1
|
Choi R, Bodkhe R, Pees B, Kim D, Berg M, Monnin D, Cho J, Narayan V, Deller E, Savage-Dunn C, Shapira M. An Enterobacteriaceae bloom in aging animals is restrained by the gut microbiome. AGING BIOLOGY 2024; 2:20240024. [PMID: 38736850 PMCID: PMC11085993 DOI: 10.59368/agingbio.20240024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The gut microbiome plays important roles in host function and health. Core microbiomes have been described for different species, and imbalances in their composition, known as dysbiosis, are associated with pathology. Changes in the gut microbiome and dysbiosis are common in aging, possibly due to multi-tissue deterioration, which includes metabolic shifts, dysregulated immunity, and disrupted epithelial barriers. However, the characteristics of these changes, as reported in different studies, are varied and sometimes conflicting. Using clonal populations of Caenorhabditis elegans to highlight trends shared among individuals, we employed 16s rRNA gene sequencing, CFU counts and fluorescent imaging, identifying an Enterobacteriaceae bloom as a common denominator in aging animals. Experiments using Enterobacter hormaechei, a representative commensal, suggested that the Enterobacteriaceae bloom was facilitated by a decline in Sma/BMP immune signaling in aging animals and demonstrated its potential for exacerbating infection susceptibility. However, such detrimental effects were context-dependent, mitigated by competition with commensal communities, highlighting the latter as determinants of healthy versus unhealthy aging, depending on their ability to restrain opportunistic pathobionts.
Collapse
Affiliation(s)
- Rebecca Choi
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Rahul Bodkhe
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Barbara Pees
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Dan Kim
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Maureen Berg
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - David Monnin
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Juhyun Cho
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Vivek Narayan
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ethan Deller
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Cathy Savage-Dunn
- Department of Biology, Queens College, City University of New York, Flushing NY, USA
| | - Michael Shapira
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
2
|
Choi R, Bodkhe R, Pees B, Kim D, Berg M, Monnin D, Cho J, Narayan V, Deller E, Shapira M. An Enterobacteriaceae bloom in aging animals is restrained by the gut microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544815. [PMID: 37398063 PMCID: PMC10312681 DOI: 10.1101/2023.06.13.544815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The gut microbiome plays important roles in host function and health. Core microbiomes have been described for different species, and imbalances in their composition, known as dysbiosis, are associated with pathology. Changes in the gut microbiome and dysbiosis are common in aging, possibly due to multi-tissue deterioration, which includes metabolic shifts, dysregulated immunity, and disrupted epithelial barriers. However, the characteristics of these changes, as reported in different studies, are varied and sometimes conflicting. Using clonal populations of C. elegans to highlight trends shared among individuals, and employing NextGen sequencing, CFU counts and fluorescent imaging to characterize age-dependent changes in worms raised in different microbial environments, we identified an Enterobacteriaceae bloom as a common denominator in aging animals. Experiments using Enterobacter hormachei, a representative commensal, suggested that the Enterobacteriaceae bloom was facilitated by a decline in Sma/BMP immune signaling in aging animals and demonstrated its detrimental potential for increasing susceptibility to infection. However, such detrimental effects were context-dependent, mitigated by competition with commensal communities, highlighting the latter as determinants of healthy versus unhealthy aging, depending on their ability to restrain opportunistic pathobionts.
Collapse
Affiliation(s)
- Rebecca Choi
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Rahul Bodkhe
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Barbara Pees
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Dan Kim
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Maureen Berg
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - David Monnin
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Juhyun Cho
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Vivek Narayan
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ethan Deller
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Michael Shapira
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
3
|
Walker MG, Klompe S, Zhang D, Sternberg S. Novel molecular requirements for CRISPR RNA-guided transposition. Nucleic Acids Res 2023; 51:4519-4535. [PMID: 37078593 PMCID: PMC10201428 DOI: 10.1093/nar/gkad270] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/21/2023] Open
Abstract
CRISPR-associated transposases (CASTs) direct DNA integration downstream of target sites using the RNA-guided DNA binding activity of nuclease-deficient CRISPR-Cas systems. Transposition relies on several key protein-protein and protein-DNA interactions, but little is known about the explicit sequence requirements governing efficient transposon DNA integration activity. Here, we exploit pooled library screening and high-throughput sequencing to reveal novel sequence determinants during transposition by the Type I-F Vibrio cholerae CAST system (VchCAST). On the donor DNA, large transposon end libraries revealed binding site nucleotide preferences for the TnsB transposase, as well as an additional conserved region that encoded a consensus binding site for integration host factor (IHF). Remarkably, we found that VchCAST requires IHF for efficient transposition, thus revealing a novel cellular factor involved in CRISPR-associated transpososome assembly. On the target DNA, we uncovered preferred sequence motifs at the integration site that explained previously observed heterogeneity with single-base pair resolution. Finally, we exploited our library data to design modified transposon variants that enable in-frame protein tagging. Collectively, our results provide new clues about the assembly and architecture of the paired-end complex formed between TnsB and the transposon DNA, and inform the design of custom payload sequences for genome engineering applications with CAST systems.
Collapse
Affiliation(s)
- Matt W G Walker
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Sanne E Klompe
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Dennis J Zhang
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
4
|
Alalmaie A, Diaf S, Khashan R. Insight into the molecular mechanism of the transposon-encoded type I-F CRISPR-Cas system. J Genet Eng Biotechnol 2023; 21:60. [PMID: 37191877 DOI: 10.1186/s43141-023-00507-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
CRISPR-Cas9 is a popular gene-editing tool that allows researchers to introduce double-strand breaks to edit parts of the genome. CRISPR-Cas9 system is used more than other gene-editing tools because it is simple and easy to customize. However, Cas9 may produce unintended double-strand breaks in DNA, leading to off-target effects. There have been many improvements in the CRISPR-Cas system to control the off-target effect and improve the efficiency. The presence of a nuclease-deficient CRISPR-Cas system in several bacterial Tn7-like transposons inspires researchers to repurpose to direct the insertion of Tn7-like transposons instead of cleaving the target DNA, which will eventually limit the risk of off-target effects. Two transposon-encoded CRISPR-Cas systems have been experimentally confirmed. The first system, found in Tn7 like-transposon (Tn6677), is associated with the variant type I-F CRISPR-Cas system. The second one, found in Tn7 like-transposon (Tn5053), is related to the variant type V-K CRISPR-Cas system. This review describes the molecular and structural mechanisms of DNA targeting by the transposon-encoded type I-F CRISPR-Cas system, from assembly around the CRISPR-RNA (crRNA) to the initiation of transposition.
