1
|
Safeguarding DNA Replication: A Golden Touch of MiDAS and Other Mechanisms. Int J Mol Sci 2022; 23:ijms231911331. [PMID: 36232633 PMCID: PMC9570362 DOI: 10.3390/ijms231911331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
DNA replication is a tightly regulated fundamental process allowing the correct duplication and transfer of the genetic information from the parental cell to the progeny. It involves the coordinated assembly of several proteins and protein complexes resulting in replication fork licensing, firing and progression. However, the DNA replication pathway is strewn with hurdles that affect replication fork progression during S phase. As a result, cells have adapted several mechanisms ensuring replication completion before entry into mitosis and segregating chromosomes with minimal, if any, abnormalities. In this review, we describe the possible obstacles that a replication fork might encounter and how the cell manages to protect DNA replication from S to the next G1.
Collapse
|
2
|
Harve KS, Lareu R, Rajagopalan R, Raghunath M. Understanding how the crowded interior of cells stabilizes DNA/DNA and DNA/RNA hybrids-in silico predictions and in vitro evidence. Nucleic Acids Res 2009; 38:172-81. [PMID: 19854935 PMCID: PMC2800234 DOI: 10.1093/nar/gkp884] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Amplification of DNA in vivo occurs in intracellular environments characterized by macromolecular crowding (MMC). In vitro Polymerase-chain-reaction (PCR), however, is non-crowded, requires thermal cycling for melting of DNA strands, primer-template hybridization and enzymatic primer-extension. The temperature-optima for primer-annealing and extension are strikingly disparate which predicts primers to dissociate from template during extension thereby compromising PCR efficiency. We hypothesized that MMC is not only important for the extension phase in vivo but also during PCR by stabilizing nucleotide hybrids. Novel atomistic Molecular Dynamics simulations elucidated that MMC stabilizes hydrogen-bonding between complementary nucleotides. Real-time PCR under MMC confirmed that melting-temperatures of complementary DNA-DNA and DNA-RNA hybrids increased by up to 8 degrees C with high specificity and high duplex-preservation after extension (71% versus 37% non-crowded). MMC enhanced DNA hybrid-helicity, and drove specificity of duplex formation preferring matching versus mismatched sequences, including hair-pin-forming DNA- single-strands.
Collapse
Affiliation(s)
- Karthik S Harve
- Division of Bioengineering, Faculty of Engineering, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
3
|
Butler MM, Lamarr WA, Foster KA, Barnes MH, Skow DJ, Lyden PT, Kustigian LM, Zhi C, Brown NC, Wright GE, Bowlin TL. Antibacterial activity and mechanism of action of a novel anilinouracil-fluoroquinolone hybrid compound. Antimicrob Agents Chemother 2006; 51:119-27. [PMID: 17074800 PMCID: PMC1797695 DOI: 10.1128/aac.01311-05] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The anilinouracils (AUs) such as 6-(3-ethyl-4-methylanilino)uracil (EMAU) are a novel class of gram-positive, selective, bactericidal antibacterials which inhibit pol IIIC, the gram-positive-specific replicative DNA polymerase. We have linked various fluoroquinolones (FQs) to the N-3 position of EMAU to generate a variety of AU-FQ "hybrids" offering the potential for targeting two distinct steps in DNA replication. In this study, the properties of a hybrid, "251D," were compared with those of representative AUs and FQs in a variety of in vitro assays, including pol IIIC and topoisomerase/gyrase enzyme assays, antibacterial, bactericidal, and mammalian cytotoxicity assays. Compound 251D potently inhibited pol IIIC and topoisomerase/gyrase, displayed gram-positive antibacterial potency at least 15 times that of the corresponding AU compound, and as expected, acted selectively on bacterial DNA synthesis. Compound 251D was active against a broad panel of antibiotic-resistant gram-positive pathogens as well as several gram-negative organisms and was also active against both AU- and FQ-resistant gram-positive organisms, demonstrating its capacity for attacking both of its potential targets in the bacterium. 251D also was bactericidal for gram-positive organisms and lacked toxicity in vitro. Although we obtained strains of Staphylococcus aureus resistant to the individual parent compounds, spontaneous resistance to 251D was not observed. We obtained 251D resistance in multiple-passage experiments, but resistance developed at a pace comparable to those for the parent compounds. This class of AU-FQ hybrids provides a promising new pharmacophore with an unusual dual mechanism of action and potent activity against antibiotic-sensitive and -resistant gram-positive pathogens.
Collapse
|
4
|
Hermann A, Goyal R, Jeltsch A. The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. J Biol Chem 2004; 279:48350-9. [PMID: 15339928 DOI: 10.1074/jbc.m403427200] [Citation(s) in RCA: 383] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In the cell, Dnmt1 is the major enzyme in maintenance of the pattern of DNA methylation after DNA replication. Evidence suggests that the protein is located at the replication fork, where it could directly modify nascent DNA immediately after replication. To elucidate the potential mechanism of this process, we investigate the processivity of DNA methylation and accuracy of copying an existing pattern of methylation in this study using purified Dnmt1 and hemimethylated substrate DNA. We demonstrate that Dnmt1 methylates a hemimethylated 958-mer substrate in a highly processive reaction. Fully methylated and unmethylated CG sites do not inhibit processive methylation of the DNA. Extending previous work, we show that unmethylated sites embedded in a hemimethylated context are modified at an approximately 24-fold reduced rate, which demonstrates that the enzyme accurately copies existing patterns of methylation. Completely unmodified DNA is methylated even more slowly due to an allosteric activation of Dnmt1 by methylcytosine-containing DNA. Interestingly, Dnmt1 is not able to methylate hemimethylated CG sites on different strands of the DNA in a processive manner, indicating that Dnmt1 keeps its orientation with respect to the DNA while methylating the CG sites on one strand of the DNA.
Collapse
Affiliation(s)
- Andrea Hermann
- Institut für Biochemie, FB 08, Heinrich-Buff-Ring 58, Justus-Liebig-Universität Giessen, 35392 Giessen, Germany
| | | | | |
Collapse
|
5
|
Melle C, Nasheuer HP. Physical and functional interactions of the tumor suppressor protein p53 and DNA polymerase alpha-primase. Nucleic Acids Res 2002; 30:1493-9. [PMID: 11917009 PMCID: PMC101832 DOI: 10.1093/nar/30.7.1493] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The wild-type form of p53 contains an intrinsic 3'-5'-exonuclease activity. As p53 forms a complex with DNA polymerase alpha-primase (pol-prim) in vivo this finding suggests that p53 might cooperate with pol-prim to stabilize the genetic information of living cells. To test this hypothesis, exonuclease-free DNA pol-prim was expressed alone or together with p53 for purification. Pol-prim formed a complex with p53, which was purified by ion exchange and immunoaffinity chromatography from baculovirus-infected insect cells. The p53-containing pol-prim fractions removed a 3'-unpaired nucleotide with a 1.5-2-fold higher rate than a paired nucleotide, whereas the four subunit pol-prim did not have any exonuclase activity. Therefore, only p53/pol-prim was able to elongate a primer-template that contained a 3'-unpaired primer end in vitro. To achieve this, the 3'-5'-exonuclease activity of p53 excised the unpaired nucleotide at the 3'-end of the primer and created a paired 3'-end, which pol-prim was able to elongate. The exonuclease activity of p53 as well as the elongation of a primer with a mispaired 3'-end was inhibited specifically by the anti-p53 monoclonal antibodies PAb240 and PAb421.
