1
|
de Marco A, Ferrer-Miralles N, Garcia-Fruitós E, Mitraki A, Peternel S, Rinas U, Trujillo-Roldán MA, Valdez-Cruz NA, Vázquez E, Villaverde A. Bacterial inclusion bodies are industrially exploitable amyloids. FEMS Microbiol Rev 2019; 43:53-72. [PMID: 30357330 DOI: 10.1093/femsre/fuy038] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022] Open
Abstract
Understanding the structure, functionalities and biology of functional amyloids is an issue of emerging interest. Inclusion bodies, namely protein clusters formed in recombinant bacteria during protein production processes, have emerged as unanticipated, highly tunable models for the scrutiny of the physiology and architecture of functional amyloids. Based on an amyloidal skeleton combined with varying amounts of native or native-like protein forms, bacterial inclusion bodies exhibit an unusual arrangement that confers mechanical stability, biological activity and conditional protein release, being thus exploitable as versatile biomaterials. The applicability of inclusion bodies in biotechnology as enriched sources of protein and reusable catalysts, and in biomedicine as biocompatible topographies, nanopills or mimetics of endocrine secretory granules has been largely validated. Beyond these uses, the dissection of how recombinant bacteria manage the aggregation of functional protein species into structures of highly variable complexity offers insights about unsuspected connections between protein quality (conformational status compatible with functionality) and cell physiology.
Collapse
Affiliation(s)
- Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska Cesta 13, 5000 Nova Gorica, Slovenia
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina (IBB), Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carrer de la Vall Moronta s/n, 08193 Cerdanyola del Vallès, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| | - Anna Mitraki
- Department of Materials Science and Technology, University of Crete, Vassilika Vouton, 70013 Heraklion, Crete, Greece.,Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), N. Plastira 100, Vassilika Vouton, 70013 Heraklion, Crete, Greece
| | | | - Ursula Rinas
- Leibniz University of Hannover, Technical Chemistry and Life Science, 30167 Hannover, Germany.,Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Mauricio A Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Norma A Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina (IBB), Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carrer de la Vall Moronta s/n, 08193 Cerdanyola del Vallès, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina (IBB), Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carrer de la Vall Moronta s/n, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
2
|
Seul A, Müller JJ, Andres D, Stettner E, Heinemann U, Seckler R. Bacteriophage P22 tailspike: structure of the complete protein and function of the interdomain linker. ACTA ACUST UNITED AC 2014; 70:1336-45. [PMID: 24816102 DOI: 10.1107/s1399004714002685] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 02/05/2014] [Indexed: 12/31/2022]
Abstract
Attachment of phages to host cells, followed by phage DNA ejection, represents the first stage of viral infection of bacteria. Salmonella phage P22 has been extensively studied, serving as an experimental model for bacterial infection by phages. P22 engages bacteria by binding to the sugar moiety of lipopolysaccharides using the viral tailspike protein for attachment. While the structures of the N-terminal particle-binding domain and the major receptor-binding domain of the tailspike have been analyzed individually, the three-dimensional organization of the intact protein, including the highly conserved linker region between the two domains, remained unknown. A single amino-acid exchange in the linker sequence made it possible to crystallize the full-length protein. Two crystal structures of the linker region are presented: one attached to the N-terminal domain and the other present within the complete tailspike protein. Both retain their biological function, but the mutated full-length tailspike displays a retarded folding pathway. Fitting of the full-length tailspike into a published cryo-electron microscopy map of the P22 virion requires an elastic distortion of the crystal structure. The conservation of the linker suggests a role in signal transmission from the distal tip of the molecule to the phage head, eventually leading to DNA ejection.
Collapse
Affiliation(s)
- Anaït Seul
- Physikalische Biochemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Jürgen J Müller
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Dorothee Andres
- Physikalische Biochemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Eva Stettner
- Physikalische Biochemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Udo Heinemann
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Robert Seckler
- Physikalische Biochemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| |
Collapse
|
3
|
Tan KP, Khare S, Varadarajan R, Madhusudhan MS. TSpred: a web server for the rational design of temperature-sensitive mutants. Nucleic Acids Res 2014; 42:W277-84. [PMID: 24782523 PMCID: PMC4086094 DOI: 10.1093/nar/gku319] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Temperature sensitive (Ts) mutants of proteins provide experimentalists with a powerful and reversible way of conditionally expressing genes. The technique has been widely used in determining the role of gene and gene products in several cellular processes. Traditionally, Ts mutants are generated by random mutagenesis and then selected though laborious large-scale screening. Our web server, TSpred (http://mspc.bii.a-star.edu.sg/TSpred/), now enables users to rationally design Ts mutants for their proteins of interest. TSpred uses hydrophobicity and hydrophobic moment, deduced from primary sequence and residue depth, inferred from 3D structures to predict/identify buried hydrophobic residues. Mutating these residues leads to the creation of Ts mutants. Our method has been experimentally validated in 36 positions in six different proteins. It is an attractive proposition for Ts mutant engineering as it proposes a small number of mutations and with high precision. The accompanying web server is simple and intuitive to use and can handle proteins and protein complexes of different sizes.
Collapse
Affiliation(s)
- Kuan Pern Tan
- Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix, Singapore 138671 School of Computer Engineering, Nanyang Technological University, Singapore 639798
| | - Shruti Khare
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | | - Mallur Srivatsan Madhusudhan
- Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix, Singapore 138671 Indian Institute of Science Education and Research, Pune 411008, India Department of Biological Sciences, National University of Singapore, Singapore 117543
| |
Collapse
|
4
|
Takata T, Haase-Pettingell C, King J. The C-terminal cysteine annulus participates in auto-chaperone function for Salmonella phage P22 tailspike folding and assembly. BACTERIOPHAGE 2012; 2:36-49. [PMID: 22666655 PMCID: PMC3357383 DOI: 10.4161/bact.19775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Elongated trimeric adhesins are a distinct class of proteins employed by phages and viruses to recognize and bind to their host cells, and by bacteria to bind to their target cells and tissues. The tailspikes of E. coli phage K1F and Bacillus phage Ø29 exhibit auto-chaperone activity in their trimeric C-terminal domains. The P22 tailspike is structurally homologous to those adhesins. Though there are no disulfide bonds or reactive cysteines in the native P22 tailspikes, a set of C-terminal cysteines are very reactive in partially folded intermediates, implying an unusual local conformation in the domain. This is likely to be involved in the auto-chaperone function. We examined the unusual reactivity of C-terminal tailspike cysteines during folding and assembly as a potential reporter of auto-chaperone function. Reaction with IAA blocked productive refolding in vitro, but not off-pathway aggregation. Two-dimensional PAGE revealed that the predominant intermediate exhibiting reactive cysteine side chains was a partially folded monomer. Treatment with reducing reagent promoted native trimer formation from these species, consistent with transient disulfide bonds in the auto-chaperone domain. Limited enzymatic digestion and mass spectrometry of folding and assembly intermediates indicated that the C-terminal domain was compact in the protrimer species. These results indicate that the C-terminal domain of the P22 tailspike folds itself and associates prior to formation of the protrimer intermediate, and not after, as previously proposed. The C-terminal cysteines and triple β-helix domains apparently provide the staging for the correct auto-chaperone domain formation, needed for alignment of P22 tailspike native trimer.
