein AJ, Chacko S. Obstruction-induced changes in urinary bladder smooth muscle contractility: a role for Rho kinase. Am J Physiol Renal Physiol 2003; 285:F990-7. [PMID: 12851253 DOI: 10.1152/ajprenal.00378.2002] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Detrusor smooth muscle (DSM) undergoes hypertrophy after partial bladder outlet obstruction (PBOO) in male rabbits, as it does in men with PBOO induced by benign prostatic hyperplasia. Despite detrusor hypertrophy, some bladders are severely dysfunctional (decompensated). In this study, the rabbit model for PBOO was used to determine the biochemical regulation of the contractile apparatus and force maintenance by the detrusor from decompensated bladders (DB). Bladders from sham-operated rabbits served as a control. On stimulation with 125 mM KCl, the DSM from sham-operated (SB) rabbits showed phasic contractions, whereas the detrusor from DB was tonic, exhibiting slow development of force, a longer duration of force maintenance, and slow relaxation. The Rho kinase (ROK) inhibitor Y-27632 enhanced the relaxation of precontracted DSM strips from DB. The enhancement of relaxation of the KCl-induced contraction of DB by Y-27632 was associated with dephosphorylation of myosin light chain (MLC20). The DSM extract from DB showed low phosphatase activity compared with that from SB. The DB also showed more Ca2+-independent MLC20 phosphorylation, which was partially inhibited by Y-27632. RT-PCR and Western blotting revealed similar expression levels of MLC kinase and ROK-alpha in SB and DB, but ROK-beta was overexpressed in DB. These results suggest that the ROK-mediated pathway is partly responsible for the high degree of force maintenance and slow relaxation in the detrusor from DB.
Collapse
Affiliation(s)
- Wu Bing
- Department of Pathobiology, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
It has previously been shown that the regulatory light chains of myosin from Limulus, the horseshoe crab, can be phosphorylated either by purified turkey gizzard smooth muscle myosin light chain (MLC) kinase or by a crude kinase fraction prepared from Limulus muscle [Sellers, J. R. (1981) J. Biol. Chem. 256, 9274-9278]. This phosphorylation was shown to be associated with a 20-fold increase in the actin-activated MgATPase activity of the myosin. We have now purified the Ca2+-calmodulin-dependent MLC kinase from Limulus muscle to near homogeneity by using a combination of low ionic strength extraction, ammonium sulfate fractionation, and chromatography on Sephacryl S-300 and DEAE-Sephacel. The final purification was achieved by affinity chromatography on a calmodulin-Sepharose 4B column. Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis showed 95% of the protein to be comprised of a doublet with Mr = 39000 and 37000. Electrophoresis of the kinase fraction under nondenaturing conditions resulted in a partial separation of the two major bands and demonstrated that each had catalytic activity. An SDS-polyacrylamide gel overlayed with 125I-calmodulin demonstrated that both the Mr 39K and the Mr 37K proteins bind calmodulin. Neither of the bands could be phosphorylated by the catalytic subunit of cAMP-dependent protein kinase. With Limulus myosin light chains as a substrate, the Vmax was 15.4 mumol min-1 mg-1, and the Km was 15.6 microM. The KD for calmodulin was determined to be 6 nM. The enzyme did not phosphorylate histones, casein, actin, or tropomyosin.
