1
|
Mela AP, Glass NL. Permissiveness and competition within and between Neurospora crassa syncytia. Genetics 2023; 224:iyad112. [PMID: 37313736 PMCID: PMC10411585 DOI: 10.1093/genetics/iyad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/15/2023] Open
Abstract
A multinucleate syncytium is a common growth form in filamentous fungi. Comprehensive functions of the syncytial state remain unknown, but it likely allows for a wide range of adaptations to enable filamentous fungi to coordinate growth, reproduction, responses to the environment, and to distribute nuclear and cytoplasmic elements across a colony. Indeed, the underlying mechanistic details of how syncytia regulate cellular and molecular processes spatiotemporally across a colony are largely unexplored. Here, we implemented a strategy to analyze the relative fitness of different nuclear populations in syncytia of Neurospora crassa, including nuclei with loss-of-function mutations in essential genes, based on production of multinucleate asexual spores using flow cytometry of pairings between strains with differentially fluorescently tagged nuclear histones. The distribution of homokaryotic and heterokaryotic asexual spores in pairings was assessed between different auxotrophic and morphological mutants, as well as with strains that were defective in somatic cell fusion or were heterokaryon incompatible. Mutant nuclei were compartmentalized into both homokaryotic and heterokaryotic asexual spores, a type of bet hedging for maintenance and evolution of mutational events, despite disadvantages to the syncytium. However, in pairings between strains that were blocked in somatic cell fusion or were heterokaryon incompatible, we observed a "winner-takes-all" phenotype, where asexual spores originating from paired strains were predominantly one genotype. These data indicate that syncytial fungal cells are permissive and tolerate a wide array of nuclear functionality, but that cells/colonies that are unable to cooperate via syncytia formation actively compete for resources.
Collapse
Affiliation(s)
- Alexander P Mela
- The Plant and Microbial Biology Department, University of California Berkeley, Berkeley, CA 94720, USA
| | - N Louise Glass
- The Plant and Microbial Biology Department, University of California Berkeley, Berkeley, CA 94720, USA
- The Environmental Genomics and Systems Biology Division, The Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Chen M, Kumakura N, Saito H, Muller R, Nishimoto M, Mito M, Gan P, Ingolia NT, Shirasu K, Ito T, Shichino Y, Iwasaki S. A parasitic fungus employs mutated eIF4A to survive on rocaglate-synthesizing Aglaia plants. eLife 2023; 12:81302. [PMID: 36852480 PMCID: PMC9977294 DOI: 10.7554/elife.81302] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/12/2023] [Indexed: 03/01/2023] Open
Abstract
Plants often generate secondary metabolites as defense mechanisms against parasites. Although some fungi may potentially overcome the barrier presented by antimicrobial compounds, only a limited number of examples and molecular mechanisms of resistance have been reported. Here, we found an Aglaia plant-parasitizing fungus that overcomes the toxicity of rocaglates, which are translation inhibitors synthesized by the plant, through an amino acid substitution in a eukaryotic translation initiation factor (eIF). De novo transcriptome assembly revealed that the fungus belongs to the Ophiocordyceps genus and that its eIF4A, a molecular target of rocaglates, harbors an amino acid substitution critical for rocaglate binding. Ribosome profiling harnessing a cucumber-infecting fungus, Colletotrichum orbiculare, demonstrated that the translational inhibitory effects of rocaglates were largely attenuated by the mutation found in the Aglaia parasite. The engineered C. orbiculare showed a survival advantage on cucumber plants with rocaglates. Our study exemplifies a plant-fungus tug-of-war centered on secondary metabolites produced by host plants.
Collapse
Affiliation(s)
- Mingming Chen
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of TokyoKashiwaJapan
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
| | - Naoyoshi Kumakura
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource ScienceYokohamaJapan
| | - Hironori Saito
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of TokyoKashiwaJapan
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
| | - Ryan Muller
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Madoka Nishimoto
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics ResearchYokohamaJapan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
| | - Pamela Gan
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource ScienceYokohamaJapan
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Ken Shirasu
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource ScienceYokohamaJapan
- Department of Biological Science, Graduate School of Science, The University of TokyoTokyoJapan
| | - Takuhiro Ito
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics ResearchYokohamaJapan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
| | - Shintaro Iwasaki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of TokyoKashiwaJapan
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
| |
Collapse
|
3
|
Liu Q, Johnson LJ, Applegate ER, Arfmann K, Jauregui R, Larking A, Mace WJ, Maclean P, Walker T, Johnson RD. Identification of Genetic Diversity, Pyrrocidine-Producing Strains and Transmission Modes of Endophytic Sarocladium zeae Fungi from Zea Crops. Microorganisms 2022; 10:microorganisms10071415. [PMID: 35889134 PMCID: PMC9316807 DOI: 10.3390/microorganisms10071415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 12/10/2022] Open
Abstract
Genotyping by sequencing (GBS) was used to reveal the inherent genetic variation within the haploid fungi Sarocladium zeae isolated from diverse Zea germplasm, including modern Zea mays and its wild progenitors—the teosintes. In accordance with broad host relationship parameters, GBS analysis revealed significant host lineages of S. zeae genetic diversity, indicating that S. zeae genetic variation may associate with different evolutionary histories of host species or varieties. Based on a recently identified PKS-NRPS gene responsible for pyrrocidine biosynthesis in S. zeae fungi, a novel PCR assay was developed to discriminate pyrrocidine-producing S. zeae strains. This molecular method for screening bioactive strains of S. zeae is complementary to other approaches, such as chemical analyses. An eGFP-labelled S. zeae strain was also developed to investigate the endophytic transmission of S. zeae in Z. mays seedlings, which has further improved our understanding of the transmission modes of S. zeae endophytes in maize tissues.
Collapse
|
4
|
An efficient genetic manipulation protocol for dark septate endophyte Falciphora oryzae. Biotechnol Lett 2021; 43:2045-2052. [PMID: 34390483 DOI: 10.1007/s10529-021-03171-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To investigate the protoplast preparation and transformation system of endophytic fungus Falciphora oryzae. RESULTS F. oryzae strain obtained higher protoplast yield and effective transformation when treated with enzyme digestion solution containing 0.9 M KCl solution and 10 mg mL-1 glucanase at 30 °C with shaking at 80 rpm for 2-3 h. When the protoplasts were plated on a regenerations-agar medium containing 1 M sucrose, the re-growth rate of protoplasts was the highest. We successfully acquired green fluorescent protein-expressing transformants by transforming the pKD6-GFP vector into protoplasts. Further, the GFP expression in fungal hyphae possessed good stability and intensity during symbiosis in rice roots. CONCLUSIONS This study provided a protoplast transformation system of F. oryzae, creating opportunities for future genetic research in other endophytic fungi.
Collapse
|
5
|
Lichius A, Ruiz DM, Zeilinger S. Genetic Transformation of Filamentous Fungi: Achievements and Challenges. GRAND CHALLENGES IN FUNGAL BIOTECHNOLOGY 2020. [DOI: 10.1007/978-3-030-29541-7_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Jiang J, Zhang K, Cheng S, Nie Q, Zhou SX, Chen Q, Zhou J, Zhen X, Li XT, Zhen TW, Xu M, Hsiang T, Sun Z, Zhou Y. Fusarium oxysporum KB-3 from Bletilla striata: an orchid mycorrhizal fungus. MYCORRHIZA 2019; 29:531-540. [PMID: 31270609 DOI: 10.1007/s00572-019-00904-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 06/19/2019] [Indexed: 05/20/2023]
Abstract
Orchid mycorrhizal fungi are essential for the seed germination and vegetative growth of orchids. The orchid Bletilla striata has great medical value in China because its tuber is rich in mannan. Some endophytic fungi were isolated from the roots of B. striata. The isolate KB-3 was selected for experiments because it could promote the germination of B. striata seeds. Based on morphological characters and phylogenetic analysis, the isolate KB-3 was identified as Fusarium oxysporum. Co-cultivation experiments of KB-3 with B. striata and Dendrobium candidum were performed to demonstrate orchid mycorrhizal structures. Microscopic examination showed that KB-3 established colonization and produced coiled hyphal structures known as pelotons within the cortical cells of both orchid roots. The results confirm that F. oxysporum KB-3 can behave as an orchid mycorrhizal fungus.