Collapse
Affiliation(s)
- Takumi Takata
- Department of Biology; Massachusetts Institute of Technology; Cambridge, MA USA
| | | | | |
Collapse
|
5
|
Mitraki A. Protein aggregation from inclusion bodies to amyloid and biomaterials. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2010; 79:89-125. [PMID: 20621282 DOI: 10.1016/s1876-1623(10)79003-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inclusion bodies and amyloid are two different outcomes of the same fundamental biological process: protein aggregation. They share two important features that suggest sequence-specific aggregation: oligomeric intermediates as precursors to the aggregated sate and sensitivity to site-specific point mutations. For a long time, the physical state of inclusion bodies was refractory to the use of protein structural characterization techniques that were developed for soluble proteins. Recent high-resolution studies reveal that the apparently amorphous state of these dense protein agglomerates consists of amyloid-type structures adopted by short segments that initiate aggregation. Under certain circumstances it is possible for the aggregation-prone segments to "recruit" a globular counterpart within the inclusion body, with the latter being able to fold into an active conformation. In this chapter we will discuss these recent structural insights in relation with the also recent, high-resolution structures for amyloid "spines" and their ability to accommodate globular or "swapped" domains in their periphery. Finally, unexpected natural roles for amyloid structures such as protection, adhesion, and storage materials gradually emerge. We will discuss how these properties in combination with biochemical and structural insights can inspire "biomimetic" approaches for the rational design of novel nanobiomaterials.
Collapse
Affiliation(s)
- Anna Mitraki
- Department of Materials Science and Technology, University of Crete and Institute for Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), Vassilika Vouton, Heraklion, Crete, Greece
| |
Collapse
|
6
|
Spatara M, Roberts C, Robinson A. Kinetic folding studies of the P22 tailspike beta-helix domain reveal multiple unfolded states. Biophys Chem 2009; 141:214-21. [DOI: 10.1016/j.bpc.2009.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 02/03/2009] [Accepted: 02/05/2009] [Indexed: 10/21/2022]
|
7
|
Choi SP, Chang HN. Stable constitution of artificial oil body for the refolding of IGF1. BIOTECHNOL BIOPROC E 2009. [DOI: 10.1007/s12257-008-0157-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Mishra R, Bhat R, Seckler R. Chemical chaperone-mediated protein folding: stabilization of P22 tailspike folding intermediates by glycerol. Biol Chem 2007; 388:797-804. [PMID: 17655498 DOI: 10.1515/bc.2007.096] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractPolyol co-solvents such as glycerol increase the thermal stability of proteins. This has been explained by preferential hydration favoring the more compact native over the denatured state. Although polyols are also expected to favor aggregation by the same mechanism, they have been found to increase the folding yields of some large, aggregation-prone proteins. We have used the homotrimeric phage P22 tailspike protein to investigate the origin of this effect. The folding of this protein is temperature-sensitive and limited by the stability of monomeric folding intermediates. At non-permissive temperature (≥35°C), tailspike refolding yields were increased significantly in the presence of 1–4 mglycerol. At low temperature, tailspike refolding is prevented when folding intermediates are destabilized by the addition of urea. Glycerol could offset the urea effect, suggesting that the polyol acts by stabilizing crucial folding intermediates and not by increasing solvent viscosity. The stabilization effect of glycerol on tailspike folding intermediates was confirmed in experiments using a temperature-sensitive folding mutant protein, by fluorescence measurements of subunit folding kinetics, and by temperature up-shift experiments. Our results suggest that the chemical chaperone effect of polyols observed in the folding of large proteins is due to preferential hydration favoring structure formation in folding intermediates.
Collapse
Affiliation(s)
- Rajesh Mishra
- Department of Biochemistry and Biology, Potsdam University, D-14476 Potsdam-Golm, Germany
| | | | | |
Collapse
|
9
|
Afzal AJ, Lightfoot DA. Soybean disease resistance protein RHG1-LRR domain expressed, purified and refolded from Escherichia coli inclusion bodies: preparation for a functional analysis. Protein Expr Purif 2007; 53:346-55. [PMID: 17287130 DOI: 10.1016/j.pep.2006.12.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 12/19/2006] [Accepted: 12/20/2006] [Indexed: 10/23/2022]
Abstract
Introduction and expression of foreign genes in bacteria often results accumulation of the foreign protein(s) in inclusion bodies (IBs). The subsequent processes of refolding are slow, difficult and often fail to yield significant amounts of folded protein. RHG1 encoded by rhg1 was a soybean (Glycine max L. Merr.) transmembrane receptor-like kinase (EC 2.7.11.1) with an extracellular leucine-rich repeat domain. The LRR of RHG1 was believed to be involved in elicitor recognition and interaction with other plant proteins. The aim, here, was to express the LRR domain in Escherichia coli (RHG1-LRR) and produce refolded protein. Urea titration experiments showed that the IBs formed in E. coli by the extracellular domain of the RHG1 protein could be solubilized at different urea concentrations. The RHG1 proteins were eluted with 1.0-7.0M urea in 0.5M increments. Purified RHG1 protein obtained from the 1.5 and 7.0M elutions was analyzed for secondary structure through circular dichroism (CD) spectroscopy. Considerable secondary structure could be seen in the former, whereas the latter yielded CD curves characteristic of denatured proteins. Both elutions were subjected to refolding by slowly removing urea in the presence of arginine and reduced/oxidized glutathione. Detectable amounts of refolded protein could not be recovered from the 7.0M urea sample, whereas refolding from the 1.5M urea sample yielded 0.2mg/ml protein. The 7.0M treatment resulted in the formation of a homogenous denatured state with no apparent secondary structure. Refolding from this fully denatured state may confer kinetic and/or thermodynamic constraints on the refolding process, whereas the kinetic and/or thermodynamic barriers to attain the folded conformation appeared to be lesser, when refolding from a partially folded state.
Collapse
Affiliation(s)
- Ahmed J Afzal
- Department of Molecular Biology, Microbiology and Biochemistry and Center for Excellence in Soybean Research, Teaching and Outreach, Southern Illinois University at Carbondale, IL 62901, USA
| | | |
Collapse
|
10
|
Affiliation(s)
- Anna J Hagen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - T Alan Hatton
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Daniel I C Wang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
11
|
Schwartz R, King J. Frequencies of hydrophobic and hydrophilic runs and alternations in proteins of known structure. Protein Sci 2006; 15:102-12. [PMID: 16373477 PMCID: PMC2242367 DOI: 10.1110/ps.051741806] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Patterns of alternation of hydrophobic and polar residues are a profound aspect of amino acid sequences, but a feature not easily interpreted for soluble proteins. Here we report statistics of hydrophobicity patterns in proteins of known structure in a current protein database as compared with results from earlier, more limited structure sets. Previous studies indicated that long hydrophobic runs, common in membrane proteins, are underrepresented in soluble proteins. Long runs of hydrophobic residues remain significantly underrepresented in soluble proteins, with none longer than 16 residues observed. These long runs most commonly occur as buried alpha helices, with extended hydrophobic strands less common. Avoiding aggregation of partially folded intermediates during intracellular folding remains a viable explanation for the rarity of long hydrophobic runs in soluble proteins. Comparison between database editions reveals robustness of statistics on aqueous proteins despite an approximately twofold increase in nonredundant sequences. The expanded database does now allow us to explain several deviations of hydrophobicity statistics from models of random sequence in terms of requirements of specific secondary structure elements. Comparison to prior membrane-bound protein sequences, however, shows significant qualitative changes, with the average hydrophobicity and frequency of long runs of hydrophobic residues noticeably increasing between the database editions. These results suggest that the aqueous proteins of solved structure may represent an essentially complete sample of the universe of aqueous sequences, while the membrane proteins of known structure are not yet representative of the universe of membrane-associated proteins, even by relatively simple measures of hydrophobic patterns.
