1
|
Giménez-Bastida JA, González-Sarrías A, Laparra-Llopis JM, Schneider C, Espín JC. Targeting Mammalian 5-Lipoxygenase by Dietary Phenolics as an Anti-Inflammatory Mechanism: A Systematic Review. Int J Mol Sci 2021; 22:7937. [PMID: 34360703 PMCID: PMC8348464 DOI: 10.3390/ijms22157937] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
5-Lipoxygenase (5-LOX) plays a key role in inflammation through the biosynthesis of leukotrienes and other lipid mediators. Current evidence suggests that dietary (poly)phenols exert a beneficial impact on human health through anti-inflammatory activities. Their mechanisms of action have mostly been associated with the modulation of pro-inflammatory cytokines (TNF-α, IL-1β), prostaglandins (PGE2), and the interaction with NF-κB and cyclooxygenase 2 (COX-2) pathways. Much less is known about the 5-lipoxygenase (5-LOX) pathway as a target of dietary (poly)phenols. This systematic review aimed to summarize how dietary (poly)phenols target the 5-LOX pathway in preclinical and human studies. The number of studies identified is low (5, 24, and 127 human, animal, and cellular studies, respectively) compared to the thousands of studies focusing on the COX-2 pathway. Some (poly)phenolics such as caffeic acid, hydroxytyrosol, resveratrol, curcumin, nordihydroguaiaretic acid (NDGA), and quercetin have been reported to reduce the formation of 5-LOX eicosanoids in vitro. However, the in vivo evidence is inconclusive because of the low number of studies and the difficulty of attributing effects to (poly)phenols. Therefore, increasing the number of studies targeting the 5-LOX pathway would largely expand our knowledge on the anti-inflammatory mechanisms of (poly)phenols.
Collapse
Affiliation(s)
- Juan Antonio Giménez-Bastida
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department Food Science and Technology, CEBAS-CSIC, P.O. Box 164, Campus de Espinardo, 30100 Murcia, Spain;
| | - Antonio González-Sarrías
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department Food Science and Technology, CEBAS-CSIC, P.O. Box 164, Campus de Espinardo, 30100 Murcia, Spain;
| | - José Moisés Laparra-Llopis
- Group of Molecular Immunonutrition in Cancer, Madrid Institute for Advanced Studies in Food (IMDEA-Food), 28049 Madrid, Spain;
| | - Claus Schneider
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical School, Nashville, TN 37232, USA;
| | - Juan Carlos Espín
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department Food Science and Technology, CEBAS-CSIC, P.O. Box 164, Campus de Espinardo, 30100 Murcia, Spain;
| |
Collapse
|
2
|
Papadopoulos C, Panopoulou M, Anagnostopoulos K, Tentes I. Immune and Metabolic Interactions of Human Erythrocytes: A Molecular Perspective. Endocr Metab Immune Disord Drug Targets 2020; 21:843-853. [PMID: 33148159 DOI: 10.2174/1871530320666201104115016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/15/2020] [Accepted: 09/24/2020] [Indexed: 11/22/2022]
Abstract
Apart from their main function as oxygen carriers in vertebrates, erythrocytes are also involved in immune regulation. By circulating throughout the body, the erythrocytes are exposed and interact with tissues that are damaged as a result of a disease. In this study, we summarize the literature regarding the contribution of erythrocytes to immune regulation and metabolism. Under the circumstances of a disease state, the erythrocytes may lose their antioxidant capacity and release Damage Associated Molecular Patterns, resulting in the regulation of innate and adaptive immunity. In addition, the erythrocytes scavenge and affect the levels of chemokines, circulating cell-free mtDNA, and C3b attached immune complexes. Furthermore, through surface molecules, erythrocytes control the function of T lymphocytes, macrophages, and dendritic cells. Through an array of enzymes, red blood cells contribute to the pool of blood's bioactive lipids. Finally, the erythrocytes contribute to reverse cholesterol transport through various mechanisms. Our study is highlighting overlooked molecular interactions between erythrocytes and immunity and metabolism, which could lead to the discovery of potent therapeutic targets for immunometabolic diseases.
Collapse
Affiliation(s)
| | - Maria Panopoulou
- Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Ioannis Tentes
- Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
3
|
Targeting Leukotrienes as a Therapeutic Strategy to Prevent Comorbidities Associated with Metabolic Stress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:55-69. [PMID: 32894507 DOI: 10.1007/978-3-030-50621-6_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Leukotrienes (LTs) are potent lipid mediators that exert a variety of functions, ranging from maintaining the tone of the homeostatic immune response to exerting potent proinflammatory effects. Therefore, LTs are essential elements in the development and maintenance of different chronic diseases, such as asthma, arthritis, and atherosclerosis. Due to the pleiotropic effects of LTs in the pathogenesis of inflammatory diseases, studies are needed to discover potent and specific LT synthesis inhibitors and LT receptor antagonists. Even though most clinical trials using LT inhibitors or antagonists have failed due to low efficacy and/or toxicity, new drug development strategies are driving the discovery for LT inhibitors to prevent inflammatory diseases. A newly important detrimental role for LTs in comorbidities associated with metabolic stress has emerged in the last few years and managing LT production and/or actions could represent an exciting new strategy to prevent or treat inflammatory diseases associated with metabolic disorders. This review is intended to shed light on the synthesis and actions of leukotrienes, the most common drugs used in clinical trials, and discuss the therapeutic potential of preventing LT function in obesity, diabetes, and hyperlipidemia.
Collapse
|
4
|
He R, Chen Y, Cai Q. The role of the LTB4-BLT1 axis in health and disease. Pharmacol Res 2020; 158:104857. [PMID: 32439596 DOI: 10.1016/j.phrs.2020.104857] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/03/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
Leukotriene B4 (LTB4) is a major type of lipid mediator that is rapidly generated from arachidonic acid through sequential action of 5-lipoxygenase (5-LO), 5-lipoxygenase-activating protein (FLAP) and LTA4 hydrolase (LTA4H) in response to various stimuli. LTB4 is well known to be a chemoattractant for leukocytes, particularly neutrophils, via interaction with its high-affinity receptor BLT1. Extensive attention has been paid to the role of the LTB4-BLT1 axis in acute and chronic inflammatory diseases, such as infectious diseases, allergy, autoimmune diseases, and metabolic disease via mediating recruitment and/or activation of different types of inflammatory cells depending on different stages or the nature of inflammatory response. Recent studies also demonstrated that LTB4 acts on non-immune cells via BLT1 to initiate and/or amplify pathological inflammation in various tissues. In addition, emerging evidence reveals a complex role of the LTB4-BLT1 axis in cancer, either tumor-inhibitory or tumor-promoting, depending on the different target cells. In this review, we summarize both established understanding and the most recent progress in our knowledge about the LTB4-BLT1 axis in host defense, inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Rui He
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China.
| | - Yu Chen
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Qian Cai
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Horii Y, Nakaya M, Ohara H, Nishihara H, Watari K, Nagasaka A, Nakaya T, Sugiura Y, Okuno T, Koga T, Tanaka A, Yokomizo T, Kurose H. Leukotriene B 4 receptor 1 exacerbates inflammation following myocardial infarction. FASEB J 2020; 34:8749-8763. [PMID: 32385915 DOI: 10.1096/fj.202000041r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 01/17/2023]
Abstract
Leukotriene B4 receptor 1 (BLT1), a high-affinity G-protein-coupled receptor for leukotriene B4 (LTB4 ), is expressed on various inflammatory cells and plays critical roles in several inflammatory diseases. In myocardial infarction (MI), various inflammatory cells are known to be recruited to the infarcted area, but the function of BLT1 in MI is poorly understood. Here, we investigated the role of BLT1 in MI and the therapeutic effect of a BLT1 antagonist, ONO-4057, on MI. Mice with infarcted hearts showed increased BLT1 expression and LTB4 levels. BLT1-knockout mice with infarcted hearts exhibited attenuated leukocyte infiltration, proinflammatory cytokine production, and cell death, which led to reduced mortality and improved cardiac function after MI. Bone-marrow transplantation studies showed that BLT1 expressed on bone marrow-derived cells was responsible for the exacerbation of inflammation in infarcted hearts. Furthermore, ONO-4057 administration attenuated the inflammatory responses in hearts surgically treated for MI, which resulted in reduced mortality and improved cardiac function after MI. Our study demonstrated that BLT1 contributes to excessive inflammation after MI and could represent a new therapeutic target for MI.
Collapse
Affiliation(s)
- Yuma Horii
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Michio Nakaya
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.,AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Hiroki Ohara
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroaki Nishihara
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenji Watari
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Akiomi Nagasaka
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeo Nakaya
- Department of Pathology, Jichi Medical University, Tochigi, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Toshiaki Okuno
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomoaki Koga
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akira Tanaka
- Department of Pathology, Jichi Medical University, Tochigi, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hitoshi Kurose
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
6
|
Hao Q, Gudapati V, Monsel A, Park JH, Hu S, Kato H, Lee JH, Zhou L, He H, Lee JW. Mesenchymal Stem Cell-Derived Extracellular Vesicles Decrease Lung Injury in Mice. THE JOURNAL OF IMMUNOLOGY 2019; 203:1961-1972. [PMID: 31451675 DOI: 10.4049/jimmunol.1801534] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 07/30/2019] [Indexed: 12/20/2022]
Abstract
Human mesenchymal stem cell (MSC) extracellular vesicles (EV) can reduce the severity of bacterial pneumonia, but little is known about the mechanisms underlying their antimicrobial activity. In the current study, we found that bacterial clearance induced by MSC EV in Escherichia coli pneumonia in C57BL/6 mice was associated with high levels of leukotriene (LT) B4 in the injured alveolus. More importantly, the antimicrobial effect of MSC EV was abrogated by cotreatment with a LTB4 BLT1 antagonist. To determine the role of MSC EV on LT metabolism, we measured the effect of MSC EV on a known ATP-binding cassette transporter, multidrug resistance-associated protein 1 (MRP1), and found that MSC EV suppressed MRP1 mRNA, protein, and pump function in LPS-stimulated Raw264.7 cells in vitro. The synthesis of LTB4 and LTC4 from LTA4 are competitive, and MRP1 is the efflux pump for LTC4 Inhibition of MRP1 will increase LTB4 production. In addition, administration of a nonspecific MRP1 inhibitor (MK-571) reduced LTC4 and subsequently increased LTB4 levels in C57BL/6 mice with acute lung injury, increasing overall antimicrobial activity. We previously found that the biological effects of MSC EV were through the transfer of its content, such as mRNA, microRNA, and proteins, to target cells. In the current study, miR-145 knockdown abolished the effect of MSC EV on the inhibition of MRP1 in vitro and the antimicrobial effect in vivo. In summary, MSC EV suppressed MRP1 activity through transfer of miR-145, thereby resulting in enhanced LTB4 production and antimicrobial activity through LTB4/BLT1 signaling.