Collapse
Affiliation(s)
- Christian Melle
- Institut für Molekulare Biotechnologie e.V., Abteilung Biochemie, Beutenbergstrasse 11, D-07745 Jena, Germany
| | | |
Collapse
|
6
|
Abstract
Several molecular forms of DNA polymerases have been identified in eukaryotic cells. Although three DNA polymerases alpha, delta, and epsilon, have been well studied and indicated to be involved in nuclear DNA replication process, it remains unclear how this hetero-polymerase system might have arisen. Here I wish to consider its past and future, viewed in the context of molecular evolution. Comparative analysis has revealed some nucleotides and/or amino acids to be conserved in DNA polymerase delta, in polymerase domains III and IV, which have disappeared in DNA polymerase alpha. Furthermore, the codon usage for serine residues in conserved domains of DNA polymerase alpha varies and is not as conservative as for DNA polymerase delta. Recently and in the present study, I have reported that DNA polymerase delta could substitute for the function of DNA polymerase alpha in vitro, and proposed the hypothesis that eukaryotic DNA polymerase alpha arose due to symbiotic contacts. This 'exogenous' polymerase would be expected to be excluded from the eukaryotic DNA replication system, and my analysis in the present study suggests it is about to degenerate.
Collapse
Affiliation(s)
- Masaharu Takemura
- Laboratory of Cancer Cell Biology, Research Institute for Disease Mechanism and Control, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya, Aichi 466-8550, Japan.
| |
Collapse
|
7
|
Mossi R, Ferrari E, Hübscher U. DNA ligase I selectively affects DNA synthesis by DNA polymerases delta and epsilon suggesting differential functions in DNA replication and repair. J Biol Chem 1998; 273:14322-30. [PMID: 9603940 DOI: 10.1074/jbc.273.23.14322] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The joining of single-stranded breaks in double-stranded DNA is an essential step in many important processes such as DNA replication, DNA repair, and genetic recombination. Several data implicate a role for DNA ligase I in DNA replication, probably coordinated by the action of other enzymes and proteins. Since both DNA polymerases delta and epsilon show multiple functions in different DNA transactions, we investigated the effect of DNA ligase I on various DNA synthesis events catalyzed by these two essential DNA polymerases. DNA ligase I inhibited replication factor C-independent DNA synthesis by polymerase delta. Our results suggest that the inhibition may be due to DNA ligase I interaction with proliferating cell nuclear antigen (PCNA) and not to a direct interaction with the DNA polymerase delta itself. Strand displacement activity by DNA polymerase delta was also affected by DNA ligase I. The DNA polymerase delta holoenzyme (composed of DNA polymerase delta, PCNA, and replication factor C) was inhibited in the same way as the DNA polymerase delta core, strengthening the hypothesis of a PCNA interaction. Contrary to DNA polymerase delta, DNA synthesis by DNA polymerase epsilon was stimulated by DNA ligase I in a PCNA-dependent manner. We conclude that DNA ligase I displays different influences on the two multipotent DNA polymerases delta and epsilon through PCNA. This might be of importance in the selective involvement in DNA transactions such as DNA replication and various mechanisms of DNA repair.
Collapse
Affiliation(s)
- R Mossi
- Institute of Veterinary Biochemistry, University of Zürich-Irchel, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
8
|
Taguchi T, Toda T, Fukuda M, Ohashi M. Effect of a 3'-->5' exonuclease with a proofreading function on the fidelity of error-prone DNA polymerase alpha from regenerating liver of aged rats. Mech Ageing Dev 1998; 100:1-16. [PMID: 9509390 DOI: 10.1016/s0047-6374(97)00114-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A nuclease that releases noncomplementary nucleotides from the 3'-end of DNA was isolated and highly purified from rat liver extract. The d(T9-C) priming activities for DNA synthesis in vitro by DNA polymerases alpha and beta were recovered by the addition of this enzyme, which itself does not contain a DNA polymerase activity. This nuclease hydrolysed nucleotides from the 3'-end, but did not remove [32P]-labeled nucleotides from the 5'-terminus of specifically labeled DNA. Also, the reaction products released from the 3'-end of DNA were all mononucleotides. These results indicate that the exonuclease is a 3'-->5' exonuclease with properties the same as those of DNase VII from human placenta. Rat DNase VII requires 4 mM MgCl2 or 0.125 mM MnCl2 for maximum activity, and shows a pH optimum of 7.5. These optimal conditions are similar to those of DNA polymerases, and indicate that both rat DNase VII and DNA polymerases are able to act under same conditions. Non-complementary nucleotide incorporation by DNA polymerase alpha from aged rat has been observed during in vitro DNA synthesis on poly dA-dT10. The amount of this mis-incorporation is decreased by the coexistence of the 3'-->5' exonuclease, but not all errors are edited out. Thus, this rat DNase VII is suggested to play an important role in proofreading during DNA synthesis.
Collapse
Affiliation(s)
- T Taguchi
- Department of Molecular Biology, Tokyo Metropolitan Institute of Gerontology, Japan
| | | | | | | |
Collapse
|
9
|
Tuteja N, Ochem A, Taneja P, Tuteja R, Skopác D, Falaschi A. Purification and properties of human DNA helicase VI. Nucleic Acids Res 1995; 23:2457-63. [PMID: 7543199 PMCID: PMC307051 DOI: 10.1093/nar/23.13.2457] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A novel ATP-dependent DNA unwinding enzyme, called human DNA helicase VI (HDH VI), was purified to apparent homogeneity from HeLa cells and characterized. From 327 g of cultured cells, 0.44 mg of pure enzyme was recovered, free of DNA polymerase, ligase, topoisomerase, nicking and nuclease activities. The enzyme behaves as a monomer having an M(r) of 128 kDa, whether determined with SDS-PAGE, or in native conditions. Photoaffinity labelling with [alpha-32P]ATP labelled the 128 kDa protein. Only ATP or dATP hydrolysis supports the unwinding activity for which a divalent cation (Mg2+ > Mn2+) is required. HDH VI unwinds exclusively DNA duplexes with an annealed portion < 32 bp and prefers a replication fork-like structure of the substrate. It cannot unwind blunt-end duplexes and is inactive also on DNA-RNA or RNA-RNA hybrids. HDH VI unwinds DNA unidirectionally by moving in the 3' to 5' direction along the bound strand.
Collapse
Affiliation(s)
- N Tuteja
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Bialek G, Grosse F. An error-correcting proofreading exonuclease-polymerase that copurifies with DNA-polymerase-alpha-primase. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53421-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
11
|
Thömmes P, Fett R, Schray B, Burkhart R, Barnes M, Kennedy C, Brown NC, Knippers R. Properties of the nuclear P1 protein, a mammalian homologue of the yeast Mcm3 replication protein. Nucleic Acids Res 1992; 20:1069-74. [PMID: 1549468 PMCID: PMC312092 DOI: 10.1093/nar/20.5.1069] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Polyclonal antibodies were raised against a multiprotein 'holoenzyme' form of calf thymus DNA polymerase alpha-primase and used to probe a human cDNA-protein expression library constructed in the lambda gt11 vector. The probe identified a series of cDNA clones derived from a 3.2 kb mRNA which encodes a novel 105 kDa polypeptide, the P1 protein. In intact cells, the P1 protein was specifically associated with the nucleus, and in cell extracts, it was associated with complex forms of DNA polymerase alpha-primase. The synthesis of human P1-specific mRNA was stimulated upon addition of fresh serum to growth-arrested cells, and RNA blot analyses with the human P1-cDNA probe indicated that P1 is encoded by a strictly conserved mammalian gene. The amino acid sequence deduced from a 240-codon open reading frame resident in the largest human P1-cDNA (0.84 kb) displayed greater than 96% identity with that deduced from the equivalent segment of a 795-codon open reading frame of a larger mouse P1-cDNA (2.8 kb). Throughout its length, the primary structure of mammalian P1 displayed strong homology with that of Mcm3, a 125 kDa yeast protein thought to be involved in the initiation of DNA replication (Gibson et al. 1990. Mol. Cell. Biol. 10: 5707-5720). The P1-Mcm3 homology, the strong conservation of P1 among mammals, its nuclear localization, and its association with the replication-specific DNA polymerase alpha strongly suggest an important role of the P1 protein in the replication of mammalian DNA.