Collapse
Affiliation(s)
- Russell Schwartz
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
12
|
Weigele PR, Haase-Pettingell C, Campbell PG, Gossard DC, King J. Stalled folding mutants in the triple beta-helix domain of the phage P22 tailspike adhesin. J Mol Biol 2005; 354:1103-17. [PMID: 16289113 DOI: 10.1016/j.jmb.2005.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 10/04/2005] [Accepted: 10/05/2005] [Indexed: 11/18/2022]
Abstract
The trimeric bacteriophage P22 tailspike adhesin exhibits a domain in which three extended strands intertwine, forming a single turn of a triple beta-helix. This domain contains a single hydrophobic core composed of residues contributed by each of the three sister polypeptide chains. The triple beta-helix functions as a molecular clamp, increasing the stability of this elongated structural protein. During folding of the tailspike protein, the last precursor before the native state is a partially folded trimeric intermediate called the protrimer. The transition from the protrimer to the native state results in a structure that is resistant to denaturation by heat, chemical denaturants, and proteases. Random mutations were made in the region encoding residues 540-548, where the sister chains begin to wrap around each other. From a set of 26 unique single amino acid substitutions, we characterized mutations at G546, N547, and I548 that retarded or blocked the protrimer to native trimer transition. In contrast, many non-conservative substitutions were tolerated at residues 540-544. Sucrose gradient analysis showed that protrimer-like mutants had reduced sedimentation, 8.0 S to 8.3 S versus 9.3 S for the native trimer. Mutants affected in the protrimer to native trimer transition were also destabilized in their native state. These data suggest that the folding of the triple beta-helix domain drives transition of the protrimer to the native state and is accompanied by a major rearrangement of polypeptide chains.
Collapse
Affiliation(s)
- Peter R Weigele
- Department of Biology Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
13
|
Gage MJ, Zak JL, Robinson AS. Three amino acids that are critical to formation and stability of the P22 tailspike trimer. Protein Sci 2005; 14:2333-43. [PMID: 16081648 PMCID: PMC1995594 DOI: 10.1110/ps.051394605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The P22 tailspike protein folds by forming a folding competent monomer species that forms a dimeric, then a non-native trimeric (protrimer) species by addition of folding competent monomers. We have found three residues, R549, R563, and D572, which play a critical role in both the stability of the native tailspike protein and assembly and maturation of the protrimer. King and colleagues reported previously that substitution of R563 to glutamine inhibited protrimer formation. We now show that the R549Q and R563K variants significantly delay the protrimer-to-trimer transition both in vivo and in vitro. Previously, variants that destabilize intermediates have shown wild-type chemical stability. Interestingly, both the R549Q and R563K variants destabilize the tailspike trimer in guanidine denaturation studies, indicating that they represent a new class of tailspike folding variants. R549Q has a midpoint of unfolding at 3.2M guanidine, compared to 5.6M for the wild-type tailspike protein, while R563K has a midpoint of unfolding of 1.8 M. R549Q and R563K also denature over a broader pH range than the wild-type tailspike protein and both proteins have increased sensitivity to pH during refolding, suggesting that both residues are involved in ionic interactions. Our model is that R563 and D572 interact to stabilize the adjacent turn, aiding the assembly of the dimer and protrimer species. We believe that the interaction between R563 and D572 is also critical following assembly of the protrimer to properly orient D572 in order to form a salt bridge with R549 during protrimer maturation.
Collapse
Affiliation(s)
- Matthew J Gage
- 259 Colburn Laboratory, Department of Chemical Engineering, University of Delaware, Newark, DE 19716, USA
| | | | | |
Collapse
|
14
|
Betts S, Haase-Pettingell C, Cook K, King J. Buried hydrophobic side-chains essential for the folding of the parallel beta-helix domains of the P22 tailspike. Protein Sci 2005; 13:2291-303. [PMID: 15322277 PMCID: PMC2280027 DOI: 10.1110/ps.04676704] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The processive beta-strands and turns of a polypeptide parallel beta-helix represent one of the topologically simplest beta-sheet folds. The three subunits of the tailspike adhesin of phage P22 each contain 13 rungs of a parallel beta-helix followed by an interdigitated section of triple-stranded beta-helix. Long stacks of hydrophobic residues dominate the elongated buried core of these two beta-helix domains and extend into the core of the contiguous triple beta-prism domain. To test whether these side-chain stacks represent essential residues for driving the chain into the correct fold, each of three stacked phenylalanine residues within the buried core were substituted with less bulky amino acids. The mutant chains with alanine in place of phenylalanine were defective in intracellular folding. The chains accumulated exclusively in the aggregated inclusion body state regardless of temperature of folding. These severe folding defects indicate that the stacked phenylalanine residues are essential for correct parallel beta-helix folding. Replacement of the same phenylalanine residues with valine or leucine also impaired folding in vivo, but with less severity. Mutants were also constructed in a second buried stack that extends into the intertwined triple-stranded beta-helix and contiguous beta-prism regions of the protein. These mutants exhibited severe defects in later stages of chain folding or assembly, accumulating as misfolded but soluble multimeric species. The results indicate that the formation of the buried hydrophobic stacks is critical for the correct folding of the parallel beta-helix, triple-stranded beta-helix, and beta-prism domains in the tailspike protein.
Collapse
Affiliation(s)
- Scott Betts
- Department of Biology 68-330, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
15
|
Hauschild KE, Metzler RE, Arndt HD, Moretti R, Raffaelle M, Dervan PB, Ansari AZ. Temperature-sensitive protein-DNA dimerizers. Proc Natl Acad Sci U S A 2005; 102:5008-13. [PMID: 15781856 PMCID: PMC555971 DOI: 10.1073/pnas.0501289102] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Programmable DNA-binding polyamides coupled to short peptides have led to the creation of synthetic artificial transcription factors. A hairpin polyamide-YPWM tetrapeptide conjugate facilitates the binding of a natural transcription factor Exd to an adjacent DNA site. Such small molecules function as protein-DNA dimerizers that stabilize complexes at composite DNA binding sites. Here we investigate the role of the linker that connects the polyamide to the peptide. We find that a substantial degree of variability in the linker length is tolerated at lower temperatures. At physiological temperatures, the longest linker tested confers a "switch"-like property on the protein-DNA dimerizer, in that it abolishes the ability of the YPWM moiety to recruit the natural transcription factor to DNA. These observations provide design principles for future artificial transcription factors that can be externally regulated and can function in concert with the cellular regulatory circuitry.
Collapse
Affiliation(s)
- Karl E Hauschild
- Department of Biochemistry and the Genome Center, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Danek BL, Robinson AS. Nonnative interactions between cysteines direct productive assembly of P22 tailspike protein. Biophys J 2004; 85:3237-47. [PMID: 14581223 PMCID: PMC1303599 DOI: 10.1016/s0006-3495(03)74741-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nonnative disulfide bond formation can play a critical role in the assembly of disulfide bonded proteins. During the folding and assembly of the P22 tailspike protein, nonnative disulfide bonds form both in vivo and in vitro. However, the mechanism and identity of cysteine disulfide pairs remains elusive, particularly for P22 tailspike, which contains no disulfide bonds in its native, functional form. Understanding the interactions between cysteine residues is important for developing a mechanistic model for the role of nonnative cysteines in P22 tailspike assembly. Prior in vivo studies have suggested that cysteines 496, 613, and 635 are the most likely site for sulfhydryl reactivity. Here we demonstrate that these three cysteines are critical for efficient assembly of tailspike trimers, and that interactions between cysteine pairs lead to productive assembly of native tailspike.
Collapse
Affiliation(s)
- Brenda L Danek
- Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716, USA
| | | |
Collapse
|
17
|
Danek BL, Robinson AS. P22 tailspike trimer assembly is governed by interchain redox associations. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1700:105-16. [PMID: 15210130 DOI: 10.1016/j.bbapap.2004.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2003] [Revised: 04/07/2004] [Accepted: 04/08/2004] [Indexed: 11/22/2022]
Abstract
Though disulfide bonds are absent from P22 tailspike protein in its native state, a disulfide-bonded trimeric intermediate has been identified in the tailspike folding and assembly pathway in vitro. The formation of disulfide bonds is critical to efficient assembly of native trimers as mutations at C-terminal cysteines reduce or inhibit trimer formation. We investigated the effect of different redox folding environments on tailspike formation to discover if simple changes in reducing potential would facilitate trimer formation. Expression of tailspike in trxB cell lines with more oxidizing cytoplasms led to lower trimer yields; however, observed assembly rates were unchanged. In vitro, the presence of any redox buffer decreased the overall yield compared to non-redox buffered controls; however, the greatest yields of the native trimer were obtained in reducing rather than oxidizing environments at pH 7. Slightly faster trimer formation rates were observed in the redox samples at pH 7, perhaps by accelerating the reduction of the disulfide-bonded protrimer to the native trimer. These rates and the effects of the redox system were found to depend greatly on the pH of the refolding reaction. Oxidized glutathione (GSSG) trapped a tailspike intermediate, likely as a mixed disulfide. This trapped intermediate was able to form native trimer upon addition of dithiothreitol (DTT), indicating that the trapped intermediate is on the assembly pathway, rather than the aggregation pathway. Thus, the presence of redox agents interfered with the ability of the tailspike monomers to associate, demonstrating that disulfide associations play an important role during the assembly of this cytoplasmic protein.