Collapse
Affiliation(s)
- Qi Hao
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| | - Varun Gudapati
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| | - Antoine Monsel
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| | - Jeong H Park
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| | - Shuling Hu
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| | - Hideya Kato
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| | - Jae H Lee
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| | - Li Zhou
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| | - Hongli He
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| | - Jae W Lee
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| |
Collapse
|
7
|
Alfawaz H, Al-Onazi M, Bukhari SI, Binobead M, Othman N, Algahtani N, Bhat RS, Moubayed NMS, Alzeer HS, El-Ansary A. The Independent and Combined Effects of Omega-3 and Vitamin B12 in Ameliorating Propionic Acid Induced Biochemical Features in Juvenile Rats as Rodent Model of Autism. J Mol Neurosci 2018; 66:403-413. [PMID: 30284229 DOI: 10.1007/s12031-018-1186-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022]
Abstract
Metabolites of proper fatty acids modulate the inflammatory response and are essential for normal brain development; equally, abnormal fatty acid metabolism plays a critical role in the pathology of autism. Currently, dietary supplements are often used to improve the core symptoms of Autism spectrum disorder (ASD). The present study analyzed the effects of orally supplemented omega-3 (ω-3) and vitamin B12 on ameliorating oxidative stress and impaired lipid metabolism in a propionic acid (PPA)-induced rodent model of autism, together with their effect on the gut microbial composition, where great fluctuations in the bacterial number and strains were observed; interestingly, polyunsaturated fatty acids such as omega-3 induced higher growth of the gram-positive bacterium Staphylococcus aureus and decreased the survival rates of Clostridia sp. as well as other enteric bacterial strains. Thirty-five young male western albino rats were divided into five equal groups. The first group served as the control; the second group was given an oral neurotoxic dose of PPA (250 mg/kg body weight/day) for 3 days. The third group received an oral dose of ω-3 (200 mg/kg body weight/day) for 30 days after the 3-day PPA treatment. Group four was given an oral dose of vitamin B12 (16.7 mg/kg/day) for 30 days after PPA treatment. Finally, group five was given a combination of both ω-3 and vitamin B12 at the same dose for the same duration after PPA treatment. Biochemical parameters related to oxidative stress and impaired fatty acid metabolism were investigated in the brain homogenates of each group. The effects of the dietary supplements on the gut microbiota were also observed. The PPA-treated autistic model expressed significantly higher levels of lipid peroxides and 5-lipoxygenase (5-LOX) and significantly less glutathione (GSH), glutathione S-transferase (GST), and cyclooxygenase 2 (COX2) than the control group. However, a remarkable amelioration of most of the impaired markers was observed with oral supplementation with ω-3 and vitamin B12, either alone or in combination. Our results concluded that impairment at various steps of the lipid metabolic pathways may contribute to the development of autism; however, supplementation with ω-3 and vitamin B12 can result in a positive therapeutic effect.
Collapse
Affiliation(s)
- Hanan Alfawaz
- Department of Food Science and Human Nutrition, King Saud University, Riyadh, Saudi Arabia
| | - Mona Al-Onazi
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Sarah I Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Manal Binobead
- Department of Food Science and Human Nutrition, King Saud University, Riyadh, Saudi Arabia
| | - Nashwa Othman
- Central laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia
| | - Norah Algahtani
- Central laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia
| | - Ramesa Shafi Bhat
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Nadine M S Moubayed
- Botany and Microbiology Department, College of Science, King Saud University, P.O box 22452, Riyadh, Zip code 11495, Saudi Arabia
| | - Haya S Alzeer
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Afaf El-Ansary
- Central laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
8
|
Vo TTL, Jang WJ, Jeong CH. Leukotriene A4 hydrolase: an emerging target of natural products for cancer chemoprevention and chemotherapy. Ann N Y Acad Sci 2018; 1431:3-13. [PMID: 30058075 DOI: 10.1111/nyas.13929] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/10/2018] [Accepted: 06/20/2018] [Indexed: 12/27/2022]
Abstract
Cancer is the second leading cause of death worldwide and has become a global burden. It has long been known that inflammation is related to cancer, as inflammatory components have been identified in the tumor microenvironment and support tumor progression. Among the key inflammatory mediators, leukotrienes were found to be involved in cancer development. In particular, leukotriene B4, which is converted from leukotriene A4 by leukotriene A4 hydrolase (LTA4H), has been implicated in several types of cancer. In addition, LTA4H has attracted attention because of purported roles in inflammation and cancer development. Herein, we review the history of LTA4H, its emerging roles in cancer development, and the development of LTA4H inhibitors in cancer prevention and therapy.
Collapse
Affiliation(s)
- Tam Thuy Lu Vo
- College of Pharmacy, Keimyung University, Daegu, the Republic of Korea
| | - Won-Jun Jang
- College of Pharmacy, Keimyung University, Daegu, the Republic of Korea
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, Daegu, the Republic of Korea
| |
Collapse
|
9
|
Too much of a good thing: How modulating LTB 4 actions restore host defense in homeostasis or disease. Semin Immunol 2018; 33:37-43. [PMID: 29042027 DOI: 10.1016/j.smim.2017.08.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 06/02/2017] [Accepted: 08/06/2017] [Indexed: 12/16/2022]
Abstract
The ability to regulate inflammatory pathways and host defense mechanisms is critical for maintaining homeostasis and responding to infections and tissue injury. While unbalanced inflammation is detrimental to the host; inadequate inflammation might not provide effective signals required to eliminate pathogens. On the other hand, aberrant inflammation could result in organ damage and impair host defense. The lipid mediator leukotriene B4 (LTB4) is a potent neutrophil chemoattractant and recently, its role as a dominant molecule that amplifies many arms of phagocyte antimicrobial effector function has been unveiled. However, excessive LTB4 production contributes to disease severity in chronic inflammatory diseases such as diabetes and arthritis, which could potentially be involved in poor host defense in these groups of patients. In this review we discuss the cellular and molecular programs elicited during LTB4 production and actions on innate immunity host defense mechanisms as well as potential therapeutic strategies to improve host defense.
Collapse
|
10
|
De Iuliis V, Ursi S, Pennelli A, Caruso M, Nunziata A, Marino A, Flati V, Cipollone F, Giamberardino MA, Vitullo G, Toniato E, Conti P, Martinotti S. Differential TBXA2 receptor transcript stability is dependent on the C924T polymorphism. Prostaglandins Other Lipid Mediat 2018; 134:141-147. [DOI: 10.1016/j.prostaglandins.2017.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/26/2017] [Accepted: 07/03/2017] [Indexed: 12/28/2022]
|
11
|
Wan M, Tang X, Stsiapanava A, Haeggström JZ. Biosynthesis of leukotriene B 4. Semin Immunol 2017; 33:3-15. [DOI: 10.1016/j.smim.2017.07.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 05/29/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022]
|
12
|
Blake RR, Lee JH, Ross MK, Archer TM, Wills RW, Mackin AJ, Thomason JM. Evaluation of eicosanoid concentrations in stored units of canine packed red blood cells. J Am Vet Med Assoc 2017; 250:191-198. [PMID: 28058946 DOI: 10.2460/javma.250.2.191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate eicosanoid concentrations in freshly prepared canine packed RBCs (PRBCs) and to assess changes in eicosanoid concentrations in PRBC units over time during storage and under transfusion conditions. DESIGN Prospective study. SAMPLE 25 plasma samples from 14 healthy Greyhounds. PROCEDURES Plasma samples were obtained during PRBC preparation (donation samples), and the PRBC units were then stored at 4°C until used for transfusion (≤ 21 days later; n = 17) or mock transfusion if expired (22 to 24 days later; 8). Immediately prior to use, 100 mL of saline (0.9% NaCl) solution was added to each unit and a pretransfusion sample was collected. A posttransfusion sample was collected after transfusion or mock transfusion. Concentrations of arachidonic acid, prostaglandin (PG) F2α, PGE2, PGD2, thromboxane B2, 6-keto-PGF1α, and leukotriene B4 were measured by liquid chromatography-mass spectrometry and analyzed statistically. RESULTS Median arachidonic acid concentration was significantly decreased in posttransfusion samples, compared with the concentration in donation samples. Median PGF2α, 6-keto-PGF1α, and leukotriene B4 concentrations were significantly increased in pretransfusion samples, compared with those in donation samples. Median PGF2α, thromboxane B2, and 6-keto-PGF1α concentrations were significantly increased in posttransfusion samples, compared with those in pretransfusion samples. Duration of PRBC storage had significant associations with pretransfusion and posttransfusion arachidonic acid and thromboxane B2 concentrations. CONCLUSIONS AND CLINICAL RELEVANCE Concentrations of several proinflammatory eicosanoids increased in PRBC units during storage, transfusion, or both. Accumulation of these products could potentially contribute to adverse transfusion reactions, and investigation of the potential association between eicosanoid concentrations in PRBCs and the incidence of transfusion reactions in dogs is warranted.
Collapse
|
13
|
Factors influencing the eicosanoids synthesis in vivo. BIOMED RESEARCH INTERNATIONAL 2015; 2015:690692. [PMID: 25861641 PMCID: PMC4377373 DOI: 10.1155/2015/690692] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/24/2015] [Indexed: 11/26/2022]
Abstract
External factors activate a sequence of reactions involving the reception, transduction, and transmission of signals to effector cells. There are two main phases of the body's reaction to harmful factors: the first aims to neutralize the harmful factor, while in the second the inflammatory process is reduced in size and resolved. Secondary messengers such as eicosanoids are active in both phases. The discovery of lipoxins and epi-lipoxins demonstrated that not all arachidonic acid (AA) derivatives have proinflammatory activity. It was also revealed that metabolites of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) such as resolvins, protectins, and maresins also take part in the resolution of inflammation. Knowledge of the above properties has stimulated several clinical trials on the influence of EPA and DHA supplementation on various diseases. However, the equivocal results of those trials prevent the formulation of guidelines on EPA and DHA supplementation. Prescription drugs are among the substances with the strongest influence on the profile and quantity of the synthesized eicosanoids. The lack of knowledge about their influence on the conversion of EPA and DHA into eicosanoids may lead to erroneous conclusions from clinical trials.
Collapse
|
14
|
Capra V, Rovati GE, Mangano P, Buccellati C, Murphy RC, Sala A. Transcellular biosynthesis of eicosanoid lipid mediators. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:377-82. [PMID: 25218301 DOI: 10.1016/j.bbalip.2014.09.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 01/09/2023]
Abstract
The synthesis of oxygenated eicosanoids is the result of the coordinated action of several enzymatic activities, from phospholipase A2 that releases the polyunsaturated fatty acids from membrane phospholipids, to primary oxidative enzymes, such as cyclooxygenases and lipoxygenases, to isomerases, synthases and hydrolases that carry out the final synthesis of the biologically active metabolites. Cells possessing the entire enzymatic machinery have been studied as sources of bioactive eicosanoids, but early on evidence proved that biosynthetic intermediates, albeit unstable, could move from one cell type to another. The biosynthesis of bioactive compounds could therefore be the result of a coordinated effort by multiple cell types that has been named transcellular biosynthesis of the eicosanoids. In several cases cells not capable of carrying out the complete biosynthetic process, due to the lack of key enzymes, have been shown to efficiently contribute to the final production of prostaglandins, leukotrienes and lipoxins. We will review in vitro studies, complex functional models, and in vivo evidences of the transcellular biosynthesis of eicosanoids and the biological relevance of the metabolites resulting from this unique biosynthetic pathway. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".