Collapse
Affiliation(s)
- P Thömmes
- Division of Biology, Universität Konstanz, FRG
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Katsura H, Taguchi T, Kida K. Alterations in DNA Synthesis and Cellular Constituents in Mouse Lung following Bleomycin Injections. Am J Respir Cell Mol Biol 1992; 6:190-6. [PMID: 1371689 DOI: 10.1165/ajrcmb/6.2.190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Changes in the DNA synthesis and cellular constituents of mouse lung following repeated bleomycin (BLM) injections were studied. ICR mice were administered BLM subdermally for 10 days. Wet lung weight was increased 1.36 times on day 5 after the final administration compared with control mice receiving an identical volume of saline only for 10 days. The total number of cells in the bronchoalveolar lavage fluid of the BLM group reached a maximum on day 14, and histologic investigation of the lungs revealed marked cellular infiltrations. The labeling index obtained by the antibromodeoxyuridine monoclonal antibody method for cells was increased from days 5 to 14 in the BLM group. By day 28, these inflammatory changes had subsided and fibrotic remodeling had occurred. DNA polymerase activity in the lung tissue reached its maximal level on day 5 and remained unchanged until day 14. This phenomenon occurred in parallel with increases in DNA content and synthesis. During this period, an increase in DNA polymerase-beta activity and new induction of DNA polymerase-alpha activity were observed by phosphocellulose column chromatography. From these observations, it is concluded that: (1) repeated injections of BLM cause DNA injury in lung cells; (2) there is a subsequent increase in the DNA repair function as supported by the finding of an increase in DNA polymerase-beta activity; and (3) these lead further to cell proliferation as supported by the increase in both DNA polymerase-alpha activity and DNA content. Thus, a close relationship between morphologic changes and altered DNA synthesis was observed in the lungs of mice after BLM injections.
Collapse
Affiliation(s)
- H Katsura
- Pulmonary Division, Tokyo Metropolitan Geriatric Hospital, Japan
| | | | | |
Collapse
|
13
|
Abstract
The past decade has witnessed an exciting evolution in our understanding of eukaryotic DNA replication at the molecular level. Progress has been particularly rapid within the last few years due to the convergence of research on a variety of cell types, from yeast to human, encompassing disciplines ranging from clinical immunology to the molecular biology of viruses. New eukaryotic DNA replicases and accessory proteins have been purified and characterized, and some have been cloned and sequenced. In vitro systems for the replication of viral DNA have been developed, allowing the identification and purification of several mammalian replication proteins. In this review we focus on DNA polymerases alpha and delta and the polymerase accessory proteins, their physical and functional properties, as well as their roles in eukaryotic DNA replication.
Collapse
Affiliation(s)
- A G So
- Department of Medicine, University of Miami, Florida
| | | |
Collapse
|
14
|
Hafkemeyer P, Ferrari E, Brecher J, Hübscher U. The p15 carboxyl-terminal proteolysis product of the human immunodeficiency virus type 1 reverse transcriptase p66 has DNA polymerase activity. Proc Natl Acad Sci U S A 1991; 88:5262-66. [PMID: 1711222 PMCID: PMC51852 DOI: 10.1073/pnas.88.12.5262] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The reverse transcriptase of human immunodeficiency virus type 1 is a heterodimeric protein consisting of two polypeptides with masses of 66 and 51 kDa and has, as a second enzymatic activity, RNase H activity. The 66-kDa polypeptide can be cleaved by the virus-encoded protease to yield polypeptides of 51 and 15 kDa. The latter has been characterized as possessing RNase H activity [Hansen, J., Schultze, T., Mellert, W. & Moelling, K. (1988) EMBO J. 7, 239-243]. We have purified simultaneously the heterodimeric reverse transcriptase/RNase H containing the 66/51-kDa polypeptides and the 15-kDa RNase H from Escherichia coli containing the expression vector pJS 3.7 by a procedure including chromatography on DEAE-cellulose, phosphocellulose, and heparin-Sepharose. Two RNase H and reverse transcriptase peaks were separated on phosphocellulose, one coinciding with the heterodimeric protein and the other with the 15-kDa protein. On the basis of the following findings it appears that the 15-kDa polypeptide has both RNase H and reverse transcriptase activities: (i) it copurified with both activities; (ii) it functioned as a reverse transcriptase in an in situ assay after SDS/polyacrylamide gel electrophoresis; (iii) polyclonal antibodies raised against the 66-kDa polypeptide reacted in immunoblots exclusively with a 15-kDa polypeptide, reacted in immunoblots exclusively with a 15-kDa polypeptide, while no immunoreactive bands in the range of 51-66 kDa were seen in the 15-kDa polypeptide preparation; (iv) the p15 and the p66/51 reverse transcriptase could be quantitatively pelleted in an enzymatically active form only when antibodies specific for the p66 carboxyl terminus were used; and (v) the p15 protein had bona fide properties of a reverse transcriptase and could enzymatically synthesize a high molecular weight, alkali-resistant product. The two reverse transcriptases appear to have different behaviors on various template/primer systems tested. Conceivably different forms of human immunodeficiency virus type 1 reverse transcriptases might be used in individual steps of (+)- and (-)-strand replication.
Collapse
Affiliation(s)
- P Hafkemeyer
- Department of Pharmacology and Biochemistry, University of Zürich-Irchel, Switzerland
| | | | | | | |
Collapse
|
15
|
Biochemical and functional comparison of DNA polymerases alpha, delta, and epsilon from calf thymus. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)99242-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
16
|
Thömmes P, Hübscher U. Eukaryotic DNA replication. Enzymes and proteins acting at the fork. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 194:699-712. [PMID: 2269294 DOI: 10.1111/j.1432-1033.1990.tb19460.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A complex network of interacting proteins and enzymes is required for DNA replication. Much of our present understanding is derived from studies of the bacterium Escherichia coli and its bacteriophages T4 and T7. These results served as a guideline for the search and the purification of analogous proteins in eukaryotes. model systems for replication, such as the simian virus 40 DNA, lead the way. Generally, DNA replication follows a multistep enzymatic pathway. Separation of the double-helical DNA is performed by DNA helicases. Synthesis of the two daughter strands is conducted by two different DNA polymerases: the leading strand is replicated continuously by DNA polymerase delta and the lagging strand discontinuously in small pieces by DNA polymerase alpha. The latter is complexed to DNA primase, an enzyme in charge of frequent RNA primer syntheses on the lagging strand. Both DNA polymerases require several auxiliary proteins. They appear to make the DNA polymerases processive and to coordinate their functional tasks at the replication fork. 3'----5'-exonuclease, mostly part of the DNA polymerase delta polypeptide, can perform proof-reading by excising incorrectly base-paired nucleotides. The short DNA pieces of the lagging strand, called Okazaki fragments, are processed to a long DNA chain by the combined action of RNase H and 5'----3'-exonuclease, removing the RNA primers, DNA polymerase alpha or beta, filling the gap, and DNA ligase, sealing DNA pieces by phosphodiester bond formation. Torsional stress during DNA replication is released by DNA topoisomerases. In contrast to prokaryotes, DNA replication in eukaryotes not only has to create two identical daughter strands but also must conserve higher-order structures like chromatin.
