1
|
Leddy O, Ibrahim AM, Azam MS, Solomon S, Yu W, Schneewind O, Missiakas D. Screening a library of temperature-sensitive mutants to identify secretion factors in Staphylococcus aureus. J Bacteriol 2025; 207:e0043324. [PMID: 39817767 PMCID: PMC11841065 DOI: 10.1128/jb.00433-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/17/2024] [Indexed: 01/18/2025] Open
Abstract
Protein secretion is an essential cell process in bacteria, required for cell envelope biogenesis, export of virulence factors, and acquisition of nutrients, among other important functions. In the Sec secretion pathway, signal peptide-bearing precursors are recognized by the SecA ATPase and pushed across the membrane through a translocon channel made of the proteins SecY, SecE, and SecG. The Sec pathway has been extensively studied in the model organism Escherichia coli, but the Sec pathways of other bacteria such as the human pathogen Staphylococcus aureus differ in important ways from this model. Unlike in E. coli, a subset of precursors in S. aureus contains a YSIRK/GXXS (YSIRK) motif in an extended signal peptide. These proteins are secreted into the cross-wall compartment bounded by invaginating septal membranes during cell division. To gain insights into the factor(s) and mechanism(s) enabling protein secretion and spatial specificity in S. aureus, we isolated and screened a collection of temperature-sensitive (ts) mutants. These efforts identified at least one secA(ts) allele as well as mutations in the secG and pepV genes. A SecA pull-down experiment identified SecDF, all ribosomal proteins, several chaperones and proteases, as well as PepV, validating the genetic screen in identifying candidate cofactors of SecA in S. aureus.IMPORTANCEAll organisms use the Sec pathway for protein secretion, and key components of this pathway are essential for viability. The discovery of conditional loss-of-function mutants played an important role in defining the genetic basis of protein secretion in model organisms. In turn, the identification of Sec components facilitated mechanistic studies and revealed general rules for protein secretion but did not answer species-specific intricacies. Gram-positive bacteria, such as Staphylococcus aureus, restrict the secretion of some proteins into the septal membranes that bind their division site at mid-cell. Here, we screen a library of conditional temperature-sensitive mutants to define components of the Sec pathway of S. aureus and factors that may regulate its activity.
Collapse
Affiliation(s)
- Owen Leddy
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA
| | - Amany M. Ibrahim
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA
| | - Muhammad S. Azam
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA
| | - Sadie Solomon
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA
| | - Wenqi Yu
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA
| | - Olaf Schneewind
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA
| | - Dominique Missiakas
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
2
|
Jin J, Hsieh YH, Chaudhary AS, Cui J, Houghton JE, Sui SF, Wang B, Tai PC. SecA inhibitors as potential antimicrobial agents: differential actions on SecA-only and SecA-SecYEG protein-conducting channels. FEMS Microbiol Lett 2018; 365:5037921. [PMID: 30007321 PMCID: PMC7190897 DOI: 10.1093/femsle/fny145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022] Open
Abstract
Sec-dependent protein translocation is an essential process in bacteria. SecA is a key component of the translocation machinery and has multiple domains that interact with various ligands. SecA acts as an ATPase motor to drive the precursor protein/peptide through the SecYEG protein translocation channels. As SecA is unique to bacteria and there is no mammalian counterpart, it is an ideal target for the development of new antimicrobials. Several reviews detail the assays for ATPase and protein translocation, as well as the search for SecA inhibitors. Recent studies have shown that, in addition to the SecA-SecYEG translocation channels, there are SecA-only channels in the lipid bilayers, which function independently from the SecYEG machinery. This mini-review focuses on recent advances on the newly developed SecA inhibitors that allow the evaluation of their potential as antimicrobial agents, as well as a fundamental understanding of mechanisms of SecA function(s). These SecA inhibitors abrogate the effects of efflux pumps in both Gram-positive and Gram-negative bacteria. We also discuss recent findings that SecA binds to ribosomes and nascent peptides, which suggest other roles of SecA. A model for the multiple roles of SecA is presented.
Collapse
Affiliation(s)
- Jinshan Jin
- Department of Biology, Center for Biotechnology and Drug Design and Georgia State University, Atlanta, GA 30303, USA
| | - Ying-Hsin Hsieh
- Department of Biology, Center for Biotechnology and Drug Design and Georgia State University, Atlanta, GA 30303, USA
| | - Arpana S Chaudhary
- Department of Chemistry, Center for Biotechnology and Drug Design and Georgia State University, P.O. Box 3965, Atlanta, GA 30303, USA
| | - Jianmei Cui
- Department of Chemistry, Center for Biotechnology and Drug Design and Georgia State University, P.O. Box 3965, Atlanta, GA 30303, USA
| | - John E Houghton
- Department of Biology, Center for Biotechnology and Drug Design and Georgia State University, Atlanta, GA 30303, USA
| | - Sen-fang Sui
- State Key Laboratory of Membrane Biology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Binghe Wang
- Department of Chemistry, Center for Biotechnology and Drug Design and Georgia State University, P.O. Box 3965, Atlanta, GA 30303, USA
| | - Phang C Tai
- Department of Biology, Center for Biotechnology and Drug Design and Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
3
|
Crane JM, Randall LL. The Sec System: Protein Export in Escherichia coli. EcoSal Plus 2017; 7:10.1128/ecosalplus.ESP-0002-2017. [PMID: 29165233 PMCID: PMC5807066 DOI: 10.1128/ecosalplus.esp-0002-2017] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Indexed: 11/20/2022]
Abstract
In Escherichia coli, proteins found in the periplasm or the outer membrane are exported from the cytoplasm by the general secretory, Sec, system before they acquire stably folded structure. This dynamic process involves intricate interactions among cytoplasmic and membrane proteins, both peripheral and integral, as well as lipids. In vivo, both ATP hydrolysis and proton motive force are required. Here, we review the Sec system from the inception of the field through early 2016, including biochemical, genetic, and structural data.
Collapse
Affiliation(s)
- Jennine M Crane
- Department of Biochemistry, University of Missouri, Columbia, MO 65201
| | - Linda L Randall
- Department of Biochemistry, University of Missouri, Columbia, MO 65201
| |
Collapse
|
4
|
Hsieh YH, Huang YJ, Zhang H, Liu Q, Lu Y, Yang H, Houghton J, Jiang C, Sui SF, Tai PC. Dissecting structures and functions of SecA-only protein-conducting channels: ATPase, pore structure, ion channel activity, protein translocation, and interaction with SecYEG/SecDF•YajC. PLoS One 2017; 12:e0178307. [PMID: 28575061 PMCID: PMC5456053 DOI: 10.1371/journal.pone.0178307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/10/2017] [Indexed: 11/30/2022] Open
Abstract
SecA is an essential protein in the major bacterial Sec-dependent translocation pathways. E. coli SecA has 901 aminoacyl residues which form multi-functional domains that interact with various ligands to impart function. In this study, we constructed and purified tethered C-terminal deletion fragments of SecA to determine the requirements for N-terminal domains interacting with lipids to provide ATPase activity, pore structure, ion channel activity, protein translocation and interactions with SecYEG-SecDF•YajC. We found that the N-terminal fragment SecAN493 (SecA1-493) has low, intrinsic ATPase activity. Larger fragments have greater activity, becoming highest around N619-N632. Lipids greatly stimulated the ATPase activities of the fragments N608-N798, reaching maximal activities around N619. Three helices in amino-acyl residues SecA619-831, which includes the "Helical Scaffold" Domain (SecA619-668) are critical for pore formation, ion channel activity, and for function with SecYEG-SecDF•YajC. In the presence of liposomes, N-terminal domain fragments of SecA form pore-ring structures at fragment-size N640, ion channel activity around N798, and protein translocation capability around N831. SecA domain fragments ranging in size between N643-N669 are critical for functional interactions with SecYEG-SecDF•YajC. In the presence of liposomes, inactive C-terminal fragments complement smaller non-functional N-terminal fragments to form SecA-only pore structures with ion channel activity and protein translocation ability. Thus, SecA domain fragment interactions with liposomes defined critical structures and functional aspects of SecA-only channels. These data provide the mechanistic basis for SecA to form primitive, low-efficiency, SecA-only protein-conducting channels, as well as the minimal parameters for SecA to interact functionally with SecYEG-SecDF•YajC to form high-efficiency channels.