Collapse
|
42
|
Abstract
Tropomyosin (TM) is widely distributed in all cell types associated with actin as a fibrous molecule composed of two alpha-helical chains arranged as a coiled-coil. It is localised, polymerised end to end, along each of the two grooves of the F-actin filament providing structural stability and modulating the filament function. To accommodate the wide range of functions associated with actin filaments that occur in eucaryote cells TM exists in a large number isoforms, over 20 of which have been identified. These isoforms which are expressed by alternative promoters and alternative RNA processing of four genes, TPM1, 2, 3 and 4, all conform to a general pattern of structure. Their amino acid sequences consist of an integral number, six or seven in vertebrates, of quasiequivalent regions of about 40 residues that are considered to represent the actin-binding regions of the molecule. In addition to the variable regions a large part of the polypeptide chains of the TM isoforms, mainly centrally located and expressed by five exons, is invariant. Many of the isoforms are tissue and filament specific in their distribution implying that the exons expressed in them and the regions of the molecule they represent are of significance for the function of the filament system with which they are associated. In the case of muscle there is clear evidence that the TM moves its position on the F-actin filament during contraction and it is therefore considered to play an important part in the regulation of the process. It is uncertain how the role of TM in muscle compares to that in non-muscle systems and if its function in the former tissue is unique to muscle.
Collapse
MESH Headings
- Actin Cytoskeleton/chemistry
- Actin Cytoskeleton/ultrastructure
- Actins/chemistry
- Actomyosin/physiology
- Adenosine Triphosphatases/physiology
- Alternative Splicing
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Autoantibodies/immunology
- Autoantigens/immunology
- Blood Platelets/chemistry
- Calcium/physiology
- Calmodulin-Binding Proteins/metabolism
- Cardiomyopathy, Hypertrophic, Familial/genetics
- Cardiomyopathy, Hypertrophic, Familial/metabolism
- Carrier Proteins/physiology
- Humans
- Macromolecular Substances
- Microfilament Proteins
- Models, Biological
- Models, Molecular
- Molecular Sequence Data
- Multigene Family
- Muscle Contraction
- Mutagenesis, Site-Directed
- Mutation, Missense
- Organ Specificity
- Protein Conformation
- Protein Isoforms/chemistry
- Protein Isoforms/genetics
- Protein Isoforms/immunology
- Protein Isoforms/physiology
- Protein Processing, Post-Translational
- Sequence Alignment
- Sequence Homology, Amino Acid
- Structure-Activity Relationship
- Tropomodulin
- Tropomyosin/chemistry
- Tropomyosin/genetics
- Tropomyosin/immunology
- Tropomyosin/physiology
- Troponin T/metabolism
- Vertebrates/genetics
- Vertebrates/metabolism
Collapse
Affiliation(s)
- S V Perry
- Department of Physiology, Medical School, University of Birmingham, Edgbaston
| |
Collapse
|
43
|
Hypolite JA, DiSanto ME, Zheng Y, Chang S, Wein AJ, Chacko S. Regional variation in myosin isoforms and phosphorylation at the resting tone in urinary bladder smooth muscle. Am J Physiol Cell Physiol 2001; 280:C254-64. [PMID: 11208519 DOI: 10.1152/ajpcell.2001.280.2.c254] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Urinary bladder filling and emptying requires coordinated control of bladder body and urethral smooth muscles. Bladder dome, midbladder, base, and urethra showed significant differences in the percentage of 20-kDa myosin light chain (LC20) phosphorylation (35.45 +/- 4.6, 24.7 +/- 2.2, 13.6+/- 2.1, and 12.8 +/- 2.7%, respectively) in resting muscle. Agonist-mediated force was associated with a rise in LC20 phosphorylation, but the extent of phosphorylation at all levels of force was less for urethral than for bladder body smooth muscle. RT-PCR and quantitative competitive RT-PCR analyses of total RNA from bladder body and urethral smooth muscles revealed only a slight difference in myosin heavy chain mRNA copy number per total RNA, whereas mRNA copy numbers for NH2-terminal isoforms SM-B (inserted) and SM-A (noninserted) in these muscles showed a significant difference (2.28 x 10(8) vs. 1.68 x 10(8) for SM-B and 0.12 x 10(8) vs. 0.42 x 10(8) for SM-A, respectively), which was also evident at the protein level. The ratio of COOH-terminal isoforms SM2:SM1 in the urethra was moderately but significantly lower than that in other regions of the bladder body. A high degree of LC20 phosphorylation and SM-B in the bladder body may help to facilitate fast cross-bridge cycling and force generation required for rapid emptying, whereas a lower level of LC20 phosphorylation and the presence of a higher amount of SM-A in urethral smooth muscle may help to maintain the high basal tone of urethra, required for urinary continence.
