1
|
Namikawa Y, Kato Y, Hokura A, Homma-Takeda S, Suzuki M. Extensive iron accumulation in the digestive gland of Turbo sazae and characterization of iron distribution and chemical structure. Food Chem 2025; 485:144552. [PMID: 40318333 DOI: 10.1016/j.foodchem.2025.144552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/09/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
Metal accumulation in marine invertebrates has attracted significant attention owing to its toxicity to human health. Although T. sazae is a major edible fish resource in Japan, metal accumulation in the soft body of T. sazae has not been examined. In this study, the metal concentrations, chemical forms, and distributions in soft tissues of T. sazae were characterized. We observed the extensive iron accumulation i.e. over 10,000 μg/g dw in the digestive gland of T. sazae. The iron accumulator in the digestive gland was ferritin, an iron storage protein. Analysis of elemental distribution revealed that ferritin in the digestive gland contains phosphorus, and that μm-sized brown granular cells were responsible for iron storage, with over 70,000 μg/g ww of iron accumulated at the most concentrated point. T. sazae probably contributes to the ocean's iron cycle by grazing on iron-rich algae and rocks and storing iron using unique ferritin.
Collapse
Affiliation(s)
- Yuto Namikawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo 113-8657, Japan
| | - Yugo Kato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo 113-8657, Japan
| | - Akiko Hokura
- Department of Applied Chemistry, School of Engineering, Tokyo Denki University, 5 Senju-Asahicho, Adachi, Tokyo 120-8551, Japan
| | - Shino Homma-Takeda
- Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo 113-8657, Japan.
| |
Collapse
|
2
|
Li S, Li Y, Dou M, Zhang M, Zhao Z, Wu H, Zhu S, Obadina AO. Glycogen and zinc-enriched ferritin as bioavailable nanoparticulate nutrients released from gastrointestinal digestion of pacific oyster (Crassostrea gigas). Food Chem 2024; 457:140125. [PMID: 38905826 DOI: 10.1016/j.foodchem.2024.140125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/14/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
Oyster is a low-carbon animal food enriched with protein, glycogen, and trace minerals. Nano-nutrients are increasingly perceived as an unignorable part of foods. Here, simulated gastrointestinal digestion released a considerable amount of nanoparticulate nutrients from raw and cooked oysters. They were identified as glycogen monomers with size of 20-40 nm and their aggregates, as well as 6 nm-sized bare cores of ferritin containing iron and zinc (4:1, w/w). FITC-labeling and flow cytometry unveiled the efficient uptake of oyster glycogen by polarized Caco-2 cells via macropinocytosis and receptor-mediated endocytosis. Calcein-fluorescence-quenching assay revealed divalent-metal-transporter-1- and macropinocytosis-mediated enterocyte iron absorption from oyster ferritin. Zinquin-fluorescence flow cytometry and ex-vivo mouse ileal loop experiments demonstrated the ready intestinal zinc absorption from oyster ferritin via macropinocytosis, as well as the good resistance of oyster ferritin to phytate's inhibition on zinc absorption. Overall, our results offer a new insight into the digestive and chemical properties of oysters.
Collapse
Affiliation(s)
- Shiyang Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province, 266003, China
| | - Yangguang Li
- Institute of Nutrition and Health, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, Shandong Province, 266021, China
| | - Mengting Dou
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province, 266003, China
| | - Meichao Zhang
- Weihai Institute for Food and Drug Control, Weihai 264299, China
| | - Zifang Zhao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province, 266003, China; Hainan/Haikou Research & Development Center for Biopeptide Engineering, Huayan Collagen Technology Co., Ltd., Haikou 571000, China
| | - Haohao Wu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province, 266003, China.
| | - Suqin Zhu
- Institute of Nutrition and Health, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, Shandong Province, 266021, China.
| | | |
Collapse
|
3
|
Koide R, Shigemasa R, Hashimoto K, Tatsumi Y, Hayashi H, Suzuki T, Wakusawa S. Distribution Analysis of Iron and Copper by STEM-EDX Spectroscopy of Hemosiderin Particles in the Liver of Rats Overloaded With Iron. In Vivo 2024; 38:114-121. [PMID: 38148091 PMCID: PMC10756453 DOI: 10.21873/invivo.13417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND/AIM Our recent studies have indicated that trace copper co-existed with iron in hemosiderin particles of human genetic iron overload. To understand this phenomenon, we analyzed hemosiderin particles in iron-overloaded rat liver by using scanning transmission electron microscopy - energy-dispersive X-ray (STEM-EDX) spectroscopy. MATERIALS AND METHODS Samples for STEM-EDX spectroscopy were prepared from the liver of rats administered an intraperitoneal injection of dextran iron. RESULTS The micro-domain analysis with STEM-EDX spectroscopy showed that dense bodies contained high levels of iron and trace copper. Quantitative analysis of copper levels in the liver specimen using atomic spectrophotometry showed that copper concentration in the liver was not increased by iron overload. These findings suggest that the overload of iron induced distribution of trace copper to hemosiderin particles without changing cellular copper levels. CONCLUSION Co-existence of copper with iron was observed in hemosiderin particles of the liver of an experimental model of iron overload, suggesting that iron overload induced distribution of trace copper into hemosiderin particles.
Collapse
Affiliation(s)
- Ryoji Koide
- Division of Medical Laboratory Sciences, Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryota Shigemasa
- Division of Medical Laboratory Sciences, Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Katsunori Hashimoto
- Division of Medical Laboratory Sciences, Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Medical Technology, Faculty of Medical Sciences, Shubun University, Ichinomiya, Japan
| | - Yasuaki Tatsumi
- Department of Pharmacotherapeutics, Aichi Gakuin University School of Pharmacy, Nagoya, Japan
| | - Hisao Hayashi
- Department of Pharmacotherapeutics, Aichi Gakuin University School of Pharmacy, Nagoya, Japan
| | - Takayoshi Suzuki
- Department of Medical Technology, Faculty of Medical Sciences, Shubun University, Ichinomiya, Japan
| | - Shinya Wakusawa
- Division of Medical Laboratory Sciences, Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan;
- Department of Medical Technology, Faculty of Medical Sciences, Shubun University, Ichinomiya, Japan
| |
Collapse
|
4
|
Dalto DB, Audet I, Matte JJ, Lapointe J. Effects of high levels of zinc oxide and dietary zinc/copper ratios on the metabolism of iron in weaned pigs. J Anim Sci 2023; 101:skad391. [PMID: 38006248 PMCID: PMC10718792 DOI: 10.1093/jas/skad391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/24/2023] [Indexed: 11/26/2023] Open
Abstract
The present study compares the use different levels of dietary zinc oxide and zinc/copper ratios on the metabolism of iron (Fe) in weaned pigs. Two experiments were conducted using 120 and 160 weanling piglets (7.96 ± 1.17 kg and 7.81 ± 0.25 kg body weight, respectively) that were randomly assigned to the experimental treatments. Experiment I: diets supplemented with 100, 1,000, and 3,000 mg/kg of zinc (Zn) as ZnO (LZn, MZn, HZn) and 130 mg/kg of copper (Cu) as CuSO4; experiment II: diets supplemented with 100 or 3,000 mg/kg of Zn as ZnO (LZn and HZn) in combination with 6 or 130 mg/kg of Cu as CuSO4 (LCu and HCu). In both experiments, diets had similar levels of supplemental Fe (100 mg/kg of Fe as FeSO4). Piglets were slaughtered at d21 (weaning), d23 (experiment I), d28 (experiment II), d35, and d42 to assess whole blood, serum, and liver Fe concentrations, hemoglobin concentration, and the relative expression of key genes associated with Fe metabolism in jejunum and liver. Whole blood Fe and hemoglobin concentrations (experiment I) as well as serum Fe concentrations (experiments I and II) were not affected by dietary treatments (P ≥ 0.11). Liver Fe concentrations (experiment II) and total liver Fe content (experiments I and II) were lower (P ≤ 0.05) in HZn compared to LZn groups at d42. In both experiments, the mRNA expression of jejunal DMT1 was lowest and that of jejunal FTH1 was highest at d42 (P ≤ 0.04) for HZn piglets. In experiment II only, jejunal FTH1 and FPN1 expression were greater (P ≤ 0.04) in HCu compared to LCu groups at d42. The highest expression of hepatic FTH1 and FPN1 at d35 and d42 (P ≤ 0.02) was detected in HZn piglets in both experiments. For hepatic HAMP, expression values were greater (P = 0.04) at d42 in HZn groups. In conclusion, high dietary ZnO levels impair Fe metabolism but the effects are not intense enough to impact circulating Fe and hemoglobin concentrations.