Collapse
Affiliation(s)
- Jianwei Jiang
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Ke Zhang
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Allmas alle 5, 75651, Uppsala, Sweden
| | - Sheng Cheng
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Qianwen Nie
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Shen-Xian Zhou
- Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Qingqing Chen
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jinglong Zhou
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xiao Zhen
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xue Ting Li
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Tong Wen Zhen
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Mingyue Xu
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Tom Hsiang
- Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Zhengxiang Sun
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Yi Zhou
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
7
|
Tebeest DO, Weidemann GJ. Preparation And Regeneration of Protoplasts ofColletotrichum GloeosporioidesF. Sp.Aeschynomene. Mycologia 2018. [DOI: 10.1080/00275514.1990.12025871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- D. O. Tebeest
- Department of Plant Pathology, University of Arkansas, Fayetteville, Arkansas 72701
| | - G. J. Weidemann
- Department of Plant Pathology, University of Arkansas, Fayetteville, Arkansas 72701
| |
Collapse
|
8
|
Foutz KR, Woloshuk CP, Payne GA. Cloning and assignment of linkage group loci to a karyotypic map of the filamentous fungusAspergillus flavus. Mycologia 2018. [DOI: 10.1080/00275514.1995.12026600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Kirk R. Foutz
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695-7616
| | - Charles P. Woloshuk
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Gary A. Payne
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695-7616
| |
Collapse
|
9
|
Genetic analyses of reddish-brown polyoxin-resistant mutants of Bipolaris maydis. MYCOSCIENCE 2018. [DOI: 10.1016/j.myc.2017.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Li D, Tang Y, Lin J, Cai W. Methods for genetic transformation of filamentous fungi. Microb Cell Fact 2017; 16:168. [PMID: 28974205 PMCID: PMC5627406 DOI: 10.1186/s12934-017-0785-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/26/2017] [Indexed: 12/20/2022] Open
Abstract
Filamentous fungi have been of great interest because of their excellent ability as cell factories to manufacture useful products for human beings. The development of genetic transformation techniques is a precondition that enables scientists to target and modify genes efficiently and may reveal the function of target genes. The method to deliver foreign nucleic acid into cells is the sticking point for fungal genome modification. Up to date, there are some general methods of genetic transformation for fungi, including protoplast-mediated transformation, Agrobacterium-mediated transformation, electroporation, biolistic method and shock-wave-mediated transformation. This article reviews basic protocols and principles of these transformation methods, as well as their advantages and disadvantages.
Collapse
Affiliation(s)
- Dandan Li
- Institute of Apply Genomics, Fuzhou University, No.2 Xueyuan Road, Fuzhou, 350108 China
- College of Biological Science and Engineering, Fuzhou University, No.2 Xueyuan Road, Fuzhou, 350108 China
| | - Yu Tang
- Triplex International Biosciences (China) Co. LTD, Xiamen, 361100 China
| | - Jun Lin
- Institute of Apply Genomics, Fuzhou University, No.2 Xueyuan Road, Fuzhou, 350108 China
- School of Basic Medical Sciences, Fujian Medical University, No.1 Xuefubei Road, Fuzhou, 350122 China
- College of Biological Science and Engineering, Fuzhou University, No.2 Xueyuan Road, Fuzhou, 350108 China
| | - Weiwen Cai
- Institute of Apply Genomics, Fuzhou University, No.2 Xueyuan Road, Fuzhou, 350108 China
- College of Biological Science and Engineering, Fuzhou University, No.2 Xueyuan Road, Fuzhou, 350108 China
| |
Collapse
|
11
|
Efficient targeted mutagenesis in Epichloë festucae using a split marker system. J Microbiol Methods 2017; 134:62-65. [DOI: 10.1016/j.mimet.2016.12.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/13/2016] [Accepted: 12/19/2016] [Indexed: 11/17/2022]
|
12
|
Smith ML, Gibbs CC, Milgroom MG. Heterokaryon incompatibility function of barrage-associated vegetative incompatibility genes (vic) inCryphonectria parasitica. Mycologia 2017. [DOI: 10.1080/15572536.2006.11832711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Carmen C. Gibbs
- Biology Department, Carleton University, Ottawa, Ontario, K1S 5B6 Canada
| | | |
Collapse
|
13
|
Voisey CR, Christensen MT, Johnson LJ, Forester NT, Gagic M, Bryan GT, Simpson WR, Fleetwood DJ, Card SD, Koolaard JP, Maclean PH, Johnson RD. cAMP Signaling Regulates Synchronised Growth of Symbiotic Epichloë Fungi with the Host Grass Lolium perenne. FRONTIERS IN PLANT SCIENCE 2016; 7:1546. [PMID: 27833620 PMCID: PMC5082231 DOI: 10.3389/fpls.2016.01546] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 10/03/2016] [Indexed: 05/04/2023]
Abstract
The seed-transmitted fungal symbiont, Epichloë festucae, colonizes grasses by infecting host tissues as they form on the shoot apical meristem (SAM) of the seedling. How this fungus accommodates the complexities of plant development to successfully colonize the leaves and inflorescences is unclear. Since adenosine 3', 5'-cyclic monophosphate (cAMP)-dependent signaling is often essential for host colonization by fungal pathogens, we disrupted the cAMP cascade by insertional mutagenesis of the E. festucae adenylate cyclase gene (acyA). Consistent with deletions of this gene in other fungi, acyA mutants had a slow radial growth rate in culture, and hyphae were convoluted and hyper-branched suggesting that fungal apical dominance had been disrupted. Nitro blue tetrazolium (NBT) staining of hyphae showed that cAMP disruption mutants were impaired in their ability to synthesize superoxide, indicating that cAMP signaling regulates accumulation of reactive oxygen species (ROS). Despite significant defects in hyphal growth and ROS production, E. festucae ΔacyA mutants were infectious and capable of forming symbiotic associations with grasses. Plants infected with E. festucae ΔacyA were marginally less robust than the wild-type (WT), however hyphae were hyper-branched, and leaf tissues heavily colonized, indicating that the tight regulation of hyphal growth normally observed in maturing leaves requires functional cAMP signaling.