Collapse
Affiliation(s)
- P Thömmes
- Department of Pharmacology and Biochemistry, University Zürich-Irchel, Switzerland
| | | |
Collapse
|
17
|
Liu PK, Hsu GS. On the DNA polymerase-a mutant: immunofluorescence assay of UV-induced thymidine dimers in Aphr-4-2 cells. SOMATIC CELL AND MOLECULAR GENETICS 1990; 16:49-57. [PMID: 2106726 DOI: 10.1007/bf01650479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Aphidicolin inhibits purified DNA polymerases-a and -d in vitro and inhibits mitosis in animal cells. The Chinese hamster V79 cell mutant, Aphr-4-2, was selected for its ability to form colonies in cultured medium supplemented with 1.0 microM aphidicolin. At this concentration, the parental wild-type V79 cells (clone 743x) have a survival rate of less than 10(-7). The mutant DNA polymerase-a is resistant to aphidicolin at concentrations that are inhibitory to the wild-type V79 DNA polymerase-a. The apparent Km for dCTP of the mutant DNA polymerase-a is consistently lower than that of the wild-type DNA polymerase-a. This mutant exhibits slow growth, mutator activity, hypersensitivity, and hypermutability to UV. We wanted to know the basis of UV hypersensitivity in this mutant. Using the antisera (UV2) raised against UV-induced thymidine dimers and a sensitive immunofluorescence assay to measure UV-induced thymidine dimers and with detection in ACAS 570 Workstation, we observed that 50% of the thymidine dimers disappeared within 5 h after irradiation and more than 80% of the dimers were removed within 24 h in both cell lines. These results indicate that the recognition, incision, and excision steps in nucleotide excision repair pathway are normal in the mutant. In order to know if there is a difference in DNA polymerase-a or -d activities in the parental V79(wt) and Aphr-4-2 cells, DNA polymerases were partially purified from the parental and the mutant cells using sequential centrifugation and column chromatographies on DEAE-cellulose (DE23 and DE52) to remove DNA polymerases-beta and -gamma. More than 90% of the enzymatic activities from both cells showed characteristics of DNA polymerase-a type on the basis of these criteria: sensitivity to butyl phenyl dGTP (1 microM) and to IgG raised against DNA polymerase-a (SJK 132-20). The results indicate that DNA replication involving a mutant DNA polymerase-a with altered affinity for dCTP may be responsible for the UV sensitivity and mutability of the mutant.
Collapse
Affiliation(s)
- P K Liu
- Department of Environmental Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | | |
Collapse
|
18
|
Hagemeier A, Grosse F. A distinct form of ribonuclease H from calf thymus stimulates its homologous DNA-polymerase-alpha-primase complex. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 185:621-8. [PMID: 2556272 DOI: 10.1111/j.1432-1033.1989.tb15158.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A ribonuclease H which degrades RNA specifically in RNA-DNA hybrids and, moreover, stimulates its homologous DNA-polymerase-primase complex was purified from calf thymus. The enzyme consists of a single polypeptide of molecular mass 78 kDa. It requires divalent cations for activity, and prefers Mg2+ over Mn2+. Ribonuclease H is optimally active at neutral pH and in 75 mM potassium acetate and is strongly sensitive to N-ethylmaleimide. [3H]Poly(rA).poly(dT), [3H]poly(rC).poly(dI), and [3H]RNA.M13-DNA are degraded to 3-9-mer oligoribonucleotides with similar kinetics, whereas double- or single-stranded DNA, and double- and single-stranded RNA remain unaffected. The enzyme stimulates in vitro DNA synthesis by the immunoaffinity-purified calf-thymus DNA-polymerase-alpha-primase complex threefold. When ribonuclease H is present in a three-fold molar excess to the polymerase-primase complex, twice as much primer is formed as in the absence of ribonuclease H. Ribonuclease H also stimulates the elongation rate of DNA polymerase alpha by a factor of 2-3, independent of whether primase-primed DNA templates or templates primed with oligonucleotides are used. Our results suggest that this form of ribonuclease H is a likely candidate for a genuine primer-removing enzyme in mammalian cells.
Collapse
Affiliation(s)
- A Hagemeier
- Department of Chemistry, Max-Planck-Institute for Experimental Medicine, Göttingen, FRG
| | | |
Collapse
|
19
|
Kaguni LS, Olson MW. Mismatch-specific 3'----5' exonuclease associated with the mitochondrial DNA polymerase from Drosophila embryos. Proc Natl Acad Sci U S A 1989; 86:6469-73. [PMID: 2671990 PMCID: PMC297865 DOI: 10.1073/pnas.86.17.6469] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The mitochondrial DNA polymerase from Drosophila embryos lacks dNTP turnover activity. However, a potent 3'----5' exonuclease activity can be detected by a specific assay in which the exonuclease excises mispaired nucleotides at the 3' termini of primed synthetic and natural DNA templates. The excision of a mispaired nucleotide occurs at a significantly greater rate than excision of a correctly paired nucleotide and, under conditions of DNA synthesis, hydrolysis of a mispaired terminal nucleotide occurs prior to primer extension. The 3'----5' exonuclease copurifies quantitatively with DNA polymerase gamma and cosediments with the nearly homogeneous enzyme under native conditions. These results suggest that the 3'----5' exonuclease provides a proofreading function to enhance the fidelity of DNA synthesis during Drosophila mitochondrial DNA replication.
Collapse
Affiliation(s)
- L S Kaguni
- Department of Biochemistry, Michigan State University, East Lansing 48824
| | | |
Collapse
|
20
|
Popanda O, Thielmann HW. DNA polymerase alpha from normal rat liver is different than DNA polymerases alpha from Morris hepatoma strains. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 183:5-13. [PMID: 2502401 DOI: 10.1111/j.1432-1033.1989.tb14888.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
To investigate whether DNA replication in rat hepatoma cells is altered compared with that in normal rat liver, the main replicative enzyme, i.e. the DNA polymerase alpha complex, was partially purified from a slow-growing (TC5123) and a fast-growing (MH3924) Morris hepatoma cell strain as well as from normal rat liver. The purified DNA polymerase alpha complexes contained RNA primase. DNA polymerase alpha activities of these complexes were characterized with regard to both their molecular properties and their dNTP and DNA binding sites. The latter were probed with competitive inhibitors of dNTP binding, resulting in Ki values, and with DNA templates, yielding Km values. The sedimentation coefficients of native DNA polymerases alpha from Morris hepatoma cells were found to be lower than that of polymerase alpha from normal rat liver. Consequently, when following the procedure of Siegel and Monty for determination of molecular mass considerably smaller molecular masses were calculated for polymerases of hepatoma strains (TC5123, 127 kDa; MH3924, 138 kDa; rat liver, 168 kDa). Similar differences were found when the dNTP binding site was probed with inhibitors. Ki values obtained with butylphenyl-dGTP were higher for polymerases of the hepatoma strains than for that of normal rat liver. However, Ki values measured with aphidicolin and butylanilino-dATP were lower for DNA polymerase alpha from the fast-growing hepatoma cell strain than for that from normal rat liver, indicating a reduced affinity of the dNTP binding sites for dATP and dCTP. This reduced affinity could be responsible for lowered specificity of nucleotide selection in the base-pairing process which in turn may cause an enhanced error rate in DNA replication in malignant cells. Furthermore, when the DNA binding site was characterized by Michaelis-Menten constants using gapped DNA as a template, Km values were similar for all three DNA polymerases. In contrast, the Km value measured with single-stranded DNA as a template was found to be lower for DNA polymerase alpha from the fast-growing hepatoma MH3924 than for that from normal rat liver. Thus, the DNA-polymerizing complex from MH3924 combines both higher binding strength to single-stranded DNA templates and decreased nucleotide selection, properties which may enhance replication velocity and may lower fidelity.