Collapse
Affiliation(s)
- B L Danek
- Department of Chemical Engineering, University of Delaware, Newark, DE 19716, USA
| | | |
Collapse
|
18
|
Chakshusmathi G, Mondal K, Lakshmi GS, Singh G, Roy A, Ch RB, Madhusudhanan S, Varadarajan R. Design of temperature-sensitive mutants solely from amino acid sequence. Proc Natl Acad Sci U S A 2004; 101:7925-30. [PMID: 15148363 PMCID: PMC419533 DOI: 10.1073/pnas.0402222101] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Indexed: 11/18/2022] Open
Abstract
Temperature-sensitive (Ts) mutants are a powerful tool with which to study gene function in vivo. Ts mutants are typically generated by random mutagenesis followed by laborious screening procedures. By using the Escherichia coli cytotoxin CcdB as a model system, simple procedures for generating Ts mutants at high frequency through site-directed mutagenesis were developed. Putative buried, hydrophobic residues are selected through analysis of the protein sequence. Residue burial is confirmed by ensuring that substitution of the residue by Asp leads to protein inactivation. At such sites, a Ts phenotype can typically be generated either by (i) substitution of two predicted, buried residues with the 18 remaining amino acids or (ii) introduction of Lys, Ser, Ala, and Trp at three to four predicted buried sites. By using these design strategies, 17 tight Ts mutants of CcdB were isolated at four predicted buried sites. The rules were further verified by making several Ts mutants of yeast Gal4 at residues 68, 69, and 70. No Ts mutants of either protein have been previously reported. Such Ts mutants of Gal4 can be used for conditional expression of a variety of genes by using the well characterized upstream-activating-sequence-Gal4 system.
Collapse
|
19
|
Lefebvre BG, Comolli NK, Gage MJ, Robinson AS. Pressure dissociation studies provide insight into oligomerization competence of temperature-sensitive folding mutants of P22 tailspike. Protein Sci 2004; 13:1538-46. [PMID: 15133163 PMCID: PMC2279998 DOI: 10.1110/ps.03579304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Several temperature-sensitive folding (tsf) mutants of the tailspike protein from bacteriophage P22 have been found to fold with lower efficiency than the wild-type sequence, even at lowered temperatures. Previous refolding studies initiated from the unfolded monomer have indicated that the tsf mutations decrease the rate of structured monomer formation. We demonstrate that pressure treatment of the tailspike aggregates provides a useful tool to explore the effects of tsf mutants on the assembly pathway of the P22 tailspike trimer. The effects of pressure on two different tsf mutants, G244R and E196K, were explored. Pressure treatment of both G244R and E196K aggregates produced a folded trimer. E196K forms almost no native trimer in in vitro refolding experiments, yet it forms a trimer following pressure in a manner similar to the native tailspike protein. In contrast, trimer formation from pressure-treated G244R aggregates was not rapid, despite the presence of a G244R dimer after pressure treatment. The center-of-mass shifts of the fluorescence spectra under pressure are nearly identical for both tsf aggregates, indicating that pressure generates similar intermediates. Taken together, these results suggest that E196K has a primary defect in formation of the beta-helix during monomer collapse, while G244R is primarily an assembly defect.
Collapse
Affiliation(s)
- Brian G Lefebvre
- Department of Chemical Engineering, University of Delaware, Newark, DE 19716, USA
| | | | | | | |
Collapse
|
20
|
Gage MJ, Robinson AS. C-terminal hydrophobic interactions play a critical role in oligomeric assembly of the P22 tailspike trimer. Protein Sci 2003; 12:2732-47. [PMID: 14627734 PMCID: PMC2366982 DOI: 10.1110/ps.03150303] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2003] [Revised: 09/08/2003] [Accepted: 09/08/2003] [Indexed: 10/26/2022]
Abstract
The tailspike protein from the bacteriophage P22 is a well characterized model system for folding and assembly of multimeric proteins. Folding intermediates from both the in vivo and in vitro pathways have been identified, and both the initial folding steps and the protrimer-to-trimer transition have been well studied. In contrast, there has been little experimental evidence to describe the assembly of the protrimer. Previous results indicated that the C terminus plays a critical role in the overall stability of the P22 tailspike protein. Here, we present evidence that the C terminus is also the critical assembly point for trimer assembly. Three truncations of the full-length tailspike protein, TSPDeltaN, TSPDeltaC, and TSPDeltaNC, were generated and tested for their ability to form mixed trimer species. TSPDeltaN forms mixed trimers with full-length P22 tailspike, but TSPDeltaC and TSPDeltaNC are incapable of forming similar mixed trimer species. In addition, mutations in the hydrophobic core of the C terminus were unable to form trimer in vivo. Finally, the hydrophobic-binding dye ANS inhibits the formation of trimer by inhibiting progression through the folding pathway. Taken together, these results suggest that hydrophobic interactions between C-terminal regions of P22 tailspike monomers play a critical role in the assembly of the P22 tailspike trimer.
Collapse
Affiliation(s)
- Matthew J Gage
- Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716, USA
| | | |
Collapse
|
21
|
Kreisberg JF, Betts SD, Haase-Pettingell C, King J. The interdigitated beta-helix domain of the P22 tailspike protein acts as a molecular clamp in trimer stabilization. Protein Sci 2002; 11:820-30. [PMID: 11910025 PMCID: PMC2373520 DOI: 10.1110/ps.3440102] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The P22 tailspike adhesin is an elongated thermostable trimer resistant to protease digestion and to denaturation in sodium dodecyl sulfate. Monomeric, dimeric, and protrimeric folding and assembly intermediates lack this stability and are thermolabile. In the native trimer, three right-handed parallel beta-helices (residues 143-540), pack side-by-side around the three-fold axis. After residue 540, these single chain beta-helices terminate and residues 541-567 of the three polypeptide chains wrap around each other to form a three-stranded interdigitated beta-helix. Three mutants located in this region -- G546D, R563Q, and A575T -- blocked formation of native tailspike trimers, and accumulated soluble forms of the mutant polypeptide chains within cells. The substitutions R563Q and A575T appeared to prevent stable association of partially folded monomers. G546D, in the interdigitated region of the chain, blocked tailspike folding at the transition from the partially-folded protrimer to the native trimer. The protrimer-like species accumulating in the G546D mutant melted out at 42 degrees C and was trypsin and SDS sensitive. The G546D defect was not corrected by introduction of global suppressor mutations, which correct kinetic defects in beta-helix folding. The simplest interpretation of these results is that the very high thermostability (T(m) = 88 degrees C), protease and detergent resistance of the native tailspike acquired in the protrimer-to-trimer transition, depends on the formation of the three-stranded interdigitated region. This interdigitated beta-helix appears to function as a molecular clamp insuring thermostable subunit association in the native trimer.
Collapse
Affiliation(s)
- Jason F Kreisberg
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
22
|
Randolph TW, Seefeldt M, Carpenter JF. High hydrostatic pressure as a tool to study protein aggregation and amyloidosis. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1595:224-34. [PMID: 11983398 DOI: 10.1016/s0167-4838(01)00346-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Aggregation of proteins is a serious problem, affecting both industrial production of proteins and human health. Despite recent advances in the theories and experimental techniques available to address understanding of protein aggregation processes, mechanisms of aggregate formation have proved challenging to study. This is in part because the typical irreversibility of protein aggregation processes at atmospheric conditions complicates analysis of their kinetics and thermodynamics. Because high hydrostatic pressures act to disfavor the hydrophobic and electrostatic interactions that cause protein aggregation, studies conducted under high hydrostatic pressures may allow protein aggregates to be formed reversibly, enabling thermodynamic and kinetic parameters to be measured in greater detail. Although application of high hydrostatic pressures to protein aggregation problems is rather recent, a growing literature, reviewed herein, suggests that high pressure may be a useful tool for both understanding protein aggregation and reversing it in industrial applications.