Collapse
Affiliation(s)
- J A Hypolite
- Division of Urology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Myristoylated alanine-rich C kinase substrate (MARCKS), as a specific protein kinase C (PKC) substrate, mediates PKC signaling through its phosphorylation and subsequent modification of its association with filamentous actin (F-actin) and calmodulin (CaM). PKC has long been implicated in cell proliferation, and recent studies have suggested that MARCKS may function as a cell growth suppressor. Therefore, in the present study, we investigated MARCKS protein expression, distribution, and phosphorylation in preconfluent and confluent bovine pulmonary microvascular endothelial cells (BPMEC) in the presence or absence of the vascular endothelial growth factor (VEGF). In addition, we examined functional alterations of MARCKS in these cells by studying the association of MARCKS with F-actin and CaM-dependent myosin light chain (MLC) phosphorylation. Our results indicate that MARCKS protein is downregulated during BPMEC proliferation. Decreased MARCKS association with F-actin, increased actin polymerization, and CaM-dependent MLC phosphorylation appear to mediate cell shape changes and motility during BPMEC growth. In contrast, VEGF stimulated MARCKS phosphorylation without alteration of protein expression during BPMEC proliferation, which may result in reduced interaction between MARCKS and actin or CaM, leading to actin reorganization and MLC phosphorylation. Our data suggest a regulatory role of MARCKS during endothelial cell proliferation.
Collapse
Affiliation(s)
- Y Zhao
- Department of Internal Medicine, Pulmonary and Critical Care Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio 45267, USA
| | | | | |
Collapse
|
45
|
Chacko S, DiSanto M, Menon C, Zheng Y, Hypolite J, Wein AJ. Contractile Protein Changes in Urinary Bladder Smooth Muscle Following Outlet Obstruction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 462:137-53. [PMID: 10599420 DOI: 10.1007/978-1-4615-4737-2_11] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Affiliation(s)
- S Chacko
- Department of Pathobiology, University of Pennsylvania, Philadelphia 19104-4274, USA
| | | | | | | | | | | |
Collapse
|
46
|
Avrova SV, Borovikov YS, Efimova NN, Chacko S. Calcium modulates conformational changes in F-actin induced by smooth muscle heavy meromyosin. FEBS Lett 1998; 430:266-8. [PMID: 9688552 DOI: 10.1016/s0014-5793(98)00675-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The effect of Ca2+ on conformational changes in rhodamine-phalloidin-labeled F-actin induced by binding of smooth muscle heavy meromyosin (HMM) with either phosphorylated or dephosphorylated regulatory light chains (LC20) was studied by polarized fluorimetry. LC20 phosphorylation caused alterations in the F-actin structure typical of the force-producing (strong-binding) state, while dephosphorylation of the chains led to alterations typical of the formation of non-force-producing (weak-binding) state of the actomyosin complex. The presence of Ca2+ enhanced the effect of LC20 phosphorylation and weakened the effect of LC20 dephosphorylation. These data suggest that Ca2+ modulates actin-myosin interaction in smooth muscle by promoting formation of the strong-binding state.