Collapse
Affiliation(s)
- Christine R. Voisey
- Forage Science, AgResearch Ltd., Grasslands Research CentrePalmerston North, New Zealand
| | - Michael T. Christensen
- Formally of Forage Improvement, AgResearch Ltd., Grasslands Research CentrePalmerston North, New Zealand
| | - Linda J. Johnson
- Forage Science, AgResearch Ltd., Grasslands Research CentrePalmerston North, New Zealand
| | - Natasha T. Forester
- Forage Science, AgResearch Ltd., Grasslands Research CentrePalmerston North, New Zealand
| | - Milan Gagic
- Forage Science, AgResearch Ltd., Grasslands Research CentrePalmerston North, New Zealand
| | - Gregory T. Bryan
- Forage Science, AgResearch Ltd., Grasslands Research CentrePalmerston North, New Zealand
| | - Wayne R. Simpson
- Forage Science, AgResearch Ltd., Grasslands Research CentrePalmerston North, New Zealand
| | - Damien J. Fleetwood
- Biotelliga Ltd., Institute for Innovation in BiotechnologyAuckland, New Zealand
| | - Stuart D. Card
- Forage Science, AgResearch Ltd., Grasslands Research CentrePalmerston North, New Zealand
| | - John P. Koolaard
- Bioinformatics and Statistics Team, AgResearch Ltd., Grasslands Research CentrePalmerston North, New Zealand
| | - Paul H. Maclean
- Bioinformatics and Statistics Team, AgResearch Ltd., Lincoln Research CentreChristchurch, New Zealand
| | - Richard D. Johnson
- Forage Science, AgResearch Ltd., Grasslands Research CentrePalmerston North, New Zealand
| |
Collapse
|
14
|
McCluskey K. Boosting Research and Industry by Providing Extensive Resources for Fungal Research. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
|
16
|
Transformation of Lithium Acetate-treated Neurospora crassa. Fungal Biol 2015. [DOI: 10.1007/978-3-319-10142-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Beseli A, Goulart da Silva M, Daub ME. The role of Cercospora zeae-maydis homologs of Rhodobacter sphaeroides1O2-resistance genes in resistance to the photoactivated toxin cercosporin. FEMS Microbiol Lett 2014; 362:1-7. [DOI: 10.1093/femsle/fnu036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
18
|
Johnson LJ, Koulman A, Christensen M, Lane GA, Fraser K, Forester N, Johnson RD, Bryan GT, Rasmussen S. An extracellular siderophore is required to maintain the mutualistic interaction of Epichloë festucae with Lolium perenne. PLoS Pathog 2013; 9:e1003332. [PMID: 23658520 PMCID: PMC3642064 DOI: 10.1371/journal.ppat.1003332] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 03/15/2013] [Indexed: 11/19/2022] Open
Abstract
We have identified from the mutualistic grass endophyte Epichloë festucae a non-ribosomal peptide synthetase gene (sidN) encoding a siderophore synthetase. The enzymatic product of SidN is shown to be a novel extracellular siderophore designated as epichloënin A, related to ferrirubin from the ferrichrome family. Targeted gene disruption of sidN eliminated biosynthesis of epichloënin A in vitro and in planta. During iron-depleted axenic growth, ΔsidN mutants accumulated the pathway intermediate N(5)-trans-anhydromevalonyl-N(5)-hydroxyornithine (trans-AMHO), displayed sensitivity to oxidative stress and showed deficiencies in both polarized hyphal growth and sporulation. Infection of Lolium perenne (perennial ryegrass) with ΔsidN mutants resulted in perturbations of the endophyte-grass symbioses. Deviations from the characteristic tightly regulated synchronous growth of the fungus with its plant partner were observed and infected plants were stunted. Analysis of these plants by light and transmission electron microscopy revealed abnormalities in the distribution and localization of ΔsidN mutant hyphae as well as deformities in hyphal ultrastructure. We hypothesize that lack of epichloënin A alters iron homeostasis of the symbiotum, changing it from mutually beneficial to antagonistic. Iron itself or epichloënin A may serve as an important molecular/cellular signal for controlling fungal growth and hence the symbiotic interaction.
Collapse
Affiliation(s)
- Linda J Johnson
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kazmierczak P, McCabe P, Turina M, Jacob-Wilk D, Van Alfen NK. The mycovirus CHV1 disrupts secretion of a developmentally regulated protein in Cryphonectria parasitica. J Virol 2012; 86:6067-74. [PMID: 22438560 PMCID: PMC3372201 DOI: 10.1128/jvi.05756-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 03/14/2012] [Indexed: 11/20/2022] Open
Abstract
Infection of the chestnut blight fungus Cryphonectria parasitica with Cryphonectria hypovirus 1 (CHV1) causes disruption of virulence, pigmentation, and sporulation. Transcriptional downregulation of key developmentally regulated fungal genes occurs during infection, but vegetative growth is unaffected. Previous studies showed that CHV1 utilizes trans-Golgi network (TGN) secretory vesicles for replication. In this study, the fungal cell surface hydrophobin cryparin was chosen as a marker to follow secretion in virally infected and noninfected strains. Subcellular fractionation, cryparin-green fluorescent protein (GFP) fusion, and Western blot studies confirmed that vesicles containing cryparin copurify with the same fractions previously shown to contain elements of the viral replication complex and the TGN resident endoprotease Kex2. This vesicle fraction accumulated to a much greater concentration in the CHV1-infected strains than in noninfected strains. Pulse-chase analysis showed that the rates and amount of cryparin being secreted by the CHV1 containing strains was much lower than in noninfected strains, and the dwell time of cryparin within the cell after labeling was significantly greater in the CHV1-infected strains than in the noninfected ones. These results suggest that the virus perturbs a specific late TGN secretory pathway resulting in buildup of a key protein important for fungal development.
Collapse
|
20
|
A crossover hotspot near his-3 in Neurospora crassa is a preferential recombination termination site. Mol Genet Genomics 2011; 287:155-65. [PMID: 22203161 DOI: 10.1007/s00438-011-0668-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 12/14/2011] [Indexed: 10/14/2022]
Abstract
During analysis of 148 unselected Neurospora crassa octads, an above average rate of crossing over was detected within a 360-base region near the 3' end of his-3, suggesting a hotspot for crossing over about 1.8 kb away from the recombination initiation site within cog. Homozygous deletion of the 360-base region increases exchanges in his-3 and on the far side of his-3 from cog, with the heterozygote showing an intermediate increase. We conclude that recombination events initiated at cog terminate within the 360-base sequence more often than in other sections of the cog-his-3 interval and, since some of these terminations will be resolved as crossovers, a cluster of crossovers at this location is the outcome. Removal of this termination site increases the chance that an event will reach his-3, resulting in recombination within the gene, or extend past it to yield a crossover on the other side of his-3. The deleted sequence has substantial predicted secondary structure, including a complex predicted stem-loop, suggesting that DNA secondary structure may be responsible for the termination.
Collapse
|
21
|
Inoue H. Exploring the processes of DNA repair and homologous integration in Neurospora. Mutat Res 2011; 728:1-11. [PMID: 21757027 DOI: 10.1016/j.mrrev.2011.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2011] [Indexed: 12/23/2022]
Abstract
This review offers a personal perspective on historical developments related to our current understanding of DNA repair, recombination, and homologous integration in Neurospora crassa. Previous reviews have summarized and analyzed the characteristics of Neurospora DNA repair mutants. The early history is reviewed again here as a prelude to a discussion of the molecular cloning, annotation, gene disruption and reverse genetics of Neurospora DNA repair genes. The classical studies and molecular analysis are then linked in a perspective on new directions in research on mutagen-sensitive mutants.
Collapse
Affiliation(s)
- Hirokazu Inoue
- Laboratory of Genetics, Department of Regulation Biology, Faculty of Science, Saitama University, Urawa 338-8570, Japan.
| |
Collapse
|
22
|
RNA silencing of lactate dehydrogenase gene in Rhizopus oryzae. JOURNAL OF RNAI AND GENE SILENCING : AN INTERNATIONAL JOURNAL OF RNA AND GENE TARGETING RESEARCH 2011; 7:443-8. [PMID: 21769297 PMCID: PMC3131675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/20/2011] [Accepted: 06/20/2011] [Indexed: 11/01/2022]
Abstract
Rhizopus oryzae is a filamentous fungus, belonging to the order Mucorales. It can ferment a wide range of carbohydrates hydrolyzed from lignocellulosic materials and even cellobiose to produce ethanol. However, R. oryzae also produces lactic acid as a major metabolite, which reduces the yield of ethanol. In this study, we show that significant reduction of lactic acid production could be achieved by short (25nt) synthetic siRNAs targeting the ldhA gene. The average yield of lactic acid production by R. oryzae during the batch fermentation process, where glucose had been used as a sole carbon source, diminished from 0.07gm/gm in wild type to 0.01gm/gm in silenced samples. In contrast, the average yield of ethanol production increased from 0.39gm/gm in wild type to 0.45gm/gm in silenced samples. These results show 85.7% (gm/gm) reduction in lactic acid production as compared with the wild type R. oryzae, while an increase of 15.4% (gm/gm) in ethanol yield.
Collapse
|
23
|
Dieterle MG, Wiest AE, Plamann M, McCluskey K. Characterization of the temperature-sensitive mutations un-7 and png-1 in Neurospora crassa. PLoS One 2010; 5:e10703. [PMID: 20502699 PMCID: PMC2872674 DOI: 10.1371/journal.pone.0010703] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 04/29/2010] [Indexed: 11/22/2022] Open
Abstract
The model filamentous fungus Neurospora crassa has been studied for over fifty years and many temperature-sensitive mutants have been generated. While most of these have been mapped genetically, many remain anonymous. The mutation in the N. crassa temperature-sensitive lethal mutant un-7 was identified by a complementation based approach as being in the open reading frame designated NCU00651 on linkage group I. Other mutations in this gene have been identified that lead to a temperature-sensitive morphological phenotype called png-1. The mutations underlying un-7 result in a serine to phenylalanine change at position 273 and an isoleucine to valine change at position 390, while the mutation in png-1 was found to result in a serine to leucine change at position 279 although there were other conservative changes in this allele. The overall morphology of the strain carrying the un-7 mutation is compared to strains carrying the png-1 mutation and these mutations are evaluated in the context of other temperature-sensitive mutants in Neurospora.