Collapse
Affiliation(s)
- Theodore W Randolph
- Department of Chemical Engineering, University of Colorado, Boulder, CO 80309, USA.
| | | | | |
Collapse
|
23
|
Aramli LA, Teschke CM. Alleviation of a defect in protein folding by increasing the rate of subunit assembly. J Biol Chem 2001; 276:25372-7. [PMID: 11304542 DOI: 10.1074/jbc.m101759200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Understanding the nature of protein grammar is critical because amino acid substitutions in some proteins cause misfolding and aggregation of the mutant protein resulting in a disease state. Amino acid substitutions in phage P22 coat protein, known as tsf (temperature-sensitive folding) mutations, cause folding defects that result in aggregation at high temperatures. We have isolated global su (suppressor) amino acid substitutions that alleviate the tsf phenotype in coat protein (Aramli, L. A., and Teschke, C. M. (1999) J. Biol. Chem. 274, 22217-22224). Unexpectedly, we found that a global su amino acid substitution in tsf coat proteins made aggregation worse and that the tsf phenotype was suppressed by increasing the rate of subunit assembly, thereby decreasing the concentration of aggregation-prone folding intermediates.
Collapse
Affiliation(s)
- L A Aramli
- University of Connecticut, Department of Molecular and Cell Biology, 75 N. Eagleville Road, Storrs, CT 06269-3125, USA
| | | |
Collapse
|
24
|
Clark PL, King J. A newly synthesized, ribosome-bound polypeptide chain adopts conformations dissimilar from early in vitro refolding intermediates. J Biol Chem 2001; 276:25411-20. [PMID: 11319217 DOI: 10.1074/jbc.m008490200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Little is known about the conformations of newly synthesized polypeptide chains as they emerge from the large ribosomal subunit, or how these conformations compare with those populated immediately after dilution of polypeptide chains out of denaturant in vitro. Both in vivo and in vitro, partially folded intermediates of the tailspike protein from Salmonella typhimurium phage P22 can be trapped in the cold. A subset of monoclonal antibodies raised against tailspike recognize partially folded intermediates, whereas other antibodies recognize only later intermediates and/or the native state. We have used a pair of monoclonal antibodies to probe the conformational features of full-length, newly synthesized tailspike chains recovered on ribosomes from phage-infected cells. The antibody that recognizes early intermediates in vitro also recognizes the ribosome-bound intermediates. Surprisingly, the antibody that did not recognize early in vitro intermediates did recognize ribosome-bound tailspike chains translated in vivo. Thus, the newly synthesized, ribosome-bound tailspike chains display structured epitopes not detected upon dilution of tailspike chains from denaturant. As opposed to the random ensemble first populated when polypeptide chains are diluted out of denaturant, folding in vivo from the ribosome may begin with polypeptide conformations already directed toward the productive folding and assembly pathway.
Collapse
Affiliation(s)
- P L Clark
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
25
|
Haase-Pettingell C, Betts S, Raso SW, Stuart L, Robinson A, King J. Role for cysteine residues in the in vivo folding and assembly of the phage P22 tailspike. Protein Sci 2001; 10:397-410. [PMID: 11266625 PMCID: PMC2373931 DOI: 10.1110/ps.34701] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The predominantly beta-sheet phage P22 tailspike adhesin contains eight reduced cysteines per 666 residue chain, which are buried and unreactive in the native trimer. In the pathway to the native trimer, both in vivo and in vitro transient interchain disulfide bonds are formed and reduced. This occurs in the protrimer, an intermediate in the formation of the interdigitated beta-sheets of the trimeric tailspike. Each of the eight cysteines was replaced with serine by site-specific mutagenesis of the cloned P22 tailspike gene and the mutant genes expressed in Escherichia coli. Although the yields of native-like Cys>Ser proteins varied, sufficient soluble trimeric forms of each of the eight mutants accumulated to permit purification. All eight single Cys>Ser mature proteins maintained the high thermostability of the wild type, as well as the wild-type biological activity in forming infectious virions. Thus, these cysteine thiols are not required for the stability or activity of the native state. When their in vivo folding and assembly kinetics were examined, six of the mutant substitutions--C267S, C287S, C458S, C613S, and C635S--were significantly impaired at higher temperatures. Four--C290S, C496, C613S, and C635--showed significantly impaired kinetics even at lower temperatures. The in vivo folding of the C613S/C635S double mutant was severely defective independent of temperature. Since the trimeric states of the single Cys>Ser substituted chains were as stable and active as wild type, the impairment of tailspike maturation presumably reflects problems in the in vivo folding or assembly pathways. The formation or reduction of the transient interchain disulfide bonds in the protrimer may be the locus of these kinetic functions.
Collapse
Affiliation(s)
- C Haase-Pettingell
- Department of Biology, Masschusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
26
|
Betts S, King J. There's a right way and a wrong way: in vivo and in vitro folding, misfolding and subunit assembly of the P22 tailspike. Structure 1999; 7:R131-9. [PMID: 10404587 DOI: 10.1016/s0969-2126(99)80078-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The in vivo and in vitro folding, assembly and misfolding of an elongated protein, the thermostable tailspike adhesin of phage P22, reveals important aspects of the sequence control of chain folding as well as its failure mode, inclusion body formation.
Collapse
Affiliation(s)
- S Betts
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
27
|
Abstract
Misfolding and misassembly of proteins are major problems in the biotechnology industry, in biochemical research, and in human disease. Here we describe a novel approach for reversing aggregation and increasing refolding by application of hydrostatic pressure. Using P22 tailspike protein as a model system, intermediates along the aggregation pathway were identified and quantitated by size-exclusion high-performance liquid chromatography (HPLC). Tailspike aggregates were subjected to hydrostatic pressures of 2.4 kbar (35,000 psi). This treatment dissociated the tailspike aggregates and resulted in increased formation of native trimers once pressure was released. Tailspike trimers refolded at these pressures were fully active for formation of infectious viral particles. This technique can facilitate conversion of aggregates to native proteins without addition of chaotropic agents, changes in buffer, or large-scale dilution of reagents required for traditional refolding methods. Our results also indicate that one or more intermediates at the junction between the folding and aggregation pathways is pressure sensitive. This finding supports the hypothesis that specific determinants of recognition exist for protein aggregation, and that these determinants are similar to those involved in folding to the native state. An increased understanding of this specificity should lead to improved refolding methods.
Collapse
Affiliation(s)
- D Foguel
- Departamento de Bioquímica Médica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
28
|
Greene B, King J. Folding and stability of mutant scaffolding proteins defective in P22 capsid assembly. J Biol Chem 1999; 274:16141-6. [PMID: 10347166 DOI: 10.1074/jbc.274.23.16141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteriophage P22 scaffolding subunits are elongated molecules that interact through their C termini with coat subunits to direct icosahedral capsid assembly. The soluble state of the subunit exhibits a partially folded intermediate during equilibrium unfolding experiments, whose C-terminal domain is unfolded (Greene, B., and King, J. (1999) J. Biol. Chem. 274, 16135-16140). Four mutant scaffolding proteins exhibiting temperature-sensitive defects in different stages of particle assembly were purified. The purified mutant proteins adopted a similar conformation to wild type, but all were destabilized with respect to wild type. Analysis of the thermal melting transitions showed that the mutants S242F and Y214W further destabilized the C-terminal domain, whereas substitutions near the N terminus either destabilized a different domain or affected interactions between domains. Two mutant proteins carried an additional cysteine residue, which formed disulfide cross-links but did not affect the denaturation transition. These mutants differed both from temperature-sensitive folding mutants found in other P22 structural proteins and from the thermolabile temperature-sensitive mutants described for T4 lysozyme. The results suggest that the defects in these mutants are due to destabilization of domains affecting the weak subunit-subunit interactions important in the assembly and function of the virus precursor shell.