Collapse
Affiliation(s)
- Ying-hsin Hsieh
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - Ying-ju Huang
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - Hao Zhang
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - Qian Liu
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - Yang Lu
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - Hsiuchin Yang
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - John Houghton
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - Chun Jiang
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing China
| | - Phang C. Tai
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| |
Collapse
|
5
|
Hsieh YH, Zhang H, Jin J, Dai C, Jiang C, Wang B, Tai PC. Biphasic actions of SecA inhibitors on Prl/Sec suppressors: Possible physiological roles of SecA-only channels. Biochem Biophys Res Commun 2017; 482:296-300. [PMID: 27856243 DOI: 10.1016/j.bbrc.2016.11.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 11/11/2016] [Indexed: 11/30/2022]
Abstract
SecA is an essential component in the bacterial Sec-dependent protein translocation process. We previously showed that in addition to the ubiquitous, high-affinity SecYEG-SecDF·YajC protein translocation channel, there is a low-affinity SecA-only channel that elicits ion channel activity and promotes protein translocation. The SecA-only channels are less efficient, and like Prl suppressors, lack signal peptide specificity; they function in the absence of signal peptides. The presence of SecYEG-SecDF·YajC alters the sensitivity of ATPase inhibitor Rose Bengal. In this study, we found that the suppressor membranes are much more resistant to inhibition by Rose Bengal. Similar results have been found for a SecA-specific inhibitor. Moreover, biphasic responses of inhibition of ion current and protein translocation activities were observed for many PrlA/SecY and PrlG/SecE suppressor membranes, with a low IC50 value similar to that of the SecA-only channels and a very high IC50. However, the suppressor strains are as sensitive to the inhibitor as the parental strain, suggesting that SecA-only channels have some essential physiological function(s) in the cells that are inhibited by the specific SecA inhibitor.
Collapse
Affiliation(s)
- Ying-Hsin Hsieh
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Hao Zhang
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jinshan Jin
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Chaofeng Dai
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Chun Jiang
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Binghe Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Phang C Tai
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
6
|
Abstract
There is a consensus in the medical profession of the pressing need for novel antimicrobial agents due to issues related to drug resistance. In practice, solutions to this problem to a large degree lie with the identification of new and vital targets in bacteria and subsequently designing their inhibitors. We consider SecA a very promising antimicrobial target. In this review, we compile and analyze information available on SecA to show that inhibition of SecA has a multitude of consequences. Furthermore, we discuss issues critical to the design and evaluation of SecA inhibitors.
Collapse
|
7
|
Hsieh YH, Zou J, Jin JS, Yang H, Chen Y, Jiang C, Yang J, Tai PC. Monitoring channel activities of proteoliposomes with SecA and Cx26 gap junction in single oocytes. Anal Biochem 2015; 480:58-66. [PMID: 25862083 DOI: 10.1016/j.ab.2015.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 04/01/2015] [Accepted: 04/03/2015] [Indexed: 10/23/2022]
Abstract
Establishing recordable channels in membranes of oocytes formed by expressing exogenous complementary DNA (cDNA) or messenger RNA (mRNA) has contributed greatly to understanding the molecular mechanisms of channel functions. Here, we report the extension of this semi-physiological system for monitoring the channel activity of preassembled membrane proteins in single cell oocytes by injecting reconstituted proteoliposomes along with substrates or regulatory molecules. We build on the observation that SecA from various bacteria forms active protein-conducting channels with injection of proteoliposomes, protein precursors, and ATP-Mg(2+). Such activity was enhanced by reconstituted SecYEG-SecDF•YajC liposome complexes that could be monitored easily and efficiently, providing correlation of in vitro and intact cell functionality. In addition, inserting reconstituted gap junction Cx26 liposomes into the oocytes allowed the demonstration of intracellular/extracellular Ca(2+)-regulated hemi-channel activities. The channel activities can be detected rapidly after injection, can be monitored for various effectors, and are dependent on specific exogenous lipid compositions. This simple and effective functional system with low endogenous channel activity should have broad applications for monitoring the specific channel activities of complex interactions of purified membrane proteins with their effectors and regulatory molecules.
Collapse
Affiliation(s)
- Ying-Hsin Hsieh
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA
| | - Juan Zou
- Department of Chemistry, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA
| | - Jin-Shan Jin
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA
| | - Hsiuchin Yang
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA
| | - Yanyi Chen
- Department of Chemistry, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA
| | - Chun Jiang
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA
| | - Jenny Yang
- Department of Chemistry, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA.
| | - Phang C Tai
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
8
|
Hsieh YH, Huang YJ, Jin JS, Yu L, Yang H, Jiang C, Wang B, Tai PC. Mechanisms of Rose Bengal inhibition on SecA ATPase and ion channel activities. Biochem Biophys Res Commun 2014; 454:308-12. [PMID: 25450394 DOI: 10.1016/j.bbrc.2014.10.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
Abstract
SecA is an essential protein possessing ATPase activity in bacterial protein translocation for which Rose Bengal (RB) is the first reported sub-micromolar inhibitor in ATPase activity and protein translocation. Here, we examined the mechanisms of inhibition on various forms of SecA ATPase by conventional enzymatic assays, and by monitoring the SecA-dependent channel activity in the semi-physiological system in cells. We build on the previous observation that SecA with liposomes form active protein-conducting channels in the oocytes. Such ion channel activity is enhanced by purified Escherichia coli SecYEG-SecDF·YajC liposome complexes. Inhibition by RB could be monitored, providing correlation of in vitro activity and intact cell functionality. In this work, we found the intrinsic SecA ATPase is inhibited by RB competitively at low ATP concentration, and non-competitively at high ATP concentrations while the translocation ATPase with precursors and SecYEG is inhibited non-competitively by RB. The Inhibition by RB on SecA channel activity in the oocytes with exogenous ATP-Mg(2+), mimicking translocation ATPase activity, is also non-competitive. The non-competitive inhibition on channel activity has also been observed with SecA from other bacteria which otherwise would be difficult to examine without the cognate precursors and membranes.
Collapse
Affiliation(s)
- Ying-Hsin Hsieh
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States
| | - Ying-Ju Huang
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States
| | - Jin-Shan Jin
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States
| | - Liyan Yu
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States
| | - Hsiuchin Yang
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States
| | - Chun Jiang
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States
| | - Binghe Wang
- Department of Chemistry, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States
| | - Phang C Tai
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States.
| |
Collapse
|
9
|
Floyd JH, You Z, Hsieh YH, Ma Y, Yang H, Tai PC. The dispensability and requirement of SecA N-terminal aminoacyl residues for complementation, membrane binding, lipid-specific domains and channel activities. Biochem Biophys Res Commun 2014; 453:138-42. [PMID: 25264203 DOI: 10.1016/j.bbrc.2014.09.080] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 09/18/2014] [Indexed: 11/24/2022]
Abstract
SecA is an essential multifunctional protein for the translocation of proteins across bacterial membranes. Though SecA is known to function in the membrane, the detailed mechanism for this process remains unclear. In this study we constructed a series of SecA N-terminal deletions and identified two specific domains crucial for initial SecA/membrane interactions. The first small helix, the linker and part of the second helix (Δ2-22) were found to be dispensable for SecA activity in complementing the growth of a SecA ts mutant. However, deletions of N-terminal aminoacyl residues 23-25 resulted in severe progressive retardation of growth. Moreover, a decrease of SecA activity caused by N-terminal deletions correlated to the loss of SecA membrane binding, formation of lipid-specific domains and channel activity. All together, the results indicate that the N-terminal aminoacyl residues 23-25 play a critical role for SecA binding to membranes and that the N-terminal limit of SecA for activity is at the 25th amino acid.