Collapse
Affiliation(s)
- Amnah Alalmaie
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph University, Philadelphia, PA, 19131, USA
| | - Saousen Diaf
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph University, Philadelphia, PA, 19131, USA
| | - Raed Khashan
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Sciences, Long Island University, Brooklyn, NY, 11201, USA.
| |
Collapse
|
5
|
Walker MW, Klompe SE, Zhang DJ, Sternberg SH. Transposon mutagenesis libraries reveal novel molecular requirements during CRISPR RNA-guided DNA integration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524723. [PMID: 36711804 PMCID: PMC9882353 DOI: 10.1101/2023.01.19.524723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
CRISPR-associated transposons (CASTs) direct DNA integration downstream of target sites using the RNA-guided DNA binding activity of nuclease-deficient CRISPR-Cas systems. Transposition relies on several key protein-protein and protein-DNA interactions, but little is known about the explicit sequence requirements governing efficient transposon DNA integration activity. Here, we exploit pooled library screening and high-throughput sequencing to reveal novel sequence determinants during transposition by the Type I-F Vibrio cholerae CAST system. On the donor DNA, large mutagenic libraries identified core binding sites recognized by the TnsB transposase, as well as an additional conserved region that encoded a consensus binding site for integration host factor (IHF). Remarkably, we found that VchCAST requires IHF for efficient transposition, thus revealing a novel cellular factor involved in CRISPR-associated transpososome assembly. On the target DNA, we uncovered preferred sequence motifs at the integration site that explained previously observed heterogeneity with single-base pair resolution. Finally, we exploited our library data to design modified transposon variants that enable in-frame protein tagging. Collectively, our results provide new clues about the assembly and architecture of the paired-end complex formed between TnsB and the transposon DNA, and inform the design of custom payload sequences for genome engineering applications of CAST systems.
Collapse
Affiliation(s)
- Matt W.G. Walker
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Sanne E. Klompe
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Dennis J. Zhang
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Samuel H. Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
6
|
Babakhani S, Oloomi M. Transposons: the agents of antibiotic resistance in bacteria. J Basic Microbiol 2018; 58:905-917. [PMID: 30113080 DOI: 10.1002/jobm.201800204] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/08/2018] [Accepted: 07/31/2018] [Indexed: 12/29/2022]
Abstract
Transposons are a group of mobile genetic elements that are defined as a DNA sequence. Transposons can jump into different places of the genome; for this reason, they are called jumping genes. However, some transposons are always kept at the insertion site in the genome. Most transposons are inactivated and as a result, cannot move. Transposons are divided into two main groups: retrotransposons (class І) and DNA transposons (class ІІ). Retrotransposons are often found in eukaryotes. DNA transposons can be found in both eukaryotes and prokaryotes. The bacterial transposons belong to the DNA transposons and the Tn family, which are usually the carrier of additional genes for antibiotic resistance. Transposons can transfer from a plasmid to other plasmids or from a DNA chromosome to plasmid and vice versa that cause the transmission of antibiotic resistance genes in bacteria. The treatment of bacterial infectious diseases is difficult because of existing antibiotic resistance that part of this antibiotic resistance is caused by transposons. Bacterial infectious diseases are responsible for the increasing rise in world mortality rate. In this review, transposons and their roles have been studied in bacterial antibiotic resistance, in detail.
Collapse
Affiliation(s)
- Sajad Babakhani
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mana Oloomi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
7
|
Shi Q, Straus MR, Caron JJ, Wang H, Chung YS, Guarné A, Peters JE. Conformational toggling controls target site choice for the heteromeric transposase element Tn7. Nucleic Acids Res 2015; 43:10734-45. [PMID: 26384427 PMCID: PMC4678854 DOI: 10.1093/nar/gkv913] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 08/29/2015] [Indexed: 01/07/2023] Open
Abstract
The bacterial transposon Tn7 facilitates horizontal transfer by directing transposition into actively replicating DNA with the element-encoded protein TnsE. Structural analysis of the C-terminal domain of wild-type TnsE identified a novel protein fold including a central V-shaped loop that toggles between two distinct conformations. The structure of a robust TnsE gain-of-activity variant has this loop locked in a single conformation, suggesting that conformational flexibility regulates TnsE activity. Structure-based analysis of a series of TnsE mutants relates transposition activity to DNA binding stability. Wild-type TnsE appears to naturally form an unstable complex with a target DNA, whereas mutant combinations required for large changes in transposition frequency and targeting stabilized this interaction. Collectively, our work unveils a unique structural proofreading mechanism where toggling between two conformations regulates target commitment by limiting the stability of target DNA engagement until an appropriate insertion site is identified.