Collapse
Affiliation(s)
- Valérie Capra
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - G Enrico Rovati
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Paolo Mangano
- Department of Experimental Medicine, Università degli Studi di Messina, Messina, Italy
| | - Carola Buccellati
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado at Denver, Denver, USA
| | - Angelo Sala
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; IBIM, CNR, Palermo, Italy.
| |
Collapse
|
15
|
Torregrosa Paredes P, Esser J, Admyre C, Nord M, Rahman QK, Lukic A, Rådmark O, Grönneberg R, Grunewald J, Eklund A, Scheynius A, Gabrielsson S. Bronchoalveolar lavage fluid exosomes contribute to cytokine and leukotriene production in allergic asthma. Allergy 2012; 67:911-9. [PMID: 22620679 DOI: 10.1111/j.1398-9995.2012.02835.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND Leukotrienes (LTs) are potent pro-inflammatory mediators involved in asthma. Exosomes, nanosized vesicles released from various cells, can stimulate or down-regulate immune responses, depending on the state and nature of the originating cell. We have recently shown an altered exosome profile in bronchoalveolar lavage fluid (BALF) of patients with sarcoidosis, but their role in asthma is unknown. Our aims were to investigate whether exosomes from BALF have LT biosynthetic capacity and to explore phenotypic and functional characteristics of BALF exosomes in asthma. METHODS Bronchoalveolar lavage fluid exosomes were collected from healthy individuals (n = 13) and patients with mild allergic asthma to birch pollen (n = 12) before and after birch allergen provocation. Exosomes were characterized by flow cytometry and Western blot. Their capacity to induce IL-8 and LT production in the human bronchial epithelial cell (BEC) line 16HB14o- was measured by ELISA and reverse-phase HPLC, respectively. RESULTS Compared to BALF exosomes from healthy individuals, BALF exosomes from asthmatics displayed higher levels of exosome-associated markers, such as the tetraspanins CD63 and CD81 and the scavenger receptor CD36. No major differences were observed between BALF exosomes from before and after allergen provocation. Furthermore, we show that BALF exosomes contain enzymes for LT biosynthesis. The effect of exosomes to promote LTC(4) and IL-8 release in BEC was significantly increased for exosomes from asthmatics, and the CysLT(1) receptor antagonist Montelukast reduced exosome-induced IL-8 secretion. CONCLUSIONS Bronchoalveolar lavage fluid exosomes from asthmatic and healthy individuals exhibit distinct phenotypes and functions. BALF exosomes from asthmatics might contribute to subclinical inflammation by increasing cytokine and LTC(4) generation in airway epithelium.
Collapse
Affiliation(s)
- P. Torregrosa Paredes
- Department of Medicine Solna; Translational Immunology Unit; L2:04, Karolinska Institutet; University Hospital; Stockholm; Sweden
| | - J. Esser
- Department of Medical Biochemistry and Biophysics; Division of Physiological Chemistry II; Karolinska Institutet; University Hospital; Solna; Stockholm; Sweden
| | - C. Admyre
- Department of Medicine Solna; Translational Immunology Unit; L2:04, Karolinska Institutet; University Hospital; Stockholm; Sweden
| | - M. Nord
- Department of Medicine Solna; Division of Respiratory Medicine; Karolinska Institutet; Karolinska University Hospital; Stockholm; Sweden
| | - Q. K. Rahman
- Department of Medicine Solna; Translational Immunology Unit; L2:04, Karolinska Institutet; University Hospital; Stockholm; Sweden
| | - A. Lukic
- Department of Medical Biochemistry and Biophysics; Division of Physiological Chemistry II; Karolinska Institutet; University Hospital; Solna; Stockholm; Sweden
| | - O. Rådmark
- Department of Medical Biochemistry and Biophysics; Division of Physiological Chemistry II; Karolinska Institutet; University Hospital; Solna; Stockholm; Sweden
| | - R. Grönneberg
- Department of Medicine Solna; Division of Respiratory Medicine; Karolinska Institutet; Karolinska University Hospital; Stockholm; Sweden
| | - J. Grunewald
- Department of Medicine Solna; Division of Respiratory Medicine; Karolinska Institutet; Karolinska University Hospital; Stockholm; Sweden
| | - A. Eklund
- Department of Medicine Solna; Division of Respiratory Medicine; Karolinska Institutet; Karolinska University Hospital; Stockholm; Sweden
| | - A. Scheynius
- Department of Medicine Solna; Translational Immunology Unit; L2:04, Karolinska Institutet; University Hospital; Stockholm; Sweden
| | - S. Gabrielsson
- Department of Medicine Solna; Translational Immunology Unit; L2:04, Karolinska Institutet; University Hospital; Stockholm; Sweden
| |
Collapse
|
16
|
Juchem G, Weiss DR, Knott M, Senftl A, Förch S, Fischlein T, Kreuzer E, Reichart B, Laufer S, Nees S. Regulation of coronary venular barrier function by blood borne inflammatory mediators and pharmacological tools: insights from novel microvascular wall models. Am J Physiol Heart Circ Physiol 2012; 302:H567-81. [DOI: 10.1152/ajpheart.00360.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We hypothesized that postcapillary venules play a central role in the control of the tightness of the coronary system as a whole, particularly under inflammatory conditions. Sandwich cultures of endothelial cells and pericytes of precapillary arteriolar or postcapillary venular origin from human myocardium as models of the respective vascular walls (sandwich cultures of precapillary arteriolar or postcapillary venular origin) were exposed to thrombin and components of the acutely activatable inflammatory system, and their hydraulic conductivity ( LP) was registered. LP of SC-PAO remained low under all conditions (3.24 ± 0.52·10−8cm·s−1·cmH2O−1). In contrast, in the venular wall model, PGE2, platelet-activating factor (PAF), leukotriene B4 (LTB4), IL-6, and IL-8 induced a prompt, concentration-dependent, up to 10-fold increase in LP with synergistic support when combined. PAF and LTB4 released by metabolically cooperating platelets, and polymorphonuclear leucocytes (PMNs) caused selectively venular endothelial cells to contract and to open their clefts widely. This breakdown of the barrier function was preventable and even reversible within 6–8 h by the presence of 50 μM quercetin glucuronide (QG). LTB4 synthesis was facilitated by biochemical involvement of erythrocytes. Platelets segregated in the arterioles and PMNs in the venules of blood-perfused human myocardium (histological studies on donor hearts refused for heart transplantation). Extrapolating these findings to the coronary microcirculation in vivo would imply that the latter's complex functionality after accumulation of blood borne inflammatory mediators can change rapidly due to selective breakdown of the postcapillary venular barrier. The resulting inflammatory edema and venulo-thrombosis will severely impair myocardial performance. The protection afforded by QG could be of particular relevance in the context of cardiosurgical intervention.
Collapse
Affiliation(s)
- Gerd Juchem
- Department of Cardiac Surgery, University of Munich (Ludwig Maximilians University), Munich
| | - Dominik R. Weiss
- Department of Transfusion Medicine and Hemostaseology, University of Erlangen-Nuremberg (Friedrich Alexander University), Erlangen
| | - Maria Knott
- Department of Physiology, University of Munich (Ludwig Maximilians University), Munich
| | - Anton Senftl
- Department of Physiology, University of Munich (Ludwig Maximilians University), Munich
| | - Stefan Förch
- Department of Physiology, University of Munich (Ludwig Maximilians University), Munich
| | - Theodor Fischlein
- Department of Cardiac Surgery, Hospital Nuremberg South, Nuremberg; and
| | - Eckart Kreuzer
- Department of Cardiac Surgery, University of Munich (Ludwig Maximilians University), Munich
| | - Bruno Reichart
- Department of Cardiac Surgery, University of Munich (Ludwig Maximilians University), Munich
| | - Stefan Laufer
- Department of Pharmaceutical Chemistry, University of Tuebingen (Eberhard Karls University), Munich, Germany
| | - Stephan Nees
- Department of Physiology, University of Munich (Ludwig Maximilians University), Munich
| |
Collapse
|
17
|
Sadik CD, Luster AD. Lipid-cytokine-chemokine cascades orchestrate leukocyte recruitment in inflammation. J Leukoc Biol 2011; 91:207-15. [PMID: 22058421 DOI: 10.1189/jlb.0811402] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chemoattractants are pivotal mediators of host defense, orchestrating the recruitment of immune cells into sites of infection and inflammation. Chemoattractants display vast chemical diversity and include bioactive lipids, proteolytic fragments of serum proteins, and chemokines (chemotactic cytokines). All chemoattractants induce chemotaxis by activating seven-transmembrane-spanning GPCRs expressed on immune cells, establishing the concept that all chemoattractants are related in function. However, although chemoattractants have overlapping functions in vitro, recent in vivo data have revealed that they function, in many cases, nonredundantly in vivo. The chemically diverse nature of chemoattractants contributes to the fine control of leukocyte trafficking in vivo, with sequential chemoattractant use guiding immune cell recruitment into inflammatory sites. Lipid mediators frequently function as initiators of leukocyte recruitment, attracting the first immune cells into tissues. These initial responding immune cells produce cytokines locally, which in turn, induce the local release of chemokines. Local chemokine production then markedly amplifies subsequent waves of leukocyte recruitment. These new discoveries establish a paradigm for leukocyte recruitment in inflammation--described as lipid-cytokine-chemokine cascades--as a driving force in the effector phase of immune responses.
Collapse
Affiliation(s)
- Christian D Sadik
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
18
|
Bordbar A, Jamshidi N, Palsson BO. iAB-RBC-283: A proteomically derived knowledge-base of erythrocyte metabolism that can be used to simulate its physiological and patho-physiological states. BMC SYSTEMS BIOLOGY 2011; 5:110. [PMID: 21749716 PMCID: PMC3158119 DOI: 10.1186/1752-0509-5-110] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 07/12/2011] [Indexed: 02/06/2023]
Abstract
BACKGROUND The development of high-throughput technologies capable of whole cell measurements of genes, proteins, and metabolites has led to the emergence of systems biology. Integrated analysis of the resulting omic data sets has proved to be hard to achieve. Metabolic network reconstructions enable complex relationships amongst molecular components to be represented formally in a biologically relevant manner while respecting physical constraints. In silico models derived from such reconstructions can then be queried or interrogated through mathematical simulations. Proteomic profiling studies of the mature human erythrocyte have shown more proteins present related to metabolic function than previously thought; however the significance and the causal consequences of these findings have not been explored. RESULTS Erythrocyte proteomic data was used to reconstruct the most expansive description of erythrocyte metabolism to date, following extensive manual curation, assessment of the literature, and functional testing. The reconstruction contains 281 enzymes representing functions from glycolysis to cofactor and amino acid metabolism. Such a comprehensive view of erythrocyte metabolism implicates the erythrocyte as a potential biomarker for different diseases as well as a 'cell-based' drug-screening tool. The analysis shows that 94 erythrocyte enzymes are implicated in morbid single nucleotide polymorphisms, representing 142 pathologies. In addition, over 230 FDA-approved and experimental pharmaceuticals have enzymatic targets in the erythrocyte. CONCLUSION The advancement of proteomic technologies and increased generation of high-throughput proteomic data have created the need for a means to analyze these data in a coherent manner. Network reconstructions provide a systematic means to integrate and analyze proteomic data in a biologically meaning manner. Analysis of the red cell proteome has revealed an unexpected level of complexity in the functional capabilities of human erythrocyte metabolism.