Collapse
Affiliation(s)
- Michael G. Dieterle
- Fungal Genetics Stock Center, School of Biological Sciences, University of Missouri- Kansas City, Kansas City, Missouri, United States of America
- Pembroke Hill School, Kansas City, Missouri, United States of America
| | - Aric E. Wiest
- Fungal Genetics Stock Center, School of Biological Sciences, University of Missouri- Kansas City, Kansas City, Missouri, United States of America
| | - Mike Plamann
- Fungal Genetics Stock Center, School of Biological Sciences, University of Missouri- Kansas City, Kansas City, Missouri, United States of America
| | - Kevin McCluskey
- Fungal Genetics Stock Center, School of Biological Sciences, University of Missouri- Kansas City, Kansas City, Missouri, United States of America
- * E-mail:
| |
Collapse
|
24
|
Ng SK, Liu F, Lai J, Low W, Jedd G. A tether for Woronin body inheritance is associated with evolutionary variation in organelle positioning. PLoS Genet 2009; 5:e1000521. [PMID: 19543374 PMCID: PMC2690989 DOI: 10.1371/journal.pgen.1000521] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 05/18/2009] [Indexed: 11/18/2022] Open
Abstract
Eukaryotic organelles evolve to support the lifestyle of evolutionarily related organisms. In the fungi, filamentous Ascomycetes possess dense-core organelles called Woronin bodies (WBs). These organelles originate from peroxisomes and perform an adaptive function to seal septal pores in response to cellular wounding. Here, we identify Leashin, an organellar tether required for WB inheritance, and associate it with evolutionary variation in the subcellular pattern of WB distribution. In Neurospora, the leashin (lah) locus encodes two related adjacent genes. N-terminal sequences of LAH-1 bind WBs via the WB–specific membrane protein WSC, and C-terminal sequences are required for WB inheritance by cell cortex association. LAH-2 is localized to the hyphal apex and septal pore rim and plays a role in colonial growth. In most species, WBs are tethered directly to the pore rim, however, Neurospora and relatives have evolved a delocalized pattern of cortex association. Using a new method for the construction of chromosomally encoded fusion proteins, marker fusion tagging (MFT), we show that a LAH-1/LAH-2 fusion can reproduce the ancestral pattern in Neurospora. Our results identify the link between the WB and cell cortex and suggest that splitting of leashin played a key role in the adaptive evolution of organelle localization. In the kingdom Fungi, tubular cells called hyphae grow by tip extension and lateral branching to produce an interconnected multicellular syncytium and this unique cellular architecture is especially suited to foraging, long distance transport, and invasive growth. Major groups of fungi have independently evolved cellular organelles that support this form of multicellularity. Woronin bodies evolved over 400 million years ago in the common ancestor of filamentous Ascomycetes and perform an adaptive function to seal pores that connect hyphal compartments (septal pores) in response to cellular wounding. This study identifies Leashin, a tethering protein that promotes equitable Woronin body inheritance by providing a link to the cell cortex. Patterns of cortex association display systematic variation; in most of the filamentous Ascomycetes, Woronin bodies are tethered to the septal pore. By contrast, a delocalized pattern has recently evolved in a group represented by Neurospora and Sordaria. We present evidence suggesting that the ancestral leashin gene was split into two independent transcription units to permit this evolutionary transition. This work is exemplary of how filamentous Ascomycetes with well-resolved phylogenetic relationships, diverse sequenced genomes and powerful haploid genetics provide model systems for understanding evolutionary innovation within a functional cellular and physiological context.
Collapse
Affiliation(s)
- Seng Kah Ng
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore
| | - Fangfang Liu
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore
| | - Julian Lai
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore
| | - Wilson Low
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore
| | - Gregory Jedd
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore
- * E-mail:
| |
Collapse
|
25
|
Selection of an effective red-pigment producing Monascus pilosus by efficient transformation with aurintricarboxylic acid. Biosci Biotechnol Biochem 2008; 72:3021-4. [PMID: 18997403 DOI: 10.1271/bbb.80342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The filamentous fungus Monascus pilosus was genetically transformed with a reporter plasmid, pMS-1.5hp, by aurintricarboxylic acid (ATA) treatment to obtain an efficient red-pigment producing mutant. The transformation efficiency of Monascus pilosus was higher with the ATA-treatment than with either a non-restriction-enzyme-mediated integration (REMI) or a REMI method. This valid and convenient random mutagenesis method shows that ATA can be applied in fungi for efficient genetic transformation.
Collapse
|
26
|
Mitogen-activated protein kinase cascade required for regulation of development and secondary metabolism in Neurospora crassa. EUKARYOTIC CELL 2008; 7:2113-22. [PMID: 18849472 DOI: 10.1128/ec.00466-07] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mitogen-activated protein kinase (MAPK) signaling cascades are composed of MAPK kinase kinases (MAPKKKs), MAPK kinases (MAPKKs), and MAPKs. In this study, we characterize components of a MAPK cascade in Neurospora crassa (mik-1, MAPKKK; mek-1, MAPKK; and mak-1, MAPK) homologous to that controlling cell wall integrity in Saccharomyces cerevisiae. Growth of basal hyphae is significantly reduced in mik-1, mek-1, and mak-1 deletion mutants on solid medium. All three mutants formed short aerial hyphae and the formation of asexual macroconidia was reduced in Deltamik-1 mutants and almost abolished in Deltamek-1 and Deltamak-1 strains. In contrast, the normally rare asexual spores, arthroconidia, were abundant in cultures of the three mutants. Deltamik-1, Deltamek-1, and Deltamak-1 mutants were unable to form protoperithecia or perithecia when used as females in a sexual cross. The MAK-1 MAPK was not phosphorylated in Deltamik-1 and Deltamek-1 mutants, consistent with the involvement of MIK-1, MEK-1, and MAK-1 in the same signaling cascade. Interestingly, we observed increased levels of mRNA and protein for tyrosinase in the mutants under nitrogen starvation, a condition favoring sexual differentiation. Tyrosinase is an enzyme that catalyzes production of the secondary metabolite l-DOPA melanin. These results implicate the MAK-1 pathway in regulation of development and secondary metabolism in filamentous fungi.
Collapse
|
27
|
Estrada AF, Youssar L, Scherzinger D, Al-Babili S, Avalos J. Theylo-1gene encodes an aldehyde dehydrogenase responsible for the last reaction in theNeurosporacarotenoid pathway. Mol Microbiol 2008; 69:1207-20. [DOI: 10.1111/j.1365-2958.2008.06349.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
The nuclear Dbf2-related kinase COT1 and the mitogen-activated protein kinases MAK1 and MAK2 genetically interact to regulate filamentous growth, hyphal fusion and sexual development in Neurospora crassa. Genetics 2008; 179:1313-25. [PMID: 18562669 DOI: 10.1534/genetics.108.089425] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Ndr kinases, such as Neurospora crassa COT1, are important for cell differentiation and polar morphogenesis, yet their input signals as well as their integration into a cellular signaling context are still elusive. Here, we identify the cot-1 suppressor gul-4 as mak-2 and show that mutants of the gul-4/mak-2 mitogen-activated protein (MAP) kinase pathway suppress cot-1 phenotypes along with a concomitant reduction in protein kinase A (PKA) activity. Furthermore, mak-2 pathway defects are partially overcome in a cot-1 background and are associated with increased MAK1 MAPK signaling. A comparative characterization of N. crassa MAPKs revealed that they act as three distinct modules during vegetative growth and asexual development. In addition, common functions of MAK1 and MAK2 signaling during maintenance of cell-wall integrity distinguished the two ERK-type pathways from the p38-type OS2 osmosensing pathway. In contrast to separate functions during vegetative growth, the concerted activity of the three MAPK pathways is essential for cell fusion and for the subsequent formation of multicellular structures that are required for sexual development. Taken together, our data indicate a functional link between COT1 and MAPK signaling in regulating filamentous growth, hyphal fusion, and sexual development.