Collapse
Affiliation(s)
- Danyel Bueno Dalto
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec J1M 0C8, Canada
| | - Isabelle Audet
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec J1M 0C8, Canada
| | - Jean-Jacques Matte
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec J1M 0C8, Canada
| | - Jérôme Lapointe
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec J1M 0C8, Canada
| |
Collapse
|
5
|
Shephard AM, Brown NS, Snell‐Rood EC. Anthropogenic Zinc Exposure Increases Mortality and Antioxidant Gene Expression in Monarch Butterflies with Low Access to Dietary Macronutrients. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1286-1296. [PMID: 35119130 PMCID: PMC9314993 DOI: 10.1002/etc.5305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/04/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Biologists seek to understand why organisms vary in their abilities to tolerate anthropogenic contaminants, such as heavy metals. However, few studies have considered how tolerance may be affected by condition-moderating factors such as dietary resource availability. For instance, the availability of crucial limiting macronutrients, such as nitrogen and phosphorous, can vary across space and time either naturally or due to anthropogenic nutrient inputs (e.g., agricultural fertilizers or vehicle emissions). Organisms developing in more macronutrient-rich environments should be of higher overall condition, displaying a greater ability to tolerate metal contaminants. In monarch butterflies (Danaus plexippus), we factorially manipulated dietary macronutrient availability and exposure to zinc, a common metal contaminant in urban habitats that can be toxic but also has nutritional properties. We tested whether (1) the ability to survive zinc exposure depends on dietary macronutrient availability and (2) whether individuals exposed to elevated zinc levels display higher expression of antioxidant genes, given the roles of antioxidants in combatting metal-induced oxidative stress. Exposure to elevated zinc reduced survival only for monarchs developing on a low-macronutrient diet. However, for monarchs developing on a high-macronutrient diet, elevated zinc exposure tended to increase survival. In addition, monarchs exposed to elevated zinc displayed higher expression of antioxidant genes when developing on the low-macronutrient diet but lower expression when developing on the high-macronutrient diet. Altogether, our study shows that organismal survival and oxidative stress responses to anthropogenic zinc contamination depend on the availability of macronutrient resources in the developmental environment. In addition, our results suggest the hypothesis that whether zinc acts as a toxicant or a nutrient may depend on macronutrient supply. Environ Toxicol Chem 2022;41:1286-1296. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Alexander M. Shephard
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSaint PaulMinnesotaUSA
| | - Noah S. Brown
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSaint PaulMinnesotaUSA
| | - Emilie C. Snell‐Rood
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSaint PaulMinnesotaUSA
| |
Collapse
|
6
|
Kumar A, Nandwana V, Ryoo SR, Ravishankar S, Sharma B, Pervushin K, Dravid VP, Lim S. Magnetoferritin enhances T 2 contrast in magnetic resonance imaging of macrophages. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112282. [PMID: 34474835 DOI: 10.1016/j.msec.2021.112282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/20/2021] [Accepted: 06/24/2021] [Indexed: 01/15/2023]
Abstract
Imaging of immune cells has wide implications in understanding disease progression and staging. While optical imaging is limited in penetration depth due to light properties, magnetic resonance (MR) imaging provides a more powerful tool for the imaging of deep tissues where immune cells reside. Due to poor MR signal to noise ratio, tracking of such cells typically requires contrast agents. This report presents an in-depth physical characterization and application of archaeal magnetoferritin for MR imaging of macrophages - an important component of the innate immune system that is the first line of defense and first responder in acute inflammation. Magnetoferritin is synthesized by loading iron in apoferritin in anaerobic condition at 65 °C. The loading method results in one order of magnitude enhancement of r1 and r2 relaxivities compared to standard ferritin synthesized by aerobic loading of iron at room temperature. Detailed characterizations of the magnetoferritin revealed a crystalline core structure that is distinct from previously reported ones indicating magnetite form. The magnetite core is more stable in the presence of reducing agents and has higher peroxidase-like activities compared to the core in standard loading. Co-incubation of macrophage cells with magnetoferritin in-vitro shows significantly higher enhancement in T2-MRI contrast of the immune cells compared to standard ferritin.
Collapse
Affiliation(s)
- Ambrish Kumar
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Dr., Block N1.3, Singapore 637457, Singapore; NTU-Northwestern Institute for Nanomedicine, Nanyang Technological University, Singapore 637553
| | - Vikas Nandwana
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL 60208, USA; International Institute for Nanotechnology (IIN), Evanston, IL 60208, USA
| | - Soo-Ryoon Ryoo
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL 60208, USA; International Institute for Nanotechnology (IIN), Evanston, IL 60208, USA
| | - Samyukta Ravishankar
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Dr., Block N1.3, Singapore 637457, Singapore
| | - Bhargy Sharma
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, Singapore 637551
| | - Konstantin Pervushin
- NTU-Northwestern Institute for Nanomedicine, Nanyang Technological University, Singapore 637553; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, Singapore 637551
| | - Vinayak P Dravid
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL 60208, USA; International Institute for Nanotechnology (IIN), Evanston, IL 60208, USA; Applied Physics Program, Norhtwestern University, Evanston, IL 60208, USA
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Dr., Block N1.3, Singapore 637457, Singapore; NTU-Northwestern Institute for Nanomedicine, Nanyang Technological University, Singapore 637553.
| |
Collapse
|
7
|
Liu ZH, Shang J, Yan L, Wei T, Xiang L, Wang HL, Cheng J, Xiao G. Oxidative stress caused by lead (Pb) induces iron deficiency in Drosophila melanogaster. CHEMOSPHERE 2020; 243:125428. [PMID: 31995880 DOI: 10.1016/j.chemosphere.2019.125428] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Toxic elements exposure disturbs the homeostasis of essential elements in organisms, but the mechanism remains elusive. In this study, we demonstrated that Drosophila melanogaster exposed to Lead (Pb, a pervasive environmental threat to human health) exhibited various health defects, including retarded development, decreased survival rate, impaired mobility and reduced egg production. These phenotypes could be significantly modulated by either intervention of dietary iron levels or altering expression of genes involved in iron metabolism. Further study revealed that Pb exposure leads to systemic iron deficiency. Strikingly, reactive oxygen species (ROS) clearance significantly increased iron uptake by restoring the expression of iron metabolism genes in the midgut and subsequently attenuated Pb toxicity. This study highlights the role of ROS in Pb induced iron dyshomeostasis and provides unique insights into understanding the mechanism of Pb toxicity and suggests ideal ways to attenuate Pb toxicity by iron supplementation therapy or ROS clearance.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Jin Shang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Beijing, 100191, China.