Collapse
Affiliation(s)
- Jeanetta Holley Floyd
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States
| | - Zhipeng You
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States
| | - Ying-Hsin Hsieh
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States
| | - Yamin Ma
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States
| | - Hsuichin Yang
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States
| | - Phang C Tai
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States.
| |
Collapse
|
10
|
You Z, Liao M, Zhang H, Yang H, Pan X, Houghton JE, Sui SF, Tai PC. Phospholipids induce conformational changes of SecA to form membrane-specific domains: AFM structures and implication on protein-conducting channels. PLoS One 2013; 8:e72560. [PMID: 23977317 PMCID: PMC3745498 DOI: 10.1371/journal.pone.0072560] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 07/12/2013] [Indexed: 11/23/2022] Open
Abstract
SecA, an essential component of the Sec machinery, exists in a soluble and a membrane form in Escherichia coli. Previous studies have shown that the soluble SecA transforms into pore structures when it interacts with liposomes, and integrates into membranes containing SecYEG in two forms: SecAS and SecAM; the latter exemplified by two tryptic membrane-specific domains, an N-terminal domain (N39) and a middle M48 domain (M48). The formation of these lipid-specific domains was further investigated. The N39 and M48 domains are induced only when SecA interacts with anionic liposomes. Additionally, the N-terminus, not the C-terminus of SecA is required for inducing such conformational changes. Proteolytic treatment and sequence analyses showed that liposome-embedded SecA yields the same M48 and N39 domains as does the membrane-embedded SecA. Studies with chemical extraction and resistance to trypsin have also shown that these proteoliposome-embedded SecA fragments exhibit the same stability and characteristics as their membrane-embedded SecA equivalents. Furthermore, the cloned lipid-specific domains N39 and M48, but not N68 or C34, are able to form partial, but imperfect ring-like structures when they interact with phospholipids. These ring-like structures are characteristic of a SecA pore-structure, suggesting that these domains contribute part of the SecA-dependent protein-conducting channel. We, therefore, propose a model in which SecA alone is capable of forming a lipid-specific, asymmetric dimer that is able to function as a viable protein-conducting channel in the membrane, without any requirement for SecYEG.
Collapse
Affiliation(s)
- Zhipeng You
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia, United States of America
| | - Meijiang Liao
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia, United States of America
| | - Hao Zhang
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia, United States of America
| | - Hsiuchin Yang
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia, United States of America
| | - Xijian Pan
- School of Life Sciences, Center for Structural Biology, Tsinghua University, Beijing, China
| | - John E. Houghton
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia, United States of America
| | - Sen-fang Sui
- School of Life Sciences, Center for Structural Biology, Tsinghua University, Beijing, China
| | - Phang C. Tai
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
11
|
Hsieh YH, Zhang H, Wang H, Yang H, Jiang C, Sui SF, Tai PC. Reconstitution of functionally efficient SecA-dependent protein-conducting channels: transformation of low-affinity SecA-liposome channels to high-affinity SecA-SecYEG-SecDF·YajC channels. Biochem Biophys Res Commun 2013; 431:388-92. [PMID: 23337498 DOI: 10.1016/j.bbrc.2013.01.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 01/10/2013] [Indexed: 11/20/2022]
Abstract
Previous work showed that SecA alone can promote protein translocation and ion-channel activity in liposomes, and that SecYEG increases efficiency as well as signal peptide specificity. We now report that SecDF·YajC further increases translocation and ion-channel activity. These activities of reconstituted SecA-SecYEG-SecDF·YajC-liposome are almost the same as those of native membranes, indicating the transformation of reconstituted functional high-affinity protein-conducting channels from the low-affinity SecA-channels.
Collapse
Affiliation(s)
- Ying-hsin Hsieh
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Maki JL, Krishnan B, Gierasch LM. Using a low denaturant model to explore the conformational features of translocation-active SecA. Biochemistry 2012; 51:1369-79. [PMID: 22304380 DOI: 10.1021/bi201793e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The SecA molecular nanomachine in bacteria uses energy from ATP hydrolysis to drive post-translational secretion of preproteins through the SecYEG translocon. Cytosolic SecA exists in a dimeric, "closed" state with relatively low ATPase activity. After binding to the translocon, SecA undergoes major conformational rearrangement, leading to a state that is structurally more "open", has elevated ATPase activity, and is active in translocation. The structural details underlying this conformational change in SecA remain incompletely defined. Most SecA crystal structures report on the cytosolic form; only one structure sheds light on a form of SecA that has engaged the translocon. We have used mild destabilization of SecA to trigger conformational changes that mimic those in translocation-active SecA and thus study its structural changes in a simplified, soluble system. Results from circular dichroism, tryptophan fluorescence, and limited proteolysis demonstrate that the SecA conformational reorganization involves disruption of several domain-domain interfaces, partial unfolding of the second nucleotide binding fold (NBF) II, partial dissociation of the helical scaffold domain (HSD) from NBF I and II, and restructuring of the 30 kDa C-terminal region. These changes account for the observed high translocation SecA ATPase activity because they lead to the release of an inhibitory C-terminal segment (called intramolecular regulator of ATPase 1, or IRA1) and of constraints on NBF II (or IRA2) that allow it to stimulate ATPase activity. The observed conformational changes thus position SecA for productive interaction with the SecYEG translocon and for transfer of segments of its passenger protein across the translocon.
Collapse
Affiliation(s)
- Jenny L Maki
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | | | | |
Collapse
|
13
|
Hsieh YH, Zhang H, Lin BR, Cui N, Na B, Yang H, Jiang C, Sui SF, Tai PC. SecA alone can promote protein translocation and ion channel activity: SecYEG increases efficiency and signal peptide specificity. J Biol Chem 2011; 286:44702-9. [PMID: 22033925 DOI: 10.1074/jbc.m111.300111] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SecA is an essential component of the Sec-dependent protein translocation pathway across cytoplasmic membranes in bacteria. Escherichia coli SecA binds to cytoplasmic membranes at SecYEG high affinity sites and at phospholipid low affinity sites. It has been widely viewed that SecYEG functions as the essential protein-conducting channel through which precursors cross the membranes in bacterial Sec-dependent pathways, and that SecA functions as a motor to hydrolyze ATP in translocating precursors through SecYEG channels. We have now found that SecA alone can promote precursor translocation into phospholiposomes. Moreover, SecA-liposomes elicit ionic currents in Xenopus oocytes. Patch-clamp recordings further show that SecA alone promotes signal peptide- or precursor-dependent single channel activity. These activities were observed with the functional SecA at about 1-2 μM. The results show that SecA alone is sufficient to promote protein translocation into liposomes and to elicit ionic channel activity at the phospholipids low affinity binding sites, thus indicating that SecA is able to form the protein-conducting channels. Even so, such SecA-liposomes are less efficient than those with a full complement of Sec proteins, and lose the signal-peptide proofreading function, resembling the effects of PrlA mutations. Addition of purified SecYEG restores the signal peptide specificity and increases protein translocation and ion channel activities. These data show that SecA can promote protein translocation and ion channel activities both when it is bound to lipids at low affinity sites and when it is bound to SecYEG with high affinity. The latter of the two interactions confers high efficiency and specificity.
Collapse
Affiliation(s)
- Ying-hsin Hsieh
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Bacteria and archaea possess a protein complex in the plasma membrane that governs protein secretion and membrane protein insertion. Eukaryotes carry homologues in the endoplasmic reticulum (ER) where they direct the same reaction. A combination of experiments conducted on the systems found in all three domains of life has revealed a great deal about protein translocation. The channel provides a route for proteins to pass through the hydrophobic barrier of the membrane, assisted by various partner proteins which maintain an unfolded state of the substrate, target it to the channel and provide the energy and mechanical drive required for transport. In bacteria, the post-translational reaction utilizes an ATPase that couples the free energy of ATP binding and hydrolysis to move the substrate through the protein pore. This review will draw on genetic, biochemical and structural findings in an account of our current understanding of this mechanism.