Collapse
Affiliation(s)
- B Greene
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
29
|
Betts SD, King J. Cold rescue of the thermolabile tailspike intermediate at the junction between productive folding and off-pathway aggregation. Protein Sci 1998; 7:1516-23. [PMID: 9684883 PMCID: PMC2144048 DOI: 10.1002/pro.5560070704] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Off-pathway intermolecular interactions between partially folded polypeptide chains often compete with correct intramolecular interactions, resulting in self-association of folding intermediates into the inclusion body state. Intermediates for both productive folding and off-pathway aggregation of the parallel beta-coil tailspike trimer of phage P22 have been identified in vivo and in vitro using native gel electrophoresis in the cold. Aggregation of folding intermediates was suppressed when refolding was initiated and allowed to proceed for a short period at 0 degrees C prior to warming to 20 degrees C. Yields of refolded tailspike trimers exceeding 80% were obtained using this temperature-shift procedure, first described by Xie and Wetlaufer (1996, Protein Sci 5:517-523). We interpret this as due to stabilization of the thermolabile monomeric intermediate at the junction between productive folding and off-pathway aggregation. Partially folded monomers, a newly identified dimer, and the protrimer folding intermediates were populated in the cold. These species were electrophoretically distinguished from the multimeric intermediates populated on the aggregation pathway. The productive protrimer intermediate is disulfide bonded (Robinson AS, King J, 1997, Nat Struct Biol 4:450-455), while the multimeric aggregation intermediates are not disulfide bonded. The partially folded dimer appears to be a precursor to the disulfide-bonded protrimer. The results support a model in which the junctional partially folded monomeric intermediate acquires resistance to aggregation in the cold by folding further to a conformation that is activated for correct recognition and subunit assembly.
Collapse
Affiliation(s)
- S D Betts
- Department of Biology and The Biotechnology Process Engineering Center, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
30
|
Jensen PK, Lee CS, King JA. Temperature Effects on Refolding and Aggregation of a Large Multimeric Protein Using Capillary Zone Electrophoresis. Anal Chem 1998. [DOI: 10.1021/ac970884d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pamela K. Jensen
- Department of Chemistry and Ames Laboratory, USDOE, Iowa State University, Ames, Iowa 50011
| | - Cheng S. Lee
- Department of Chemistry and Ames Laboratory, USDOE, Iowa State University, Ames, Iowa 50011
| | - Jonathan A. King
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
31
|
Robinson AS, King J. Disulphide-bonded intermediate on the folding and assembly pathway of a non-disulphide bonded protein. NATURE STRUCTURAL BIOLOGY 1997; 4:450-5. [PMID: 9187652 DOI: 10.1038/nsb0697-450] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The trimeric parallel beta-coil P22 tailspike contains eight cysteines per chain, but lacks disulphide bonds in the native state, in both the crystalline and solution forms. However, cysteines in a folding intermediate are reactive with thiol blocking reagents, which prevent further productive folding both in vivo and in vitro. The in vivo refolding yield was independent of the availability of metal ions, but was sensitive to redox potential. Isolation by nondenaturing gel electrophoresis of the protrimer intermediate, a trimeric folding intermediate that precedes the fully folded trimer in the in vivo and in vitro pathways, revealed the presence of interchain disulphide bonds. Incubation of the isolated protrimer with reducing agents generated the native trimer. The formation of beta-sheets with interdigitated strands from different subunits in the native trimer may require the transient disulphide bonds for proper alignment. To our knowledge this is the first report of a disulphide bond present in a folding intermediate of a non-disulphide bonded protein.
Collapse
Affiliation(s)
- A S Robinson
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
32
|
|
33
|
Lee SC, Yu MH. Side-chain specificity at three temperature-sensitive folding mutation sites of P22 tailspike protein. Biochem Biophys Res Commun 1997; 233:857-62. [PMID: 9168948 DOI: 10.1006/bbrc.1997.6566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The phage P22 tailspike protein is one of the few proteins for which both in vivo and in vitro folding pathways have been thoroughly characterized. Many temperature-sensitive folding (tsf) mutations that cause the mutant tailspike polypeptides not to be folded at high restrictive temperatures have been identified. One-third of the tsf mutation sites are located in one domain called the dorsal fin domain (residues 197-259), which protrudes on the solvent-exposed side of the main beta helix. In the present study, we introduced various amino acid substitutions at three tsf mutation sites (residue numbers 235, 238, and 244) in this domain to elucidate the mechanism of these tsf mutations in detail. The side-chain specificity at these tsf sites, together with structural examination in the tertiary fold, strongly suggests that destabilization of folding intermediates by loss of specific interactions is likely to be the major cause of the tsf defect in the dorsal fin domain.
Collapse
Affiliation(s)
- S C Lee
- Division of Protein Engineering, Korea Research Institute of Bioscience and Biotechnology, KIST, Yusong, Taejon, Korea
| | | |
Collapse
|
34
|
Haase-Pettingell C, King J. Prevalence of temperature sensitive folding mutations in the parallel beta coil domain of the phage P22 tailspike endorhamnosidase. J Mol Biol 1997; 267:88-102. [PMID: 9096209 DOI: 10.1006/jmbi.1996.0841] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Temperature sensitive mutations fall into two general classes: tl mutations, which render the mature protein thermolabile, and tsf (temperature sensitive folding) mutations, which destabilize an intermediate in the folding pathway without altering the functions of the folded state. The molecular defects caused by tsf mutations have been intensively studied for the elongated tailspike endorhamnosidase of Salmonella phage P22. The tailspike, responsible for host cell recognition and attachment, contains a 13 strand parallel beta coil domain. A set of tsf mutants located in the beta coil domain have been shown to cause folding defects in the in vivo folding pathway for the tailspike. We report here additional data on 17 other temperature sensitive mutants which are in the beta coil domain. Using mutant proteins formed at low temperature, the essential functions of assembling on the phage head, and binding to the O-antigen lipopolysaccharide (LPS) receptor of Salmonella were examined at high temperatures. All of the mutant proteins once folded at permissive temperature, were functional at restrictive temperatures. When synthesized at restrictive temperature the mutant chains formed an early folding intermediate, but failed to reach the mature conformation, accumulating instead in the aggregated inclusion body state. Thus this set of mutants all have the temperature sensitive folding phenotype. The prevalence of tsf mutants in the parallel beta coil domain presumably reflects properties of its folding intermediates. The key property may be the tendency of the intermediate to associate off pathway to the kinetically trapped inclusion body state.
Collapse
|
35
|
Speed MA, Morshead T, Wang DI, King J. Conformation of P22 tailspike folding and aggregation intermediates probed by monoclonal antibodies. Protein Sci 1997; 6:99-108. [PMID: 9007981 PMCID: PMC2143526 DOI: 10.1002/pro.5560060111] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The partitioning of partially folded polypeptide chains between correctly folded native states and off-pathway inclusion bodies is a critical reaction in biotechnology. Multimeric partially folded intermediates, representing early stages of the aggregation pathway for the P22 tailspike protein, have been trapped in the cold and isolated by nondenaturing polyacrylamide gel electrophoresis (PAGE) (speed MA, Wang DIC, King J. 1995. Protein Sci 4:900-908). Monoclonal antibodies against tailspike chains discriminate between folding intermediates and native states (Friguet B, Djavadi-Ohaniance L, King J, Goldberg ME. 1994. J Biol Chem 269:15945-15949). Here we describe a nondenaturing Western blot procedure to probe the conformation of productive folding intermediates and off-pathway aggregation intermediates. The aggregation intermediates displayed epitopes in common with productive folding intermediates but were not recognized by antibodies against native epitopes. The nonnative epitope on the folding and aggregation intermediates was located on the partially folded N-terminus, indicating that the N-terminus remained accessible and nonnative in the aggregated state. Antibodies against native epitopes blocked folding, but the monoclonal directed against the N-terminal epitope did not, indicating that the conformation of the N-terminus is not a key determinant of the productive folding and chain association pathway.