| | - Tian Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Ling Xiang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Hui-Li Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Jigui Cheng
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Guiran Xiao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| |
Collapse
|
8
|
Zeth K, Sancho-Vaello E, Okuda M. Metal Positions and Translocation Pathways of the Dodecameric Ferritin-like Protein Dps. Inorg Chem 2019; 58:11351-11363. [PMID: 31433627 DOI: 10.1021/acs.inorgchem.9b00301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Iron storage in biology is carried out by cage-shaped proteins of the ferritin superfamily, one of which is the dodecameric protein Dps. In Dps, four distinct steps lead to the formation of metal nanoparticles: attraction of ion-aquo complexes to the protein matrix, passage of these complexes through translocation pores, oxidation of these complexes at ferroxidase centers, and, ultimately, nanoparticle formation. In this study, we investigated Dps from Listeria innocua to structurally characterize these steps for Co2+, Zn2+, and La3+ ions. The structures reveal that differences in their ion coordination chemistry determine alternative metal ion-binding sites on the areas of the surface surrounding the translocation pore that captures nine La3+, three Co2+, or three Zn2+ ions as aquo clusters and passes them on for translocation. Inside these pores, ion-selective conformational changes at key residues occur before a gating residue to actively move ions through the constriction zone. Ions upstream of the Asp130 gate residue are typically hydrated, while ions downstream directly interact with the protein matrix. Inside the cavity, ions move along negatively charged residues to the ferroxidase center, where seven main residues adapt to the three different ions by dynamically changing their conformations. In total, we observed more than 20 metal-binding sites per Dps monomer, which clearly highlights the metal-binding capacity of this protein family. Collectively, our results provide a detailed structural description of the preparative steps for amino acid-assisted biomineralization in Dps proteins, demonstrating unexpected protein matrix plasticity.
Collapse
Affiliation(s)
- Kornelius Zeth
- Roskilde University , Department of Science and Environment , Universitetsvej 1 , 4000 Roskilde , Denmark.,Universidad del Pais Vasco (UPV/EHU) , 48940 Leioa , Basque Country , Spain
| | - Enea Sancho-Vaello
- Unidad de Biofisica, Consejo Superior de Investigaciones Científicas , Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC, UPV/EHU) , Barrio Sarriena s/n, Leioa , 48940 Leioa , Basque Country , Spain
| | - Mitsuhiro Okuda
- Unidad de Biofisica, Consejo Superior de Investigaciones Científicas , Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC, UPV/EHU) , Barrio Sarriena s/n, Leioa , 48940 Leioa , Basque Country , Spain.,CIC nanoGUNE , 20018 Donostia-San Sebastian , Basque Country , Spain.,IKERBASQUE , Basque Foundation for Science , 48011 Bilbao , Basque Country , Spain
| |
Collapse
|
9
|
Howe C, Moparthi VK, Ho FM, Persson K, Stensjö K. The Dps4 from Nostoc punctiforme ATCC 29133 is a member of His-type FOC containing Dps protein class that can be broadly found among cyanobacteria. PLoS One 2019; 14:e0218300. [PMID: 31369577 PMCID: PMC6675082 DOI: 10.1371/journal.pone.0218300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/18/2019] [Indexed: 11/18/2022] Open
Abstract
Dps proteins (DNA-binding proteins from starved cells) have been found to detoxify H2O2. At their catalytic centers, the ferroxidase center (FOC), Dps proteins utilize Fe2+ to reduce H2O2 and therefore play an essential role in the protection against oxidative stress and maintaining iron homeostasis. Whereas most bacteria accommodate one or two Dps, there are five different Dps proteins in Nostoc punctiforme, a phototrophic and filamentous cyanobacterium. This uncommonly high number of Dps proteins implies a sophisticated machinery for maintaining complex iron homeostasis and for protection against oxidative stress. Functional analyses and structural information on cyanobacterial Dps proteins are rare, but essential for understanding the function of each of the NpDps proteins. In this study, we present the crystal structure of NpDps4 in its metal-free, iron- and zinc-bound forms. The FOC coordinates either two iron atoms or one zinc atom. Spectroscopic analyses revealed that NpDps4 could oxidize Fe2+ utilizing O2, but no evidence for its use of the oxidant H2O2 could be found. We identified Zn2+ to be an effective inhibitor of the O2-mediated Fe2+ oxidation in NpDps4. NpDps4 exhibits a FOC that is very different from canonical Dps, but structurally similar to the atypical one from DpsA of Thermosynechococcus elongatus. Sequence comparisons among Dps protein homologs to NpDps4 within the cyanobacterial phylum led us to classify a novel FOC class: the His-type FOC. The features of this special FOC have not been identified in Dps proteins from other bacterial phyla and it might be unique to cyanobacterial Dps proteins.
Collapse
Affiliation(s)
- Christoph Howe
- Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Vamsi K. Moparthi
- Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Felix M. Ho
- Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Karina Persson
- Department of Chemistry, Umeå University, Umeå, Sweden
- * E-mail: (KS); (KP)
| | - Karin Stensjö
- Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
- * E-mail: (KS); (KP)
| |
Collapse
|
10
|
Olsen CR, Smith TJ, Embley JS, Maxfield JH, Hansen KR, Peterson JR, Henrichsen AM, Erickson SD, Buck DC, Colton JS, Watt RK. Permanganate-based synthesis of manganese oxide nanoparticles in ferritin. NANOTECHNOLOGY 2017; 28:195601. [PMID: 28332483 DOI: 10.1088/1361-6528/aa68ae] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper investigates the comproportionation reaction of MnII with [Formula: see text] as a route for manganese oxide nanoparticle synthesis in the protein ferritin. We report that [Formula: see text] serves as the electron acceptor and reacts with MnII in the presence of apoferritin to form manganese oxide cores inside the protein shell. Manganese loading into ferritin was studied under acidic, neutral, and basic conditions and the ratios of MnII and permanganate were varied at each pH. The manganese-containing ferritin samples were characterized by transmission electron microscopy, UV/Vis absorption, and by measuring the band gap energies for each sample. Manganese cores were deposited inside ferritin under both the acidic and basic conditions. All resulting manganese ferritin samples were found to be indirect band gap materials with band gap energies ranging from 1.01 to 1.34 eV. An increased UV/Vis absorption around 370 nm was observed for samples formed under acidic conditions, suggestive of MnO2 formation inside ferritin.
Collapse
Affiliation(s)
- Cameron R Olsen
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, United States of America
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Physiological Remediation of Cobalt Ferrite Nanoparticles by Ferritin. Sci Rep 2017; 7:40075. [PMID: 28067263 PMCID: PMC5220348 DOI: 10.1038/srep40075] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/30/2016] [Indexed: 12/14/2022] Open
Abstract
Metallic nanoparticles have been increasingly suggested as prospective therapeutic nanoplatforms, yet their long-term fate and cellular processing in the body is poorly understood. Here we examined the role of an endogenous iron storage protein – namely the ferritin – in the remediation of biodegradable cobalt ferrite magnetic nanoparticles. Structural and elemental analysis of ferritins close to exogenous nanoparticles within spleens and livers of mice injected in vivo with cobalt ferrite nanoparticles, suggests the intracellular transfer of degradation-derived cobalt and iron, entrapped within endogenous protein cages. In addition, the capacity of ferritin cages to accommodate and store the degradation products of cobalt ferrite nanoparticles was investigated in vitro in the acidic environment mimicking the physiological conditions that are present within the lysosomes. The magnetic, colloidal and structural follow-up of nanoparticles and proteins in the lysosome-like medium confirmed the efficient remediation of nanoparticle-released cobalt and iron ions by ferritins in solution. Metal transfer into ferritins could represent a quintessential process in which biomolecules and homeostasis regulate the local degradation of nanoparticles and recycle their by-products.