Collapse
Affiliation(s)
- Vicki A M Gold
- Department of Biochemistry, University of Bristol, Bristol, UK
| | | | | |
Collapse
|
15
|
Lin BR, Gierasch LM, Jiang C, Tai PC. Electrophysiological studies in Xenopus oocytes for the opening of Escherichia coli SecA-dependent protein-conducting channels. J Membr Biol 2007; 214:103-13. [PMID: 17530158 PMCID: PMC2896742 DOI: 10.1007/s00232-006-0079-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 11/16/2006] [Indexed: 11/25/2022]
Abstract
Protein translocation in Escherichia coli requires protein-conducting channels in cytoplasmic membranes to allow precursor peptides to pass through with adenosine triphosphate (ATP) hydrolysis. Here, we report a novel, sensitive method that detects the opening of the SecA-dependent protein-conducting channels at the nanogram level. E. coli inverted membrane vesicles were injected into Xenopus oocytes, and ionic currents were recorded using the two-electrode voltage clamp. Currents were observed only in the presence of E. coli SecA in conjunction with E. coli membranes. Observed currents showed outward rectification in the presence of KCl as permeable ions and were significantly enhanced by coinjection with the precursor protein proOmpA or active LamB signal peptide. Channel activity was blockable with sodium azide or adenylyl 5'-(beta,gamma-methylene)-diphosphonate, a nonhydrolyzable ATP analogue, both of which are known to inhibit SecA protein activity. Endogenous oocyte precursor proteins also stimulated ion current activity and can be inhibited by puromycin. In the presence of puromycin, exogenous proOmpA or LamB signal peptides continued to enhance ionic currents. Thus, the requirement of signal peptides and ATP hydrolysis for the SecA-dependent currents resembles biochemical protein translocation assay with E. coli membrane vesicles, indicating that the Xenopus oocyte system provides a sensitive assay to study the role of Sec and precursor proteins in the formation of protein-conducting channels using electrophysiological methods.
Collapse
Affiliation(s)
- Bor-Ruei Lin
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue, Atlanta, GA 30303, USA
| | - Lila M. Gierasch
- Departments of Biochemistry and Molecular Biology and of Chemistry, University of Massachusetts, 710 N. Pleasant Street, Amherst, MA 01003, USA
| | - Chun Jiang
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue, Atlanta, GA 30303, USA
| | - Phang C. Tai
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue, Atlanta, GA 30303, USA
| |
Collapse
|
16
|
Tomkiewicz D, Nouwen N, van Leeuwen R, Tans S, Driessen AJM. SecA supports a constant rate of preprotein translocation. J Biol Chem 2006; 281:15709-13. [PMID: 16601117 DOI: 10.1074/jbc.m600205200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, secretory proteins (preproteins) are translocated across the cytoplasmic membrane by the Sec system composed of a protein-conducting channel, SecYEG, and an ATP-dependent motor protein, SecA. After binding of the preprotein to SecYEG-bound SecA, cycles of ATP binding and hydrolysis by SecA are thought to drive the stepwise translocation of the preprotein across the membrane. To address how the length of a preprotein substrate affects the SecA-driven translocation process, we constructed derivatives of the precursor of the outer membrane protein A (proOmpA) with 2, 4, 6, and 8 in-tandem repeats of the periplasmic domain. With increasing polypeptide length, an increasing delay in the time before full-length translocation was observed, but the translocation rate expressed as amino acid translocation per minute remained constant. These data indicate that in the ATP-dependent reaction, SecA drives a constant rate of preprotein translocation consistent with a stepping mechanism of translocation.
Collapse
Affiliation(s)
- Danuta Tomkiewicz
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and the Materials Science Centre Plus, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | | | |
Collapse
|
17
|
Abstract
Subcellular compartments have unique protein compositions, yet protein synthesis only occurs in the cytosol and in mitochondria and chloroplasts. How do proteins get where they need to go? The first steps are targeting to an organelle and efficient translocation across its limiting membrane. Given that most transport systems are exquisitely substrate specific, how are diverse protein sequences recognized for translocation? Are they translocated as linear polypeptide chains or after folding? During translocation, how are diverse amino acyl side chains accommodated? What are the proteins and the lipid environment that catalyze transport and couple it to energy? How is translocation coordinated with protein synthesis and folding, and how are partially translocated transmembrane proteins released into the lipid bilayer? We review here the marked progress of the past 35 years and salient questions for future work. Subcellular compartments have unique protein compositions, yet protein synthesis only occurs in the cytosol and in mitochondria and chloroplasts. How do proteins get where they need to go? The first steps are targeting to an organelle and efficient translocation across its limiting membrane. Given that most transport systems are exquisitely substrate specific, how are diverse protein sequences recognized for translocation? Are they translocated as linear polypeptide chains or after folding? During translocation, how are diverse amino acyl side chains accommodated? What are the proteins and the lipid environment that catalyze transport and couple it to energy? How is translocation coordinated with protein synthesis and folding, and how are partially translocated transmembrane proteins released into the lipid bilayer? We review here the marked progress of the past 35 years and salient questions for future work.
Collapse
Affiliation(s)
- William Wickner
- Department of Biological Chemistry, Dartmouth Medical School, 7200 Vail Building, Hanover, NH 03755-3844, USA.
| | | |
Collapse
|
18
|
Vrontou E, Economou A. Structure and function of SecA, the preprotein translocase nanomotor. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1694:67-80. [PMID: 15546658 DOI: 10.1016/j.bbamcr.2004.06.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 06/03/2004] [Accepted: 06/17/2004] [Indexed: 11/22/2022]
Abstract
Most secretory proteins that are destined for the periplasm or the outer membrane are exported through the bacterial plasma membrane by the Sec translocase. Translocase is a complex nanomachine that moves processively along its aminoacyl polymeric substrates effectively pumping them to the periplasmic space. The salient features of this process are: (a) a membrane-embedded "clamp" formed by the trimeric SecYEG protein, (b) a "motor" provided by the dimeric SecA ATPase, (c) regulatory subunits that optimize catalysis and (d) both chemical and electrochemical metabolic energy. Significant recent strides have allowed structural, biochemical and biophysical dissection of the export reaction. A model incorporating stepwise strokes of the translocase nanomachine at work is discussed.
Collapse
Affiliation(s)
- Eleftheria Vrontou
- Laboratory Unicellular, Organisms Group, Institute of Molecular Biology and Biotechnology, FO.R.T.H. and Department of Biology, University of Crete, Vassilika Vouton, P.O. Box 1527, GR-711 10 Iraklio, Crete, Greece
| | | |
Collapse
|
19
|
Wang HW, Chen Y, Yang H, Chen X, Duan MX, Tai PC, Sui SF. Ring-like pore structures of SecA: implication for bacterial protein-conducting channels. Proc Natl Acad Sci U S A 2003; 100:4221-6. [PMID: 12642659 PMCID: PMC153074 DOI: 10.1073/pnas.0737415100] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SecA, an essential component of the general protein secretion pathway of bacteria, is present in Escherichia coli as soluble and membrane-integral forms. Here we show by electron microscopy that SecA assumes two characteristic forms in the presence of phospholipid monolayers: dumbbell-shaped elongated structures and ring-like pore structures. The ring-like pore structures with diameters of 8 nm and holes of 2 nm are found only in the presence of anionic phospholipids. These ring-like pore structures with larger 3- to 6-nm holes (without staining) were also observed by atomic force microscopic examination. They do not form in solution or in the presence of uncharged phosphatidylcholine. These ring-like phospholipid-induced pore-structures may form the core of bacterial protein-conducting channels through bacterial membranes.