Collapse
Affiliation(s)
- O Popanda
- German Cancer Research Center, Institute of Biochemistry, Heidelberg
| | | |
Collapse
|
21
|
Focher F, Gassmann M, Hafkemeyer P, Ferrari E, Spadari S, Hübscher U. Calf thymus DNA polymerase delta independent of proliferating cell nuclear antigen (PCNA). Nucleic Acids Res 1989; 17:1805-21. [PMID: 2564661 PMCID: PMC317524 DOI: 10.1093/nar/17.5.1805] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
DNA polymerase delta from calf thymus was purified under conditions that minimized proteolysis to a specific activity of 27,000 units/mg. The four step isolation procedure included phosphocellulose, hydroxyapatite, heparin-Sepharose and FPLC-MonoS. This enzyme consists of four polypeptides with Mr of 140, 125, 48 and 40 kilodaltons. Velocity gradient sedimentation in glycerol removed the 48 kDa polypeptide while the other three sedimented with the DNA polymerase activity. The biochemical properties of the three subunit enzyme and the copurification of 3'----5' exonuclease activity were typical for a bona fide DNA polymerase delta. Tryptic peptide analysis showed that the 140 kDa polypeptide was different from the catalytic 180 kDa polypeptide of calf thymus DNA polymerase alpha. Both high Mr polypeptides (140 and 125 kDa) were catalytically active as analysed in an activity gel. Four templates were used by DNA polymerase delta with different preferences, namely poly(dA)/oligo(dT)12-18 much much greater than activated DNA greater than poly(dA-dT) greater than primed single-stranded M13DNA. Calf thymus proliferating cell nuclear antigen (PCNA) could not stimulated this DNA polymerase delta in any step of the isolation procedure. If tested on poly(dA)/oligo(dT)12-18 (base ratio 10:1), PCNA had no stimulatory effect on DNA polymerase delta when tested with low enzyme DNA ratio nor did it change the kinetic behaviour of the enzyme. DNA polymerase delta itself did not contain PCNA. The enzyme had an intrinsic processivity of several thousand bases, when tested either on the homopolymer poly(dA)/oligo(dT)12-18 (base ratio 64:1) or on primed single-stranded M13DNA. Contrary to DNA polymerase alpha, no pausing sites were seen with DNA polymerase delta. Under optimal in vitro replication conditions the enzyme could convert primed single-stranded circular M13 DNA of 7,200 bases to its double-stranded form in less than 10 min. This supports that a PCNA independent DNA polymerase delta exists in calf thymus in addition to a PCNA dependent enzyme (Lee, M.Y.W.T. et al. (1984) Biochemistry 23, 1906-1913).
Collapse
Affiliation(s)
- F Focher
- Department of Pharmacology and Biochemistry, University of Zürich-Irchel, Switzerland
| | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Characterization of a large form of DNA polymerase δ from HeLa cells that is insensitive to proliferating cell nuclear antigen. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)81640-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
24
|
Burgers PM. Eukaryotic DNA polymerases alpha and delta: conserved properties and interactions, from yeast to mammalian cells. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1989; 37:235-80. [PMID: 2505329 DOI: 10.1016/s0079-6603(08)60700-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Abstract
We have measured the fidelity of bidirectional, semiconservative DNA synthesis by a human DNA replication complex in vitro. Replication was performed by extracts of HeLa cells in the presence of simian virus 40 (SV40) large tumor antigen by using a double-stranded phage M13mp2 DNA template containing the SV40 origin of replication and either of two different target sequences for scoring mutations in the lacZ alpha-complementation gene, which encodes the alpha region (specifying the amino-terminal portion) of beta-galactosidase. Replicative synthesis was substantially more accurate than synthesis by the human DNA polymerase alpha-DNA primase complex purified from HeLa cell extracts by immunoaffinity chromatography, suggesting that additional factors or activities in the extract may increase fidelity during bidirectional replication. However, by using a sensitive opal codon reversion assay, single-base substitution errors were readily detected in the replication products at frequencies significantly higher than estimated spontaneous mutation rates in vivo. These data suggest that additional fidelity factors may be present during chromosomal replication in vivo and/or that the fidelity of replication alone does not account for the low spontaneous mutation rates in eukaryotes.
Collapse
Affiliation(s)
- J D Roberts
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | | |
Collapse
|
26
|
Dresler SL, Frattini MG, Robinson-Hill RM. In situ enzymology of DNA replication and ultraviolet-induced DNA repair synthesis in permeable human cells. Biochemistry 1988; 27:7247-54. [PMID: 3207673 DOI: 10.1021/bi00419a011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Using permeable diploid human fibroblasts, we have studied the deoxyribonucleoside triphosphate concentration dependences of ultraviolet- (UV-) induced DNA repair synthesis and semiconservative DNA replication. In both cell types (AG1518 and IMR-90) examined, the apparent Km values for dCTP, dGTP, and dTTP for DNA replication were between 1.2 and 2.9 microM. For UV-induced DNA repair synthesis, the apparent Km values were substantially lower, ranging from 0.11 to 0.44 microM for AG1518 cells and from 0.06 to 0.24 microM for IMR-90 cells. Control experiments established that these values were not significantly influenced by nucleotide degradation during the permeable cell incubations or by the presence of residual endogenous nucleotides within the permeable cells. Recent data implicate DNA polymerase delta in UV-induced repair synthesis and suggest that DNA polymerases alpha and delta are both involved in semiconservative replication. We measured Km values for dGTP and dTTP for polymerases alpha and delta, for comparison with the values for replication and repair synthesis. Km values for polymerase alpha were 2.0 microM for dGTP and 5.0 microM for dTTP. For polymerase delta, the Km values were 2.0 microM for dGTP and 3.5 microM for dTTP. The deoxyribonucleotide Km values for DNA polymerase delta are much greater than the Km values for UV-induced repair synthesis, suggesting that when polymerase delta functions in DNA repair, its characteristics are altered substantially either by association with accessory proteins or by direct posttranslational modification. In contrast, the deoxyribonucleotide binding characteristics of the DNA replication machinery differ little from those of the isolated DNA polymerases.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S L Dresler
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | |
Collapse
|
27
|
Thomas DC, Rein DC, Meyer RR. Purification and enzymological characterization of DNA-dependent ATPase IV from the Novikoff hepatoma. Nucleic Acids Res 1988; 16:6447-64. [PMID: 2969505 PMCID: PMC338307 DOI: 10.1093/nar/16.14.6447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
DNA-dependent ATPase IV has been purified to near homogeneity from the Novikoff rat hepatoma. The enzyme is devoid of DNA polymerase, RNA polymerase, exonuclease, endonuclease, phosphomonoesterase, 3'- or 5'-phosphodiesterase, polynucleotide kinase, protein kinase, topoisomerase, helicase or DNA reannealing activities at a detection level of 10(-5) to 10(-7) relative to the ATPase activity. The enzyme is a monomer of Mr 110,000, has a sedimentation coefficient of 5.9 S, a Stokes radius of 40 A and a frictional coefficient of 1.32. In the presence of Mg2+ ion and a polynucleotide effector, ATPase IV hydrolyzes either ATP or dATP to the nucleoside diphosphate plus Pi. Other ribo- or deoxyribonucleoside triphosphates are not substrates. ATPase IV utilizes double-stranded DNA and single-stranded DNA as effector; however, it does not utilize poly(dT). The Km for dsDNA or ssDNA is 2.2 microM (nucleotide). A variety of ATP analogues were found to be competitive inhibitors of ATPase IV.