Collapse
Affiliation(s)
- Aarash Bordbar
- Department of Bioengineering, University of California San Diego, La Jolla, 92093-0412, USA
| | | | | |
Collapse
|
19
|
Grant GE, Rubino S, Gravel S, Wang X, Patel P, Rokach J, Powell WS. Enhanced formation of 5-oxo-6,8,11,14-eicosatetraenoic acid by cancer cells in response to oxidative stress, docosahexaenoic acid and neutrophil-derived 5-hydroxy-6,8,11,14-eicosatetraenoic acid. Carcinogenesis 2011; 32:822-8. [PMID: 21393477 DOI: 10.1093/carcin/bgr044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The 5-lipoxygenase (5-LO) product 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), which is a potent chemoattractant for myeloid cells, is known to promote the survival of prostate cancer cells. In the present study, we found that PC3 prostate cancer cells and cell lines derived from breast (MCF7) and lung (A-427) cancers contain 5-hydroxyeicosanoid dehydrogenase (5-HEDH) activity and have the ability to synthesize 5-oxo-ETE from its precursor 5S-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) when added as an exogenous substrate. H(2)O(2) strongly stimulated the synthesis of 5-oxo-ETE and induced dramatic increases in the levels of both glutathione disulfide and NADP(+). The effects of H(2)O(2) on 5-oxo-ETE and NADP(+) were blocked by N-ethylmaleimide (NEM), indicating that this effect was mediated by the glutathione reductase-dependent generation of NADP(+), the cofactor required by 5-HEDH. 5-Oxo-ETE synthesis was also stimulated by agents that have cytotoxic effects on tumor cells, including 4,7,10,13,16,19-docosahexaenoic acid, tamoxifen and MK-886. Because PC3 cells have only modest 5-LO activity compared with inflammatory cells, we investigated their ability to contribute to the transcellular biosynthesis of 5-oxo-ETE from neutrophil-derived 5-HETE. Stimulation of neutrophils with arachidonic acid and calcium ionophore in the presence of PC3 cells led to a large and selective increase in 5-oxo-ETE synthesis compared with controls in which PC3 cell 5-oxo-ETE synthesis was selectively blocked by pretreatment with NEM. The ability of prostate tumor cells to synthesize 5-oxo-ETE may contribute to tumor cell proliferation as well as the influx of inflammatory cells, which may further induce cell proliferation through the release of cytokines. 5-Oxo-ETE may be an attractive target in cancer therapy.
Collapse
Affiliation(s)
- Gail E Grant
- Meakins-Christie Laboratories, Department of Medicine, McGill University, 3626 St Urbain Street, Montreal, Quebec, Canada H2X 2P2
| | | | | | | | | | | | | |
Collapse
|
20
|
Chen M, Lam BK, Luster AD, Zarini S, Murphy RC, Bair AM, Soberman RJ, Lee DM. Joint tissues amplify inflammation and alter their invasive behavior via leukotriene B4 in experimental inflammatory arthritis. THE JOURNAL OF IMMUNOLOGY 2010; 185:5503-11. [PMID: 20876351 DOI: 10.4049/jimmunol.1001258] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mechanisms by which mesenchymal-derived tissue lineages participate in amplifying and perpetuating synovial inflammation in arthritis have been relatively underinvestigated and are therefore poorly understood. Elucidating these processes is likely to provide new insights into the pathogenesis of multiple diseases. Leukotriene B(4) (LTB(4)) is a potent proinflammatory lipid mediator that initiates and amplifies synovial inflammation in the K/BxN model of arthritis. We sought to elucidate mechanisms by which mesenchymal-derived fibroblast-like synoviocytes (FLSs) perpetuate synovial inflammation. We focused on the abilities of FLSs to contribute to LTB(4) synthesis and to respond to LTB(4) within the joint. Using a series of bone marrow chimeras generated from 5-lipoxygenase(-/-) and leukotriene A(4) (LTA(4)) hydrolase(-/-) mice, we demonstrate that FLSs generate sufficient levels of LTB(4) production through transcellular metabolism in K/BxN serum-induced arthritis to drive inflammatory arthritis. FLSs-which comprise the predominant lineage populating the synovial lining-are competent to metabolize exogenous LTA(4) into LTB(4) ex vivo. Stimulation of FLSs with TNF increased their capacity to generate LTB(4) 3-fold without inducing the expression of LTA(4) hydrolase protein. Moreover, LTB(4) (acting via LTB(4) receptor 1) was found to modulate the migratory and invasive activity of FLSs in vitro and also promote joint erosion by pannus tissue in vivo. Our results identify novel roles for FLSs and LTB(4) in joints, placing LTB(4) regulation of FLS biology at the center of a previously unrecognized amplification loop for synovial inflammation and tissue pathology.
Collapse
Affiliation(s)
- Mei Chen
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Sala A, Folco G, Murphy RC. Transcellular biosynthesis of eicosanoids. Pharmacol Rep 2010; 62:503-10. [DOI: 10.1016/s1734-1140(10)70306-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 04/20/2010] [Indexed: 01/12/2023]
|
22
|
Abstract
Leukotrienes (LT) are biologically active lipid mediators known to be involved in allergic inflammation. Leukotrienes have been shown to mediate diverse features of allergic conditions including inflammatory cell chemotaxis/activation and smooth muscle contraction. Cysteinyl leukotrienes (LTC(4), LTD(4) and, LTE(4)) and the dihydroxy leukotriene LTB(4) are generated by a series of enzymes/proteins constituting the LT synthetic pathway or 5-lipoxygenase (5-LO) pathway. Their function is mediated by interacting with multiple receptors. Leukotriene receptor antagonists (LTRA) and LT synthesis inhibitors (LTSI) have shown clinical efficacy in asthma and more recently in allergic rhinitis. Despite growing knowledge of leukotriene biology, the molecular regulation of these inflammatory mediators remains to be fully understood. Genes encoding enzymes of the 5-LO pathway (i.e. ALOX5, LTC4S and LTA4H) and encoding for LT receptors (CYSLTR1/2 and LTB4R1/2) provide excellent candidates for disease susceptibility and severity; however, their role remains unclear. Preliminary data also suggest that 5-LO pathway/receptor gene polymorphism can predict patient responses to LTSI and LTRA; however, the exact mechanisms require elucidation. The aim of this review was to summarize the recent advances in the knowledge of these important mediators, focusing on genetic and pharmacogenetic aspects in the context of allergic phenotypes.
Collapse
Affiliation(s)
- N P Duroudier
- Division of Therapeutics and Molecular Medicine, University of Nottingham, Nottingham, UK
| | | | | |
Collapse
|
23
|
Rector CL, Murphy RC. Determination of leukotriene A(4) stabilization by S100A8/A9 proteins using mass spectrometry. J Lipid Res 2009; 50:2064-71. [PMID: 19269927 DOI: 10.1194/jlr.m900017-jlr200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leukotriene A(4) (LTA(4)) is the precursor for the formation of bioactive leukotrienes, but is highly susceptible to nonenzymatic hydrolysis. Although it is chemically reactive, LTA(4) participates in the process of transcellular metabolism, which requires the transfer of LTA(4) from one cell to another for the production of additional leukotrienes. Due to the susceptibility of LTA(4) to hydrolysis, various methods have been used to measure the half-life of LTA(4) in the presence of different proteins in efforts to understand how it is transported between cells. In this work, a new liquid chromatography mass spectrometry technique was developed to improve upon these previous assays that analyzed LTA(4) directly. The new technique derivatizes LTA(4) to stable compounds for analysis and removes the potential for sample decomposition between analytical runs. This assay was used in measuring the capabilities of the S100A8/A9 protein complex isolated from human neutrophils to stabilize LTA(4). It was determined that the S100A8/A9 protein complex protects LTA(4) from hydrolysis in a Ca(2+) dependent manner and increases LTA(4) half-life to in excess of 35 and 5 min at 4 degrees C and 37 degrees C, respectively.
Collapse
Affiliation(s)
- Christopher L Rector
- Department of Pharmacology, University of Colorado Denver, Aurora, CO 80045, USA
| | | |
Collapse
|
24
|
Abstract
Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region and phosphorylation to either enhance or inhibit the activity of 5-LO. Several other proteins, including cPLA2α (cytosolic phospholipase A2α) and FLAP (5-LO-activating protein) also assemble at the perinuclear region before production of LTA4. LTC4 synthase is an integral membrane protein that is present at the nuclear envelope; however, LTA4 hydrolase remains cytosolic. Biologically active LTB4 is metabolized by ω-oxidation carried out by specific cytochrome P450s (CYP4F) followed by β-oxidation from the ω-carboxy position and after CoA ester formation. Other specific pathways of leukotriene metabolism include the 12-hydroxydehydrogenase/15-oxo-prostaglandin-13-reductase that forms a series of conjugated diene metabolites that have been observed to be excreted into human urine. Metabolism of LTC4 occurs by sequential peptide cleavage reactions involving a γ-glutamyl transpeptidase that forms LTD4 (leukotriene D4) and a membrane-bound dipeptidase that converts LTD4 into LTE4 (leukotriene E4) before ω-oxidation. These metabolic transformations of the primary leukotrienes are critical for termination of their biological activity, and defects in expression of participating enzymes may be involved in specific genetic disease.
Collapse
Affiliation(s)
- Robert C Murphy
- Department of Pharmacology, Mail Stop 8303, University of Colorado at Denver and Health Sciences Center, 12801 E. 17th Avenue, P.O. Box 6511, Aurora, CO 80045-0511, USA
| | | |
Collapse
|
25
|
Folco G, Murphy RC. Eicosanoid transcellular biosynthesis: from cell-cell interactions to in vivo tissue responses. Pharmacol Rev 2006; 58:375-88. [PMID: 16968946 DOI: 10.1124/pr.58.3.8] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The biosynthesis of the biologically active metabolites of arachidonic acid involves a number of enzymes that are differentially expressed in cells. Prostaglandins and thromboxanes are derived from the chemically unstable prostaglandin (PG) H(2) intermediate synthesized by PGH synthases (cyclooxygenase-1/2) and leukotrienes from chemically unstable leukotriene A(4) by 5-lipoxygenase. Additional enzymes transform these reactive intermediates to a variety of chemical structures known collectively as the lipid mediators. Although some cells have the complete cassette of enzymes required for the production of biologically active prostaglandins and leukotrienes, the actual biosynthetic events often are a result of cell-cell interaction and a transfer of these chemically reactive intermediates, PGH(2) and leukotriene A(4), between cells. This process has come to be known as transcellular biosynthesis of eicosanoids and requires a donor cell to synthesize and release one component of the biosynthetic cascade and a second, accessory cell to take up that intermediate and process each into the final biologically active product. This review focuses on the evidence for transcellular biosynthetic events for prostaglandins, leukotrienes, and lipoxins occurring during cell-cell interactions. Evidence for arachidonic acid serving as a transcellular biosynthetic intermediate is presented. Experiments for transcellular events taking place in vivo that reveal the true complexity of eicosanoid biosynthesis within tissues are also reviewed.