Collapse
|
12
|
Thévenod F, Wolff NA. Iron transport in the kidney: implications for physiology and cadmium nephrotoxicity. Metallomics 2016; 8:17-42. [PMID: 26485516 DOI: 10.1039/c5mt00215j] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The kidney has recently emerged as an organ with a significant role in systemic iron (Fe) homeostasis. Substantial amounts of Fe are filtered by the kidney, which have to be reabsorbed to prevent Fe deficiency. Accordingly Fe transporters and receptors for protein-bound Fe are expressed in the nephron that may also function as entry pathways for toxic metals, such as cadmium (Cd), by way of "ionic and molecular mimicry". Similarities, but also differences in handling of Cd by these transport routes offer rationales for the propensity of the kidney to develop Cd toxicity. This critical review provides a comprehensive update on Fe transport by the kidney and its relevance for physiology and Cd nephrotoxicity. Based on quantitative considerations, we have also estimated the in vivo relevance of the described transport pathways for physiology and toxicology. Under physiological conditions all segments of the kidney tubules are likely to utilize Fe for cellular Fe requiring processes for metabolic purposes and also to contribute to reabsorption of free and bound forms of Fe into the circulation. But Cd entering tubule cells disrupts metabolic pathways and is unable to exit. Furthermore, our quantitative analyses contest established models linking chronic Cd nephrotoxicity to proximal tubular uptake of metallothionein-bound Cd. Hence, Fe transport by the kidney may be beneficial by preventing losses from the body. But increased uptake of Fe or Cd that cannot exit tubule cells may lead to kidney injury, and Fe deficiency may facilitate renal Cd uptake.
Collapse
Affiliation(s)
- Frank Thévenod
- Institute of Physiology, Pathophysiology & Toxicology, Center for Biomedical Training and Research (ZBAF), University of Witten/Herdecke, Stockumer Str. 12, 58453 Witten, Germany.
| | - Natascha A Wolff
- Institute of Physiology, Pathophysiology & Toxicology, Center for Biomedical Training and Research (ZBAF), University of Witten/Herdecke, Stockumer Str. 12, 58453 Witten, Germany.
| |
Collapse
|
13
|
Physiologically relevant plasma d,l-homocysteine concentrations mobilize Cd from human serum albumin. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1027:181-6. [PMID: 27294530 DOI: 10.1016/j.jchromb.2016.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/26/2016] [Accepted: 05/09/2016] [Indexed: 12/20/2022]
Abstract
Although low-level chronic exposure of humans to cadmium (Cd(2+)) can result in a variety of adverse health effects, little is known about the role that its interactions with plasma proteins and small molecular weight (SMW) ligands in the bloodstream may play in delivering this metal to its target organs. To gain insight, a Cd-human serum albumin (HSA) 1:1 (molar ratio) complex was analyzed by size exclusion chromatography (SEC) coupled on-line to a flame atomic absorption spectrometer (FAAS). Using a phosphate buffered saline (PBS)-buffer mobile phase, the stability of the Cd-HSA complex was investigated in the presence of 2.0mM of SMW ligands, including taurine, acetaminophen, l-methionine, l-cysteine (Cys), d,l-homocysteine (hCys) or l-cysteine methyl-ester (Cys-Me). While taurine, acetaminophen and l-methionine did not affect its integrity, Cys, hCys and Cys-Me completely abstracted Cd from HSA. Subsequent investigations into the effect of 1.5, 1.0 and 0.5mM Cys and hCys on the integrity of the Cd-HSA complex revealed clear differences with regard to the nature of the eluting SMW-Cd species between these structurally related endogenous thiols. Interestingly, the Cd-specific chromatograms that were obtained for 0.5mM hCys revealed the elution of an apparent mixture of the parent Cd-HSA complex with a significant contribution of a structurally uncharacterized CdxhCysy species. Since this hCys concentration is encountered in blood plasma of hyperhomocysteinemia patients and since previous studies by others have revealed that a SH-containing carrier mediates the uptake of Cd into hepatocytes, our results suggest that plasma hCys may play a role in the toxicologically relevant translocation of Cd from the bloodstream to mammalian target organs.
Collapse
|
14
|
Wang Z, Huang P, Jacobson O, Wang Z, Liu Y, Lin L, Lin J, Lu N, Zhang H, Tian R, Niu G, Liu G, Chen X. Biomineralization-Inspired Synthesis of Copper Sulfide-Ferritin Nanocages as Cancer Theranostics. ACS NANO 2016; 10:3453-60. [PMID: 26871955 PMCID: PMC5242369 DOI: 10.1021/acsnano.5b07521] [Citation(s) in RCA: 268] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
It is essential to control the size and morphology of nanoparticles strictly in nanomedicine. Protein cages offer significant potential for templated synthesis of inorganic nanoparticles. In this study, we successfully synthesized ultrasmall copper sulfide (CuS) nanoparticles inside the cavity of ferritin (Fn) nanocages by a biomimetic synthesis method. The uniform CuS-Fn nanocages (CuS-Fn NCs) showed strong near-infrared absorbance and high photothermal conversion efficiency. In quantitative ratiometric photoacoustic imaging (PAI), the CuS-Fn NCs exhibited superior photoacoustic tomography improvements for real-time in vivo PAI of entire tumors. With the incorporation of radionuclide (64)Cu, (64)CuS-Fn NCs also served as an excellent PET imaging agent with higher tumor accumulation compared to free copper. Following the guidance of PAI and PET, CuS-Fn NCs were applied in photothermal therapy to achieve superior cancer therapeutic efficiency with good biocompatibility both in vitro and in vivo. The results demonstrate that the bioinspired multifunctional CuS-Fn NCs have potential as clinically translatable cancer theranostics and could provide a noninvasive, highly sensitive, and quantitative in vivo guiding method for cancer photothermal therapies in experimental and clinical settings.
Collapse
Affiliation(s)
- Zhantong Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University , Xiamen 361102, China
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University , Shenzhen 518060, China
| | - Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Zhe Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Lisen Lin
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Jing Lin
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University , Shenzhen 518060, China
| | - Nan Lu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Huimin Zhang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Rui Tian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University , Xiamen 361102, China
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University , Xiamen 361102, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| |
Collapse
|
15
|
Kumar R, Pradhan A, Khan FA, Lindström P, Ragnvaldsson D, Ivarsson P, Olsson PE, Jass J. Comparative Analysis of Stress Induced Gene Expression in Caenorhabditis elegans following Exposure to Environmental and Lab Reconstituted Complex Metal Mixture. PLoS One 2015; 10:e0132896. [PMID: 26168046 PMCID: PMC4500601 DOI: 10.1371/journal.pone.0132896] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 06/22/2015] [Indexed: 02/04/2023] Open
Abstract
Metals are essential for many physiological processes and are ubiquitously present in the environment. However, high metal concentrations can be harmful to organisms and lead to physiological stress and diseases. The accumulation of transition metals in the environment due to either natural processes or anthropogenic activities such as mining results in the contamination of water and soil environments. The present study used Caenorhabditis elegans to evaluate gene expression as an indicator of physiological response, following exposure to water collected from three different locations downstream of a Swedish mining site and a lab reconstituted metal mixture. Our results indicated that the reconstituted metal mixture exerted a direct stress response in C. elegans whereas the environmental waters elicited either a diminished or abrogated response. This suggests that it is not sufficient to use the biological effects observed from laboratory mixtures to extrapolate the effects observed in complex aquatic environments and apply this to risk assessment and intervention.