Collapse
Affiliation(s)
- Qiaojuan Shi
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA,These authors contributed equally to the paper as the first authors
| | - Marco R. Straus
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA,These authors contributed equally to the paper as the first authors
| | - Jeremy J. Caron
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Huasheng Wang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Yu Seon Chung
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Alba Guarné
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4K1, Canada,Correspondence may also be addressed to Alba Guarné. Tel: +1 905 525 9140 (ext. 26394); Fax: +1 905 522 9033;
| | - Joseph E. Peters
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA,To whom correspondence should be addressed. Tel: +1 607 255 2271; Fax: +1 607 255 3904;
| |
Collapse
|
8
|
Peters JE, Fricker AD, Kapili BJ, Petassi MT. Heteromeric transposase elements: generators of genomic islands across diverse bacteria. Mol Microbiol 2014; 93:1084-92. [PMID: 25091064 DOI: 10.1111/mmi.12740] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2014] [Indexed: 11/30/2022]
Abstract
Horizontally acquired genetic information in bacterial chromosomes accumulates in blocks termed genomic islands. Tn7-like transposons form genomic islands at a programmed insertion site in bacterial chromosomes, attTn7. Transposition involves five transposon-encoded genes (tnsABCDE) including an atypical heteromeric transposase. One transposase subunit, TnsB, is from the large family of bacterial transposases, the second, TnsA, is related to endonucleases. A regulator protein, TnsC, functions with different target site selecting proteins to recognize different targets. TnsD directs transposition into attTn7, while TnsE encourages horizontal transmission by targeting mobile plasmids. Recent work suggests that distantly related elements with heteromeric transposases exist with alternate targeting pathways that also facilitate the formation of genomic islands. Tn6230 and related elements can be found at a single position in a gene of unknown function (yhiN) in various bacteria as well as in mobile plasmids. Another group we term Tn6022-like elements form pathogenicity islands in the Acinetobacter baumannii comM gene. We find that Tn6022-like elements also appear to have an uncharacterized mechanism for provoking internal transposition and deletion events that serve as a conduit for evolving new elements. As a group, heteromeric transposase elements utilize diverse target site selection mechanisms adapted to the spread and rearrangement of genomic islands.
Collapse
Affiliation(s)
- Joseph E Peters
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| | | | | | | |
Collapse
|
9
|
Direct interaction between the TnsA and TnsB subunits controls the heteromeric Tn7 transposase. Proc Natl Acad Sci U S A 2013; 110:E2038-45. [PMID: 23674682 DOI: 10.1073/pnas.1305716110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transposon Tn7 transposase that recognizes the transposon ends and mediates breakage and joining is heteromeric. It contains the Tn7-encoded proteins TnsB, which binds specifically to the transposon ends and carries out breakage and joining at the 3' ends, and TnsA, which carries out breakage at the 5' ends of Tn7. TnsA apparently does not bind specifically to DNA, and we have hypothesized that it is recruited to the ends by interaction with TnsB. In this work, we show that TnsA and TnsB interact directly and identify several TnsA and TnsB amino acids involved in this interaction. We also show that TnsA can stimulate two key activities of TnsB, specific binding to the ends and pairing of the Tn7 ends. The ends of Tn7 are structurally asymmetric (i.e., contain different numbers of TnsB-binding sites), and Tn7 also is functionally asymmetric, inserting into its specific target site, attachment site attTn7 (attTn7) in a single orientation. Moreover, Tn7 elements containing two Tn7 right ends can transpose, but elements with two Tn7 left ends cannot. We show here that TnsA + TnsB are unable to pair the ends of a Tn7 element containing two Tn7 left ends. This pairing defect likely contributes to the inability of Tn7 elements with two Tn7 left ends to transpose.
Collapse
|
10
|
Mitra R, McKenzie GJ, Yi L, Lee CA, Craig NL. Characterization of the TnsD-attTn7 complex that promotes site-specific insertion of Tn7. Mob DNA 2010; 1:18. [PMID: 20653944 PMCID: PMC2918618 DOI: 10.1186/1759-8753-1-18] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 07/23/2010] [Indexed: 11/10/2022] Open
Abstract
The bacterial transposon Tn7 is distinguished by its ability to recognize a specific site called attTn7, and insert just downstream of the highly conserved chromosomal glmS gene. TnsD is one of four transposon-encoded polypeptides (TnsABC+D) required for site-specific insertion of Tn7 into attTn7, and is the target site-selector that binds to a highly conserved sequence in the end of the glmS protein coding region. In this study, we identified important nucleotides within this region that are crucial for TnsD-attTn7 interaction. We also probed the regions of TnsD that interact with attTn7 and found that there are important DNA-binding determinants throughout the entire length of the protein, including an amino-terminal CCCH zinc-finger motif. A key role of TnsD is to recruit the non-sequence specific DNA-binding protein TnsC to attTn7; TnsC also interacts with and controls both the TnsA and TnsB subunits of the Tn7 transposase. TnsC stimulates the binding of TnsD to attTn7 in vivo, and TnsCD and TnsD can also interact in the absence of DNA and localize their interaction domains to the N-terminal region of each protein.
Collapse
Affiliation(s)
- Rupak Mitra
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
| | - Gregory J McKenzie
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore MD 21205, USA.,Current Address: Verenium Corporation. 4955 Directors Place, San Diego, CA 92121, USA
| | - Liang Yi
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore MD 21205, USA.,Current Address: Laboratory of Host Defense, NIAID/NIH, Bethesda, MD 20892, USA
| | - Cherline A Lee
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore MD 21205, USA.,Current Address: Mayo Clinic, 417 Guggenheim Bldg, 200 First St. SW, Rochester, MN 55905, USA
| | - Nancy L Craig
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
| |
Collapse
|
11
|
Parks AR, Peters JE. Tn7 elements: engendering diversity from chromosomes to episomes. Plasmid 2008; 61:1-14. [PMID: 18951916 DOI: 10.1016/j.plasmid.2008.09.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 09/24/2008] [Accepted: 09/29/2008] [Indexed: 11/18/2022]
Abstract
The bacterial transposon Tn7 maintains two distinct lifestyles, one in horizontally transferred DNA and the other in bacterial chromosomes. Access to these two DNA pools is mediated by two separate target selection pathways. The proteins involved in these pathways have evolved to specifically activate transposition into their cognate target-sites using entirely different recognition mechanisms, but the same core transposition machinery. In this review we discuss how the molecular mechanisms of Tn7-like elements contribute to their diversification and how they affect the evolution of their host genomes. The analysis of over 50 Tn7-like elements provides insight into the evolution of Tn7 and Tn7 relatives. In addition to the genes required for transposition, Tn7-like elements transport a wide variety of genes that contribute to the success of diverse organisms. We propose that by decisively moving between mobile and stationary DNA pools, Tn7-like elements accumulate a broad range of genetic material, providing a selective advantage for diverse host bacteria.