Collapse
Affiliation(s)
- Giancarlo Folco
- Department of Pharmacology, University of Colorado at Denver and Health Sciences Center, Mail Stop 8303, 12801 E. 17th Avenue, P.O. Box 6511, Aurora, CO 80045-0511, USA
| | | |
Collapse
|
26
|
Arguello M, Paz S, Hernandez E, Corriveau-Bourque C, Fawaz LM, Hiscott J, Lin R. Leukotriene A4 hydrolase expression in PEL cells is regulated at the transcriptional level and leads to increased leukotriene B4 production. THE JOURNAL OF IMMUNOLOGY 2006; 176:7051-61. [PMID: 16709867 DOI: 10.4049/jimmunol.176.11.7051] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Primary effusion lymphoma (PEL) is a herpesvirus-8-associated lymphoproliferative disease characterized by migration of tumor cells to serous body cavities. PEL cells originate from postgerminal center B cells and share a remarkable alteration in B cell transcription factor expression and/or activation with classical Hodgkin's disease cells. Comparative analysis of gene expression by cDNA microarray of BCBL-1 cells (PEL), L-428 (classical Hodgkin's disease), and BJAB cells revealed a subset of genes that were differentially expressed in BCBL-1 cells. Among these, four genes involved in cell migration and chemotaxis were strongly up-regulated in PEL cells: leukotriene A4 (LTA4) hydrolase (LTA4H), IL-16, thrombospondin-1 (TSP-1), and selectin-P ligand (PSGL-1). Up-regulation of LTA4H was investigated at the transcriptional level. Full-length LTA4H promoter exhibited 50% higher activity in BCBL-1 cells than in BJAB or L-428 cells. Deletion analysis of the LTA4H promoter revealed a positive cis-regulatory element active only in BCBL-1 cells in the promoter proximal region located between -76 and -40 bp. Formation of a specific DNA-protein complex in this region was confirmed by EMSA. Coculture of ionophore-stimulated primary neutrophils with BCBL-1 cells leads to an increased production of LTB4 compared with coculture with BJAB and L-428 cells as measured by enzyme immunoassay, demonstrating the functional significance of LTA4H up-regulation.
Collapse
Affiliation(s)
- Meztli Arguello
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
27
|
Newman JW, Morisseau C, Hammock BD. Epoxide hydrolases: their roles and interactions with lipid metabolism. Prog Lipid Res 2005; 44:1-51. [PMID: 15748653 DOI: 10.1016/j.plipres.2004.10.001] [Citation(s) in RCA: 342] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The epoxide hydrolases (EHs) are enzymes present in all living organisms, which transform epoxide containing lipids by the addition of water. In plants and animals, many of these lipid substrates have potent biologically activities, such as host defenses, control of development, regulation of inflammation and blood pressure. Thus the EHs have important and diverse biological roles with profound effects on the physiological state of the host organisms. Currently, seven distinct epoxide hydrolase sub-types are recognized in higher organisms. These include the plant soluble EHs, the mammalian soluble epoxide hydrolase, the hepoxilin hydrolase, leukotriene A4 hydrolase, the microsomal epoxide hydrolase, and the insect juvenile hormone epoxide hydrolase. While our understanding of these enzymes has progressed at different rates, here we discuss the current state of knowledge for each of these enzymes, along with a distillation of our current understanding of their endogenous roles. By reviewing the entire enzyme class together, both commonalities and discrepancies in our understanding are highlighted and important directions for future research pertaining to these enzymes are indicated.
Collapse
Affiliation(s)
- John W Newman
- Department of Entomology, UCDavis Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | | | |
Collapse
|
28
|
Dickinson Zimmer JS, Voelker DR, Bernlohr DA, Murphy RC. Stabilization of leukotriene A4 by epithelial fatty acid-binding protein in the rat basophilic leukemia cell. J Biol Chem 2003; 279:7420-6. [PMID: 14676186 DOI: 10.1074/jbc.m311404200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leukotriene A(4) (LTA(4)) is a chemically unstable triene epoxide product of 5-lipoxygenase metabolism of arachidonic acid. Despite this chemical reactivity and its synthesis at the perinuclear membrane, LTA(4) is enzymatically converted into the cysteinyl leukotrienes and leukotriene B(4). Furthermore, LTA(4) participates in transcellular biosynthesis and is thus transferred between cells as an intact molecule. A cytosolic fatty acid-binding protein present in the rat basophilic leukemia cells was identified using mass spectrometry. This protein was determined to be the stabilizing factor present in the cell cytosol responsible for increasing the effective chemical half-life of LTA(4). Rat epithelial fatty acid-binding protein (E-FABP) was isolated using partial protein purification and immunoprecipitation. In-gel digestion with trypsin followed by peptide fingerprint analysis using matrix-assisted laser desorption ionization mass spectrometry and sequencing the major tryptic peptide obtained from liquid chromatography/mass spectrometry/mass spectrometry analysis identified E-FABP in the active fraction. Semi-quantitative Western blot analysis indicated that E-FABP in the cytosolic fraction of RBL-1 cells was present at approximately 1-3 pmol/10(6) cells. E-FABP (9 microm) was tested for its ability to stabilize LTA(4), and at 37 degrees C E-FABP was able to increase the half-life of LTA(4) from the previously reported half-life less than 3 s to a half-life of approximately 7 min. These results present a novel function for the well studied fatty acid-binding protein as a participant in leukotriene biosynthesis that permits LTA(4) to be available for further enzymatic processing in various cellular regions.
Collapse
|
29
|
Tornhamre S, Stenke L, Granzelius A, Sjölinder M, Näsman-Glaser B, Roos C, Widell S, Lindgren JA. Inverse relationship between myeloid maturation and leukotriene C4 synthase expression in normal and leukemic myelopoiesis-consistent overexpression of the enzyme in myeloid cells from patients with chronic myeloid leukemia. Exp Hematol 2003; 31:122-30. [PMID: 12591277 DOI: 10.1016/s0301-472x(02)01026-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Leukotriene (LT) C(4) synthase (LTC(4)S) is the key enzyme in the biosynthesis of LTC(4), which has been reported to stimulate the growth of human myeloid progenitor cells and is specifically overproduced in chronic myeloid leukemia (CML). The aim of this study was to clarify the expression of LTC(4)S during normal and leukemic myelopoiesis and to investigate the correlation between abnormal LTC(4)S expression in CML myeloid cells and the activity of the disease-specific tyrosine kinase p210 BCR-ABL. MATERIALS AND METHODS Immature and mature myeloid cell subpopulations were isolated with magnetic cell sorting from healthy volunteer bone marrow (n = 11) and CML patient peripheral blood (n = 8), respectively. The cells were subjected to analysis of LTC(4)S protein expression and activity. Expression of LTC(4)S was investigated in CD16(+) neutrophils from CML patients before and after 1 month of medication with imatinib mesylate (STI571), which is a specific inhibitor of p210 BCR-ABL. RESULTS Among normal cells, the highest enzyme activity was observed in the most immature, CD34(+) progenitor cell-enriched and CD15(+) myelocyte-enriched fractions. Subsequently, LTC(4)S activity decreased with increasing maturity, with only negligible amounts of LTC(4) produced in CD16(+) neutrophils. LTC(4)S was expressed at the protein level in the immature myeloid cell fractions but not in CD16(+) cells. In CML cells, LTC(4)S activity and expression were consistently elevated. Thus, the CML CD34(+) and CD15(+) cell fractions, as well as the CD11b(+) myelocyte/metamyelocyte-enriched fractions, produced 6 to 10 times as much LTC(4) as the corresponding normal cells. Again, enzyme expression was highest in the most immature cells, although evident LTC(4)S expression and activity remained in CML CD16(+) neutrophils. Interestingly, treatment of five CML patients with imatinib mesylate down-regulated the abnormal neutrophil LTC(4)S expression and activity. CONCLUSIONS Expression of LTC(4)S in immature myelopoid cells is in line with a role for this enzyme in myelopoiesis. In addition, consistent overexpression of LTC(4)S in CML and the correlation to p210 BCR-ABL activity suggests that LTC(4)S may be involved in leukemic pathogenesis.
Collapse
MESH Headings
- Antigens, CD34
- Benzamides
- Case-Control Studies
- Cell Differentiation/drug effects
- Gene Expression Regulation, Leukemic/drug effects
- Glutathione Transferase/genetics
- Glutathione Transferase/physiology
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Lewis X Antigen
- Myeloid Cells/cytology
- Myeloid Cells/enzymology
- Myelopoiesis/drug effects
- Myelopoiesis/physiology
- Neutrophils/enzymology
- Neutrophils/pathology
- Piperazines/pharmacology
- Piperazines/therapeutic use
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Receptors, IgG
Collapse
Affiliation(s)
- Susanne Tornhamre
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Scheele Laboratory, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Cipollone F, Ganci A, Greco A, Panara MR, Pasquale M, Di Gregorio D, Porreca E, Mezzetti A, Cuccurullo F, Patrignani P. Modulation of aspirin-insensitive eicosanoid biosynthesis by 6-methylprednisolone in unstable angina. Circulation 2003; 107:55-61. [PMID: 12515743 DOI: 10.1161/01.cir.0000043260.82447.62] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The evidence that inflammation plays a pivotal role in the pathophysiology of acute coronary syndromes prompted us to investigate the effects of glucocorticoid treatment on leukotriene (LT) C4 and thromboxane (TX) A2 biosynthesis in unstable angina. METHODS AND RESULTS Urinary LTE4 and 11-dehydro-TXB2 were significantly higher in 12 patients with unstable angina than in 12 patients with stable angina and 12 patients with nonischemic chest pain. Furthermore, we randomized the unstable angina patients to receive intravenous 6-methylprednisolone (6-MP; 1 mg/kg BID for 2 days) or matching placebo and collected 12 consecutive 6-hour urine samples before and during the infusions. LTE4 excretion showed a time-dependent decrease in the 6-MP group but did not decrease during placebo. Furthermore, during myocardial ischemia, LTE4 was significantly higher before 6-MP infusion than during steroid therapy. In contrast, 11-dehydro-TXB2 did not differ significantly during 6-MP versus placebo. Myocardial ischemia elicited by stress test in the stable angina patients was not accompanied by any change in LTE4 and 11-dehydro-TXB2, thus ruling out a role of ischemia per se in the induction of increased eicosanoid production. CONCLUSIONS Increased production of vasoactive LT and TX may occur in unstable angina despite conventional antithrombotic and antianginal treatment. Glucocorticoids can suppress LTC4 biosynthesis in the short term and may provide an interesting tool to explore the pathophysiological significance of inflammatory cell activation in this setting.