Collapse
Affiliation(s)
- Ranjeet Kumar
- School of Science and Technology, The Life Science Center-Biology, Örebro University, Örebro, Sweden
| | - Ajay Pradhan
- School of Science and Technology, The Life Science Center-Biology, Örebro University, Örebro, Sweden
| | - Faisal Ahmad Khan
- School of Science and Technology, The Life Science Center-Biology, Örebro University, Örebro, Sweden
| | | | | | | | - Per-Erik Olsson
- School of Science and Technology, The Life Science Center-Biology, Örebro University, Örebro, Sweden
| | - Jana Jass
- School of Science and Technology, The Life Science Center-Biology, Örebro University, Örebro, Sweden
| |
Collapse
|
16
|
Morris TT, Keir JL, Boshart SJ, Lobanov VP, Ruhland AM, Bahl N, Gailer J. Mobilization of Cd from human serum albumin by small molecular weight thiols. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 958:16-21. [DOI: 10.1016/j.jchromb.2014.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/05/2014] [Accepted: 03/09/2014] [Indexed: 11/26/2022]
|
17
|
Jiang JL, Wang GZ, Mao MG, Wang KJ, Li SJ, Zeng CS. Differential gene expression profile of the calanoid copepod, Pseudodiaptomus annandalei, in response to nickel exposure. Comp Biochem Physiol C Toxicol Pharmacol 2013; 157:203-11. [PMID: 23164661 DOI: 10.1016/j.cbpc.2012.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 11/01/2012] [Accepted: 11/10/2012] [Indexed: 11/30/2022]
Abstract
To better understand the underlying mechanisms of reactions of copepods exposed to elevated level of nickel, the suppression subtractive hybridization (SSH) was used to elucidate the response of the copepod Pseudodiaptomus annandalei to nickel exposure at the gene level. P. annandale is one of a few copepod species that can be cultured relatively easy under laboratory condition, and it is considered to be a potential model species for toxicity study. In the present study, P. annandalei were exposed to nickel at a concentration of 8.86 mgL(-1) for 24h, after which the RNA was prepared for SSH using unexposed P. annandalei as drivers. A total of 474 clones on the middle scale in the SSH library were sequenced. Among these genes, 129 potential functional genes were recognized based on the BLAST searches in NCBI and Uniprot databases. These genes were then categorized into nine groups in association with different biological processes using AmiGO against the Gene Ontology database. Of the 129 genes, 127 translatable DNA sequences were predicted to be proteins, and the putative amino acid sequences were searched for conserved domains (CD) and proteins using the CD-Search service and BLASTp. Among 129 genes, 119 (92.2%) were annotated to be involved in different biological processes, while 10 genes (7.8%) were classified as an unknown-function gene group. To further confirm the up-regulation of differentially expressed genes, the quantitative real time PCR were performed to test eight randomly selected genes, in which five of them, i.e. α-tubulin, ribosomal protein L13, ferritin, separase and Myohemerythrin-1, exhibited clear up-regulation after nickel exposure. In addition, MnSOD was further studied for the differential expression pattern after nickel exposure and the results showed that MnSOD had a time- and dose-dependent expression pattern in the copepod after nickel exposure. To the best of our knowledge, this is the first attempt to investigate the toxicity effects of nickel on a copepod at molecular level.
Collapse
Affiliation(s)
- Jie-Lan Jiang
- College of Ocean & Earth Sciences, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, PR China
| | | | | | | | | | | |
Collapse
|
18
|
Gutiérrez L, Zubow K, Nield J, Gambis A, Mollereau B, Lázaro FJ, Missirlis F. Biophysical and genetic analysis of iron partitioning and ferritin function in Drosophila melanogaster. Metallomics 2013; 5:997-1005. [DOI: 10.1039/c3mt00118k] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Haikarainen T, Thanassoulas A, Stavros P, Nounesis G, Haataja S, Papageorgiou AC. Structural and thermodynamic characterization of metal ion binding in Streptococcus suis Dpr. J Mol Biol 2010; 405:448-60. [PMID: 21056572 DOI: 10.1016/j.jmb.2010.10.058] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 10/27/2010] [Indexed: 02/04/2023]
Abstract
The use of protein cages for the creation of novel inorganic nanomaterials has attracted considerable attention in recent years. Ferritins are among the most commonly used protein cages in nanoscience. Accordingly, the binding of various metals to ferritins has been studied extensively. Dps (DNA-binding protein from starved cells)-like proteins belong to the ferritin superfamily. In contrast to ferritins, Dps-like proteins form 12-mers instead of 24-mers, have a different ferroxidase center, and are able to store a smaller amount of iron atoms in a hollow cavity (up to ∼500, instead of the ∼4500 iron atoms found in ferritins). With the exception of iron, the binding of other metal cations to Dps proteins has not been studied in detail. Here, the binding of six divalent metal ions (Zn(2+), Mn(2+), Ni(2+), Co(2+), Cu(2+), and Mg(2+)) to Streptococcus suisDps-like peroxide resistance protein (SsDpr) was characterized by X-ray crystallography and isothermal titration calorimetry (ITC). All metal cations, except for Mg(2+), were found to bind to the ferroxidase center similarly to Fe(2+), with moderate affinity (binding constants between 0.1×10(5) M(-1) and 5×10(5) M(-1)). The stoichiometry of binding, as deduced by ITC data, suggested the presence of a dication ferroxidase site. No other metal binding sites were identified in the protein. The results presented here demonstrate the ability of SsDpr to bind various metals as substitutes for iron and will help in better understanding protein-metal interactions in the Dps family of proteins as potential metal nanocontainers.
Collapse
Affiliation(s)
- Teemu Haikarainen
- Turku Center for Biotechnology, University of Turku and Åbo Akademi University, Turku 20521, Finland
| | | | | | | | | | | |
Collapse
|
20
|
Gutiérrez L, Sabaratnam N, Aktar R, Bettedi L, Mandilaras K, Missirlis F. Zinc accumulation in heterozygous mutants of fumble, the pantothenate kinase homologue of Drosophila. FEBS Lett 2010; 584:2942-6. [PMID: 20493851 DOI: 10.1016/j.febslet.2010.05.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 05/14/2010] [Indexed: 11/15/2022]
Abstract
Coenzyme A (CoA) functions in the intracellular trafficking of acetyl groups. In humans, mutations in the pantothenate kinase-2 gene, which encodes a key enzyme in CoA biosynthesis, are associated with neurodegeneration and premature death. Diagnosis is based on iron accumulation in the globus pallidus observed by magnetic resonance imaging. We investigated the elemental composition of the fumble mutant, a model of the human disease. Surprisingly, flies carrying a fumble loss-of-function allele had a three-fold increase in total zinc levels per dry weight when compared to control strains, but no change in total iron, copper or manganese levels. Accordingly, zinc supplementation had an adverse impact on the development of fumble mutant larvae, but zinc chelation failed to protect.