Collapse
Affiliation(s)
- D C Thomas
- Department of Biological Sciences, University of Cincinnati, OH 45221
| | | | | |
Collapse
|
28
|
Focher F, Spadari S, Ginelli B, Hottiger M, Gassmann M, Hübscher U. Calf thymus DNA polymerase delta: purification, biochemical and functional properties of the enzyme after its separation from DNA polymerase alpha, a DNA dependent ATPase and proliferating cell nuclear antigen. Nucleic Acids Res 1988; 16:6279-95. [PMID: 2899882 PMCID: PMC338295 DOI: 10.1093/nar/16.14.6279] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have established a novel procedure to purify calf thymus DNA polymerase delta from cytoplasmic extracts. The enzyme has typical properties of DNA polymerase delta including a 3' - greater than 5' exonuclease activity and efficiently replicates natural occurring genomes such as primed single-stranded M13 DNA and single-stranded porcine circovirus DNA, this last one thanks to an associated or contaminating primase activity. A processivity of at least a thousand bases was evident and this in the apparent absence of proliferating cell nuclear antigen. The enzyme was purified through a procedure that allows the simultaneous isolation of DNA polymerase delta, DNA polymerase alpha-primase and a DNA dependent ATPase. All these enzymes coeluted from a phosphocellulose column. After chromatography on hydroxylapatite DNA polymerase delta separated from the coeluting DNA polymerase alpha and DNA dependent ATPase. Separation of the latter two was achieved on heparin-Sepharose. DNA polymerase delta was further purified by heparin-Sepharose and fast protein liquid chromatography. Purified DNA polymerase delta was resistant to the DNA polymerase alpha inhibitors BuPdGTP and BuAdATP and did not react with DNA polymerase alpha monoclonal and polyclonal antibodies. Based on this isolation protocol we can start to test biochemically the hypothesis whether DNA polymerase delta and DNA polymerase alpha might act coordinately at the replication fork as leading and lagging strand replicases, respectively.
Collapse
Affiliation(s)
- F Focher
- Department of Pharmacology and Biochemistry, University of Zürich-Irchel, Switzerland
| | | | | | | | | | | |
Collapse
|
29
|
So AG, Downey KM. Mammalian DNA polymerases alpha and delta: current status in DNA replication. Biochemistry 1988; 27:4591-5. [PMID: 3048386 DOI: 10.1021/bi00413a001] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- A G So
- Department of Medicine, University of Miami School of Medicine, Florida 33101
| | | |
Collapse
|
30
|
Hohorst HJ, Bielicki L, Müller K, Voelcker G. Low toxicity cancer chemotherapy by suicide inactivation of DNA polymerase alpha holoenzyme: first results with new thiazolidinyl- and perhydrothiazinyl-ethyl-N-mustard-phosphamide esters. J Cancer Res Clin Oncol 1988; 114:309-11. [PMID: 3384844 DOI: 10.1007/bf00405840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Thiazolidinyl- and perhydrothiazinyl-ethyl-N-mustard-phosphamide esters were designed to act as highly specific suicide inactivators of DNA polymerase alpha holoenzymes. Acute and subacute toxicity of these drugs in mice was very small. By daily i.p. injection, on day 0-4 mice were cured of P 388 lymphatic leukaemia with no depression of blood leucocytes. The findings suggest that suicide inactivators of DNA polymerase alpha holoenzyme may be promising drugs for low toxicity cancer chemotherapy.
Collapse
Affiliation(s)
- H J Hohorst
- Gustav-Embden-Zentrum of Biological Chemistry, University of Frankfurt/Main, Federal Republic of Germany
| | | | | | | |
Collapse
|
31
|
Kunkel TA, Soni A. Exonucleolytic proofreading enhances the fidelity of DNA synthesis by chick embryo DNA polymerase-gamma. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68947-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
32
|
Do UH, Neftel KA, Spadari S, Hübscher U. Betalactam antibiotics interfere with eukaryotic DNA-replication by inhibiting DNA polymerase alpha. Nucleic Acids Res 1987; 15:10495-506. [PMID: 2827125 PMCID: PMC339958 DOI: 10.1093/nar/15.24.10495] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Betalactam antibiotics (BLA) are the most widely used antibacterial drugs in practical medicine. Recent experiments suggested that BLA, especially after "aging" in aqueous solutions, have an inhibitory effect on the growth of a variety of cultured human cells by interfering with DNA synthesis (Neftel et al. Cell Biol. Toxicol. 2, 513-521, 1986). Our initial observation that the replicative DNA polymerase alpha might be the target of the action of betalactam compounds (Hübscher et al. Cell Biol Toxicol. 2, 541-548, 1986) is now substantiated due to the following experimental data: (i) extractable DNA polymerase alpha is greatly reduced in cells that had been treated with BLA; (ii) the relative cellular distribution of thymidine and of its phosphorylated derivatives is not affected by BLA; (iii) BLA inhibit crude and highly purified mammalian DNA polymerase alpha; (iv) the inhibitory effect appears to be of the mixed type with a slight deviation from purely non-competitive behaviour towards the four deoxyribonucleoside triphosphates and; (v) the inhibition is evident in aphidicolin sensitive DNA polymerases from mammalian tissues and in DNA polymerases from DNA viruses such as Herpes simplex and Vaccinia. In sum, the results suggest that one of the most commonly used class of drugs has a target within eukaryotic cells being most likely the replicative DNA polymerase alpha.
Collapse
Affiliation(s)
- U H Do
- Institut für Pharmakologie und Biochemie, Universität Zürich-Irchel, Switzerland
| | | | | | | |
Collapse
|
33
|
Collins JM, Chu AK. Binding of the DNA polymerase alpha-DNA primase complex to the nuclear matrix in HeLa cells. Biochemistry 1987; 26:5600-7. [PMID: 3676271 DOI: 10.1021/bi00392a004] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
It is well-known that there are multiple forms of DNA polymerase alpha. In order to determine which form(s) is (are) tightly bound, the activities were dissociated from DNA-poor nuclear matrices, with octyl beta-D-glucoside. Sucrose gradient sedimentation analysis revealed three bands with s values of 7.5, 10.5, and 13. The 7.5S form was free of DNA primase and represented only 10% of the total DNA polymerase alpha bound to the nuclear matrix. The 13S and the 10.5S forms each contained DNA primase activity. The 10.5S form comprised 85% of the DNA polymerase alpha activity and 95% of the DNA primase activity, dissociated from the nuclear matrix. Neither temperature of nuclease digestion nor various salt treatments of nuclei had significant effects on the proportions of DNA polymerase alpha and DNA primase activities bound to, or subsequently dissociated from, nuclear matrices. In a comparison of primase activity bound to the nuclear matrix, dissociated from the nuclear matrix, and in the soluble fraction, it was found that the bound activity had a lower ATP dependence, had less KCl inhibition, and was less sensitive to heat, compared to the dissociated and soluble activities. No differences in Mg2+ or pH dependence were noted. The amounts of DNA polymerase alpha and DNA primase activities bound to the nuclear matrix varied over the cell cycle of synchronized cells. Over the S phase, there were two peaks of matrix-bound DNA primase and two peaks of subsequently dissociated DNA polymerase alpha-DNA primase complex.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J M Collins
- Department of Biochemistry, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298
| | | |
Collapse
|
34
|
Cotterill SM, Reyland ME, Loeb LA, Lehman IR. A cryptic proofreading 3'----5' exonuclease associated with the polymerase subunit of the DNA polymerase-primase from Drosophila melanogaster. Proc Natl Acad Sci U S A 1987; 84:5635-9. [PMID: 3112771 PMCID: PMC298917 DOI: 10.1073/pnas.84.16.5635] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The DNA polymerase-primase from Drosophila lacks 3'----5' exonuclease activity. However, a potent exonuclease can be detected after separating the 182-kDa polymerase subunit from the other three subunits of the enzyme (73, 60, and 50 kDa) by glycerol gradient sedimentation in the presence of 50% ethylene glycol. The exonuclease activity cosediments with the polymerase subunit, suggesting that the two activities reside in the same polypeptide. The 3'----5' exonuclease excises mismatched bases at the 3' termini of primed synthetic and natural DNA templates. Excision of a mispaired base at the 3' terminus occurs at a 10-fold greater rate than excision of the correctly paired base. When replication fidelity is measured by the bacteriophage phi X174 am3 reversion assay, the isolated polymerase subunit is at least 100-fold more accurate than either the intact polymerase-primase or a complex of the 182- and 73-kDa subunits. These results suggest that the 3'----5' exonuclease functions as a proofreading enzyme during Drosophila DNA replication in vitro and very likely in vivo.