Collapse
|
29
|
Paietta JV. DNA-binding specificity of the CYS3 transcription factor of Neurospora crassa defined by binding-site selection. Fungal Genet Biol 2008; 45:1166-71. [PMID: 18565773 DOI: 10.1016/j.fgb.2008.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2007] [Revised: 04/28/2008] [Accepted: 05/06/2008] [Indexed: 11/18/2022]
Abstract
The CYS3 transcription factor is a basic region-leucine zipper (bZIP) DNA-binding protein that is essential for the expression of a coordinately regulated group of genes involved in the acquisition and utilization of sulfur in Neurospora crassa. An approach of using binding-site selection from random-sequence oligonucleotides was used to define CYS3-binding specificity. The derived consensus-binding site of ATGGCGCCAT defines a symmetrical sequence (half-site A T G/t G/a C/t) that resembles that of other bZIP proteins such as CREB and C/EBP. By comparison, CYS3 shows a greater range of binding to a central core of varied Pur-Pyr-Pur-Pyr sequences than CREB as determined by gel shift assays. The derived CYS3 consensus binding sequence was further validated by demonstrating in vivo sulfur regulation using a heterologous promoter construct. The CYS3-binding site data will be useful for the genome-wide study of sulfur-regulated genes in N. crassa, which has served as a model fungal sulfur control system.
Collapse
Affiliation(s)
- John V Paietta
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH 45435, USA.
| |
Collapse
|
30
|
Liu F, Ng SK, Lu Y, Low W, Lai J, Jedd G. Making two organelles from one: Woronin body biogenesis by peroxisomal protein sorting. ACTA ACUST UNITED AC 2008; 180:325-39. [PMID: 18227279 PMCID: PMC2213590 DOI: 10.1083/jcb.200705049] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Woronin bodies (WBs) are dense-core organelles that are found exclusively in filamentous fungi and that seal the septal pore in response to wounding. These organelles consist of a membrane-bound protein matrix comprised of the HEX protein and, although they form from peroxisomes, their biogenesis is poorly understood. In Neurospora crassa, we identify Woronin sorting complex (WSC), a PMP22/MPV17-related membrane protein with dual functions in WB biogenesis. WSC localizes to large peroxisome membranes where it self-assembles into detergent-resistant oligomers that envelop HEX assemblies, producing asymmetrical nascent WBs. In a reaction requiring WSC, these structures are delivered to the cell cortex, which permits partitioning of the nascent WB and WB inheritance. Our findings suggest that WSC and HEX collaborate and control distinct aspects of WB biogenesis and that cortical association depends on WSC, which in turn depends on HEX. This dependency helps order events across the organellar membrane, permitting the peroxisome to produce a second organelle with a distinct composition and intracellular distribution.
Collapse
Affiliation(s)
- Fangfang Liu
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
31
|
Christensen MJ, Bennett RJ, Ansari HA, Koga H, Johnson RD, Bryan GT, Simpson WR, Koolaard JP, Nickless EM, Voisey CR. Epichloë endophytes grow by intercalary hyphal extension in elongating grass leaves. Fungal Genet Biol 2008; 45:84-93. [DOI: 10.1016/j.fgb.2007.07.013] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 07/17/2007] [Accepted: 07/18/2007] [Indexed: 11/16/2022]
|
32
|
May KJ, Bryant MK, Zhang X, Ambrose B, Scott B. Patterns of expression of a lolitrem biosynthetic gene in the Epichloë festucae-perennial ryegrass symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:188-197. [PMID: 18184063 DOI: 10.1094/mpmi-21-2-0188] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Lolitrem B is synthesized by Epichloë festucae in associations with Pooid grasses. A complex cluster of at least 10 genes (ltm genes) is required for its synthesis. An early step in this pathway is catalyzed by ltmM, a symbiosis-expressed gene. PltmM-gusA reporter gene analysis was used to monitor ltmM gene expression patterns in planta. The minimum promoter length required for high-level gusA expression in infected seedlings is in the range of 480 to 782 bp. gusA was expressed by the endophyte in all infected vegetative plant tissues and in epiphyllous hyphae. Spikelets from reproductive tillers were analyzed at different developmental stages. During pre-anthesis, gusA expression was observed in all infected floral organs except the immature gynoecium. In post-anthesis florets, gene expression occurred almost exclusively in the gynoecium. Expression of gusA by the endophyte was observed in germinating seeds 24 h postimbibition and seedlings older than 6 days postimbibition in hyphae from the mesocotyl to the tip of the emerging first leaf. This work provides a detailed analysis of the spatial and temporal expression patterns of a symbiosis-expressed gene in planta.
Collapse
Affiliation(s)
- Kimberley J May
- Centre for Functional Genomics, Institute of Molecular Bioscience, Massey University, Palmerston North, New Zealand
| | | | | | | | | |
Collapse
|
33
|
Abstract
Autophagy is a bulk degradative process responsible for the turnover of membranes, organelles, and proteins in eukaryotic cells. Genetic and molecular regulation of autophagy has been independently elucidated in budding yeast and mammalian cells. In filamentous fungi, autophagy is required for several important physiological functions, such as asexual and sexual differentiation, pathogenic development, starvation stress and programmed cell death during heteroincompatibility. Here, we detail biochemical and microscopy methods useful for measuring the rate of induction of autophagy in filamentous fungi, and we summarize the methods that have been routinely used for monitoring macroautophagy in both yeast and filamentous fungi. The role of autophagy in carbohydrate catabolism and cell survival is discussed along with the specific functions of macroautophagy in fungal development and pathogenesis.
Collapse
|
34
|
Sato M, Niki T, Tokou T, Suzuki K, Fujimura M, Ichiishi A. Genetic analysis of the Neurospora crassa RAD14 homolog mus-43 and the RAD10 homolog mus-44 reveals that they belong to the mus-38 pathway of two nucleotide excision repair systems. Genes Genet Syst 2008; 83:1-11. [DOI: 10.1266/ggs.83.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
35
|
Werner S, Sugui JA, Steinberg G, Deising HB. A chitin synthase with a myosin-like motor domain is essential for hyphal growth, appressorium differentiation, and pathogenicity of the maize anthracnose fungus Colletotrichum graminicola. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1555-1567. [PMID: 17990963 DOI: 10.1094/mpmi-20-12-1555] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Chitin synthesis contributes to cell wall biogenesis and is essential for invasion of solid substrata and pathogenicity of filamentous fungi. In contrast to yeasts, filamentous fungi contain up to 10 chitin synthases (CHS), which might reflect overlapping functions and indicate their complex lifestyle. Previous studies have shown that a class VI CHS of the maize anthracnose fungus Colletotrichum graminicola is essential for cell wall synthesis of conidia and vegetative hyphae. Here, we report on cloning and characterization of three additional CHS genes, CgChsI, CgChsIII, and CgChsV, encoding class I, III, and V CHS, respectively. All CHS genes are expressed during vegetative and pathogenic development. DeltaCgChsI and DeltaCgChsIII mutants did not differ significantly from the wild-type isolate with respect to hyphal growth and pathogenicity. In contrast, null mutants in the CgChsV gene, which encodes a CHS with an N-terminal myosin-like motor domain, are strongly impaired in vegetative growth and pathogenicity. Even in osmotically stabilized media, vegetative hyphae of DeltaCgChsV mutants exhibited large balloon-like swellings, appressorial walls appeared to disintegrate during maturation, and infection cells were nonfunctional. Surprisingly, DeltaCgChsV mutants were able to form dome-shaped hyphopodia that exerted force and showed host cell wall penetration rates comparable with the wild type. However, infection hyphae that formed within the plant cells exhibited severe swellings and were not able to proceed with plant colonization efficiently. Consequently, DeltaCgChsV mutants did not develop macroscopically visible anthracnose disease symptoms and, thus, were nonpathogenic.