Collapse
Affiliation(s)
- Lucia Gutiérrez
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | | | | | | | | | | |
Collapse
|
21
|
Joshi JG, Fleming J, Miller H. Interrelationship between Cd, Zn, insulin and phosphoglucomutase. ACTA PHARMACOLOGICA ET TOXICOLOGICA 2009; 59 Suppl 7:69-74. [PMID: 2946169 DOI: 10.1111/j.1600-0773.1986.tb02711.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
22
|
Lovell MA. A potential role for alterations of zinc and zinc transport proteins in the progression of Alzheimer's disease. J Alzheimers Dis 2009; 16:471-83. [PMID: 19276540 PMCID: PMC2881701 DOI: 10.3233/jad-2009-0992] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although multiple studies have suggested a role for alterations of zinc (Zn) and zinc transport (ZnT) proteins in the pathogenesis of Alzheimer's disease, the exact role of this essential trace element in the progression of the disease remains unclear. The following review discusses the normal role of Zn and ZnT proteins in brain and the potential effects of their alteration in the pathogenesis of Alzheimer's disease, particularly in the processing of the amyloid-beta protein precursor and amyloid-beta peptide generation and aggregation.
Collapse
Affiliation(s)
- Mark A Lovell
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
23
|
Abstract
Previous studies show significantly decreased levels of zinc transporter 1 (ZnT-1) in the brain of subjects with mild cognitive impairment (MCI) but significantly increased ZnT-1 in late stage AD (LAD). However, the reason for the apparent dichotomy is unclear. Based on in vivo studies that show animals provided a zinc (Zn) deficient diet demonstrate decreased brain ZnT-1, we used inductively coupled plasma-mass spectrometry (ICP-MS) to quantify serum Zn levels from 18 living mild to moderate AD patients (9 men, 9 women), 19 MCI patients (9 men, 10 women) and 16 age-matched normal control (NC) subjects (9 men, 7 women). Zinc levels for all subjects were not significantly different among any of the three subject groups. However, there was a statistically significant decrease of serum Zn (11.7 +/- 0.5 microM) in men with MCI compared to women with MCI (13.7 +/- 0.6 microM) and NC men (13.9 +/- 0.6 microM). Serum Zn levels in probable AD patients were comparable to those in NC subjects. Overall, these data suggest a significant decrease of serum Zn in men with MCI, may explain the loss of ZnT-1 observed in previous studies and suggest there may be more pronounced sex differences in MCI than were previously recognized.
Collapse
Affiliation(s)
- Jiang Dong
- Department of Chemistry, University of Missouri, Columbia, MO, USA
| | | | | | | |
Collapse
|
24
|
Nirala SK, Bhadauria M. Synergistic effects of ferritin and propolis in modulation of beryllium induced toxicogenic alterations. Food Chem Toxicol 2008; 46:3069-79. [DOI: 10.1016/j.fct.2008.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 04/24/2008] [Accepted: 06/18/2008] [Indexed: 10/21/2022]
|
25
|
Ferritin iron content in haemodialysis patients: Comparison with septic and hemochromatosis patients. Clin Biochem 2008; 41:997-1001. [DOI: 10.1016/j.clinbiochem.2008.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 04/28/2008] [Accepted: 05/12/2008] [Indexed: 11/23/2022]
|
26
|
Havukainen H, Haataja S, Kauko A, Pulliainen AT, Salminen A, Haikarainen T, Finne J, Papageorgiou AC. Structural basis of the zinc- and terbium-mediated inhibition of ferroxidase activity in Dps ferritin-like proteins. Protein Sci 2008; 17:1513-21. [PMID: 18552126 DOI: 10.1110/ps.036236.108] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Streptococcus suis Dpr is an iron-binding protein involved in oxidative stress resistance. It belongs to the bacterial Dps protein family whose members form dodecameric assemblies. Previous studies have shown that zinc and terbium inhibit iron incorporation in Listeria innocua Dps protein. In order to gain structural insights into the inhibitory effect of zinc and terbium, the crystal structures of Streptococcus suis Dpr complexes with these ions were determined at 1.8 A and 2.1 A, respectively. Both ions were found to bind at the ferroxidase center and in the same location as iron. In addition, a novel zinc-binding site formed by His40 and His44 was identified. Both His residues were found to be present within all known Streptococcus suis Dpr variants and in Streptococcus pneumoniae, Streptococcus gordonii, and Streptococcus sanguinis Dpr proteins. Amino acid sequence alignment of Dpr with other Dps family members revealed that His44 is highly conserved, in contrast to His40. The inhibitory effect of zinc and terbium on iron oxidation in Dpr was studied in vitro, and it was found that both ions at concentrations >0.2 mM almost completely abolish iron binding. These results provide a structural basis for the inhibitory effect of zinc and terbium in the Dps family of proteins, and suggest a potential role of the Dps proteins in zinc detoxification mechanisms involving the second zinc-binding site.
Collapse
Affiliation(s)
- Heli Havukainen
- Turku Centre for Biotechnology, University of Turku, Turku 20521, Finland
| | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Brain ferritin iron may influence age- and gender-related risks of neurodegeneration. Neurobiol Aging 2006; 28:414-23. [PMID: 16563566 DOI: 10.1016/j.neurobiolaging.2006.02.005] [Citation(s) in RCA: 277] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 02/02/2006] [Accepted: 02/09/2006] [Indexed: 12/14/2022]
Abstract
BACKGROUND Brain iron promotes oxidative damage and protein oligomerization that result in highly prevalent age-related proteinopathies such as Alzheimer's disease (AD), Parkinson's disease (PD), and Dementia with Lewy Bodies (DLB). Men are more likely to develop such diseases at earlier ages than women but brain iron levels increase with age in both genders. We hypothesized that brain iron may influence both the age- and gender-related risks of developing these diseases. METHODS The amount of iron in ferritin molecules (ferritin iron) was measured in vivo with MRI by utilizing the field dependent relaxation rate increase (FDRI) method. Ferritin iron was measured in four subcortical nuclei [caudate (C), putamen (P), globus pallidus (G), thalamus (T)], three white matter regions [frontal lobe (Fwm), genu and splenium of the corpus callosum (Gwm, Swm)] and hippocampus (Hipp) in 165 healthy adults aged 19-82. RESULTS There was a high correlation (r>0.99) between published post-mortem brain iron levels and FDRI. There were significant age-related changes in ferritin iron (increases in Hipp, C, P, G, and decreases in Fwm). Women had significantly lower ferritin iron than men in five regions (C, T, Fwm, Gwm, Swm). CONCLUSIONS This is the first demonstration of gender differences in brain ferritin iron levels. It is possible that brain iron accumulation is a risk factor that can be modified. MRI provides the opportunity to assess brain iron levels in vivo and may be useful in targeting individuals or groups for preventive therapeutic interventions.