Collapse
Affiliation(s)
- Hong-Wei Wang
- Department of Biological Sciences and Biotechnology, State-Key Laboratory of Biomembranes, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Triplett TL, Sgrignoli AR, Gao FB, Yang YB, Tai PC, Gierasch LM. Functional signal peptides bind a soluble N-terminal fragment of SecA and inhibit its ATPase activity. J Biol Chem 2001; 276:19648-55. [PMID: 11279006 DOI: 10.1074/jbc.m100098200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The selective recognition of pre-secretory proteins by SecA is essential to the process of protein export from Escherichia coli, yet very little is known about the requirements for recognition and the mode of binding of precursors to SecA. The major reason for this is the lack of a soluble system suitable for biophysical study of the SecA-precursor complex. Complicating the development of such a system is the likelihood that SecA interacts with the precursor in a high affinity, productive manner only when it is activated by binding to membrane and SecYEG. A critical aspect of the precursor/SecA interaction is that it is regulated by various SecA ligands (nucleotide, lipid, SecYEG) to facilitate the release of the precursor, most likely in a stepwise fashion, for translocation. Several recent reports show that functions of SecA can be studied using separated domains. Using this approach, we have isolated a proteolytically generated N-terminal fragment of SecA, which is stably folded, has high ATPase activity, and represents an activated version of SecA. We report here that this fragment, termed SecA64, binds signal peptides with significantly higher affinity than does SecA. Moreover, the ATPase activity of SecA64 is inhibited by signal peptides to an extent that correlates with the ability of these signal peptides to inhibit either SecA translocation ATPase or in vitro protein translocation, arguing that the interaction with SecA64 is functionally significant. Thus, SecA64 offers a soluble, well defined system to study the mode of recognition of signal peptides by SecA and the regulation of signal peptide release.
Collapse
Affiliation(s)
- T L Triplett
- Departments of Biochemistry & Molecular Biology and Chemistry, University of Massachusetts, Amherst, Massachusetts 01003-4510, USA
| | | | | | | | | | | |
Collapse
|
21
|
Lee J, Saraswat V, Koh I, Song KB, Park YH, Rhee SK. Secretory production of Arthrobacter levan fructotransferase from recombinant Escherichia coli. FEMS Microbiol Lett 2001; 195:127-32. [PMID: 11179640 DOI: 10.1111/j.1574-6968.2001.tb10509.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Levan fructotransferase (LFTase) from Arthrobacter ureafaciens K2032 was expressed with N-terminal fusion of a LacZ-derived secretion motif (TMITNSSSVP) using the lac promoter system in recombinant Escherichia coli JM109 [pUDF-A81]. In flask cultures, recombinant enzyme activity was detected in culture media, and sequence analysis of N-terminal residues showed that about 40% of the extracellular recombinant LFTase had an authentic N-terminus. In a fed-batch bioreactor containing recombinant E. coli at high cell concentrations (OD(600)>200), the extracellular LFTase accumulated to 46000 U ml(-1) (approximately 2.0 g l(-1)) which was almost 40% of total (intra- and extracellular) recombinant LFTase. The synthesized recombinant enzyme was secreted soon after gene expression was induced by IPTG. Prolonged high secretion caused cell lysis and growth inhibition during the production phase in fed-batch cultures. When lactose was added by continuous feed mode, the secretion of recombinant LFTase and hence the cell lysis were significantly delayed in spite of the increased synthesis level. Therefore the induced cell culture of recombinant E. coli could grow up to a much higher cell concentration with continuing recombinant enzyme synthesis. In the case of the controlled feed of lactose, the maximum activities (U ml(-1)) of total and extracellular LFTase were nearly 100% and 70% higher, respectively.
Collapse
Affiliation(s)
- J Lee
- Microbial and BioProcess Engineering Laboratory, Korea Research Institute of Bioscience and Biotechnology, P.O. Box 115, Yusong, Taejon 305-600, South Korea.
| | | | | | | | | | | |
Collapse
|
22
|
Nishiyama K, Fukuda A, Morita K, Tokuda H. Membrane deinsertion of SecA underlying proton motive force-dependent stimulation of protein translocation. EMBO J 1999; 18:1049-58. [PMID: 10022846 PMCID: PMC1171196 DOI: 10.1093/emboj/18.4.1049] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The proton motive force (PMF) renders protein translocation across the Escherichia coli membrane highly efficient, although the underlying mechanism has not been clarified. The membrane insertion and deinsertion of SecA coupled to ATP binding and hydrolysis, respectively, are thought to drive the translocation. We report here that PMF significantly decreases the level of membrane-inserted SecA. The prlA4 mutation of SecY, which causes efficient protein translocation in the absence of PMF, was found to reduce the membrane-inserted SecA irrespective of the presence or absence of PMF. The PMF-dependent decrease in the membrane-inserted SecA caused an increase in the amount of SecA released into the extra-membrane milieu, indicating that PMF deinserts SecA from the membrane. The PMF-dependent deinsertion reduced the amount of SecA required for maximal translocation activity. Neither ATP hydrolysis nor exchange with external SecA was required for the PMF-dependent deinsertion of SecA. These results indicate that the SecA deinsertion is a limiting step of protein translocation and is accelerated by PMF, efficient protein translocation thereby being caused in the presence of PMF.
Collapse
Affiliation(s)
- K Nishiyama
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | |
Collapse
|
23
|
Kim UO, Hahm KS, Park YH, Kim YJ. cAMP-mediated catabolite repression and electrochemical potential-dependent production of an extracellular amylase in Vibrio alginolyticus. Biosci Biotechnol Biochem 1999; 63:288-92. [PMID: 10192907 DOI: 10.1271/bbb.63.288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vibrio alginolyticus, a halophilic marine bacterium, produced an extracellular amylase with a molecular mass of approximately 56,000, and the amylase appeared to be subject to catabolite repression mediated by cAMP. The production of amylase at pH 6.5, at which the respiratory chain-linked H+ pump functions, was inhibited about 75% at 24 hours following the addition of 2 microM carbonyl cyanide m-chlorophenylhydrazone (CCCP), while the production at pH 8.5, at which the respiratory chain-linked Na+ pump functions, was only slightly inhibited by the addition of 2 microM CCCP. In contrast, the production of amylase in a mutant bacterium defective in the Na+ pump was almost completely inhibited even at pH 8.5 as well as pH 6.5 by the addition of 2 microM CCCP.
Collapse
Affiliation(s)
- U O Kim
- Department of Microbiology, College of Natural Sciences, Changwon National University, Sarim-Dong, Kyungnam, Korea
| | | | | | | |
Collapse
|
24
|
Duong F, Wickner W. Sec-dependent membrane protein biogenesis: SecYEG, preprotein hydrophobicity and translocation kinetics control the stop-transfer function. EMBO J 1998; 17:696-705. [PMID: 9450995 PMCID: PMC1170419 DOI: 10.1093/emboj/17.3.696] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Preprotein translocase catalyzes membrane protein integration as well as complete translocation. Membrane proteins must interrupt their translocation and be laterally released from the translocase into the lipid bilayer. We have analyzed the translocation arrest and lateral release activities of Escherichia coli preprotein translocase with an in vitro reaction and the preprotein proOmpA carrying a synthetic stop-transfer sequence. Membrane protein integration is catalytic, occurs with kinetics similar to those of proOmpA itself and only requires the functions of SecYEG and SecA. Though a strongly hydrophobic segment will direct the protein to leave the translocase and enter the lipid bilayer, a protein with a segment of intermediate hydrophobicity partitions equally between the translocated and membrane-integrated states. Analysis of the effects of PMF, varied ATP concentrations or synthetic translocation arrest show that the stop-translocation efficiency of a mildly hydrophobic segment depends on the translocation kinetics. In contrast, the lateral partitioning from translocase to lipids depends solely on temperature and does not require SecA ATP hydrolysis or SecA membrane cycling. Thus translocation arrest is controlled by the SecYEG translocase activity while lateral release and membrane integration are directed by the hydrophobicity of the segment itself. Our results suggest that a greater hydrophobicity is required for efficient translocation arrest than for lateral release into the membrane.