Collapse
Affiliation(s)
- Stefan Werner
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-Universität-Halle-Wittenberg, Halle (Saale), Germany
| | | | | | | |
Collapse
|
36
|
Nolan T, Cecere G, Mancone C, Alonzi T, Tripodi M, Catalanotto C, Cogoni C. The RNA-dependent RNA polymerase essential for post-transcriptional gene silencing in Neurospora crassa interacts with replication protein A. Nucleic Acids Res 2007; 36:532-8. [PMID: 18048414 PMCID: PMC2241871 DOI: 10.1093/nar/gkm1071] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Post-transcriptional gene silencing (PTGS) pathways play a role in genome defence and have been extensively studied, yet how repetitive elements in the genome are identified is still unclear. It has been suggested that they may produce aberrant transcripts (aRNA) that are converted by an RNA-dependent RNA polymerase (RdRP) into double-stranded RNA (dsRNA), the essential intermediate of PTGS. However, how RdRP enzymes recognize aberrant transcripts remains a key question. Here we show that in Neurospora crassa the RdRP QDE-1 interacts with Replication Protein A (RPA), part of the DNA replication machinery. We show that both QDE-1 and RPA are nuclear proteins and that QDE-1 is specifically recruited onto the repetitive transgenic loci. We speculate that this localization of QDE-1 could allow the in situ production of dsRNA using transgenic nascent transcripts as templates, as in other systems. Supporting a link between the two proteins, we found that the accumulation of short interfering RNAs (siRNAs), the hallmark of silencing, is dependent on an ongoing DNA synthesis. The interaction between QDE-1 and RPA is important since it should guide further studies aimed at understanding the specificity of the RdRP and it provides for the first time a potential link between a PTGS component and the DNA replication machinery.
Collapse
Affiliation(s)
- Tony Nolan
- Dipartimento di Biotecnologie Cellulari ed Ematologia, Università La Sapienza, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
37
|
Kazama Y, Ishii C, Schroeder AL, Shimada H, Wakabayashi M, Inoue H. The Neurospora crassa UVS-3 epistasis group encodes homologues of the ATR/ATRIP checkpoint control system. DNA Repair (Amst) 2007; 7:213-29. [PMID: 17983847 DOI: 10.1016/j.dnarep.2007.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 09/17/2007] [Accepted: 09/25/2007] [Indexed: 10/22/2022]
Abstract
The mutagen sensitive uvs-3 and mus-9 mutants of Neurospora show mutagen and hydroxyurea sensitivity, mutator effects and duplication instability typical of recombination repair and DNA damage checkpoint defective mutants. To determine the nature of these genes we used cosmids from a genomic library to clone the uvs-3 gene by complementation for MMS sensitivity. Mutation induction by transposon insertion and RIP defined the coding sequence. RFLP analysis confirmed that this sequence maps in the area of uvs-3 at the left telomere of LG IV. Analysis of the cDNA showed that the UVS-3 protein contains an ORF of 969 amino acids with one intron. It is homologous to UvsD of Aspergillus nidulans, a member of the ATRIP family of checkpoint proteins. It retains the N' terminal coiled-coil motif followed by four basic amino acids typical of these proteins and shows the highest homology in this region. The uvsD cDNA partially complements the defects of the uvs-3 mutation. The uvs-3 mutant shows a higher level of micronuclei in conidia and failure to halt germination and nuclear division in the presence of hydroxyurea than wild type, suggesting checkpoint defects. ATRIP proteins bind tightly to ATR PI-3 kinase (phosphatidylinositol 3-kinase) proteins. Therefore, we searched the Neurospora genome sequence for homologues of the Aspergillus nidulans ATR, UvsB. A uvsB homologous sequence was present in the right arm of chromosome I where the mus-9 gene maps. A cosmid containing this genomic DNA complemented the mus-9 mutation. The putative MUS-9 protein is 2484 amino acids long with eight introns. Homology is especially high in the C-terminal 350 amino acids that correspond to the PI-3 kinase domain. In wild type a low level of constitutive mRNA is present for both genes. It is transiently induced upon UV exposure.
Collapse
Affiliation(s)
- Yusuke Kazama
- Laboratory of Genetics, Department of Regulation Biology, Faculty of Sciences, Saitama University, Saitama, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Tong X, Zhang X, Plummer KM, Stowell KM, Sullivan PA, Farley PC. GcSTUA, an APSES transcription factor, is required for generation of appressorial turgor pressure and full pathogenicity of Glomerella cingulata. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1102-11. [PMID: 17849713 DOI: 10.1094/mpmi-20-9-1102] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Glomerella cingulata, which infects a number of different hosts, gains entry to the plant tissue by means of an appressorium. Turgor pressure generated within the appressorium forces a penetration peg through the plant cuticle. A visible lesion forms as the fungus continues to grow within the host. A G. cingulata homolog (GcSTUA) of the genes encoding Asm1, Phd1, Sok2, Efg1, and StuA transcription factors in Magnaporthe grisea and other fungi was cloned and shown to be required for infection of intact apple fruit and penetration of onion epidermal cells. Mobilization of glycogen and triacylglycerol during formation of appressoria by the GcSTUA deletion mutant appeared normal and melanization of the maturing appressoria was also indistinguishable from that of the wild type. However, GcSTUA was essential for the generation of normal turgor pressure within the appressorium. As is the case for its homologs in other fungi, GcSTUA also was required for the formation of aerial hyphae, efficient conidiation, and the formation of perithecia (sexual reproductive structures).
Collapse
Affiliation(s)
- XingZhang Tong
- Institute of Molecular Biosciences, Massey University, Palmerston North, New Zealand
| | | | | | | | | | | |
Collapse
|
39
|
Kawabata T, Kato A, Suzuki K, Inoue H. Neurosprora crassa RAD5 homologue, mus-41, inactivation results in higher sensitivity to mutagens but has little effect on PCNA-ubiquitylation in response to UV-irradiation. Curr Genet 2007; 52:125-35. [PMID: 17703305 DOI: 10.1007/s00294-007-0146-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 07/09/2007] [Accepted: 07/11/2007] [Indexed: 10/22/2022]
Abstract
The DNA replication machinery stalls at damaged sites on DNA. Postreplicaton repair (PRR) is a system to avoid cell death in such circumstances of deadlock. In Saccharomyces cerevisiae, the Rad6/Rad18 heterodimer plays pivotal roles in PRR. It promotes translesion synthesis via the monoubiquitylation of the DNA sliding clamp, PCNA. Ubc13/Mms2/Rad5 can extend the ubiquitin chain from this monoubiquitylated PCNA with a non-canonical lysine 63-linked ubiquitin-chain, resulting in an error-free mode of bypass. In this study, we identified and characterized the RAD5 homolog in Neurospora crassa, which we named mus-41. A mus-41 mutant was sensitive to several DNA-damaging agents including UV and MMS. Genetic analyses indicated that uvs-2 (RAD18 homolog) was epistatic to mus-41, suggesting a role for mus-41 in postreplication repair. Additionally, it was shown that mus-41 has a role independent from TLS gene upr-1 (REV3 homolog) and works in the error-free pathway, indicating that the function of mus-41 as a RAD5 homolog is also conserved in N. crassa. However, mus-41 is not essential for the ubiquitylation of PCNA that is detected in the wild-type background, suggesting that there is another ubiquitin ligase catalyzing ubiquitylation of PCNA in response to UV in N. crassa.
Collapse
Affiliation(s)
- Tsuyoshi Kawabata
- Department of Regulation Biology, Saitama University, Sakura-ku Shimo-ookubo 255, Saitama city, Saitama 338-8570, Japan.
| | | | | | | |
Collapse
|
40
|
Bryant MK, May KJ, Bryan GT, Scott B. Functional analysis of a β-1,6-glucanase gene from the grass endophytic fungus Epichloë festucae. Fungal Genet Biol 2007; 44:808-17. [PMID: 17303450 DOI: 10.1016/j.fgb.2006.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 12/07/2006] [Accepted: 12/20/2006] [Indexed: 11/19/2022]
Abstract
beta-1,6-glucanases degrade the polysaccharide beta-1,6-glucan, a cell wall component in some filamentous fungi. A single copy of a beta-1,6-glucanase gene, designated gcnA, was identified in each of the grass endophytic fungi Neotyphodium lolii and Epichloë festucae. Phylogenetic analysis indicates that the GcnA protein is a member of glycosyl hydrolase family 5, and is closely related to fungal beta-1,6-glucanases implicated in mycoparasitism. The E. festucae gcnA gene was expressed in mycelium grown in culture and in both vegetative and reproductive tissues of perennial ryegrass. A gcnA replacement mutant had reduced beta-1,6-glucanase activity when grown in media containing pustulan as the major carbon source. beta-1,6-glucanase activity was restored in the replacement mutant by introducing multiple copies of the gcnA gene. Growth of DeltagcnA and gcnA-overexpressing strains in vegetative grass tissues was indistinguishable from wild type strains.