Collapse
Affiliation(s)
- Francesco Cipollone
- Department of Medicine and Aging, University of Chieti G. D'Annunzio School of Medicine, Chieti, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Fabre JE, Goulet JL, Riche E, Nguyen M, Coggins K, Offenbacher S, Koller BH. Transcellular biosynthesis contributes to the production of leukotrienes during inflammatory responses in vivo. J Clin Invest 2002. [DOI: 10.1172/jci0214869] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
32
|
Fabre JE, Goulet JL, Riche E, Nguyen M, Coggins K, Offenbacher S, Koller BH. Transcellular biosynthesis contributes to the production of leukotrienes during inflammatory responses in vivo. J Clin Invest 2002; 109:1373-80. [PMID: 12021253 PMCID: PMC150978 DOI: 10.1172/jci14869] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Leukotrienes are lipid mediators that evoke primarily proinflammatory responses by activating receptors present on virtually all cells. The production of leukotrienes is tightly regulated, and expression of 5-lipoxygenase, the enzyme required for the first step in leukotriene synthesis, is generally restricted to leukocytes. Arachidonic acid released from the cell membrane of activated leukocytes is rapidly converted to LTA(4) by 5-lipoxygenase. LTA(4) is further metabolized to either LTC(4) or LTB(4) by the enzyme LTC(4) synthase or LTA(4) hydrolase, respectively. Unlike 5-lipoxygenase, these enzymes are expressed in most tissues. This observation previously has led to the suggestion that LTA(4) produced by leukocytes may, in some cases, be delivered to other cell types before being converted into LTC(4) or LTB(4). While in vitro studies indicate that this process, termed transcellular biosynthesis, can lead to the production of leukotrienes, it has not been possible to determine the significance of this pathway in vivo. Using a series of bone marrow chimeras generated from 5-lipoxygenase- and LTA(4) hydrolase-deficient mice, we show here that transcellular biosynthesis contributes to the production of leukotrienes in vivo and that leukotrienes produced by this pathway are sufficient to contribute significantly to the physiological changes that characterize an ongoing inflammatory response.
Collapse
Affiliation(s)
- Jean-Etienne Fabre
- Department of Genetics, University of North Carolina Chapel Hill, 27599, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- F A Fitzpatrick
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA.
| | | |
Collapse
|
34
|
Aberrant expression of active leukotriene C4 synthase in CD16+ neutrophils from patients with chronic myeloid leukemia. Blood 2000. [DOI: 10.1182/blood.v95.4.1456.004k06_1456_1464] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Elevated leukotriene (LT)C4 synthase activity was observed in peripheral blood granulocyte suspensions from patients with chronic myeloid leukemia (CML). Magnetic cell sorting (MACS) with CD16 monoclonal antibodies (mAbs), which were used to fractionate granulocytes from CML patients and healthy individuals, yielded highly purified suspensions of CD16+ neutrophils. The purity of these cell fractions was verified by extensive morphologic examination. Reverse transcriptase–polymerase chain reaction (RT-PCR) analyses, demonstrating the absence of interleukin-4 messenger RNA (IL-4 mRNA), further confirmed the negligible contamination of eosinophils in these fractions. Notably, purified CML CD16+ neutrophils from all tested patients transformed exogenous LTA4 to LTC4. These cells also produced LTC4 after activation with ionophore A23187 or the chemotactic peptide fMet-LeuPhe (N-formylmethionyl-leucyl-phenylalanine). Subcellular fractionation revealed that the enzyme activity was exclusively distributed to the microsomal fraction. Expression of LTC4 synthase mRNA in CML CD16+neutrophils was confirmed by RT-PCR. Furthermore, Western blot analyses consistently demonstrated expression of LTC4 synthase at the protein level in CML CD16+ neutrophils, whereas expression of microsomal glutathione S-transferase 2 occurred occasionally. Expectedly, LTC4 synthase activity or expression of the protein could not be demonstrated in CD16+ neutrophil suspensions from any of the healthy individuals. Instead, these cells, as well as CML CD16+neutrophils, transformed LTA4 to LTB4. The results indicate that aberrant expression of LTC4 synthase is a regular feature of morphologically mature CML CD16+neutrophils. This abnormality, possibly associated with malignant transformation, can lead to increased LTC4 synthesis in vivo. Such overproduction may be of pathophysiological relevance because LTC4 has been demonstrated to stimulate proliferation of human bone marrow–derived myeloid progenitor cells.
Collapse
|
35
|
Habib GM, Cuevas AA, Barrios R, Lieberman MW. Mouse leukotriene A4 hydrolase is expressed at high levels in intestinal crypt cells and splenic lymphocytes. Gene X 1999; 234:249-55. [PMID: 10395897 DOI: 10.1016/s0378-1119(99)00175-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
LTA4 hydrolase (EC 3.3.2.6) is a dual-function enzyme that is essential for the conversion of leukotriene A4 (LTA4) to leukotriene B4 (LTB4) and also possesses an aminopeptidase activity. To characterize the expression of this unusual enzyme, we have cloned the mouse LTA4 hydrolase cDNA. The deduced amino acid sequence revealed 92% identity with the human sequence. Cloning and analysis of genomic sequences of mouse LTA4 hydrolase indicated that it is a single-copy gene spanning over 40kb and containing 20 exons. LTA4 hydrolase is widely expressed, with the highest levels of expression occurring in the small intestine, followed by the spleen. In situ hybridization revealed that LTA4 hydrolase is localized in the crypt cells of the small intestine, white pulp of the spleen, bronchiolar epithelium of the lung, myocardium, adrenal cortex, epithelium of the seminal vesicles, proximal tubules and the collecting ducts of the kidney, and occasional hepatocytes. Thus the widespread distribution of LTA4 hydrolase in various cell types in the tissues suggests that LTB4 may possess biological activities other than those known at present. It is also plausible that the widespread occurrence of LTA4 hydrolase in various tissues may correspond more with its function as an aminopeptidase than its function as an LTA4 hydrolase.
Collapse
Affiliation(s)
- G M Habib
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
36
|
Rybina IV, Feinmark SJ. Alteration of human leukotriene A4 hydrolase activity after site-directed mutagenesis: serine-415 is a regulatory residue. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1438:199-203. [PMID: 10320802 DOI: 10.1016/s1388-1981(99)00046-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Leukotriene A4 hydrolase (LTA-H) is a bifunctional protein that has aminopeptidase activity, but also contains an epoxide hydrolase activity that converts leukotriene (LT)A4 to LTB4. The lipid metabolic activity of this enzyme plays a central role in the control of polymorphonuclear leukocyte function and in the development of inflammation. LTA-H is widely spread in many mammalian tissues, although it appears to be inactive in many cases. Regulation of this enzyme's activity by phosphorylation of a serine at residue 415 has recently been described. Since the activation of LTA-H in the presence of activated PMNL would likely lead to a substantial increase in the production of inflammatory lipids, regulation of LTA-H presents a novel potential target for anti-inflammatory therapy. We have now made a series of site-directed mutants at this site to test the importance of this residue to the activity of LTA-H. Replacement of the critical serine with threonine or glutamine has little effect on either the epoxide hydrolase or aminopeptidase activities. However, replacing serine with a negatively charged amino acid (either aspartate or glutamate), intended to mimic phosphorylation at that site, causes significant reduction in epoxide hydrolase activity (50-70%). These mutations have little effect on the aminopeptidase activity of the LTA-H, suggesting that the mutation models the regulatory event and is not simply due to improper folding of the protein.
Collapse
Affiliation(s)
- I V Rybina
- Department of Pharmacology, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | | |
Collapse
|
37
|
Abstract
Antileukotriene drugs inhibit the formation or action of leukotrienes, which are potent lipid mediators generated from arachidonic acid in lung tissue and inflammatory cells. The leukotrienes were discovered in basic studies of arachidonic acid metabolism in leucocytes 20 years ago and were found to display a number of biological activities which may contribute to airway obstruction. Clinical studies with antileukotriene drugs have indeed demonstrated that leukotrienes are significant mediators of airway obstruction evoked by many common trigger factors in asthma. Moreover, treatment trials have established that this new class of drugs has beneficial anti-asthmatic properties, and several antileukotrienes have recently been introduced as new therapy of asthma. This communication presents an overview of the biosynthesis of leukotrienes, their biological effects and clinical effects of antileukotrienes in the treatment of asthama.
Collapse
Affiliation(s)
- H E Claesson
- Department of Medical Biophysics and Biochemistry, Karolinska Institute, Stockholm, Sweden.
| | | |
Collapse
|
38
|
Shimada K, Navarro J, Goeger DE, Mustafa SB, Weigel PH, Weinman SA. Expression and regulation of leukotriene-synthesis enzymes in rat liver cells. Hepatology 1998; 28:1275-81. [PMID: 9794912 DOI: 10.1002/hep.510280516] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The liver plays a major role in metabolism and elimination of leukotrienes (LT). It produces cysteinyl leukotrienes (cLT), and cLT have been implicated in hepatocellular toxicity in several models of lipopolysaccharide (LPS)-associated liver injury. However, the liver cell types responsible for cLT production are poorly defined, and the expression of the LT-synthesis enzymes, 5-lipoxygenase (5-LO) and LTC4 synthase (LTC4-S), in liver cells has never been demonstrated. The aim of the present study was to examine the ability of rat liver cells to produce cLT by determining whether hepatocytes, Kupffer cells, and sinusoidal endothelial cells express mRNA and enzyme activities of the LT-synthesis enzymes and whether expression is altered by LPS. 5-LO mRNA was expressed in whole liver, and expression was enhanced by LPS. Cell fractionation studies demonstrated that expression was present in Kupffer cells and sinusoidal endothelial cells, but not in hepatocytes. LTC4-S mRNA was detected in whole liver, hepatocytes, and sinusoidal endothelial cells, but not in Kupffer cells. Semiquantitative reverse-transcriptase polymerase chain reaction (RT-PCR) showed that LPS increased LTC4-S expression in hepatocytes by a factor of 3 (n = 3; P < .03). LTC4-S enzyme activity in the microsomal fraction of hepatocytes was also increased from 0.52 +/- 0.13 to 1.90 +/- 0.66 nmol . mg protein-1 . 5 min-1 (n = 6; P < .015) after LPS treatment. These results indicate that hepatocytes do not possess the ability for de novo synthesis of cLT from arachidonic acid, but they may actively participate in cLT production by conjugation of LTA4 with glutathione to produce LTC4. LPS enhances LTC4-S expression in hepatocytes. This intrinsic cLT production may contribute to hepatocellular injury during inflammation.
Collapse
Affiliation(s)
- K Shimada
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | |
Collapse
|
39
|
Klockmann MT, Jahn HU, Hippenstiel S, Krämer HJ, Suttorp N. Interaction of human neutrophils with airway epithelial cells: reduction of leukotriene B4 generation by epithelial cell derived prostaglandin E2. J Cell Physiol 1998; 175:268-75. [PMID: 9572471 DOI: 10.1002/(sici)1097-4652(199806)175:3<268::aid-jcp4>3.0.co;2-m] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Airway epithelial cells (AEC) play an active role in the regulation of inflammatory airway disease. In the present study we analyzed the interaction of AEC with polymorphonuclear leukocytes (PMN) in coincubation with respect to their arachidonic acid (AA) metabolism using reversed phase-HPLC and post-HPLC-ELISA. Primary cultures of porcine AEC released predominantly PGE2, PGF2a, and 15-hydroxyeicosatetraenoic acid (15-HETE), whereas the major human PMN-derived AA metabolite was the chemotactic factor leukotriene B4 (LTB4). In AEC-PMN cocultures stimulated with the calcium ionophore A23187, PMN-related 5-lipoxygenase products were decreased by 45%. This reduction in LTB4 formation in the presence of AEC was mainly due to PGE2 generated by the epithelial cells, whereas 15-HETE made a minor contribution. Most of the effect was inhibited by AEC pretreatment with acetylsalicylic acid and restored by addition of equivalent amounts of exogenous PGE2. LTB4 degradation was not enhanced in PMN-AEC coincubations. Moreover, reduction of LTB4 formation in this system did not require an intimate cell-to-cell contact as shown by studies involving filter membranes for PMN-AEC separation. Superoxide anion concentrations were also decreased in PMN-AEC coincubations; this effect, however, was unrelated to PGE2 for quantitative reasons and was probably due to O2- degradation by epithelial cells. In summary, epithelially derived PGE2 is the major mediator in the coincubation of porcine AEC and human PMN that downregulates neutrophil responses by activating receptors on the neutrophil. A minor contributor in this course of PMN-AEC interaction may be the 15-HETE transcellular pathway. Overall, airway epithelium appears to play an antiinflammatory role by damping the proinflammatory potential of neutrophils.