Collapse
Affiliation(s)
- F Duong
- Dartmouth Medical School, Department of Biochemistry, 7200 Vail Building, Hanover, NH 03755, USA
| | | |
Collapse
|
25
|
Chen X, Brown T, Tai PC. Identification and characterization of protease-resistant SecA fragments: secA has two membrane-integral forms. J Bacteriol 1998; 180:527-37. [PMID: 9457854 PMCID: PMC106918 DOI: 10.1128/jb.180.3.527-537.1998] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have identified and characterized the protease-resistant SecA fragments (X. Chen, H. Xu, and P. C. Tai, J. Biol. Chem. 271:29698-29706, 1996) through immunodetection with region-specific antibodies, chemical extraction, and sequencing analysis. The 66-, 36-, and 27-kDa proteolytic fragments in the membranes all start at Met1, whereas the 48-kDa fragment starts at Glu361. The overlapping of the sequences of the 66- and 48-kDa fragments indicates that they are derived from different SecA molecules. These two fragments were generated differently in response to ATP hydrolysis and protein translocation. Furthermore, the presence of membrane is required for the generation of the 48-kDa fragment but not for that of the 66-kDa fragment. These data suggest that there are two different integral forms of SecA in the membrane: SecA(S) and SecA(M). The combination of these two forms of SecA has several membrane-interacting domains. Both forms of SecA are integrated in the membrane, since both the 48- and 66-kDa fragments could be derived from urea- or Na2CO3-washed membranes. Moreover, all fragments are resistant to extraction with a high concentration of salt or with heparin, but the membrane-specific 48-kDa SecA domain is more sensitive to Na2CO3 or urea extraction. This suggests that this domain may interact with other membrane proteins in an aqueous microenvironment and therefore may form a part of the protein-conducting channel.
Collapse
Affiliation(s)
- X Chen
- Department of Biology, Georgia State University, Atlanta 30303, USA
| | | | | |
Collapse
|
26
|
Yang YB, Lian J, Tai PC. Differential translocation of protein precursors across SecY-deficient membranes of Escherichia coli: SecY is not obligatorily required for translocation of certain secretory proteins in vitro. J Bacteriol 1997; 179:7386-93. [PMID: 9393703 PMCID: PMC179689 DOI: 10.1128/jb.179.23.7386-7393.1997] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
SecY, a component of the protein translocation system in Escherichia coli, was depleted at a nonpermissive temperature in a strain which had a temperature-sensitive polar effect on the expression of its secY. Membrane vesicles prepared from these cells, when grown at the nonpermissive temperature, contained about 5% SecY and similarly low levels of SecG. As expected, translocation of alkaline phosphatase precursors across these SecY-deficient membranes was severely impaired and appeared to be directly related to the decrease of SecY amounts. However, despite such a dramatic reduction in SecY and SecG levels, these membranes exhibited 50 to 70% of the wild-type translocation activity, including the processing of the signal peptide, of OmpA precursor (proOmpA). This translocation activity in SecY-deficient membranes was still SecA and ATP dependent and was not unique to proOmpA, as lipoprotein and lambda receptor protein precursors were also transported efficiently. Membranes that were reconstituted from these SecY-depleted membranes contained undetectable amounts of SecY yet were also shown to possess substantial translocation activity for proOmpA. These results indicate that the requirement of SecY for translocation is not obligatory for all secretory proteins and may depend on the nature of precursors. Consequently, it is unlikely that SecY is the essential core channel through which all precursors traverse across membranes; rather, SecY probably contributes to efficiency and specificity.
Collapse
Affiliation(s)
- Y B Yang
- Department of Biology, Georgia State University, Atlanta 30303, USA
| | | | | |
Collapse
|
27
|
Duong F, Wickner W. The SecDFyajC domain of preprotein translocase controls preprotein movement by regulating SecA membrane cycling. EMBO J 1997; 16:4871-9. [PMID: 9305629 PMCID: PMC1170122 DOI: 10.1093/emboj/16.16.4871] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Escherichia coli preprotein translocase comprises a membrane-embedded hexameric complex of SecY, SecE, SecG, SecD, SecF and YajC (SecYEGDFyajC) and the peripheral ATPase SecA. The energy of ATP binding and hydrolysis promotes cycles of membrane insertion and deinsertion of SecA and catalyzes the movement of the preprotein across the membrane. The proton motive force (PMF), though not essential, greatly accelerates late stages of translocation. We now report that the SecDFyajC domain of translocase slows the movement of preprotein in transit against both reverse and forward translocation and exerts this control through stabilization of the inserted form of SecA. This mechanism allows the accumulation of specific translocation intermediates which can then complete translocation under the driving force of the PMF. These findings establish a functional relationship between SecA membrane insertion and preprotein translocation and show that SecDFyajC controls SecA membrane cycling to regulate the movement of the translocating preprotein.
Collapse
Affiliation(s)
- F Duong
- Dartmouth Medical School, Department of Biochemistry, Hanover, NH 03755, USA
| | | |
Collapse
|
28
|
Yang YB, Yu N, Tai PC. SecE-depleted membranes of Escherichia coli are active. SecE is not obligatorily required for the in vitro translocation of certain protein precursors. J Biol Chem 1997; 272:13660-5. [PMID: 9153216 DOI: 10.1074/jbc.272.21.13660] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Membrane vesicles were prepared from Escherichia coli cells in which SecE was depleted to 2% of wild-type membranes. SecE depletion had pleiotropic effects; SecD, SecF, SecG, and SecY were decreased 4-6-fold, whereas SecA was increased about 16-fold over that of wild-type membranes. These membranes were substantially active in the in vitro translocation of proOmpA, which was mediated by the SecA pathway since it was inhibited by azide. Similar substantial translocation activities were observed for proLamB and proLpp in the SecE-depleted membranes. However, the translocation of proPhoA was more severely impaired. These data indicate that SecE may enhance but is not obligatorily required for the translocation of at least certain precursors, and suggest that the effects of the SecE depletion on protein translocation may be precursor-dependent.
Collapse
Affiliation(s)
- Y B Yang
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | |
Collapse
|
29
|
Chen X, Xu H, Tai PC. A significant fraction of functional SecA is permanently embedded in the membrane. SecA cycling on and off the membrane is not essential during protein translocation. J Biol Chem 1996; 271:29698-706. [PMID: 8939903 DOI: 10.1074/jbc.271.47.29698] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
SecA has been suggested to cycle on and off the cytoplasmic membrane of Escherichia coli during protein translocation. We have reconstituted 35S-SecA onto SecA-depleted membrane vesicles and followed the fate of the membrane-associated 35S-SecA during protein translocation. Some 35S-SecA was released from the membranes in a translocation-independent manner. However, a significant fraction of 35S-SecA remained on the membranes even after incubation with excess SecA. This fraction of 35S-SecA was shown to be integrated into the membrane and was active in protein translocation, indicating that SecA cycling on and off membrane is not required for protein translocation. Proteolysis experiments did not support the model of SecA insertion and deinsertion during protein translocation; instead, a major 48-kDa domain was found persistently embedded in the membrane regardless of translocation status. Thus, in addition to catalyzing ATP hydrolysis, certain domains of SecA probably play an important structural role in the translocation machinery, perhaps forming part of the protein-conducting channels.