Collapse
|
29
|
Tsukamoto R, Iwahori K, Muraoka M, Yamashita I. Synthesis of Co3O4Nanoparticles Using the Cage-Shaped Protein, Apoferritin. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2005. [DOI: 10.1246/bcsj.78.2075] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
30
|
Bou-Abdallah F, Arosio P, Levi S, Janus-Chandler C, Chasteen ND. Defining metal ion inhibitor interactions with recombinant human H- and L-chain ferritins and site-directed variants: an isothermal titration calorimetry study. J Biol Inorg Chem 2003; 8:489-97. [PMID: 12679873 DOI: 10.1007/s00775-003-0455-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2003] [Accepted: 03/07/2003] [Indexed: 11/30/2022]
Abstract
Zinc and terbium, inhibitors of iron incorporation in the ferritins, have been used for many years as probes of structure-function relationships in these proteins. Isothermal titration calorimetric and kinetic measurements of Zn(II) and Tb(III) binding and inhibition of Fe(II) oxidation were used to identify and characterize thermodynamically ( n, K, Delta H degrees, Delta S degrees, and Delta G degrees ) the functionally important binding sites for these metal ions in recombinant human H-chain, L-chain, and H-chain site-directed variant ferritins. The data reveal at least two classes of binding sites for both Zn(II) and Tb(III) in human H-chain ferritin: one strong, corresponding to binding of one metal ion in each of the eight three-fold channels, and the other weak, involving binding at the ferroxidase and nucleation sites of the protein as well as at other weak unidentified binding sites. Zn(II) and Tb(III) binding to recombinant L-chain ferritin showed similar stoichiometries for the strong binding sites within the channels, but fewer weaker binding sites when compared to the H-chain protein. The kinetics and binding data indicate that the binding of Zn(II) and Tb(III) in the three-fold channels, which is the main pathway of iron(II) entry in ferritin, blocks the access of most of the iron to the ferroxidase sites on the interior of the protein, accounting for the strong inhibition by these metal ions of the oxidative deposition of iron in ferritin.
Collapse
Affiliation(s)
- Fadi Bou-Abdallah
- Department of Chemistry, University of New Hampshire, Durham, NH 03824, USA
| | | | | | | | | |
Collapse
|
31
|
Yamamoto Y, Poole LB, Hantgan RR, Kamio Y. An iron-binding protein, Dpr, from Streptococcus mutans prevents iron-dependent hydroxyl radical formation in vitro. J Bacteriol 2002; 184:2931-9. [PMID: 12003933 PMCID: PMC135054 DOI: 10.1128/jb.184.11.2931-2939.2002] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dpr gene is an antioxidant gene which was isolated from the Streptococcus mutans chromosome by its ability to complement an alkyl hydroperoxide reductase-deficient mutant of Escherichia coli, and it was proven to play an indispensable role in oxygen tolerance in S. mutans. Here, we purified the 20-kDa dpr gene product, Dpr, from a crude extract of S. mutans as an iron-binding protein and found that Dpr formed a spherical oligomer about 9 nm in diameter. Molecular weight determinations of Dpr in solution by analytical ultracentrifugation and light-scattering analyses gave values of 223,000 to 292,000, consistent with a subunit composition of 11.5 to 15 subunits per molecule. The purified Dpr contained iron and zinc atoms and had an ability to incorporate up to 480 iron and 11.2 zinc atoms per molecule. Unlike E. coli Dps and two other members of the Dps family, Dpr was unable to bind DNA. One hundred nanomolar Dpr prevented by more than 90% the formation of hydroxyl radical generated by 10 microM iron(II) salt in vitro. The data shown in this study indicate that Dpr may act as a ferritin-like iron-binding protein in S. mutans and may allow this catalase- and heme-peroxidase-deficient bacterium to grow under air by limiting the iron-catalyzed Fenton reaction.
Collapse
Affiliation(s)
- Yuji Yamamoto
- Laboratory of Applied Microbiology, Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, Amamiya-machi, Aoba-ku, Sendai 981-8555, Japan
| | | | | | | |
Collapse
|
32
|
Goto F, Yoshihara T, Masuda T, Takaiwa F. Genetic improvement of iron content and stress adaptation in plants using ferritin gene. Biotechnol Genet Eng Rev 2002; 18:351-71. [PMID: 11530696 DOI: 10.1080/02648725.2001.10648019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- F Goto
- Bio-Science Department, Central Research Institute of Electric Power Industry, 1646 Abiko, Chiba 270-1194, Japan.
| | | | | | | |
Collapse
|
33
|
Vayenas DV, Repanti M, Vassilopoulos A, Papanastasiou DA. Influence of iron overload on manganese, zinc, and copper concentration in rat tissues in vivo: study of liver, spleen, and brain. INTERNATIONAL JOURNAL OF CLINICAL & LABORATORY RESEARCH 1998; 28:183-6. [PMID: 9801930 DOI: 10.1007/s005990050041] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although hemochromatosis and pathological situations due to chronic iron overload have been extensively described, there is little information about the influence of iron on other trace elements in the cell. The aim of this study was to investigate changes in the concentration of zinc, manganese, and copper in the liver, spleen, and brain of rats after iron overload. Iron overload in Wistar rats was achieved by iron-supplemented diet or by intraperitoneal or intravenous injection of polymaltose iron. Iron, zinc, manganese, and copper were determined by atomic absorption spectrophotometry. Iron overload in rats, regardless of the route of its application, resulted in an increase not only of iron but also of zinc and manganese in the liver and the spleen, whereas the content of these metals in the brain did not change. The copper content of the liver, spleen, and brain remained the same after iron overload. The increase of zinc and manganese in the liver and spleen following iron overload was probably a result not only of increased intestinal absorption but also of increased uptake from the cell. This is also supported by the fact that no increase in the zinc and manganese concentrations occurred in the brain since, despite iron overload, the iron content remained constant.
Collapse
Affiliation(s)
- D V Vayenas
- Department of Chemical Engineering, University of Patras, Greece
| | | | | | | |
Collapse
|
34
|
Durliat M, Bonneton F, Boissonneau E, André M, Wegnez M. Expression of metallothionein genes during the post-embryonic development of Drosophila melanogaster. Biometals 1995; 8:339-51. [PMID: 7580054 DOI: 10.1007/bf00141608] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Expression of the two Drosophila melanogaster metallothionein genes, Mtn and Mto, has been analyzed by in situ hybridization during post-embryonic development. Mtn and Mto transcripts were detected exclusively in the digestive tract of larvae, pupae and adults reared on standard medium. Mtn and Mto expression domains overlap, but each gene is also expressed at unique sites. Mtn mRNA levels are approximately 10 and 20 times higher than those of Mto in larvae and adults, respectively. Copper and cadmium ions strongly induce Mtn and Mto mRNA accumulation in the midgut. Zinc is a weaker inducer, acting only at high concentrations. Mtn gene expression is induced by these three metals in Malpighian tubules, while Mto gene expression in this organ is induced only by zinc. Iron is a poor inducer of metallothionein mRNA accumulation. Functions of MTN and MTO proteins in metal homeostasis and detoxification are considered.
Collapse
Affiliation(s)
- M Durliat
- Laboratoire Embryologie Moléculaire et Expérimentale, URA 1134 du CNRS, Université Paris XI, Orsay, France
| | | | | | | | | |
Collapse
|
35
|
|
36
|
Muller JP, Vedel M, Monnot MJ, Touzet N, Wegnez M. Molecular cloning and expression of ferritin mRNA in heavy metal-poisoned Xenopus laevis cells. DNA Cell Biol 1991; 10:571-9. [PMID: 1718317 DOI: 10.1089/dna.1991.10.571] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In a search for genes transcriptionally regulated by metal ions, we have isolated a Xenopus laevis ferritin cDNA clone, XL2-17, from cadmium-poisoned XL2 cells. The large size of the corresponding ferritin mRNA (1.4 kb) is due to the presence of a 629-nucleotide 5'-untranslated region. The Xenopus ferritin sequence is highly isologous with other vertebrate ferritins. In particular, there is a complete sequence identity for the iron-responsive element (IRE) located in the 5'-untranslated region in both XL2-17 and Rana catesbeiana ferritin mRNAs. The position of this IRE is unusual since it is located 489 nucleotides from the 5' end of the ferritin mRNA. Our analysis of phylogenetic relationships among ferritins indicates that all amphibian ferritins thus far sequenced would be more closely related to the mammalian H-type ferritin than to the L-type. The level of ferritin mRNA in XL2 cells rises 10- to 15-fold following exposure of cells to cadmium or copper. This increase is due to both transcriptional and translational regulation. A 10-fold increase was also found at the protein level. These results suggest that ferritin may be a primary detoxification response to heavy metals in Xenopus cells.