Collapse
Affiliation(s)
- Adam R Parks
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
12
|
DNA damage differentially activates regional chromosomal loci for Tn7 transposition in Escherichia coli. Genetics 2008; 179:1237-50. [PMID: 18562643 DOI: 10.1534/genetics.108.088161] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The bacterial transposon Tn7 recognizes replicating DNA as a target with a preference for the region where DNA replication terminates in the Escherichia coli chromosome. It was previously shown that DNA double-strand breaks in the chromosome stimulate Tn7 transposition where transposition events occur broadly around the point of the DNA break. We show that individual DNA breaks actually activate a series of small regional hotspots in the chromosome for Tn7 insertion. These hotspots are fixed and become active only when a DNA break occurs in the same region of the chromosome. We find that the distribution of insertions around the break is not explained by the exonuclease activity of RecBCD moving the position of the DNA break, and stimulation of Tn7 transposition is not dependent on RecBCD. We show that other forms of DNA damage, like exposure to UV light, mitomycin C, or phleomycin, also stimulate Tn7 transposition. However, inducing the SOS response does not stimulate transposition. Tn7 transposition is not dependent on any known specific pathway of replication fork reactivation as a means of recognizing DNA break repair. Our results are consistent with the idea that Tn7 recognizes DNA replication involved in DNA repair and reveals discrete regions of the chromosome that are differentially activated as transposition targets.
Collapse
|
13
|
Transposon Tn7 directs transposition into the genome of filamentous bacteriophage M13 using the element-encoded TnsE protein. J Bacteriol 2007; 189:9122-5. [PMID: 17921297 DOI: 10.1128/jb.01451-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The bacterial transposon Tn7 has a pathway of transposition that preferentially targets conjugal plasmids. We propose that this same transposition pathway recognizes a structure or complex found during filamentous bacteriophage replication, likely by targeting negative-strand synthesis. The ability to insert into both plasmid and bacteriophage DNAs that are capable of cell-to-cell transfer would help explain the wide distribution of Tn7 relatives.
Collapse
|
14
|
Parks AR, Peters JE. Transposon Tn7 is widespread in diverse bacteria and forms genomic islands. J Bacteriol 2006; 189:2170-3. [PMID: 17194796 PMCID: PMC1855776 DOI: 10.1128/jb.01536-06] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We find that relatives of the bacterial transposon Tn7 are widespread in disparate environments and phylogenetically diverse species. These elements form functionally diverse genomic islands at the specific site of Tn7 insertion adjacent to glmS. This work presents the first example of genomic island formation by a DDE type transposon.
Collapse
Affiliation(s)
- Adam R Parks
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
15
|
Skelding Z, Queen-Baker J, Craig NL. Alternative interactions between the Tn7 transposase and the Tn7 target DNA binding protein regulate target immunity and transposition. EMBO J 2003; 22:5904-17. [PMID: 14592987 PMCID: PMC275408 DOI: 10.1093/emboj/cdg551] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Tn7 transposon avoids inserting into a target DNA that contains a pre-existing copy of Tn7. This phenomenon, known as 'target immunity', is established when TnsB, a Tn7 transposase subunit, binds to Tn7 sequences in the target DNA and mediates displacement of TnsC, a critical transposase activator, from the DNA. Paradoxically, TnsB-TnsC interactions are also required to promote transposon insertion. We have probed Tn7 target immunity by isolating TnsB mutants that mediate more frequent insertions into a potentially immune target DNA because they fail to provoke dissociation of TnsC from the DNA. We show that a single region of TnsB mediates the TnsB-TnsC interaction that underlies both target immunity and transposition, but that TnsA, the other transposase subunit, channels the TnsB-TnsC interaction toward transposition.
Collapse
Affiliation(s)
- Zachary Skelding
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
16
|
Peters JE, Thate TE, Craig NL. Definition of the Escherichia coli MC4100 genome by use of a DNA array. J Bacteriol 2003; 185:2017-21. [PMID: 12618467 PMCID: PMC150127 DOI: 10.1128/jb.185.6.2017-2021.2003] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have used an Escherichia coli K-12 whole-genome array based on the DNA sequence of strain MG1655 as a tool to identify deletions in another E. coli K-12 strain, MC4100, by probing the array with labeled chromosomal DNA. Despite the continued widespread use of MC4100 as an experimental system, the specific genetic relationship of this strain to the sequenced K-12 derivative MG1655 has not been resolved. MC4100 was found to contain four deletions, ranging from 1 to 97 kb in size. The exact nature of three of the deletions was previously unresolved, and the fourth deletion was altogether unknown.
Collapse
Affiliation(s)
- Joseph E Peters
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
17
|
Peters JE, Craig NL. Tn7 recognizes transposition target structures associated with DNA replication using the DNA-binding protein TnsE. Genes Dev 2001; 15:737-47. [PMID: 11274058 PMCID: PMC312648 DOI: 10.1101/gad.870201] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We report that the bacterial transposon Tn7 selects targets by recognizing features associated with DNA replication using the transposon-encoded DNA-binding protein TnsE. We show that Tn7 transposition directed by TnsE occurs in one orientation with respect to chromosomal DNA replication, indicating that a structure or complex involved in DNA replication is likely to be a critical determinant of TnsE insertion. We find that mutant TnsE proteins that allow higher levels of transposition also bind DNA better than the wild-type protein. The increased binding affinity displayed by the TnsE high-activity mutants indicates that DNA binding is relevant to transposition activity and suggests that TnsE interacts directly with target DNAs. In vitro, TnsE interacts preferentially with certain DNA structures, indicating a mechanism for the TnsE-mediated orientation and insertion preference. The pattern of TnsE-mediated insertion events around the Escherichia coli chromosome provides insight into how DNA replication forks proceed in vivo.