Collapse
Affiliation(s)
- M A Speed
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | |
Collapse
|
36
|
Speed MA, Wang DI, King J. Specific aggregation of partially folded polypeptide chains: the molecular basis of inclusion body composition. Nat Biotechnol 1996; 14:1283-7. [PMID: 9631094 DOI: 10.1038/nbt1096-1283] [Citation(s) in RCA: 231] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During expression of many recombinant proteins, off-pathway association of partially folded intermediates into inclusion bodies competes with productive folding. A common assumption is that such aggregation reactions are nonspecific processes. The multimeric intermediates along the aggregation pathway have been identified for both the P22 tailspike and P22 coat protein. We show that for a mixture of proteins refolding in vitro, folding intermediates do not coaggregate with each other but only with themselves. This indicates that aggregation occurs by specific interaction of certain conformations of folding intermediates rather than by nonspecific coaggregation, providing a rationale for recovering relatively pure protein from the inclusion body state.
Collapse
Affiliation(s)
- M A Speed
- Biotechnology Process Engineering Center, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
37
|
Abstract
We simulated the structure of reversible protein aggregates as a function of protein surface characteristics, protein-protein interaction energies, and the entropic penalty accompanying the immobilization of protein in a solid phase. These simulations represent an extension of our previous work on kinetically irreversible protein aggregate structure and are based on an explicit accounting of the specific protein-protein interactions that occur within reversible aggregates and crystals. We considered protein monomers with a mixture of hydrophobic and hydrophilic surface regions suspended in a polar solvent; the energetic driving force for aggregation is provided by the burial of solvent-exposed hydrophobic surface area. We analyzed the physical properties of the generated aggregates, including density, protein-protein contact distributions, solvent accessible surface area, porosity, and order, and compared our results with the protein crystallization literature as well as with the kinetically irreversible case. The physical properties of reversible aggregates were consonant with those observed for the irreversible aggregates, although in general, reversible aggregates were more stable energetically and were more crystal-like in their order content than their irreversible counterparts. The reversible aggregates were less dense than the irreversible aggregates, indicating that the increased energetic stability is derived primarily from the optimality rather than the density of the packing in the solid phase. The extent of hydrophobic protein-protein contacts and solvent-exposed surface area within the aggregate phase depended on the aggregation pathway: reversible aggregates tended to have a greater proportion of hydrophobic-hydrophobic contacts and a smaller fraction of hydrophobic solvent-exposed surface area. Furthermore, the arrangement of hydrophobic patches on the protein surface played a major role in the distribution of protein contacts and solvent content. This was readily reflected in the order of the aggregates: the greater the contiguity of the hydrophobic patches on the monomer surface, the less ordered the aggregates became, despite the opportunities for rearrangement offered by a reversible pathway. These simulations have enhanced our understanding of the impact of protein structural motifs on aggregate properties and on the demarcation between aggregation and crystallization.
Collapse
Affiliation(s)
- S Y Patro
- Howard P. Isermann Department of Chemical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180-3590, USA
| | | |
Collapse
|
38
|
King J, Haase-Pettingell C, Robinson AS, Speed M, Mitraki A. Thermolabile folding intermediates: inclusion body precursors and chaperonin substrates. FASEB J 1996; 10:57-66. [PMID: 8566549 PMCID: PMC2040114 DOI: 10.1096/fasebj.10.1.8566549] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
An unexpected aspect of the expression of cloned genes is the frequent failure of newly synthesized polypeptide chains to reach their native state, accumulating instead as insoluble inclusion bodies. Amyloid deposits represent a related state associated with a variety of human diseases. The critical folding intermediates at the juncture of productive folding and the off-pathway aggregation reaction have been identified for the phage P22 tailspike and coat proteins. Though the parallel beta coil tailspike is thermostable, an early intracellular folding intermediate is thermolabile. As the temperature of intracellular folding is increased, this species partitions to inclusion bodies, a kinetic trap within the cell. The earliest intermediates along the in vitro aggregation pathway, sequential multimers of the thermolabile folding intermediates, have been directly identified by native gel electrophoresis. Temperature-sensitive folding (tsf) mutations identify sites in the beta coil domain, which direct the junctional intermediate down the productive pathway. Global suppressors of tsf mutants inhibit the pathway to inclusion bodies, rescuing the mutant chains. These mutants identify sites important for avoiding aggregation. Coat folding intermediates also partition to inclusion bodies as temperature is increased. Coat tsf mutants are suppressed by overexpression of the GroE chaperonin, indicating that the thermolabile intermediate is a physiological substrate for GroE. We suggest that many proteins are likely to have thermolabile intermediates in their intracellular folding pathways, which will be precursors to inclusion body formation at elevated temperatures and therefore substrates for heat shock chaperonins.
Collapse
Affiliation(s)
- J King
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | | | |
Collapse
|
39
|
Galisteo ML, Gordon CL, King J. Stability of wild-type and temperature-sensitive protein subunits of the phage P22 capsid. J Biol Chem 1995; 270:16595-601. [PMID: 7622466 DOI: 10.1074/jbc.270.28.16595] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Temperature-sensitive folding (tsf) mutants of the phage P22 coat protein prevent newly synthesized polypeptide chains from reaching the conformation competent for capsid assembly in cells, and can be rescued by the GroEL chaperone (Gordon, C., Sather, S., Casjens, S., and King, J. (1994) J. Biol. Chem. 269, 27941-27951). Here we investigate the stabilities of wild-type and four tsf mutant unpolymerized subunits. Wild-type coat protein subunits denatured at 40 degrees C, with a calorimetric enthalpy of approximately 600 kJ/mol. Comparison with coat protein denaturation within the shell lattice (Tm = 87 degrees C, delta H approximately 1700 kJ/mol) (Galisteo, M.L., and King, J. (1993) Biophys. J. 65, 227-235) indicates that protein-protein interactions within the capsid provide enormous stabilization. The melting temperatures of the subunits carrying tsf substitutions were similar to wild-type. At low temperatures, the tsf mutants, but not the wild-type, formed non-covalent dimers, which were dissociated at temperatures above 30 degrees C. Spectroscopic and calorimetric studies indicated that the mutant proteins have reduced amounts of ordered structure at low temperature, as compared to the wild-type protein. Although complex, the in vitro phenotypes are consistent with the in vivo finding that the mutants are defective in folding, rather than subunit stability. These results suggest a role for incompletely folded subunits as precursors in viral capsid assembly, providing a mechanism of reaching multiple conformations in the polymerized form.
Collapse
Affiliation(s)
- M L Galisteo
- Departamento de Química Física, Facultad de Ciencias, Universidad de Granada, Spain
| | | | | |
Collapse
|
40
|
Teschke CM, King J. In vitro folding of phage P22 coat protein with amino acid substitutions that confer in vivo temperature sensitivity. Biochemistry 1995; 34:6815-26. [PMID: 7756313 DOI: 10.1021/bi00020a028] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The coat protein that forms the icosahedral shell of phage P22 can be efficiently refolded in vitro [Teschke, C. M., & King, J. (1993) Biochemistry 32, 10839-10847]. Temperature-sensitive mutants of coat protein interfere with folding or assembly in vivo [Gordon, C. L., & King, J. (1993) J. Biol. Chem. 268, 9358-9368]. The folding of a set of phage P22 coat proteins carrying the temperature-sensitive for folding (tsf) substitutions W48Q, A108V, G232D, T294I, and F353L has been investigated in vitro. Denatured tsf polypeptides were able to fold into soluble species with high efficiency. The efficiency of folding of the wild-type (WT) and mutant polypeptides at different temperatures showed sharp transitions where aggregation predominated over folding. The refolding of the tsf mutant proteins did not show an obvious thermal defect in yield. The tsf polypeptides folded through the long-lived kinetic intermediate previously described for WT coat protein with similar relaxation times. The folding kinetics of the tsf polypeptides in bisANS, a hydrophobic fluorescent dye, were also similar to those of the WT protein. However, the folded tsf proteins showed decreased secondary structure compared to WT coat protein. Analysis of the folded state by native gel electrophoresis revealed that the tsf coat proteins folded into dimers and trimers, not monomers. The dimer and trimer species were incompetent for assembly. Once formed, dimers and trimers showed no propensity toward aggregation. The folding pathway of the mutant polypeptides must be quite similar to the WT pathway, but at some step inappropriate intersubunit interactions occur due to the amino acid substitutions, trapping the subunits from assembly.