Collapse
Affiliation(s)
- M T Klockmann
- Department of Internal Medicine, Justus-Liebig-University of Giessen, Germany
| | | | | | | | | |
Collapse
|
40
|
Abe M, Sakurada T, Kuwata H, Nakatani Y, Kudo I, Furukawa T. Phospholipase A2 inhibitory activity in lung cancer cell lines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 433:343-5. [PMID: 9561166 DOI: 10.1007/978-1-4899-1810-9_73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- M Abe
- Department of Pharmacology, Fukuoka University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Cowburn AS, Sladek K, Soja J, Adamek L, Nizankowska E, Szczeklik A, Lam BK, Penrose JF, Austen FK, Holgate ST, Sampson AP. Overexpression of leukotriene C4 synthase in bronchial biopsies from patients with aspirin-intolerant asthma. J Clin Invest 1998; 101:834-46. [PMID: 9466979 PMCID: PMC508632 DOI: 10.1172/jci620] [Citation(s) in RCA: 373] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aspirin causes bronchoconstriction in aspirin-intolerant asthma (AIA) patients by triggering cysteinyl-leukotriene (cys-LT) production, probably by removing PGE2-dependent inhibition. To investigate why aspirin does not cause bronchoconstriction in all individuals, we immunostained enzymes of the leukotriene and prostanoid pathways in bronchial biopsies from AIA patients, aspirin-tolerant asthma (ATA) patients, and normal (N) subjects. Counts of cells expressing the terminal enzyme for cys-LT synthesis, LTC4 synthase, were fivefold higher in AIA biopsies (11.5+/-2.2 cells/mm2, n = 10) than in ATA biopsies (2.2+/-0.7, n = 10; P = 0. 0006) and 18-fold higher than in N biopsies (0.6+/-0.4, n = 9; P = 0. 0002). Immunostaining for 5-lipoxygenase, its activating protein (FLAP), LTA4 hydrolase, cyclooxygenase (COX)-1, and COX-2 did not differ. Enhanced baseline cys-LT levels in bronchoalveolar lavage (BAL) fluid of AIA patients correlated uniquely with bronchial counts of LTC4 synthase+ cells (rho = 0.83, P = 0.01). Lysine-aspirin challenge released additional cys-LTs into BAL fluid in AIA patients (200+/-120 pg/ml, n = 8) but not in ATA patients (0. 7+/-5.1, n = 5; P = 0.007). Bronchial responsiveness to lysine-aspirin correlated exclusively with LTC4 synthase+ cell counts (rho = -0.63, P = 0.049, n = 10). Aspirin may remove PGE2-dependent suppression in all subjects, but only in AIA patients does increased bronchial expression of LTC4 synthase allow marked overproduction of cys-LTs leading to bronchoconstriction.
Collapse
Affiliation(s)
- A S Cowburn
- University Medicine, Immunopharmacology Group, Southampton General Hospital, Southampton, SO16 6YD, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Palmantier R, Rocheleau H, Laviolette M, Mancini J, Borgeat P. Characteristics of leukotriene biosynthesis by human granulocytes in presence of plasma. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1389:187-96. [PMID: 9512647 DOI: 10.1016/s0005-2760(97)00149-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The formation of leukotriene B4 (LTB4) by neutrophils stimulated with the ionophore A23187 or physiological stimuli in heparinized plasma was investigated. In comparison with neutrophils stimulated (A23187) in a protein-free buffered salt solution, neutrophils stimulated in plasma produced only trace amounts of LTB4. The addition of human recombinant LTA4-hydrolase or erythrocytes to plasma prior to A23187 stimulation strongly and selectively stimulated (> 4-fold) the formation of LTB4 supporting that neutrophils activated in plasma with A23187 release in the extracellular milieu most of LTA4 formed by the cells, and indicating that plasma proteins drastically slow down the further metabolism of LTA4 released by neutrophils. The formation of LTB4 was then investigated in GM-CSF-primed neutrophils stimulated with fMLP in plasma; levels of synthesis were very low and the addition of erythrocytes prior to stimulation strongly enhanced LTB4 synthesis, demonstrating that agonist-stimulated neutrophils also release most of LTA4 generated in the extracellular milieu. Investigations on the fate of LTA4 in plasma revealed that LTA4 was slowly degraded through an unknown process, i.e. not through the previously described non-enzymic hydrolysis resulting in the formation of dihydroxy derivatives of LTA4. Using neutrophils labeled with tritiated arachidonate, we also demonstrated that neutrophils stimulated in plasma with fMLP or A23187, almost exclusively use endogenous arachidonate, as opposed to plasma arachidonate, to generate 5-lipoxygenase products. Finally, experiments performed with purified eosinophils indicated that contrary to neutrophils, the eosinophils do not release LTA4, but directly release LTC4.
Collapse
Affiliation(s)
- R Palmantier
- Centre de Recherche en Rhumatologie et Immunologie, CHUL, Québec, Canada
| | | | | | | | | |
Collapse
|
43
|
Provost P, Borgeat P, Merhi Y. Platelets, neutrophils, and vasoconstriction after arterial injury by angioplasty in pigs: effects of MK-886, a leukotriene biosynthesis inhibitor. Br J Pharmacol 1998; 123:251-8. [PMID: 9489613 PMCID: PMC1565165 DOI: 10.1038/sj.bjp.0701611] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1 Leukotrienes constitute a class of potent bioactive mediators known to play a pivotal role in inflammation. Since their biosynthesis has been shown to be enhanced by platelet-neutrophil interactions, leukotrienes may be involved in these interactions and the arterial response to injury. Therefore, we investigated the effects of the selective leukotriene biosynthesis inhibitor 3-[1-(4-chlorobenzyl)-3-t-butyl-thio-5-isopropylindol-2-yl]-2,2- dimethylpropanoic acid (MK-886) on the acute thrombotic and vasomotor responses after arterial injury by angioplasty. 2 Carotid arterial injury was produced by balloon dilatation in control (molecusol vehicle; n=10) and treated (MK-886, 10 mg kg(-1), i.v.; n=9) pigs. The acute thrombotic reaction following deep arterial wall injury was quantified with 51Cr labelled platelets and 111In labelled neutrophils, and the vasomotor response was determined angiographically. 3 Platelet deposition at the site of deep arterial wall injury averaged 56.4+/-11.0x10(6) platelets cm(-2) in the control group, and was significantly reduced to 18.2+/-3.8x10(6) platelets cm(-2) (P<0.005) by treatment with MK-886. Neutrophil deposition was also decreased by MK-886, from 242.8+/-36.8 to 120.9+/-20.3x10(3) neutrophils cm(-2) (P<0.01). MK-886-treated animals had a significant decrease in the postangioplasty vasoconstrictive response at the site of endothelial injury distally, from 37.5+/-3.1% in the control group to 13.5+/-2.5% (P<0.001). 4 The effects of MK-886 were associated with a profound inhibition of ex vivo leukotriene B4 (LTB4) synthesis in blood stimulated by the calcium ionophore A23187 and a significant reduction of neutrophil aggregation in whole blood (P<0.01), whereas neutrophil superoxide anion production, serum thromboxane B2 and platelet aggregation in whole blood were not influenced. 5 The relevant effects of MK-886 are primarily related to inhibition of neutrophil function and suggest an important modulatory role for leukotrienes in the pathophysiological response associated with platelet and neutrophil interactions following arterial injury in vivo.
Collapse
Affiliation(s)
- P Provost
- Laboratory of Experimental Pathology, Montreal Heart Institute and the University of Montreal, Quebec, Canada
| | | | | |
Collapse
|
44
|
Abe M, Kitsuki H, Saruwatari S, Asoh H, Sakurada T, Kuwata H, Nakatani Y, Kudo I, Furukawa T. Cancer cells isolated from malignant pleural and peritoneal effusions inhibit phospholipase A2 activity in human polymorphonuclear leukocytes. Cancer Lett 1997; 121:155-61. [PMID: 9570353 DOI: 10.1016/s0304-3835(97)00347-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We studied the influence of cancer cells on the LTB4 production by human polymorphonuclear leukocytes (PMN). The cancer cells were isolated from malignant pleural effusion specimens taken from two patients or from a peritoneal effusion specimen of one patient. While human PMN produced LTB4 following stimulation with A23187, the addition of cancer cells inhibited LTB4, 5-HETE and 12-HETE production by PMN in a cell number-dependent manner, while the cancer cell lines also showed a similar inhibition. The addition of lysate of the breast cancer cells also inhibited in a dose-dependent manner the production of LTB4 by PMN following stimulation with A23187. The addition of arachidonic acid completely reversed the inhibition of PMN-LTB4 production by the addition of the breast cancer cell lysates, thus suggesting inhibition at the phospholipase A2 level. The addition of this lysate to the partially purified human cytosolic PLA2 also inhibited the PLA2 activity. In contrast, the addition of lymphoma cells isolated from metastatic lymphnodes did not inhibit the LTB4 production from PMN. Since LTB4 is one of the important chemotactic factors for PMN and monocytes, these findings suggest that the inhibition of the PLA2 activity by the cancer cells thus results in a reduced production of LTB4 from PMN and contributes to a predisposition to develop severe infection in patients with advanced cancer.
Collapse
Affiliation(s)
- M Abe
- Department of Pharmacology, School of Medicine, Fukuoka University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Rybina IV, Liu H, Gor Y, Feinmark SJ. Regulation of leukotriene A4 hydrolase activity in endothelial cells by phosphorylation. J Biol Chem 1997; 272:31865-71. [PMID: 9395533 DOI: 10.1074/jbc.272.50.31865] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Endothelial cells contain leukotriene (LT) A4 hydrolase (LTA-H) as detected by Northern and Western blotting, but several studies have been unable to detect the activity of this enzyme. Since LTA-H could play a key role in determining what biologically active lipids are generated by activated endothelium during the inflammatory process, we studied possible mechanisms by which this enzyme may be regulated. We find that LTA-H is phosphorylated under basal conditions in human endothelial cells and in this state does not exhibit epoxide hydrolase activity (i.e. conversion of LTA4 to LTB4). LTA-H purified from endothelial cells is efficiently dephosphorylated by incubation with protein phosphatase-1 in the presence of an LTA-H peptide substrate and not at all in the absence of substrate. Under conditions that lead to dephosphorylation, protein phosphatase-1 activates the epoxide hydrolase activity of LTA-H. Using peptide mapping and site-directed mutagenesis, we have identified serine 415 as the site of phosphorylation of LTA-H by a kinase found in endothelial cell cytosol. In parallel, we have studied a human lung carcinoma cell line that expresses active LTA-H. Although these cells have cytosolic kinases that phosphorylate recombinant LTA-H, they do not target serine 415 and thus do not inhibit LTA-H activity. We believe that LTA-H is regulated in intact cells by a kinase/phosphatase cycle and further that the kinase in endothelial cells specifically recognizes and phosphorylates a regulatory site in the LTA-H.