Collapse
Affiliation(s)
- J E Peters
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
18
|
Lu F, Craig NL. Isolation and characterization of Tn7 transposase gain-of-function mutants: a model for transposase activation. EMBO J 2000; 19:3446-57. [PMID: 10880457 PMCID: PMC313929 DOI: 10.1093/emboj/19.13.3446] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tn7 transposition has been hypothesized to require a heteromeric transposase formed by two Tn7-encoded proteins, TnsA and TnsB, and accessory proteins that activate the transposase when they are associated with an appropriate target DNA. This study investigates the mechanism of Tn7 transposase activation by isolation and analysis of transposase gain-of-function mutants that are active in the absence of these accessory proteins. This work shows directly that TnsA and TnsB are essential and sufficient components of the Tn7 transposase and also provides insight into the signals that activate the transposase. We also describe a protein-protein interaction between TnsA and TnsC, a regulatory accessory protein, that is likely to be critical for transposase activation.
Collapse
Affiliation(s)
- F Lu
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205-2185, USA
| | | |
Collapse
|
19
|
8.1 Gene Expression and Analysis. METHODS IN MICROBIOLOGY 1998. [DOI: 10.1016/s0580-9517(08)70305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Stellwagen AE, Craig NL. Gain-of-function mutations in TnsC, an ATP-dependent transposition protein that activates the bacterial transposon Tn7. Genetics 1997; 145:573-85. [PMID: 9055068 PMCID: PMC1207843 DOI: 10.1093/genetics/145.3.573] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The bacterial transposon Tn7 encodes five genes whose protein products are used in different combinations to direct transposition to different types of target sites. TnsABC + D directs transposition to a specific site in the Escherichia coli chromosome called attTn7, whereas TnsABC + E directs transposition to non-attTn7 sites. These transposition reactions can also recognize and avoid "immune" targets that already contain a copy of Tn7. TnsD and TnsE are required to activate TnsABC as well as to select a target site; no transposition occurs with wild-type TnsABC alone. Here, we describe the isolation of TnsC gain-of-function mutants that activate the TnsA+B transposase in the absence of TnsD or TnsE. Some of these TnsC mutants enable the TnsABC machinery to execute transposition without sacrificing its ability to discriminate between different types of targets. Other TnsC mutants appear to constitutively activate the TnsABC machinery so that it bypasses target signals. We also present experiments that suggest that target selection occurs early in the Tn7 transposition pathway in vivo: favorable attTn7 targets appear to promote the excision of Tn7 from the chromosome, whereas immune targets do not allow transposon excision to occur. This work supports the view that TnsC plays a central role in the evaluation and utilization of target DNAs.
Collapse
Affiliation(s)
- A E Stellwagen
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185, USA
| | | |
Collapse
|
21
|
DeBoy RT, Craig NL. Tn7 transposition as a probe of cis interactions between widely separated (190 kilobases apart) DNA sites in the Escherichia coli chromosome. J Bacteriol 1996; 178:6184-91. [PMID: 8892817 PMCID: PMC178488 DOI: 10.1128/jb.178.21.6184-6191.1996] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have used the bacterial transposon Tn7 to examine communication between widely separated DNA sites in the Escherichia coli chromosome. Using Tn7 target immunity, a regulatory feature of transposition which influences target selection, we have evaluated (i) how the presence of Tn7 sequences at one DNA site affects Tn7 insertion into another site in the same DNA molecule and (ii) the nucleotide distances over which the two sites are able to communicate. We demonstrate that Tn7 sequences at one chromosomal site act at a distance to inhibit insertion of Tn7 elsewhere in that DNA as far away as 190 kb, reflecting effective long-range cis interactions. We have found that while target immunity is effective over a substantial region of the chromosome, insertion of Tn7 into a more distant site 1.9 Mb away in the same DNA is not inhibited; this observation provides evidence that target immunity relies on DNA spacing. We also find that within the region of the chromosome affected by target immunity, the magnitude of the immune effect is greater at close DNA sites than DNA sites farther away, suggesting that target immunity is distance dependent. We also extend the characterization of the Tn7 end-sequences involved in transposition and target immunity and describe how Tn7 target immunity can be used as a tool for probing bacterial chromosome structure.
Collapse
Affiliation(s)
- R T DeBoy
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
22
|
Abstract
Most transposons display target site selectivity, inserting preferentially into sites that contain particular features. The bacterial transposon Tn7 possesses the unusual ability to recognize two different classes of target sites. Tn7 inserts into these classes of target sites through two transposition pathways mediated by different combinations of the five Tn7-encoded transposition proteins. In one transposition pathway, Tn7 inserts into a unique site in the bacterial chromosome, attTn7, through specific recognition of sequences in attTn7; the other transposition pathway ignores the attTn7 target. Here we examine targets of the non-attTn7 pathway and find that Tn7 preferentially inserts into bacterial plasmids that can conjugate between cells. Furthermore, Tn7 appears to recognize preferred targets through the conjugation process, as we show that Tn7 inserts poorly into plasmids containing mutations that block plasmid transfer. We propose that Tn7 recognizes preferred targets through features of the conjugation process, a distinctive target specificity that offers Tn7 the ability to spread efficiently through bacterial populations.