Collapse
|
35
|
Reyland ME, Loeb LA. On the fidelity of DNA replication. Isolation of high fidelity DNA polymerase-primase complexes by immunoaffinity chromatography. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)61038-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
36
|
Kunkel TA, Sabatino RD, Bambara RA. Exonucleolytic proofreading by calf thymus DNA polymerase delta. Proc Natl Acad Sci U S A 1987; 84:4865-9. [PMID: 3474631 PMCID: PMC305206 DOI: 10.1073/pnas.84.14.4865] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The fidelity of DNA synthesis by calf thymus DNA polymerase delta (pol delta) in vitro has been determined using an M13lacZ alpha nonsense codon reversion assay. Pol delta is highly accurate, producing on average less than 1 single-base substitution error for each 10(6) nucleotides polymerized. This accuracy is 10- and 500-fold greater than that of DNA polymerases alpha and beta, respectively, in the same assay. Three observations suggest that this higher fidelity results in part from proofreading of misinserted bases by the 3' to 5' exonuclease associated with pol delta. First, the exonuclease efficiently excises terminally mismatched bases. Second, both terminal mismatch excision and the fidelity of DNA synthesis by pol delta are reduced with increasing concentration of deoxynucleoside triphosphates in the synthesis reaction. These effects result from increasing the rate of polymerization relative to the rate of exonucleolytic excision and are hallmarks of exonuclease proofreading. Third, both terminal mismatch excision and fidelity decrease upon addition to the reaction mixture of adenosine monophosphate, a compound known to selectively inhibit the exonuclease but not the polymerase activity of pol delta. These results suggest that 3' to 5' exonuclease-dependent proofreading enhances the fidelity of DNA synthesis by a mammalian DNA polymerase in vitro.
Collapse
|
37
|
Ottiger H, Frei P, Hässig M, Hübscher U. Mammalian DNA polymerase alpha: a replication competent holoenzyme form from calf thymus. Nucleic Acids Res 1987; 15:4789-807. [PMID: 3601656 PMCID: PMC305918 DOI: 10.1093/nar/15.12.4789] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A complex "replication competent" holoenzyme form of DNA polymerase alpha (RC-alpha) was purified 10,000 fold from calf thymus through the use of an assay employing primed single stranded circular DNA template. The RC-alpha form could partially replicate a double-stranded oligo(dT)-tailed linear DNA and could completely convert primed single-stranded circular DNA to its double stranded form. The RC-alpha was resolved by denaturing gel electrophoresis into at least 10 discrete polypeptide species ranging in apparent molecular mass from 200 to 47 kilodaltons; three of the bands (apparent Mr of 200, 118 and 63 kilodaltons) displayed DNA polymerase activity in denaturing gel activity assay. The isolation of RC-alpha required the use of absolutely fresh calf thymus, the inclusion of ATP and protease inhibitors throughout the purification procedure. Treatment of the RC-alpha with the neutralizing anti-DNA polymerase alpha monoclonal antibody SJK 132-20 (Tanaka et al. (1982), J. Biol. Chem. 257, 8386-8390) in nondenaturing conditions selected the complete set of 10 polypeptides, whereas treatment in denaturing conditions selected the 200 kilodalton catalytic DNA polymerase active polypeptide. The properties and the behaviour of the RC-alpha preparation following removal of specific polypeptides strongly suggested that the capacity of RC-alpha to extend and replicate long template requires the function of nonproteolysed form of the 200 kilodaltons catalytic DNA polymerase core and at least 6 other auxiliary polypeptides of, respectively, 98, 87, 63, 54, 49 and 47 kilodaltons.
Collapse
|
38
|
|
39
|
Identification of 100 and 150 S DNA polymerase alpha-primase megacomplexes solubilized from the nuclear matrix of regenerating rat liver. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)45653-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
40
|
Donaldson RW, Gerner EW. Phosphorylation of a high molecular weight DNA polymerase alpha. Proc Natl Acad Sci U S A 1987; 84:759-63. [PMID: 3027701 PMCID: PMC304295 DOI: 10.1073/pnas.84.3.759] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Anti-human DNA polymerase alpha murine IgG SJK-287-38 [Tanaka, S., Hu, S.-Z., Wang, T. S.-F. & Korn, D. (1982) J. Biol. Chem. 257, 8386-8390] neutralized DNA polymerase alpha activity from rat embryonic fibroblasts infected with a temperature-sensitive transformation mutant of Rous sarcoma virus (tsLA24). After centrifugation of a crude cytosol fraction from log-phase cells in a 5-20% linear sucrose gradient, polypeptides of Mr approximately equal to 185,000 and 220,000 were immunoprecipitated only from gradient fractions containing DNA polymerase alpha activity. When similar cultures were incubated in medium containing [32P]orthophosphate, it was found that the Mr 220,000 protein was phosphorylated but that the other peptides specific for polymerase alpha activity did not contain detectable amounts of phosphate. Phospho amino acid analysis of the high molecular weight immunoprecipitable proteins indicated that the labeled amino acid was phosphoserine. Incubation of 2.5 units of crude DNA polymerase alpha with 4 units of agarose-immobilized alkaline phosphatase resulted in a nearly complete inhibition of DNA polymerase alpha activity. Subsequent incubation of this preparation with 5 or 50 microM ATP, but not the nonhydrolyzable analog adenosine 5'-[gamma-thio]triphosphate, restored the in vitro DNA polymerizing activity. These results demonstrate that a high molecular weight DNA polymerase alpha (Mr approximately equal to 220,000) is phosphorylated in cultured cells and that this protein is a substrate for a serine kinase rather than the tyrosine-specific protein kinase of Rous sarcoma virus. The results suggest that phosphorylation/dephosphorylation reactions modulate the activity of this polymerase.