Collapse
Affiliation(s)
- S V Avrova
- Laboratory of Molecular Mechanisms of Cell Motility, Institute of Cytology, Russian Academy of Sciences, St.-Petersburg
| | | | | | | |
Collapse
|
47
|
Puschner B, Schacht J. Calmodulin-dependent protein kinases mediate calcium-induced slow motility of mammalian outer hair cells. Hear Res 1997; 110:251-8. [PMID: 9282907 DOI: 10.1016/s0378-5955(97)00086-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cochlear outer hair cells in vitro respond to elevation of intracellular calcium with slow shape changes over seconds to minutes ('slow motility'). This process is blocked by general calmodulin antagonists suggesting the participation of calcium/calmodulin-dependent enzymatic reactions. The present study proposes a mechanism for these reactions. Length changes of outer hair cells isolated from the guinea pig cochlea were induced by exposure to the calcium ionophore ionomycin. ATP levels remained unaffected by this treatment ruling out depletion of ATP (by activation of calcium-dependent ATPases) as a cause of the observed shape changes. Involvement of protein kinases was suggested by the inhibition of shape changes by K252a, a broad-spectrum inhibitor of protein kinase activity. Furthermore, the inhibitors ML-7 and ML-9 blocked the shape changes at concentrations compatible with inhibition of myosin light chain kinase (MLCK). KN-62, an inhibitor of Ca2+/calmodulin-dependent protein kinase II (CaMKII), also attenuated the length changes. Inhibitors with selectivity for cyclic nucleotide-dependent protein kinases (H-89, staurosporine) were tested to assess potential additional contributions by such enzymes. The dose dependence of their action supported the notion that the most likely mechanism of slow motility involves phosphorylation reactions catalyzed by MLCK or CaMKII or both.
Collapse
Affiliation(s)
- B Puschner
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor 48109-0506, USA
| | | |
Collapse
|
48
|
Packer CS. Arterial muscle myosin heavy chains and light chains in spontaneous hypertension. Comp Biochem Physiol B Biochem Mol Biol 1997; 117:19-28. [PMID: 9180011 DOI: 10.1016/s0305-0491(96)00311-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Increased maximum velocity of shortening (Vmax), increased shortening ability (delta Lmax) and decreased relaxation rate have been reported for arterial smooth muscle from 16- to 18-week-old spontaneously, hypertensive rats (SHR) compared with age-matched normotensive Wistar-Kyoto rats (WKY). Vmax is dependent on actomyosin ATPase activity, and this activity is in turn dependent on the level of phosphorylation of the 20-kDa myosin light chain (MLC20) normally a function of calcium concentration. In this article, methods are described and data are presented from studies addressing possible intracellular regulatory mechanisms that might lead to the altered contractility of the SHR arterial muscle. In one study, myofibrillar protein was extracted from 16- to 18-week-old SHR and WKY caudal arterial muscle. The Mg(2+)-activated ATPase activity was measured under conditions where the Ca2+ concentration was controlled. In another study, the amount of myosin present and relative proportions of the myosin heavy chain (MHC) isoforms were determined by quantitative SDS-PAGE using heavy molecular weight standards and bovine serum albumin as the standard for concentration. In a third study, MLC20 phosphorylation levels in electrically stimulated arterial muscle were determined by urea glycerol gel electrophoresis and Western blot analyses. The SHR (n = 6) myofibrillar ATPase liberated 0.011 +/- 0.003 mumol Pi/mg myosin/min, which was significantly more than the 0.006 +/- 0.001 mumol Pi/mg myosin/min liberated by the WKY (n = 4) myofibrillar ATPase (P < 0.05). Consistent with the increased ATPase activity, phosphorylation of MLC20 was increased by 2.8 times as much in the SHR compared with the WKY electrically stimulated arterial muscle. However, there was no difference in MHC isoform pattern in the SHR compared with the WKY arterial muscle in contrast to the findings of at least one other laboratory. This discrepancy is discussed. The data reviewed in this article lead to the conclusions that an increased actin-activated myosin ATPase activity and MLC20 phosphorylation are likely responsible for the increased velocity of shortening previously reported in SHR arterial muscle and the increased ATPase activity is not a function of an increased myosin content or of altered MHC isoform pattern in the SHR muscle.