Collapse
Affiliation(s)
- C A Wolkow
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
23
|
Affiliation(s)
- N L Craig
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
24
|
Wainwright LA, Pritchard KH, Seifert HS. A conserved DNA sequence is required for efficient gonococcal pilin antigenic variation. Mol Microbiol 1994; 13:75-87. [PMID: 7984095 DOI: 10.1111/j.1365-2958.1994.tb00403.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Antigenic variation of the Neisseria gonorrhoeae pilus occurs when a variant pilin sequence from a silent locus recombines into the expression locus by predominantly unidirectional, homologous recombination. At the 3' end of all pilin loci lies a conserved DNA sequence, called the Sma/Cla repeat, which has sequence similarity to several recombinase-binding sites, and therefore may be involved in pilin recombination. We have developed a novel reverse transcriptase/polymerase chain reaction (RT-PCR) assay for direct monitoring of pilin recombination, and both RT-PCR and phase variation were used to examine pilin recombination in a gonococcal strain that had had the pilE Sma/Cla repeat removed. Results from these experiments showed a decrease in pilin recombination when the Sma/Cla sequence was deleted from the expression locus, showing that a specialized site (Sma/Cla) is involved in efficient pilin recombination.
Collapse
Affiliation(s)
- L A Wainwright
- Department of Microbiology/Immunology, Northwestern University Medical School, Chicago, Illinois 60611
| | | | | |
Collapse
|
25
|
Abstract
Protein-nucleic acid interactions are crucial in the regulation of many fundamental cellular processes. The nature of these interactions is susceptible to analysis by a variety of methods, but the combination of high analytical power and technical simplicity offered by the gel retardation (band shift) technique has made this perhaps the most widely used such method over the last decade. This procedure is based on the observation that the formation of protein-nucleic complexes generally reduces the electrophoretic mobility of the nucleic acid component in the gel matrix. This review attempts to give a simplified account of the physical basis of the behavior of protein-nucleic acid complexes in gels and an overview of many of the applications in which the technique has proved especially useful. The factors which contribute most to the resolution of the complex from the naked nucleic acid are the gel pore size, the relative mass of protein compared with nucleic acid, and changes in nucleic acid conformation (bending) induced by binding. The consequences of induced bending on the mobility of double-strand DNA fragments are similar to those arising from sequence-directed bends, and the latter can be used to help characterize the angle and direction of protein-induced bends. Whether a complex formed in solution is actually detected as a retarded band on a gel depends not only on resolution but also on complex stability within the gel. This is strongly influenced by the composition and, particularly, the ionic strength of the gel buffer. We discuss the applications of the technique to analyzing complex formation and stability, including characterizing cooperative binding, defining binding sites on nucleic acids, analyzing DNA conformation in complexes, assessing binding to supercoiled DNA, defining protein complexes by using cell extracts, and analyzing biological processes such as transcription and splicing.
Collapse
Affiliation(s)
- D Lane
- Laboratory of Molecular Genetics and Microbiology, Centre National de la Recherche Scientifique, Toulouse, France
| | | | | |
Collapse
|
26
|
Gamas P, Craig NL. Purification and characterization of TnsC, a Tn7 transposition protein that binds ATP and DNA. Nucleic Acids Res 1992; 20:2525-32. [PMID: 1317955 PMCID: PMC312388 DOI: 10.1093/nar/20.10.2525] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The bacterial transposon Tn7 encodes five transposition genes tnsABCDE. We report a simple and rapid procedure for the purification of TnsC protein. We show that purified TnsC is active in and required for Tn7 transposition in a cell-free recombination system. This finding demonstrates that TnsC participates directly in Tn7 transposition and explains the requirement for tnsC function in Tn7 transposition. We have found that TnsC binds adenine nucleotides and is thus a likely site of action of the essential ATP cofactor in Tn7 transposition. We also report that TnsC binds non-specifically to DNA in the presence of ATP or the generally non-hydrolyzable analogues AMP-PNP and ATP-gamma-S, and that TnsC displays little affinity for DNA in the presence of ADP. We speculate that TnsC plays a central role in the selection of target DNA during Tn7 transposition.
Collapse
Affiliation(s)
- P Gamas
- Department of Microbiology and Immunology, University of California, San Francisco 94143
| | | |
Collapse
|
27
|
Bao Y, Lies DP, Fu H, Roberts GP. An improved Tn7-based system for the single-copy insertion of cloned genes into chromosomes of gram-negative bacteria. Gene 1991; 109:167-8. [PMID: 1661697 DOI: 10.1016/0378-1119(91)90604-a] [Citation(s) in RCA: 268] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A system is described for the single-copy, stable insertion of cloned DNA sequences into the chromosomes of Gram- bacteria. Two narrow-host-range plasmids form the basis of this system: the 'carrier' plasmid contains the mini Tn7-Km transposon, into which foreign DNA can be cloned; the 'helper' plasmid provides the Tn7 transposition functions in trans. Both plasmids are readily transferred into Gram- bacteria by conjugation. The functionality of this system has been demonstrated in Rhodospirillum rubrum.
Collapse
Affiliation(s)
- Y Bao
- Department of Bacteriology, College of Agricultural and Life Sciences, University of Wisconsin, Madison 53706
| | | | | | | |
Collapse
|
28
|
Abstract
The bacterial transposon Tn7 is an unusual mobile DNA segment. Most transposable elements move at low-frequency and display little target site-selectivity. By contrast, Tn7 inserts at high-frequency into a single specific site in the chromosomes of many bacteria. In the absence of this specific site, called attTn7 in Escherichia coli where Tn7 has been most extensively studied, Tn7 transposes at low-frequency and inserts into many different sites. Much has recently been learned about Tn7 transposition from both genetic and biochemical studies. The Tn7 recombination machinery is elaborate and includes a large number of Tn7-encoded proteins, probably host-encoded proteins and also rather large cis-acting transposition sequences at the transposon termini and at the target site. Dissection of the Tn7 transposition mechanism has revealed that the DNA strand breakage and joining reactions that underlie the translocation of Tn7 have several unusual features.