Collapse
|
41
|
Tubo RA, Berezney R. Pre-replicative association of multiple replicative enzyme activities with the nuclear matrix during rat liver regeneration. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(19)75763-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
42
|
Hübscher U, Huynh UD, Hässig M, Neftel KA. Effects of beta-lactams on DNA replication. Cell Biol Toxicol 1986; 2:541-8. [PMID: 3077086 DOI: 10.1007/bf00117856] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- U Hübscher
- Department of Pharmacology, University of Zurich-Irchel, Switzerland
| | | | | | | |
Collapse
|
43
|
Shioda M. DNA synthesis in vitro with an endoplasmic-reticulum-DNA-polymerase complex from unfertilized sea urchin eggs. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 160:571-8. [PMID: 3780722 DOI: 10.1111/j.1432-1033.1986.tb10076.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An endoplasmic-reticulum-DNA-polymerase complex was prepared from unfertilized sea urchin eggs and its DNA-synthesizing activity was examined using single-stranded DNA of bacteriophage fd as a template. The complex catalyzed the ribonucleotide-dependent DNA synthesis which required dNTPs, NTPs, Mg2+ and single-stranded DNA. The DNA synthesis was sensitive to aphidicolin and N-ethylmaleimide but was resistant to 2',3'-dideoxyribosylthymine 5'-triphosphate (ddTTP) and alpha-amanitin, suggesting the involvement of DNA polymerase alpha. In parallel with the DNA synthesis, a small amount of RNA was synthesized in the presence of 100 micrograms/ml alpha-amanitin. The Km value of ribonucleotides for the RNA synthesis coincided with that for the DNA synthesis, suggesting a correlation between the DNA and RNA syntheses. Labelling of the products with [gamma-32P]ATP followed by DNA digestion with pancreatic DNase I revealed the attachment of an oligoribonucleotide (7-11 bases in length) at the 5' ends of the DNA products. These observations suggest that in DNA synthesis, primer RNA synthesis occurs first, followed by DNA chain elongation. During 1-90-min incubation, the amount of the DNA synthesized increased but the length was not significantly increased. Over 80% of the number of synthesized DNA molecules comprised a single population of short DNA fragments (60-200 bases, on average 120 bases in length) and the number of fragments increased, depending on the incubation time. However, DNA fragments of various sizes (about 100-6000 bases) were synthesized with DNA polymerase alpha solubilized from the endoplasmic-reticulum-DNA-polymerase complex. All this evidence suggests that in vitro, the complex preferentially synthesizes a particular size of short DNA fragments. The significance of the fragments is discussed.
Collapse
|
44
|
Schomburg U, Grosse F. Purification and characterization of DNA topoisomerase II from calf thymus associated with polypeptides of 175 and 150 kDa. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 160:451-7. [PMID: 3023077 DOI: 10.1111/j.1432-1033.1986.tb10061.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
DNA topoisomerase II was purified from calf thymus nuclei by a simple and fast four-step procedure: selective ammonium sulfate precipitation, chromatography on blue-Sepharose and hydroxyapatite, followed by ultracentrifugation on a glycerol gradient. Starting from 300 g thymus glands, this procedure yields 0.7 mg of homogeneous topoisomerase II. The final product is free of any nucleolytic, proteolytic or topoisomerase I activity. Dodecylsulfate/polyacrylamide gel electrophoresis reveals two bands with apparent molecular masses of 175 and 150 kDa. Analytical gel filtration and sedimentation on isokinetic sucrose gradients were used to determine the Stokes' radius as 6.4 nm and the sedimentation coefficient as 9.5 S, indicating a dimeric structure for the native enzyme. The purified topoisomerase II is strictly dependent on ATP or dATP, the Km values of which were 0.14 mM and 0.5 mM, respectively. Mg2+ is an essential cofactor for the reaction at concentrations between 0.5-8 mM, with an optimum at 4 mM. Mg2+ can be substituted by Mn2+ at concentrations between 0.2-0.4 mM. Both the relaxation and the catenation reaction exhibit a salt optimum at 130 mM NaCl. At concentrations below 30 mM and above 200 mM, the enzyme is inactive. The pH is optimal between 8 and 9.5 using Tris buffers.
Collapse
|
45
|
Tan CK, Castillo C, So AG, Downey KM. An auxiliary protein for DNA polymerase-delta from fetal calf thymus. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67240-0] [Citation(s) in RCA: 328] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
46
|
Sugino A, Ryu BH, Sugino T, Naumovski L, Friedberg EC. A new DNA-dependent ATPase which stimulates yeast DNA polymerase I and has DNA-unwinding activity. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67306-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
47
|
Morgenegg G, Winkler GC, Hübscher U, Heizmann CW, Mous J, Kuenzle CC. Glyceraldehyde-3-phosphate dehydrogenase is a nonhistone protein and a possible activator of transcription in neurons. J Neurochem 1986; 47:54-62. [PMID: 2423647 DOI: 10.1111/j.1471-4159.1986.tb02830.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A single-stranded DNA-binding protein of Mr 35,000 (35K protein) was isolated from calf cerebral cortex by affinity chromatography on immobilized double-stranded and single-stranded DNA. Its localization in the nuclear compartment was demonstrated by immunohistochemistry. Previous studies had uncovered a homologous nonhistone chromosomal protein in the nuclei of rat cerebral cortex neurons, cerebellar neurons, oligodendrocytes, and liver cells. The rat protein accumulated in the nuclear compartment of neurons in exact temporal coincidence with the arrest of cell division and the initiation of terminal differentiation. Therefore, in the present work, the 35K protein was tested for an activating role in RNA transcription. During the course of this study we became aware that the 35K protein was identical to a glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12). When authentic GAPDH from rabbit skeletal muscle was injected into Xenopus laevis oocytes, it greatly stimulated RNA polymerase II transcription, whereas the 35K protein from calf brain did not. This apparent discrepancy was partially resolved by the finding that rabbit muscle GAPDH could be fractionated into two components by affinity chromatography on single-stranded DNA cellulose. Only 5% of the applied protein was retained on the column and could be eluted with a shallow salt gradient identical to the one used for the isolation of the 35K protein. This single-stranded DNA-binding component of rabbit muscle GAPDH did not stimulate transcription. Apparently, the 35K protein from calf brain corresponded to this single-stranded DNA-binding subfraction, which explained its failure to activate transcription.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
48
|
Kozu T, Seno T, Yagura T. Activity levels of mouse DNA polymerase alpha-primase complex (DNA replicase) and DNA polymerase alpha, free from primase activity in synchronized cells, and a comparison of their catalytic properties. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 157:251-9. [PMID: 3086093 DOI: 10.1111/j.1432-1033.1986.tb09663.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
To asses the possible roles of the two active forms of mouse DNA polymerase alpha: primase--DNA-polymerase alpha complex (DNA replicase) and DNA polymerase alpha free from primase activity (7.3S polymerase), in nuclear DNA replication the correlation of their activity levels with the rate of nuclear DNA replication was determined and a comparison made of their catalytic properties. The experiments using either C3H2K cells, synchronized by serum starvation, or Ehrlich culture cells, arrested at the S phase by aphidicolin, showed DNA replicase to increase in cells in the S phase to at least six times that of the G0-phase cells but 7.3S polymerase to increase but slightly in this phase. This increase in DNA replicase activity most likely resulted from synthesis of a new enzyme, as shown by experiments using a specific monoclonal antibody, aphidicolin and cycloheximide. Not only with respect to the presence or absence of primase activity, but in other points as well the catalytic properties of these two forms were found to differ; DNA replicase preferred the activated calf thymus DNA with wide gaps of about 100 nucleotides long as a template-primer, while the optimal gap size for 7.3S polymerase was 40-50 nucleotides long. Size analysis of the products synthesized on M13 single-stranded circular DNA with a single 17-nucleotide primer by DNA replicase and 7.3S polymerase suggested the ability of DNA replicase to overcome a secondary structure formed in single-stranded DNA to be greater than that of 7.3S polymerase.
Collapse
|
49
|
|
50
|
Vishwanatha JK, Coughlin SA, Wesolowski-Owen M, Baril EF. A multiprotein form of DNA polymerase alpha from HeLa cells. Resolution of its associated catalytic activities. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(19)84608-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|