Collapse
Affiliation(s)
- C S Packer
- Department of Physiology and Biophysics, Indiana University School of Medicine, Indianapolis 46202-5120, USA
| |
Collapse
|
49
|
Wang Z, Horiuchi KY, Chacko S. Characterization of the functional domains on the C-terminal region of caldesmon using full-length and mutant caldesmon molecules. J Biol Chem 1996; 271:2234-42. [PMID: 8567684 DOI: 10.1074/jbc.271.4.2234] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A series of C-terminal deletion mutants of chicken gizzard smooth muscle caldesmon (CaD) were made using a polymerase chain reaction cloning strategy and a baculovirus expression system, and the precise locations of the functional domains of CaD involved in the regulation of actomyosin ATPase and the binding of actin, tropomyosin, and calmodulin were analyzed. Our results reveal a high affinity calmodulin-binding domain that consists of at least three calmodulin-binding determinants localized in residues 690-717, 658-689, and 628-657. The residues between positions 718 and 756 and positions 598 and 627 have no detectable calmodulin-binding site. A high affinity tropomyosin-binding domain is located between residues 718 and 756. The 159 residues at the C terminus of CaD contain multiple actin-binding determinants; the major ones are localized in the regions between residues 718 and 756 and residues 690 and 717. The amino acid residues between positions 718 and 756 contain the major determinant involved in the inhibition of the actin activation of smooth muscle myosin ATPase since CaD-(1-717) caused only 30% of the inhibition produced by the full-length CaD. Further deletion between residues 690 and 717 (CaD-(1-689) revealed a low level (10% of that seen for full-length CaD) of inhibition of the actomyosin ATPase. These data clearly demonstrate that the region of the last 66 amino acid residues at the CaD C terminus contains two or more major actin-binding motifs, one tropomyosin-binding domain, one high affinity calmodulin-binding determinant, and the domain that is responsible for the inhibition of the actin-activated ATPase of myosin.
Collapse
Affiliation(s)
- Z Wang
- Department of Pathobiology, University of Pennsylvania, Philadelphia 19104, USA
| | | | | |
Collapse
|
50
|
Yang Z, Sweeney HL. Restoration of phosphorylation-dependent regulation to the skeletal muscle myosin regulatory light chain. J Biol Chem 1995; 270:24646-9. [PMID: 7559573 DOI: 10.1074/jbc.270.42.24646] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Regulation of the ATPase activity of smooth and nonmuscle myosin II involves reversible phosphorylation of the regulatory light chain (RLC). The RLC from skeletal muscle myosin (skRLC) is unable to confer regulation (myosin is locked in an inactive state) to smooth muscle myosin when substituted for the endogenous smooth RLC (smRLC). Studies of chimeric light chains comprised of the N- or C-terminal half of each skRLC and smRLC suggest that the structural basis for the loss of this regulation is within the C-terminal half of the RLC (Trybus, K.M., and Chatman, T.A. (1993) J. Biol. Chem. 268, 4412-4419). The purpose of this study is to delineate the structural elements within the C-terminal half of the smRLC that are absent in the skRLC and are necessary for regulation. By sequence comparison, six residues, Arg-103, Arg-123, Met-129, Gly-130, Arg-143, and Arg-160, which are conserved in regulated myosin RLCs but missing in nonregulated myosin RLCs, were identified in smRLC. To test whether these amino acids provide the missing structural elements necessary for phosphorylation-mediated regulation, a skRLC was engineered that replaced the corresponding skRLC amino acids (positions 100, 120, 126, 127, 140, and 157, respectively) with their smRLC counterparts. Using a newly developed RLC exchange procedure, the purified mutant protein was evaluated for its ability to regulate chicken gizzard smooth muscle myosin. Substitution of the six conserved amino acids into the skRLC completely restored phosphorylation-mediated regulation. Thus, a subset of these amino acids, including four basic arginine residues located in the E, F, G, and H helices which are missing in skRLC, may be the structural coordinates for the phosphorylserine in the N terminus. Based on this result, the regulation of glycogen phosphorylase is discussed as a model for the regulation of smooth muscle myosin.
Collapse
Affiliation(s)
- Z Yang
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia 19104-6085, USA
| | | |
Collapse
|