Collapse
Affiliation(s)
- N L Craig
- Department of Microbiology and Immunology, George W. Hooper Foundation, University of California, San Francisco 94143
| |
Collapse
|
29
|
Arciszewska L, McKown R, Craig N. Purification of TnsB, a transposition protein that binds to the ends of Tn7. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54698-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
30
|
Inoue C, Sugawara K, Kusano T. The merR regulatory gene in Thiobacillus ferrooxidans is spaced apart from the mer structural genes. Mol Microbiol 1991; 5:2707-18. [PMID: 1779760 DOI: 10.1111/j.1365-2958.1991.tb01979.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Two distinct merR genes, which regulate expression of the mercuric ion resistance gene (mer), of Thiobacillus ferrooxidans strain E-15 have been cloned, sequenced and termed merR1 and merR2. As a result of gene walking around two merR genes, it was found that these two genes were quite close in distance. The nucleotide sequence of the region (5,001 base pairs; PstI-EcoRI fragment) containing the merR genes was determined. Between the two merR genes, there were five potential open reading frames (ORFs). Two of these were identified as merC genes, and the other three as ORFs 1 to 3. ORFs 1 to 3 show significant homology to merA, tnsA from transposon Tn7, and merA, respectively. Both merR genes consist of a 408 bp ORF coding for 135 amino acids. Their gene products, MerR1 and MerR2, differed at three amino acid positions, and shared 56-57% and 32-38% identity with the MerRs from other Gram-negative and Gram-positive bacteria, respectively. Competitive primer extension analysis revealed that both regulatory genes were expressed in the host cells. These merR genes were located more than 6 kb from either end of the mer structural genes (merC-merA). This is the first example of merR being separated from the mer structural genes. The two merC genes, each of which coded for a 140-amino-acid protein, appeared to be functionally active because Escherichia coli cells carrying these merC genes on plasmid vectors showed hypersensitivity to HgCl2. However, ORFs 1 and 3, which were homologous to merA, seemed to be inactive both structurally and enzymatically. The gene arrangement in this region took on a mirror image, with the truncated tnsA as the symmetrical centre. It is suggested that the Tn7-like factor may have participated in gene duplication events of the mer region, and in its chromosomal integration.
Collapse
Affiliation(s)
- C Inoue
- Laboratory of Plant Genetic Engineering, Akita Prefectural College of Agriculture, Japan
| | | | | |
Collapse
|
31
|
Arciszewska LK, Craig NL. Interaction of the Tn7-encoded transposition protein TnsB with the ends of the transposon. Nucleic Acids Res 1991; 19:5021-9. [PMID: 1656385 PMCID: PMC328805 DOI: 10.1093/nar/19.18.5021] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have used several high resolution methods to examine the interaction of TnsB, a transposition protein encoded by the bacterial transposon Tn7, with its binding sites at the ends of the transposon. These binding sites lie within the DNA segments that are directly involved in transposition. We show that the binding of TnsB to DNA can promote DNA bending, suggesting that the interaction of TnsB with the ends may result in formation of a highly organized protein-DNA complex. We also identify likely positions of close contact between of TnsB and its binding sites. Analysis of the interaction of TnsB with intact Tn7 ends reveals TnsB occupies its binding sites in a particular order, the sites immediately adjacent to the transposon termini being occupied only after other inner sites are bound. Such ordered occupancy suggests that the various binding sites have differing apparent affinities for TnsB.
Collapse
Affiliation(s)
- L K Arciszewska
- Department of Microbiology and Immunology, University of California, San Francisco 94143
| | | |
Collapse
|
32
|
Tang Y, Lichtenstein C, Cotterill S. Purification and characterisation of the TnsB protein of Tn7: a transposition protein that binds to the ends of Tn7. Nucleic Acids Res 1991; 19:3395-402. [PMID: 1648205 PMCID: PMC328340 DOI: 10.1093/nar/19.12.3395] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tn7, a large bacterial transposon encodes 5 proteins required for its transposition. We report a rapid and easy purification of one of these proteins, TnsB, from an overexpression strain. This protein was shown to bind to the ends of Tn7, in a bandshift assay, in two distinct stages as a function of protein concentration. DNasel footprinting at each end of Tn7 showed that the TnsB recognition sequence, a set of 22 bp repeats, plus Tn7 termini are protected. Binding of TnsB appeared cooperative but was only observed above a threshold concentration of protein. ATP and Mg2+ had no effect on the pattern of protection, nor did addition of other Tn7-encoded proteins. Hydroxyl radical footprinting, performed at the right end, showed that TnsB binds preferentially to one side of the DNA helix.
Collapse
Affiliation(s)
- Y Tang
- Department of Biochemistry, Imperial College of Science, Technology & Medicine, London, UK
| | | | | |
Collapse
|
33
|
Flores C, Qadri MI, Lichtenstein C. DNA sequence analysis of five genes; tnsA, B, C, D and E, required for Tn7 transposition. Nucleic Acids Res 1990; 18:901-911. [PMID: 2156235 PMCID: PMC330344 DOI: 10.1093/nar/18.4.901] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A region of DNA sequence of the bacterial transposon Tn7, which is required for transposition, has been determined. This DNA sequence completes an 8351 base pair (bp) region containing five long open reading frames (ORF's) that correspond to the genetically defined genes, tnsA, B, C, D and E, required for Tn7 transposition. All of the ORF's are oriented in the same direction, ie. inward from the element's right end. The genes are in a very compact arrangement with the presumed initiation codons never more than two bases beyond the preceding termination codon. Domains with similarity to the helix-turn-helix genre of Cro-like, sequence specific DNA binding sites occur within the deduced amino acid (a.a.) sequence of the TnsA, TnsB, TnsD and TnsE proteins. Translation of the tnsC ORF reveals strong homology to a consensus sequence for nucleotide binding sites as well as a region of similarity to a transcriptional activator (MalT). No striking a.a. sequence similarity to other DNA recombinases is observed. The possible roles of these proteins in Tn7 transposition is discussed in light of the analysis presented.