Collapse
Affiliation(s)
- J P Muller
- Laboratoire d'Embryologie Moléculaire, Université Paris XI, Orsay, France
| | | | | | | | | |
Collapse
|
37
|
Fleming J, Joshi JG. Ferritin: isolation of aluminum-ferritin complex from brain. Proc Natl Acad Sci U S A 1987; 84:7866-70. [PMID: 3479769 PMCID: PMC299428 DOI: 10.1073/pnas.84.22.7866] [Citation(s) in RCA: 101] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Ferritin was isolated from the livers and brains of two groups of rats, one of which was fed aluminum chloride (100 microM) for 1 year in the drinking water. Brain tissue contained about one-third of the amount of ferritin found in the liver. While brain ferritin from normal rats contained 42.1 +/- 14.3 mol of aluminum, that from the aluminum-fed group contained 115.4 +/- 48.3 mol of aluminum per mol of ferritin. Liver ferritin from both groups contained similar amounts of both aluminum and iron, and the amounts were less than that found associated with brain ferritin. Ferritin isolated from the brains of patients who died of Alzheimer disease contained more aluminum and more iron than that from age-matched controls. Human brain ferritin is composed of two types of subunits--about 70% heavy chain (Mr, 22,000) and 30% light chain (Mr, 19,500). The isoelectric focusing pattern of human brain ferritin was considerably different from that of human liver. Only 5 of the 20 brain ferritin bands migrated similarly to the acidic isoferritins from the liver, and the major component of brain ferritin, representing 30% of the total ferritin, had a pI of 8.0.
Collapse
Affiliation(s)
- J Fleming
- Department of Biochemistry, University of Tennessee, Knoxville 37996
| | | |
Collapse
|
38
|
Sorimachi K. Activation of alkaline phosphatase with Mg2+ and Zn2+ in rat hepatoma cells. Accumulation of apoenzyme. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(19)75668-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
Phillips JL, Rutledge LM. Effects of iron transferrin and zinc transferrin on ferritin synthesis by human lymphocytes. Biol Trace Elem Res 1984; 6:337-45. [PMID: 24264112 DOI: 10.1007/bf02989241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/1983] [Indexed: 10/21/2022]
Abstract
Using a single-incubation two-site immunoradiometric assay, ferritin levels in human peripheral blood lymphocytes have been quantitated up to 72 h in culture. Ferritin levels were found to increase markedly when the cells were treated with phytohemagglutinin or with iron transferrin (in the presence or absence of phytohemagglutinin). On the other hand, zinc transferrin, with or without iron transferrin in the culture medium and in the presence and absence of phytohemagglutinin, produced a dose-dependent decrease in cellular ferritin compared to controls. Additionally, the increase in lymphocyte ferritin produced by phytohemagglutinin and iron transferrin appears to require transcriptional and translation events.
Collapse
Affiliation(s)
- J L Phillips
- Cancer Therapy and Research Center, 4450 Medical Drive, 78229, San Antonio, Texas
| | | |
Collapse
|
40
|
Christie NT, Costa M. In vitro assessment of the toxicity of metal compounds : IV. Disposition of metals in cells: Interactions with membranes, glutathione, metallothionein, and DNA. Biol Trace Elem Res 1984; 6:139-58. [PMID: 24263854 DOI: 10.1007/bf02916931] [Citation(s) in RCA: 146] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/1983] [Accepted: 08/05/1983] [Indexed: 11/28/2022]
Abstract
This review has focused on several parameters related to the delivery of carcinogenic metal compounds to the cell nucleus as a basis for understanding the intermediates formed between metals and cellular components and the effect of these intermediates on DNA structure and function. Emphasis has been placed on metal interactions at the cellular membrane, including lipid peroxidation, metal interactions with glutathione and their relation to membrane injury, and metal effects on the membrane bound enzyme, Na(+)/K(+) ATPase. Metal binding to metallothionein is also considered, particularly as related to transport and utilization of metal ions and to genetic defects in these processes exemplified in Menkes disease. The ability of cadmium to induce the synthesis of metallothionein more strongly than zinc is also discussed in relation to other toxic and carcinogenic metals. The effects of metal ions on purified DNA and RNA polymerase systems are presented with some of the recent studies using biological ligand-metal complexes. This review points out the importance of considering how metals affect in vitro systems when presented as ionic forms or complexed to relevant biological ligands.
Collapse
Affiliation(s)
- N T Christie
- Department of Pharmacology, University of Texas Medical School at Houston, PO Box 20708, 77025, Houston, Texas
| | | |
Collapse
|
41
|
Ferritin and Metal Toxicity* *Supported by the American Cancer Society. ACTA ACUST UNITED AC 1984. [DOI: 10.1016/b978-0-08-030764-0.50044-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
42
|
Ehrhart JC, Rollet E, Komano O, Creuzet C, Loeb J. Characterization of the epidermal-growth-factor-dependent phosphorylation system from normal mouse-liver sinusoidal plasma membranes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 136:31-9. [PMID: 6311547 DOI: 10.1111/j.1432-1033.1983.tb07701.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Blood sinusoidal plasma membrane subfractions were isolated from normal mouse liver in the presence of the proteinase inhibitors PhMeSO2F and iodoacetamide. They were purified from smooth microsomal and Golgi vesicle contaminants. The phosphorylation reaction was studied at 33 degrees C, in the presence of 2 mM MnCl2. Addition of epidermal growth factor (EGF) to the preparations stimulated 32P incorporation from [gamma-32P]ATP or [gamma-32P]GTP essentially into one 170 000 Mr protein. Some incorporation was observed in a minor 120 000-Mr component which appears to be a degradation product of the 170 000-Mr component. No EGF-dependent phosphorylation of other membrane proteins or various exogenous proteins could be detected in vitro. The dephosphorylation of the 170 000-Mr component was observed after 4 min of incubation at 33 degrees C. This dephosphorylation reaction was inhibited by addition of 5 mM p-nitrophenyl phosphate but not by addition of micromolar Zn2+, Be2+ or orthovanadate. The 170 000-Mr protein specifically bound 125I-labeled EGF and thus appeared to be the hepatic EGF receptor. The EGF stimulatable kinase activity considerably enhances incorporation of 32P into tyrosine residues of the 170 000-Mr EGF receptor at 33 degrees C. Tryptic peptide maps of the 32P-labeled 170 000-Mr protein revealed a multiplicity of phosphorylated sites. Seven 32P-labeled phosphopeptides were observed after EGF stimulation, three of them being largely prominent. Tryptic peptide maps of the 170 000-Mr protein after it was covalently linked to 125I-labeled EGF showed only one 125I-labeled peptide, the migration of which appeared different from that of 32P-labeled phosphopeptides. These findings were confirmed by V8 protease unidimensional peptide mapping of the 170 000-Mr protein, labeled with 32P or 125I-EGF.
Collapse
|