Collapse
Affiliation(s)
- I V Rybina
- Department of Pharmacology, College of Physicians & Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
46
|
Krump E, Picard S, Mancini J, Borgeat P. Suppression of leukotriene B4 biosynthesis by endogenous adenosine in ligand-activated human neutrophils. J Exp Med 1997; 186:1401-6. [PMID: 9334381 PMCID: PMC2199092 DOI: 10.1084/jem.186.8.1401] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Adenosine (Ado) has been shown to suppress several functional responses of human polymorphonuclear leukocytes (PMNs). The current study investigated whether endogenous Ado regulates the biosynthesis of leukotriene (LT)B4 in ligand-stimulated PMNs. Measurements of Ado in PMN resuspended in Hanks' buffered salt solution (HBSS) or plasma showed a cell concentration- and time-dependent accumulation of the nucleoside. The removal of endogenous Ado with either Ado deaminase or the blockade of its action by the Ado A2a receptor antagonist, 8-(3-chlorostyryl) caffeine, markedly increased LTB4 biosynthesis upon ligand stimulation in HBSS. Similarly, LTB4 synthesis by ligand-stimulated PMNs in plasma (containing recombinant LTA4 hydrolase to allow the conversion of protein-bound LTA4) was strongly enhanced by addition of Ado deaminase. Addition of red blood cells to suspensions of PMNs in plasma mimicked the effect of adding Ado deaminase and LTA4 hydrolase in enhancing LTB4 biosynthesis upon ligand stimulation. This effect of red blood cells on LTB4 biosynthesis was blocked by dipyridamole, an inhibitor of Ado transport, or captopril, an inhibitor of LTA4 hydrolase. These results demonstrate that endogenous Ado efficiently downregulates ligand-stimulated LTB4 biosynthesis in PMN suspensions, pointing out a potentially important regulatory function of Ado in inflammatory exudates. These results also unveil a dual role for red blood cells in upregulating LTB4 biosynthesis, namely, the removal of endogenous Ado and the conversion of LTA4 released by activated PMNs.
Collapse
Affiliation(s)
- E Krump
- Centre de Recherche en Rhumatologie et Immunologie, Centre de recherche du CHUL, Université Laval, Québec, Canada
| | | | | | | |
Collapse
|
47
|
Abstract
Leukotrienes constitute a class of inflammatory mediators synthesised from arachidonic acid, a product of cell membrane metabolism. Synthesis occurs in the 5-lipoxygenase enzyme pathway, which produces several species of leukotrienes, each with characteristic biological activities. With regard to asthma, the leukotrienes are particularly important because of their ability to directly and potently mediate bronchoconstriction; in addition, they specifically stimulate the secretion of mucus into the airways and the extravasation of fluids and proteins into the airway tissues, both of which contribute to airway obstruction. A number of antileukotriene agents have been developed with the goal of modulating the inflammatory process in various disease states. These agents fall into 2 general classes: leukotriene receptor antagonists and leukotriene synthesis inhibitors. Results of antileukotriene agents in preclinical and clinical trials indicate that antileukotriene agents attenuate the response to challenges with inhaled leukotrienes, cold air, exercise, aspirin and allergen; in addition, they have shown efficacy in clinical asthma and have not been associated with serious adverse effects. Although results to date indicate that these medications are well tolerated and effective in the treatment of asthma, the recent approval by the FDA of 2 antileukotriene agents will give physicians further insight into how patients with asthma respond to them.
Collapse
Affiliation(s)
- S L Spector
- Department of Medicine, UCLA School of Medicine, USA
| |
Collapse
|
48
|
Sala A, Bolla M, Zarini S, Müller-Peddinghaus R, Folco G. Release of leukotriene A4 versus leukotriene B4 from human polymorphonuclear leukocytes. J Biol Chem 1996; 271:17944-8. [PMID: 8663438 DOI: 10.1074/jbc.271.30.17944] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The reactive intermediate formed by 5-lipoxygenase metabolism of arachidonic acid, leukotriene A4, is known to be released from cells and subsequently taken up by other cells for biochemical processing. The objective of this study was to determine the relative amount of leukotriene A4 synthesized by human polymorphonuclear leukocytes (PMNL) that is available for transcellular biosynthetic processes. This was accomplished by diluting cell suspensions and measuring the relative amounts of enzymatic versus nonenzymatic leukotriene A4-derived metabolites after challenge with the Ca2+ ionophore A23187. Nonenzymatic leukotriene A4-derived metabolites were used as a quantitative index of the amount of leukotriene A4 released into the extracellular milieu. The results obtained demonstrated that in human PMNL, the relative amounts of nonenzymatic versus enzymatic leukotriene A4-derived metabolites increased with decreasing cell concentrations. After a 20-fold dilution of PMNL in cell preparations, a doubling in the amount of nonenzymatic leukotriene A4-derived metabolites was observed following challenge (from 53.9 +/- 1.3 to 110.4 +/- 8.9 pmol/10(6) PMNL, p < 0.01). Reduction of possible cell-cell interactions by dilution suggested that over 50% of leukotriene A4 synthesized is released from the PMNL. These data provide evidence that, in human PMNL preparations, transfer of leukotriene A4 to neighboring PMNL is taking place, resulting in additional formation of leukotriene B4 and its omega-oxidized metabolites 20-hydroxy- and 20-carboxy-leukotriene B4. Neutrophil reuptake of extracellular leukotriene A4 leads to an underestimation of the fraction of leukotriene A4 that is in fact available for transcellular metabolism when tight cell-cell interactions occur, such as during PMNL adhesion to the microvascular endothelium and diapedesis.
Collapse
Affiliation(s)
- A Sala
- Center for Cardiopulmonary Pharmacology, Institute of Pharmacological Sciences, School of Pharmacy, University of Milano, Italy
| | | | | | | | | |
Collapse
|
49
|
Iversen L, Deleuran B, Hoberg AM, Kragballe K. LTA4 hydrolase in human skin: decreased activity, but normal concentration in lesional psoriatic skin. Evidence for different LTA4 hydrolase activity in human lymphocytes and human skin. Arch Dermatol Res 1996; 288:217-24. [PMID: 8738563 DOI: 10.1007/bf02530088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Leukotriene A4 (LTA4) hydrolase which transforms LTA4 into the proinflammatory compound LTB4 has been identified in human epidermis. The purpose of this study was to investigate the potential role of this enzyme in psoriasis, in which LTB4 is present in biologically active concentrations. The concentration and activity of LTA4 hydrolase was determined in normal skin and in matched samples of involved and uninvolved psoriatic skin. The enzyme content was determined using an affinity-purified antibody. This antibody was also used for immunohistochemical staining of skin biopsies. Immunohistochemically LTA4 hydrolase was localized predominantly in the basal and spinous layers in normal skin and in involved and uninvolved psoriatic skin. The LTA4 hydrolase content varied between 2.8 and 3.1 micrograms enzyme/mg protein and was found to be similar in normal and psoriatic skin, involved as well as uninvolved. In contrast, the activity of the enzyme was decreased significantly in involved psoriatic skin (9.9 +/- 2.1 micrograms LTB4/mg enzyme per min) compared with matched uninvolved psoriatic skin (16.4 +/- 3.5 micrograms LTB4/mg enzyme per min), but was decreased only insignificantly compared with normal skin (12.4 +/- 1.8 micrograms LTB4/mg enzyme per min). It was found that the conversion of LTA4 to LTB4 results in inactivation of LTA4 hydrolase activity. This finding is compatible with the idea that the decreased LTA4 hydrolase activity in involved psoriatic skin reflects transcellular LTB4 formation in vivo. In peripheral lymphocytes the enzyme content was 1.3 +/- 0.3 microgram enzyme/mg protein in normal lymphocytes and 1.4 +/- 0.3 microgram enzyme/mg protein in psoriatic lymphocytes, which was significantly lower than in the skin. In contrast, the specific LTA4 hydrolase activities in normal and psoriatic lymphocytes (23.4 +/- 1.3 and 21.3 +/- 1.7 micrograms LTB4/mg enzyme per min) were significantly higher than in normal skin. These findings may indicate the existence of LTA4 hydrolase isoforms in human lymphocytes and human skin.
Collapse
Affiliation(s)
- L Iversen
- Department of Dermatology, Marselisborg Hospital, University of Aarhus, Denmark
| | | | | | | |
Collapse
|
50
|
Rossoni G, Sala A, Buccellati C, Maclouf J, Folco GC, Berti F. Vasoconstriction to polymorphonuclear leukocytes in the isolated, perfused rabbit heart: inhibition by prostacyclin mimetics. J Cardiovasc Pharmacol 1996; 27:680-5. [PMID: 8859938 DOI: 10.1097/00005344-199605000-00010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Perfusion of the isolated rabbit heart with 5 x 10(6) human polymorphonuclear leukocytes (PMNL), under recirculating conditions (50 ml) and challenge with A-23187 (0.5 mu M) increased coronary perfusion pressure (CPP) sixfold, accompanied by increased levels of sulfidopeptide leukotrienes (CY-SLT), which had previously shown to correlate linearly with the increase in CPP. Pretreatment (20 min) of isolated rabbit hearts with the prostacyclin (PGI(2)) analogue iloprost (3 nM) resulted in significant protection against the increase in CPP and in almost complete inhibition of 5-lipoxygenase (5-LO) product synthesis. Similarly, pretreatment of isolated rabbit heart with defibrotide (200 mu g/ml), a polydeoxyribonucleotide derivative known to inhibit PMNL activation and enhance PGI(2) production by heart endothelial cells, produced significant protection against the increase in CPP and almost complete inhibition of 5-LO product synthesis. Neither iloprost nor defibrotide affected the A-23187-induced arachidonic acid (AA) metabolism in isolated PMNL alone. Inhibition of rabbit cyclooxygenase by intravenous (i.v.) administration of lysine-acetylsalicylate (60 mg/kg) 2 h before the animals were killed significantly reduced the protection provided by defibrotide, with a parallel fivefold increase in sulfidopeptide LT levels, returning to values in the range observed in control hearts. Control of endogenous modulators of leukocyte-vascular wall interactions such as PGI(2) results in significant changes in sulfidopeptide LT production in an organ model of transcellular metabolism of LT A(4), suggesting a novel mechanism of action for cardioprotective drugs in myocardial ischemia.
Collapse
Affiliation(s)
- G Rossoni
- Center for Cardiopulmonary Pharmacology, Department of Pharmacology, Chemotherapy and Medical Toxicology, University of Milan, Italy
| | | | | | | | | | | |
Collapse
|