Collapse
Affiliation(s)
- C Flores
- Imperial College of Science, Technology and Medicine, Centre for Biotechnology, London, UK
| | | | | |
Collapse
|
34
|
Waddell CS, Craig NL. Tn7 transposition: recognition of the attTn7 target sequence. Proc Natl Acad Sci U S A 1989; 86:3958-62. [PMID: 2542960 PMCID: PMC287367 DOI: 10.1073/pnas.86.11.3958] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The bacterial transposon Tn7 encodes two distinct but overlapping transposition pathways. tnsABC + tnsD promote transposition to a specific site, attTn7, while tnsABC + tnsE promote transposition to many other sites unrelated to attTn7. We have identified a tnsD-dependent DNA binding activity that specifically recognizes attTn7. We have localized the recognition sequences for this activity to a 28-base-pair region and have shown that this same region can provide specific properties of an attTn7 target in vivo. Interestingly, these sequences are positioned more than 25 base pairs from the specific point of Tn7 insertion.
Collapse
Affiliation(s)
- C S Waddell
- Department of Biochemistry, University of California, San Francisco, CA 94143
| | | |
Collapse
|
35
|
Lodge JK, Weston-Hafer K, Berg DE. Transposon Tn5 target specificity: preference for insertion at G/C pairs. Genetics 1988; 120:645-50. [PMID: 2852135 PMCID: PMC1203542 DOI: 10.1093/genetics/120.3.645] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The procaryotic transposon Tn5 inserts into many different sites within a single gene, but some sites (hotspots) are targeted repeatedly. Hotspots are not closely related in sequence, but most have G/C pairs at the ends of the nine base pairs duplicated by Tn5 insertion. In pBR322, the major hotspot coincides with the "-10 region" of the tet promoter. We mutated the G/C pairs at this hotspot and assayed for insertion into hotspot I, resistance to tetracycline, and plasmid supercoiling. We found that changing the G/C pairs to A/T pairs reduced the frequency of insertion into the hotspot by at least fivefold. The reduction in hotspot use caused by these G/C to A/T changes was not attributable to changes in plasmid supercoiling or tet promoter strength.
Collapse
Affiliation(s)
- J K Lodge
- Department of Microbiology and Immunology, Washington University Medical School, St. Louis, Missouri 63110
| | | | | |
Collapse
|
36
|
Makris JC, Nordmann PL, Reznikoff WS. Mutational analysis of insertion sequence 50 (IS50) and transposon 5 (Tn5) ends. Proc Natl Acad Sci U S A 1988; 85:2224-8. [PMID: 2832849 PMCID: PMC279962 DOI: 10.1073/pnas.85.7.2224] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Insertion sequence 50 (IS50) transposition utilizes a 19-base-pair "outside" end and a 19-base-pair "inside" end in inverted orientation relative to each other, whereas transposon 5 (Tn5) transposition utilizes two inverted outside ends. The frequency of transposition events that involve an inside end is regulated 1000-fold by the host dam methylase system. The end sequence requirements for transposition and its regulation by dam methylase were analyzed in Escherichia coli by generating random single base pair mutations in either an IS50 inside end or outside end placed in inverted orientation with respect to an unmutagenized outside end. The mutations were then isolated, assayed for transposition phenotype, and sequenced. Mutations were isolated at 15 of the 19 sites in the outside end. All of these mutations except those at position 4 decreased transposition. Mutations at position 4 (which is the only nonidentical base pair in a region of homology between the outside and inside ends) had no effect on transposition. Mutations were isolated at 11 of the 19 sites in the inside end. All of these mutations, including one at position 4, decreased transposition in dam- cells. Mutations at position 10 (within a dam recognition sequence) and 2 (not within a dam recognition sequence) reduced the magnitude of dam regulation. A mutation within a dam recognition sequence adjacent to the required 19 base pairs of the inside end did not reduce the magnitude of dam regulation.
Collapse
Affiliation(s)
- J C Makris
- Department of Biochemistry, University of Wisconsin-Madison 53706-1569
| | | | | |
Collapse
|
37
|
Waddell CS, Craig NL. Tn7 transposition: two transposition pathways directed by five Tn7-encoded genes. Genes Dev 1988; 2:137-49. [PMID: 2834269 DOI: 10.1101/gad.2.2.137] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The bacterial transposon Tn7 is capable of high-frequency transposition to a specific site in the Escherichia coli chromosome, attTn7, and of low-frequency transposition to sites other than attTn7. Using an in vitro insertional mutagenesis procedure, we have identified and characterized five tns (Tn seven) genes that are essential for Tn7 transposition. Three of these genes, tnsA, tnsB, and tnsC, are required, but are not sufficient, for all Tn7 transposition events. In addition, tnsD is specifically required for transposition to attTn7, whereas tnsE is specifically required for transposition to other sites. Thus, Tn7 is an elaborate transposon that encodes two distinct but overlapping transposition pathways.
Collapse
Affiliation(s)
- C S Waddell
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0552
| | | |
Collapse
|
38
|
McKown RL, Orle KA, Chen T, Craig NL. Sequence requirements of Escherichia coli attTn7, a specific site of transposon Tn7 insertion. J Bacteriol 1988; 170:352-8. [PMID: 2826397 PMCID: PMC210649 DOI: 10.1128/jb.170.1.352-358.1988] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Transposon Tn7 transposes at high frequency to a specific site, attTn7, in the Escherichia coli chromosome. We devised a quantitative assay for Tn7 transposition in which Tn7-end derivatives containing the cis-acting transposition sequences of Tn7 transpose from a bacteriophage lambda vector upon infection into cells containing the Tn7-encoded transposition proteins. We used this assay to identify a 68-base-pair DNA segment containing the sequences essential for attTn7 target activity. This segment is positioned asymmetrically with respect to the specific point of Tn7 insertion in attTn7 and lacks obvious homology to the sequences at the ends of Tn7 which participate directly in transposition. We also show that some sequences essential for attTn7 target activity are contained within the protein-coding sequence of a bacterial gene.
Collapse
Affiliation(s)
- R L McKown
- Department of Microbiology and Immunology, University of California, San Francisco 94143
| | | | | | | |
Collapse
|