Collapse
Affiliation(s)
- X Chen
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA.
| | | | | |
Collapse
|
30
|
Abstract
The last few years has seen enormous progress in understanding of protein targeting and translocation across biological membranes. Many of the key molecules involved have been identified, isolated, and the corresponding genes cloned, opening up the way for detailed analysis of the structure and function of these molecular machines. It has become clear that the protein translocation machinery of the endoplasmic reticulum is very closely related to that of bacteria, and probably represents an ancient solution to the problem of how to get a protein across a membrane. One of the thylakoid translocation systems looks as if it will also be very similar, and probably represents a pathway inherited from the ancestral endosymbiont. It is interesting that, so far, there is a perfect correlation between thylakoid proteins which are present in photosynthetic prokaryotes and those which use the sec pathway in chloroplasts; conversely, OE16 and 23 which use the delta pH pathway are not found in cyanobacteria. To date, no Sec-related proteins have been found in mitochondria, although these organelles also arose as a result of endosymbiotic events. However, virtually nothing is known about the insertion of mitochondrially encoded proteins into the inner membrane. Is the inner membrane machinery which translocates cytoplasmically synthesized proteins capable of operating in reverse to export proteins from the matrix, or is there a separate system? Alternatively, do membrane proteins encoded by mitochondrial DNA insert independently of accessory proteins? Unlike nuclear-encoded proteins, proteins encoded by mtDNA are not faced with a choice of membrane and, in principle, could simply partition into the inner membrane. The ancestors of mitochondria almost certainly had a Sec system; has this been lost along with many of the proteins once encoded in the endosymbiont genome, or is there still such a system waiting to be discovered? The answer to this question may also shed light on the controversy concerning the sorting of the inter-membrane space proteins cytochrome c1 and cytochrome b2, as the conservative-sorting hypothesis would predict re-export of matrix intermediates via an ancestral (possibly Sec-type) pathway. Whereas the ER and bacterial systems clearly share homologous proteins, the protein import machineries of mitochondria and chloroplasts appear to be analogous rather than homologous. In both cases, import occurs through contact sites and there are separate translocation complexes in each membrane, however, with the exception of some of the chaperone molecules, the individual protein components do not appear to be related. Their similarities may be a case of convergent rather than divergent evolution, and may reflect what appear to be common requirements for translocation, namely unfolding, a receptor, a pore complex and refolding. There are also important differences. Translocation across the mitochondrial inner membrane is absolutely dependent upon delta psi, but no GTP requirement has been identified. In chloroplasts the reverse is the case. The roles of delta psi and GTP, respectively, remain uncertain, but it is tempting to speculate that they may play a role in regulating the import process, perhaps by controlling the assembly of a functional translocation complex. In the case of peroxisomes, much still remains to be learned. Many genes involved in peroxisome biogenesis have been identified but, in most cases, the biochemical function remains to be elucidated. In this respect, understanding of peroxisome biogenesis is at a similar stage to that of the ER 10 years ago. The coming together of genetic and biochemical approaches, as with the other organelles, should provide many of the answers.
Collapse
Affiliation(s)
- A Baker
- Department of Biochemistry, University of Cambridge, UK
| | | | | |
Collapse
|
31
|
Douville K, Price A, Eichler J, Economou A, Wickner W. SecYEG and SecA are the stoichiometric components of preprotein translocase. J Biol Chem 1995; 270:20106-11. [PMID: 7650029 DOI: 10.1074/jbc.270.34.20106] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The transport of large preproteins across the Escherichia coli plasma membrane is catalyzed by preprotein translocase, comprised of the peripherally bound SecA subunit and an integrally bound heterotrimeric domain consisting of the SecY, SecE, and SecG subunits. We have now placed the secY, secE, and secG genes under the control of an arabinose-inducible promoter on a multicopy plasmid. Upon induction, all three of the proteins are strongly overexpressed and recovered in the plasma membrane fraction. These membranes show a strong enhancement of 1) translocation ATPase activity, 2) preprotein translocation, 3) capacity for SecA binding, and 4) formation of the membrane-inserted form of SecA. These data establish that SecY, SecE, and SecG constitute the integral membrane domain of preprotein translocase.
Collapse
Affiliation(s)
- K Douville
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755-3844, USA
| | | | | | | | | |
Collapse
|
32
|
Schrempp S, Bayan N, Shechter E. Characterization of energetically functional inverted membrane vesicles from Corynebacterium glutamicum. FEBS Lett 1994; 356:104-8. [PMID: 7988700 DOI: 10.1016/0014-5793(94)01245-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We show that inverted membrane vesicles from Corynebacterium glutamicum, a Gram-positive bacterium, are able to generate and maintain an electrochemical gradient of protons in response to the addition of NADH. This result indicates that the respiratory chain is intact and that the vesicles are reasonably impermeable to protons. These membrane vesicles may be the starting point for in vitro translocation studies of proteins in Gram-positive bacteria.
Collapse
Affiliation(s)
- S Schrempp
- Laboratoire des Biomembranes, Université de Paris Sud, Orsay, France
| | | | | |
Collapse
|
33
|
Affiliation(s)
- A J Driessen
- Department of Microbiology, University of Groningen, Haren, The Netherlands
| |
Collapse
|
34
|
Gu L, Remacha M, Wenman WM, Kaul R. Cloning and characterization of a secY homolog from Chlamydia trachomatis. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:482-7. [PMID: 8202093 DOI: 10.1007/bf00280480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Characterization of the genes involved in the process of protein translocation is important in understanding their structure-function relationships. However, little is known about the signals that govern chlamydial gene expression and translocation. We have cloned a 1.7 kb HindIII-PstI fragment containing the secY gene of Chlamydia trachomatis. The complete nucleotide sequence reveals three open reading frames. The amino acid sequence shows highest homology with Escherichia coli proteins L15, SecY and S13, corresponding to the spc-alpha ribosomal protein operons. The product of the C. trachomatis secY gene is composed of 457 amino acids with a calculated molecular mass of 50,195 Daltons. Its amino acid sequence shows 27.4% and 35.7% identity to E. coli and Bacillus subtilis SecY proteins, respectively. The distribution of hydrophobic amino acids in the C. trachomatis secY gene product is suggestive of it being an integral membrane protein with ten transmembrane segments, the second, third and seventh membrane segments sharing > 45% identity with E. coli SecY. Our results suggest that despite evolutionary differences, eubacteria share a similar protein export apparatus.
Collapse
Affiliation(s)
- L Gu
- Department of Pediatrics, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
35
|
Affiliation(s)
- V Géli
- Laboratoire d'Ingéniérie et de Dynamique des Systèmes Membranaires, Marseille, France
| | | |
Collapse
|
36
|
Charged residues render pro-OmpA potential dependent for initiation of membrane translocation. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)98371-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
37
|
Abstract
The unifying feature of all proteins that are transported out of the cytoplasm of gram-negative bacteria by the general secretory pathway (GSP) is the presence of a long stretch of predominantly hydrophobic amino acids, the signal sequence. The interaction between signal sequence-bearing proteins and the cytoplasmic membrane may be a spontaneous event driven by the electrochemical energy potential across the cytoplasmic membrane, leading to membrane integration. The translocation of large, hydrophilic polypeptide segments to the periplasmic side of this membrane almost always requires at least six different proteins encoded by the sec genes and is dependent on both ATP hydrolysis and the electrochemical energy potential. Signal peptidases process precursors with a single, amino-terminal signal sequence, allowing them to be released into the periplasm, where they may remain or whence they may be inserted into the outer membrane. Selected proteins may also be transported across this membrane for assembly into cell surface appendages or for release into the extracellular medium. Many bacteria secrete a variety of structurally different proteins by a common pathway, referred to here as the main terminal branch of the GSP. This recently discovered branch pathway comprises at least 14 gene products. Other, simpler terminal branches of the GSP are also used by gram-negative bacteria to secrete a more limited range of extracellular proteins.
Collapse
Affiliation(s)
- A P Pugsley
- Unité de Génétique Moléculaire, Institut Pasteur, Paris, France
| |
Collapse
|
38
|
Translocation of conjugated presecretory proteins possessing an internal non-peptide domain into everted membrane vesicles in Escherichia coli. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53734-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
39
|
Ulbrandt N, London E, Oliver D. Deep penetration of a portion of Escherichia coli SecA protein into model membranes is promoted by anionic phospholipids and by partial unfolding. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42163-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
40
|
Kato M, Tokuda H, Mizushima S. In vitro translocation of secretory proteins possessing no charges at the mature domain takes place efficiently in a protonmotive force-dependent manner. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)48510-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
41
|
Abstract
Both ATP and an electrochemical potential play roles in translocating proteins across the inner membrane of Escherichia coli. Recent discoveries have dissected the overall transmembrane movement into separate subreactions with different energy requirements, identified a translocation ATPase, and reconstituted both energy-requiring steps of the reaction from purified components. A more refined understanding of the energetics of this fundamental process is beginning to provide answers about the basic issues of how proteins move across the hydrophobic membrane barrier.