Collapse
Affiliation(s)
- Michelle K Bryant
- Centre for Functional Genomics, Institute of Molecular Biosciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | | | | | | |
Collapse
|
41
|
Banno S, Noguchi R, Yamashita K, Fukumori F, Kimura M, Yamaguchi I, Fujimura M. Roles of putative His-to-Asp signaling modules HPT-1 and RRG-2, on viability and sensitivity to osmotic and oxidative stresses in Neurospora crassa. Curr Genet 2007; 51:197-208. [PMID: 17211673 DOI: 10.1007/s00294-006-0116-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 12/15/2006] [Accepted: 12/17/2006] [Indexed: 10/23/2022]
Abstract
Neurospora crassa has a putative histidine phosphotransfer protein (HPT-1) that transfers signals from 11 histidine kinases to two putative response regulators (RRG-1 and RRG-2) in its histidine-to-aspartate phosphorelay system. The hpt-1 gene was successfully disrupted in the os-2 (MAP kinase gene) mutant, but not in the wild-type strain in this study. Crossing the resultant hpt-1; os-2 mutants with the wild-type or os-1 (histidine kinase gene) mutant strains produced no progeny with hpt-1 or os-1; hpt-1 mutation, strongly suggesting that hpt-1 is essential for growth unless downstream OS-2 is inactivated. hpt-1 mutation partially recovered the osmotic sensitivity of os-2 mutants, implying the involvement of yeast Skn7-like RRG-2 in osmoregulation. However, the rrg-2 disruption did not change the osmotic sensitivity of the wild-type strain and the os-2 mutant, suggesting that rrg-2 did not participate in the osmoregulation. Both rrg-2 and os-2 single mutation slightly increased sensitivity to t-butyl hydroperoxide, and rrg-2 and hpt-1 mutations increased the os-2 mutant's sensitivity. Although OS-1 is considered as a positive regulator of OS-2 MAP kinase, our results suggested that HPT-1 negatively regulated downstream MAP kinase cascade, and that OS-2 and RRG-2 probably participate independently in the oxidative stress response in N. crassa.
Collapse
Affiliation(s)
- Shinpei Banno
- Faculty of Life Sciences, Toyo University, Itakura, Oura-gun, Gunma 374-0193, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Saelices L, Youssar L, Holdermann I, Al-Babili S, Avalos J. Identification of the gene responsible for torulene cleavage in the Neurospora carotenoid pathway. Mol Genet Genomics 2007; 278:527-37. [PMID: 17610084 DOI: 10.1007/s00438-007-0269-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 06/14/2007] [Indexed: 11/29/2022]
Abstract
Torulene, a C(40) carotene, is the precursor of the end product of the Neurospora carotenoid pathway, the C(35) xanthophyll neurosporaxanthin. Torulene is synthesized by the enzymes AL-2 and AL-1 from the precursor geranylgeranyl diphosphate and then cleaved by an unknown enzyme into the C(35) apocarotenoid. In general, carotenoid cleavage reactions are catalyzed by carotenoid oxygenases. Using protein data bases, we identified two putative carotenoid oxygenases in Neurospora, named here CAO-1 and CAO-2. A search for novel mutants of the carotenoid pathway in this fungus allowed the identification of two torulene-accumulating strains, lacking neurosporaxanthin. Sequencing of the cao-2 gene in these strains revealed severe mutations, pointing to a role of CAO-2 in torulene cleavage. This was further supported by the identical phenotype found upon targeted disruption of cao-2. The biological function was confirmed by in vitro assays using the purified enzyme, which cleaved torulene to produce beta-apo-4'-carotenal, the corresponding aldehyde of neurosporaxanthin. The specificity of CAO-2 was shown by the lack of gamma-carotene-cleaving activity in vitro. As predicted for a structural gene of the carotenoid pathway, cao-2 mRNA was induced by light in a WC-1 and WC-2 dependent manner. Our data demonstrate that CAO-2 is the enzyme responsible for the oxidative cleavage of torulene in the neurosporaxanthin biosynthetic pathway.
Collapse
Affiliation(s)
- Lorena Saelices
- Departamento de Genética, Universidad de Sevilla, Apartado 1095, 41080, Sevilla, Spain
| | | | | | | | | |
Collapse
|
43
|
Bayram O, Krappmann S, Seiler S, Vogt N, Braus GH. Neurospora crassa ve-1 affects asexual conidiation. Fungal Genet Biol 2007; 45:127-38. [PMID: 17631397 DOI: 10.1016/j.fgb.2007.06.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2007] [Revised: 05/25/2007] [Accepted: 06/04/2007] [Indexed: 12/20/2022]
Abstract
The velvet factor of the homothallic fungus Aspergillus nidulans promotes sexual fruiting body formation. The encoding veA gene is conserved among fungi, including the ascomycete Neurospora crassa. There, the orthologous ve-1 gene encodes a deduced protein with high similarity to A. nidulans VeA. Cross-complementation experiments suggest that both the promoter and the coding sequence of N. crassa ve-1 are functional to complement the phenotype of an A. nidulans deletion mutant. Moreover, ve-1 expression in the heterologous host A. nidulans results in development of reproductive structures in a light-dependent manner, promoting sexual development in the darkness while stimulating asexual sporulation under illumination. Deletion of the N. crassa ve-1 locus by homologous gene replacement causes formation of shortened aerial hyphae accompanied by a significant increase in asexual conidiation, which is not light-dependent. Our data suggest that the conserved velvet proteins of A. nidulans and N. crassa exhibit both similar and different functions to influence development of these two ascomycetes.
Collapse
Affiliation(s)
- Ozgür Bayram
- Institute of Microbiology & Genetics, Department of Molecular Microbiology and Genetics, Georg-August-University, Grisebachstr. 8, D-37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
44
|
Koh LY, Catcheside DEA. Mutation of msh-2 in Neurospora crassa does not reduce the incidence of recombinants with multiple patches of donor chromosome sequence. Fungal Genet Biol 2007; 44:575-84. [PMID: 17475521 DOI: 10.1016/j.fgb.2007.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 02/02/2007] [Accepted: 02/16/2007] [Indexed: 11/21/2022]
Abstract
The Neurospora homologue msh-2 of the Escherichia coli mismatch repair gene mutS was mutated by repeat-induced point mutation (RIP) of a 1.9-kb duplication covering 1661bp of the coding sequence and 302 bp 5' of the gene. msh-2(RIP-LK1) exhibited a mutator phenotype conferring a 17-fold increase in the frequency of spontaneous mitotic reversion of his-3 allele K458. In msh-2(RIP-LK1) homozygotes, recombination frequency at the his-3 locus increased up to 2.9-fold over that in msh-2(+) diploids. Progeny of crosses homozygous msh-2(RIP-LK1), like those from crosses homozygous msh-2(+) frequently had multiple patches of donor chromosome sequence, suggesting that patchiness in msh-2(+) crosses is not explained by incomplete repair of heteroduplex DNA by MSH-2. These findings are consistent with data from the analysis of events in a Neurospora translocation heterozygote that suggested multiple patches of donor chromosome sequence arising during recombination reflect multiple template switches during DNA repair synthesis.