Collapse
Affiliation(s)
- C M Teschke
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
41
|
Speed MA, Wang DI, King J. Multimeric intermediates in the pathway to the aggregated inclusion body state for P22 tailspike polypeptide chains. Protein Sci 1995; 4:900-8. [PMID: 7663345 PMCID: PMC2143126 DOI: 10.1002/pro.5560040509] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The failure of newly synthesized polypeptide chains to reach the native conformation due to their accumulation as inclusion bodies is a serious problem in biotechnology. The critical intermediate at the junction between the productive folding and the inclusion body pathway has been previously identified for the P22 tailspike endorhamnosidase. We have been able to trap subsequent intermediates in the in vitro pathway to the aggregated inclusion body state. Nondenaturing gel electrophoresis identified a sequential series of multimeric intermediates in the aggregation pathway. These represent discrete species formed from noncovalent association of partially folded intermediates rather than aggregation of native-like trimeric species. Monomer, dimer, trimer, tetramer, pentamer, and hexamer states of the partially folded species were populated in the initial stages of the aggregation reaction. This methodology of isolating early multimers along the aggregation pathway was applicable to other proteins, such as the P22 coat protein and carbonic anhydrase II.
Collapse
Affiliation(s)
- M A Speed
- Biotechnology Process Engineering Center, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
42
|
Klein J, Dhurjati P. Protein aggregation kinetics in an Escherichia coli strain overexpressing a Salmonella typhimurium CheY mutant gene. Appl Environ Microbiol 1995; 61:1220-5. [PMID: 7747944 PMCID: PMC167376 DOI: 10.1128/aem.61.4.1220-1225.1995] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The tendency of recombinant protein in bacteria to partition into soluble and insoluble forms is attributed, in general, to a kinetic competition between protein folding and aggregation. However, little experimental work has actually been performed in vivo on the kinetics and mechanisms of protein folding and aggregation. Results are presented here from radiolabeling experiments which monitored the kinetics of recombinant protein aggregation in actively growing cultures. The strain used was an Escherichia coli strain overexpressing a Salmonella typhimurium CheY mutant gene. The rate of CheY aggregation was found to be time dependent in that the tendency of CheY to aggregate was greater for newly translated molecules, i.e., those translated within the previous several minutes, than for molecules translated less recently. CheY protein molecules that were translated less recently continued to aggregate for several hours but at a lower rate. The movement of soluble CheY to the insoluble form was enhanced at elevated growth temperatures and inhibited by the presence of chloramphenicol. The latter observation suggests that ongoing translation facilitates the movement of soluble CheY to the insoluble form. The implications of these results for the mechanism of protein aggregation in vivo, i.e., inclusion body formation, are discussed.
Collapse
Affiliation(s)
- J Klein
- Department of Chemical Engineering, University of Delaware, Newark 19716, USA
| | | |
Collapse
|
43
|
Affiliation(s)
- O B Ptitsyn
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| |
Collapse
|
44
|
Abstract
The crystal structure of bacteriophage P22 tailspike protein reveals a striking fold with a distinctive, fish-like appearance, and helps explain many of the properties of this unusual molecule and its folding pathway.
Collapse
Affiliation(s)
- D P Goldenberg
- Department of Biology, University of Utah, Salt Lake City 84112
| | | |
Collapse
|
45
|
Selective in vivo rescue by GroEL/ES of thermolabile folding intermediates to phage P22 structural proteins. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46878-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
46
|
Sather SK, King J. Intracellular trapping of a cytoplasmic folding intermediate of the phage P22 tailspike using iodoacetamide. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47242-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
47
|
In vitro and ribosome-bound folding intermediates of P22 tailspike protein detected with monoclonal antibodies. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)40772-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
48
|
Sinclair JF, Ziegler MM, Baldwin TO. Kinetic partitioning during protein folding yields multiple native states. NATURE STRUCTURAL BIOLOGY 1994; 1:320-6. [PMID: 7664038 DOI: 10.1038/nsb0594-320] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The prevailing view in the field of protein folding holds that the native state is the most stable structure possible. A corollary of this thermodynamic hypothesis is that the native state is in equilibrium with all other conformations of the protein. We have found an example of a protein that may exist in two different states, both of which may be regarded as 'native', but which cannot equilibrate on a timescale that is biologically meaningful. We propose that the active conformation of this protein is at only one of several energy minima, and that during the process of refolding in vitro--and, we assume, folding in vivo--the choice of which state the polypeptide finally attains is determined by kinetic partitioning between folding pathways.
Collapse
Affiliation(s)
- J F Sinclair
- Center for Macromolecular Design, Texas A&M University, College Station 77843-2128, USA
| | | | | |
Collapse
|
49
|
Gordon CL, King J. Genetic properties of temperature-sensitive folding mutants of the coat protein of phage P22. Genetics 1994; 136:427-38. [PMID: 8150274 PMCID: PMC1205798 DOI: 10.1093/genetics/136.2.427] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Temperature-sensitive mutations fall into two general classes: those generating thermolabile proteins; and those generating defects in protein synthesis, folding or assembly. Temperature-sensitive mutations at 17 sites in the gene for the coat protein of Phage P22 are of the latter class, preventing the productive folding of the polypeptide chain at restrictive temperature. We show here that, though the coat subunits interact intimately to form the viral shell, these temperature-sensitive folding (TSF) mutations were all recessive to wild type. The mutant polypeptide chains were not rescued by the presence of wild-type polypeptide chains. Missense substitutions in multimeric proteins frequently exhibit intragenic complementation; however, all pairs of coat protein TSF mutants tested failed to complement. The recessive phenotypes, absence of rescue and absence of intragenic complementation are all accounted for by the TSF defect, in which destabilization of a folding intermediate at restrictive temperature prevents the mutant chain from reaching the conformation required for subunit/subunit recognition. We suggest that absence of intragenic complementation should be a general property of TSF mutations in genes encoding multimeric proteins. The spectra of new loci identified by isolating second-site suppressors and synthetic lethals of temperature sensitive mutants will also differ depending on the nature of the defect. In the case of TSF mutations, where folding intermediates are defective rather than the native molecule, the spectra of other genes identified should shift from those whose products interact with the native molecule to those whose products influence the folding process.
Collapse
Affiliation(s)
- C L Gordon
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
50
|
Villafane R, Fleming A, Haase-Pettingell C. Isolation of suppressors of temperature-sensitive folding mutations. J Bacteriol 1994; 176:137-42. [PMID: 8282689 PMCID: PMC205024 DOI: 10.1128/jb.176.1.137-142.1994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mutations in the tailspike gene (gene 9) of Salmonella typhimurium phage P22 have been used to identify amino acid interactions during the folding of a polypeptide chain. Since temperature-sensitive folding (tsf) mutations cause folding defects in the P22 tailspike polypeptide chain, it is likely that mutants derived from these and correcting the original tsf defects (second-site intragenic suppressors) identify interactions during the folding pathway. We report the isolation and identification of second-site revertants to tsf mutants.
Collapse
Affiliation(s)
- R Villafane
- Department of Microbiology, University of Tennessee, Knoxville 37996
| | | | | |
Collapse
|