Collapse
Affiliation(s)
- B L Geller
- Department of Microbiology, Oregon State University, Corvallis 97331-3804
| |
Collapse
|
42
|
Fraimow HS, Greenman JB, Leviton IM, Dougherty TJ, Miller MH. Tobramycin uptake in Escherichia coli is driven by either electrical potential or ATP. J Bacteriol 1991; 173:2800-8. [PMID: 2019557 PMCID: PMC207860 DOI: 10.1128/jb.173.9.2800-2808.1991] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aminoglycoside antibiotics such as streptomycin and tobramycin must traverse the bacterial cytoplasmic membrane prior to initiating lethal effects. Previous data on Escherichia coli, Staphylococcus aureus, and Bacillus subtilis have demonstrated that transport of aminoglycosides is regulated by delta psi, the electrical component of the proton motive force. However, several laboratories have observed that growth of bacterial cells can occur in the apparent absence of delta psi, and we wished to confirm these studies with E. coli and further investigate whether transport of aminoglycosides could occur in the absence of a membrane potential. Treatment of acrA strain CL2 with the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) dissipated delta psi, decreased intracellular ATP levels, and resulted in cessation of growth; after a variable period of time (3 to 7 h), growth resumed, ultimately achieving growth rates comparable to those of untreated cells. Absence of delta psi in these cells was confirmed by absence of [3H]tetraphenyl phosphonium+ uptake as measured by membrane filtration, lack of flagellar motion, and inability of these cells to transport proline (but not methionine). Regrowth was associated with restoration of normal intracellular ATP as measured by luciferin-luciferase bioluminescence assay. Unlike unacclimatized CL2 cells treated with CCCP, these cells transported [3H]tobramycin similarly to untreated cells; aminoglycoside-induced killing was seen in association with transport. These studies suggest that under certain circumstances aminoglycoside transport can be driven by ATP (or other high-energy activated phosphate donors) alone, in the absence of a measurable delta psi. delta uncBC mutants of CL2 incapable of interconverting delta psi and ATP were treated with CCCP, resulting in dissipation of delta psi but no alteration in ATP content. Despite maintenance of normal ATP, there was no transport of [3H] bramycin, confirming that under normal growth conditions ATP has no role in the transport of aminoglycosides.
Collapse
Affiliation(s)
- H S Fraimow
- Department of Medicine, Montefiore Hospital and Medical Center, Bronx, New York
| | | | | | | | | |
Collapse
|
43
|
Kimura E, Akita M, Matsuyama S, Mizushima S. Determination of a region in SecA that interacts with presecretory proteins in Escherichia coli. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)38159-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
44
|
Driessen AJ, Wickner W. Proton transfer is rate-limiting for translocation of precursor proteins by the Escherichia coli translocase. Proc Natl Acad Sci U S A 1991; 88:2471-5. [PMID: 1826054 PMCID: PMC51254 DOI: 10.1073/pnas.88.6.2471] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The protonmotive force stimulates translocation in vivo, in crude in vitro reactions, and in a purified, reconstituted reaction. Translocation activity is a function of the pH at the inner face of the membrane. Both the transmembrane pH gradient and the transmembrane electrical potential stimulate translocation. A late-stage translocation intermediate of the proOmpA preprotein completes its translocation in the absence of ATP when a protonmotive force is imposed. This completion of translocation is retarded by a factor of greater than 3 in deuterium oxide relative to water, demonstrating that translocation involves proton-transfer reactions in rate-limiting steps.
Collapse
Affiliation(s)
- A J Driessen
- Molecular Biology Institute, University of California, Los Angeles 90024-1737
| | | |
Collapse
|
45
|
The conformation of SecA, as revealed by its protease sensitivity, is altered upon interaction with ATP, presecretory proteins, everted membrane vesicles, and phospholipids. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)67672-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
46
|
Mizushima S, Tokuda H, Matsuyama S. In vitro biochemical studies on translocation of presecretory proteins across the cytoplasmic membrane of Escherichia coli. Methods Cell Biol 1991; 34:107-46. [PMID: 1943798 DOI: 10.1016/s0091-679x(08)61678-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- S Mizushima
- Institute of Applied Microbiology, University of Tokyo, Japan
| | | | | |
Collapse
|
47
|
|
48
|
Abstract
The secA gene product is an autoregulated, membrane-associated ATPase which catalyzes protein export across the Escherichia coli plasma membrane. Previous genetic selective strategies have yielded secA mutations at a limited number of sites. In order to define additional regions of the SecA protein that are important in its biological function, we mutagenized a plasmid-encoded copy of the secA gene to create small internal deletions or duplications marked by an oligonucleotide linker. The mutagenized plasmids were screened in an E. coli strain that allowed the ready detection of dominant secA mutations by their ability to derepress a secA-lacZ protein fusion when protein export is compromised. Twelve new secA mutations were found to cluster into four regions corresponding to amino acid residues 196 to 252, 352 to 367, 626 to 653, and 783 to 808. Analysis of these alleles in wild-type and secA mutant strains indicated that three of them still maintained the essential functions of SecA, albeit at a reduced level, while the remainder abolished SecA translocation activity and caused dominant protein export defects accompanied by secA depression. Three secA alleles caused dominant, conditional-lethal, cold-sensitive phenotypes and resulted in some of the strongest defects in protein export characterized to date. The abundance of dominant secA mutations strongly favors certain biochemical models defining the function of SecA in protein translocation. These new dominant secA mutants should be useful in biochemical studies designed to elucidate SecA protein's functional sites and its precise role in catalyzing protein export across the plasma membrane.
Collapse
Affiliation(s)
- G P Jarosik
- Department of Microbiology, State University of New York, Stony Brook 11794
| | | |
Collapse
|
49
|
Flügge UI. On the translocation of proteins across the chloroplast envelope. J Bioenerg Biomembr 1990; 22:769-87. [PMID: 2092037 DOI: 10.1007/bf00786930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Most of the chloroplast proteins are coded for in the nucleus and are synthesized in the cytosol from where they are subsequently transported into the different chloroplast compartments. The structural properties of the N-terminal extensions (transit peptides) of these nuclear-coded precursor proteins are discussed as well as the energy requirements for their translocation and the involvement of receptor proteins and that of other (ATP-dependent) factors.
Collapse
Affiliation(s)
- U I Flügge
- Institut für Botanik und Pharmazeutische Biologie mit Botanischem Garten Universität Würzburg, Federal Republic of Germany
| |
Collapse
|
50
|
Abstract
Most polypeptides of mitochondria are imported from the cytosol. Precursor proteins contain targeting and sorting information, often in the form of amino-terminal presequences. Precursors first bind to receptors in the outer membrane. Two putative import receptors have been identified: a 19-kilodalton protein (MOM19) in Neurospora mitochondria, and a 70-kilodalton protein (MAS70) in yeast. Some precursors integrate directly into the outer membrane, but the majority are translocated through one or both membranes. This process requires an electrochemical potential across the inner membrane. Import appears to occur through a hydrophilic pore, although the inner and outer membranes may contain functionally separate translocation machineries. In yeast, a 42-kilodalton protein (ISP42) probably forms part of the outer membrane channel. After import, precursors interact with "chaperonin" ATPases in the matrix. Presequences then are removed by the matrix protease. Finally, some proteins are retranslocated across the inner membrane to the intermembrane space.
Collapse
Affiliation(s)
- V Geli
- Centre de Biochimie et de Biologie Moléculaire, C.N.R.S., Marseilles, France
| | | |
Collapse
|