Collapse
Affiliation(s)
- Lin Y Koh
- School of Biological Sciences, Flinders University, PO Box 2100, Adelaide, SA 5001, Australia
| | | |
Collapse
|
45
|
Yokoyama M, Inoue H, Ishii C, Murakami Y. The novel gene mus7(+) is involved in the repair of replication-associated DNA damage in fission yeast. DNA Repair (Amst) 2007; 6:770-80. [PMID: 17307401 DOI: 10.1016/j.dnarep.2007.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 12/22/2006] [Indexed: 11/17/2022]
Abstract
The progression of replication forks is often impeded by obstacles that cause them to stall or collapse, and appropriate responses to replication-associated DNA damage are important for genome integrity. Here we identified a new gene, mus7(+), that is involved in the repair of replication-associated DNA damage in the fission yeast Schizosaccharomyces pombe. The Deltamus7 mutant shows enhanced sensitivity to methyl methanesulfonate (MMS), camptothecin, and hydroxyurea, agents that cause replication fork stalling or collapse, but not to ultraviolet light or X-rays. Epistasis analysis of MMS sensitivity indicates that Mus7 functions in the same pathway as Mus81, a subunit of the Mus81-Eme1 structure-specific endonuclease, which has been implicated in the repair of the replication-associated DNA damage. In Deltamus7 and Deltamus81 cells, the repair of MMS-induced DNA double-strand breaks (DSBs) is severely impaired. Moreover, some cells with either mutation are hyper-elongated or enlarged, and most of these cells accumulate in late G2 phase. Spontaneous Rad22 (recombination mediator protein RAD52 homolog) foci increase in S phase to late G2 phase in Deltamus7 and Deltamus81 cells. These results suggest that replication-associated DSBs accumulate in these cells and that Rad22 foci form in the absence of Mus7 or Mus81. We also found that the rate of spontaneous conversion-type recombination is reduced in mitotic Deltamus7 cells, suggesting that Rhp51- (RAD51 homolog) dependent homologous recombination is disturbed in this mutant. From these data, we propose that Mus7 functions in the repair of replication-associated DSBs by promoting RAD51-dependent conversion-type recombination downstream of Rad22 and Mus81.
Collapse
Affiliation(s)
- Mika Yokoyama
- Institute for Virus Research, Kyoto University, Shogoinkawahara-cho, Kyoto, Japan
| | | | | | | |
Collapse
|
46
|
Youssar L, Avalos J. Genetic basis of the ovc phenotype of Neurospora: identification and analysis of a 77 kb deletion. Curr Genet 2006; 51:19-30. [PMID: 17082948 DOI: 10.1007/s00294-006-0104-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 09/22/2006] [Accepted: 09/30/2006] [Indexed: 10/24/2022]
Abstract
The ovc mutant of Neurospora crassa accumulates more carotenoids than the wild type in the light, is sensitive to high osmotic pressure and exhibits an altered aerial development. The three traits are complemented by a single gene, cut-1, but only the two latter are exhibited by a mutant of this gene carrying a premature stop mutation. Targeted cut-1 deletion results in a normal carotenoid content, confirming the involvement of at least a second gene in the carotenoid-overproducing phenotype of the ovc strain. Molecular analysis of ovc genomic DNA indicates the absence of a large DNA segment affecting the gene cut-1. A PCR walking approach allowed the identification of a deletion extending along 77,078 bp on linkage group IV. The break-points are located in ApA/TpT sequences, suggesting the involvement of UV-induced thymine dimers in the origin of the deletion. The ovc mutant lacks 21 predicted ORFs, including cut-1 as the only known genetic marker, and four ORFs from a 22-member transmethylase gene family. Ten ORFs have no similarity with any predicted gene from other species. Three of them are closely related by sequence and linkage, evoking ancestral gene duplications.
Collapse
Affiliation(s)
- L Youssar
- Departamento de Genética, Universidad de Sevilla, Apartado1095, 41080 Sevilla, Spain
| | | |
Collapse
|
47
|
Wang N, Yoshida Y, Hasunuma K. Loss of Catalase-1 (Cat-1) results in decreased conidial viability enhanced by exposure to light in Neurospora crassa. Mol Genet Genomics 2006; 277:13-22. [PMID: 17077971 DOI: 10.1007/s00438-006-0170-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 09/14/2006] [Indexed: 12/01/2022]
Abstract
Light is one of the most important factors inducing morphogenesis in Neurospora crassa. The reception of light triggers the generation of reactive oxygen species (ROS) including hydrogen peroxide (H(2)O(2)). Catalase-1 (Cat-1) is one of three catalases known to detoxify H(2)O(2) into water and oxygen. We reported that the photomorphogenetic characteristics of mutants in nucleoside diphosphate kinase-1 (NDK-1), a light signal transducer, are severely affected, and NDK-1 interacted with Cat-1 in a yeast two-hybrid assay. To disclose the function of Cat-1, we created a Cat-1 loss-of-function mutant (cat-1 ( RIP )) by the repeat induced point-mutation (RIPing) method. No Cat-1 activity was detected in the mutant strain. Forty guanines were replaced with adenines in the cat-1 gene of cat-1 ( RIP ), which caused 30 amino acid substitutions. The mutant strain grew normally, but its conidia and mycelia were more sensitive to H(2)O(2) than those of the wild type. The lack of Cat-1 activity also caused a significant reduction in the conidial germination rate. Furthermore, light enhanced this reduction in cat-1 ( RIP ) more than that in the wild type. Introduction of cat-1 into the mutant reversed all of these defective phenotypes. These results indicate that Cat-1 plays an important role in supporting the survival of conidia under oxidative and light-induced stress.
Collapse
Affiliation(s)
- Niyan Wang
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, 244-0813, Japan
| | | | | |
Collapse
|
48
|
Seiler S, Vogt N, Ziv C, Gorovits R, Yarden O. The STE20/germinal center kinase POD6 interacts with the NDR kinase COT1 and is involved in polar tip extension in Neurospora crassa. Mol Biol Cell 2006; 17:4080-92. [PMID: 16822837 PMCID: PMC1593175 DOI: 10.1091/mbc.e06-01-0072] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Members of the Ste20 and NDR protein kinase families are important for normal cell differentiation and morphogenesis in various organisms. We characterized POD6 (NCU02537.2), a novel member of the GCK family of Ste20 kinases that is essential for hyphal tip extension and coordinated branch formation in the filamentous fungus Neurospora crassa. pod-6 and the NDR kinase mutant cot-1 exhibit indistinguishable growth defects, characterized by cessation of cell elongation, hyperbranching, and altered cell-wall composition. We suggest that POD6 and COT1 act in the same genetic pathway, based on the fact that both pod-6 and cot-1 can be suppressed by 1) environmental stresses, 2) altering protein kinase A activity, and 3) common extragenic suppressors (ropy, as well as gul-1, which is characterized here as the ortholog of the budding and fission yeasts SSD1 and Sts5, respectively). Unlinked noncomplementation of cot-1/pod-6 alleles indicates a potential physical interaction between the two kinases, which is further supported by coimmunoprecipitation analyses, partial colocalization of both proteins in wild-type cells, and their common mislocalization in dynein/kinesin mutants. We conclude that POD6 acts together with COT1 and is essential for polar cell extension in a kinesin/dynein-dependent manner in N. crassa.
Collapse
Affiliation(s)
- Stephan Seiler
- Deutsche Forschungsgemeinschaft Research Center of Molecular Physiology of the Brain (CMPB), Abteilung Molekulare Mikrobiologie, Universität Göttingen, D-37077 Göttingen, Germany.
| | | | | | | | | |
Collapse
|
49
|
Bowring FJ, Yeadon PJ, Stainer RG, Catcheside DEA. Chromosome pairing and meiotic recombination in Neurospora crassa spo11 mutants. Curr Genet 2006; 50:115-23. [PMID: 16758206 DOI: 10.1007/s00294-006-0066-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Accepted: 02/21/2006] [Indexed: 10/24/2022]
Abstract
Some organisms, such as mammals, green plants and fungi, require double-strand breaks in DNA (DSBs) for synapsis of homologous chromosomes at pachynema. Drosophila melanogaster and Caenorhabditis elegans are exceptions, achieving synapsis independently of DSB. SPO11 is responsible for generating DSBs and perhaps for the initiation of recombination in all organisms. Although it was previously suggested that Neurospora may not require DSBs for synapsis, we report here that mutation of Neurospora spo11 disrupts meiosis, abolishing synapsis of homologous chromosomes during pachynema and resulting in ascospores that are frequently aneuploid and rarely viable. Alignment of homologues is partially restored after exposure of spo11 perithecia to ionising radiation. Crossing over in a spo11 mutant is reduced in two regions of the Neurospora genome as expected, but is unaffected in a third.
Collapse
|
50
|
Greaves MP, Bailey JA, Hargreaves JA. Mycoherbicides: Opportunities for genetic manipulation. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/ps.2780260109] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|